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O. Introduction 

In [13], Skorohod introduced a stochastic integral of non-adapted random processes 

with respect to a Gaussian measure with orthogonal increments. The Skorohod integral 

is an extension of the classical Ito integral and coincides with the adjoint of the derivative 

operator on the Wiener space (see [5]). 

The relation between the Skorohod integral and the Malliavin calculus has been ana­

lyzed by Nualart and Zakai in [8]. More recently, a generalized or anticipating stochastic 

calculus based on the Skorohod integral has been developed by Nualart and Pardoux [9] 

(see also [12, 14, 15]). We also refer to [10] for an exposition of the basic ideas of this 

theory. 

The anticipating calculus has sorne special features. One of them is that the "inde­

finite" Skorohod integral <loes not have the martingale property. However it possesses 

an orthogonality property (see Proposition 5.1 (i) in (9]) which can be formulated as 

follows: Assume that u = { Ut, O ~ t ~ 1} is a process such that the Skorohod integral 

Mt = f0
1 

Usl¡o,t](s)dWs exists for any t E [O, l]. Then 

E{Mt - Ms IF[s,tjc} = O, (0.1) 

for all s < t, where F¡s,t]c denotes the a-field generated by the increments of the Brownian 

motion W on [s, t]c. 
On the other hand, if f : R --+ IR is a function of class C2 , under suitable hypotheses, 

and with the same notations as before, it follows from the extended Ito formula that f(Xt) 

can be written as the sum of a process Mt satisfying (0.1), and a process of bounded 

variation. This gives the feeling that the property (0.1) plays the role of the martingale 

property in the non-adapted case. 

The aim of this paper is to study a class of processes X = {Xt, t E (O, 1]} for which a 

generalized Doob-Meyer decomposition holds that means Xt = Mt+At, with M satisfying 

(0.1) and A a process of bounded variation. 

In the first section we introduce the notion of S-quasimartingale. These processes 

are the analogue of the quasimartingales of [4] (see also [3], [6], [11]) in the non-adapted 

case. We also include the essential tools of the anticipating calculus which are needed in 

the development of our work. In the second section we give a suffi.cient condition for a 

S-quasimartingale to have a Doob-Meyer decomposition. Notice that, dueto the lack of 
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adaptedness, it is not clear how to define the analogue of class D ( see [3]) in our situation. 

Our sufficient condition has been inspired by the work of Brennan ([1]), where the pro­

blem of the Doob-Meyer decomposition for two-parameter quasimartingales is considered. 

No ingredient of anticipating calculus is needed to prove the results of this section. In 

section 3, using the anticipating calculus, we give a necessary and sufficient condition 

ensuring the Doob-Meyer decomposition of sorne classes of S-quasimartingales, and we 

also prove uniqueness. 

1. Preliminaries 

Let X = {Xt, t E I} be a real stochastic process defined on a complete probability 

space (n, :F, P) indexed by a Borel subset I of [O, +oo) containing O. Assume we are 

given a family of sub o--fields of :F, {:FA, A measurable subset of J} which are complete 

with respect to the probability P, and such that :FA C :FB whenever A C B. Given 

s,t E J, s < t, we define (s,t] = {u E J: s <u:=; t}, and (s,t]c = I-(s,t]. 

Let 7r = {O= t0 < t 1 < ... < tn} be a finite sequence of elements of l. If X C L1(D) 

we define 
n-1 

Q(X) = sup E ¿ 1 E {Xt;+i - Xt; 1 :F(t;,t;+i]c} l -
1r 

(1.1) 
i=O 

Then, by analogy with the adapted case, we can introduce the notion of S-quasimartingale 

as follows. 

Deflnition 1.1. An integrable process X is called an S-quasimartingale if and only if 

Q(X) < +oo. 

The class of S-quasimartingales is nonempty. Indeed, let us call S-martingale any 

integrable process X = { X t, t E J} such that 

E {Xt - Xs 1 :F(s,t]c} =O, (1.2) 

for any s, t E J, s ::; t. 
Notice that Q(X) = O is equivalent to the fact that X is an S-martingale. The pro­

cess { Mt, t E [O, 1]} given in the introduction is an S-martingale, and therefore an S­

quasimartingale. 

As in the adapted case a S-quasimartingale can be characterized by means of a 

Doléans-Follmer measure. Assume for instance that I = [O, l]. We introduce the class 

of sets 

R = {(s,t] X F; O::; s < t, FE :F(s,tJc}. 
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Let a be the algebra generated by the finite unions of elements in R. Given an integrable 

process X= {Xt, t E [O, 1]} we define 

for any ( s, t] x F E R. Then Ax is a firútely additive measure on a, and it is easy to check 

that the following properties are satisfied: 

(i) Ax = O if and only if Q(X) = O. 

(ii) Q(X) < oo if and only if Ax is of bounded variation on a, and m this case 

1-Xxl((O, 1) x n) = Q(X), where 1-Xxl is the total variation of -Xx. 

From now on, we assume in this section that J = [O, 1), (!1, F, P) is the canonical 

space associated with a standard Brownian motion on I, {Wt, t E J}, and FA, A E B(I), 

is the completion with respect to P of the o--algebra generated by {lV(B), B C A}. In 

the sequel we will call this situation "the Brownian case". Every random variable defined 

on this probability space is called a Brownian functional. We will denote by S the class of 

Brownian functionals of the from 

F = f(W(t1), ... , W(tn)), (1.3) 

where f : Rn -+ R is an infirútely differentiable function such that f and all its derivatives 

are bounded, and t 1 , ... , tn are in I . The elements of S are called smooth functionals 

and form a dense subspace of L2 (!1). 

We recall that the derivative of a smooth functional F of the form (1.3) is the 

stochastic process { DtF, t E [O, 1)} given by 

This defines an unbounded closable operator on L2 (!1) with values on L 2 (I x !1). Then 

we define the space 0 1 •2 as the domain of D, that means, 0 1 
•2 is the closure of S 

with respect to the norm 

IIFll1,2 = IIFIIL2(0) + IIDFIIL2(Jx0) · 

Denote by b the adjoint operator of D, and by Dom b its domain. As we have mentioned 

in the introduction, 8 coincides with the Skorohod integral, and we will write 8( u) = 
J1 UtdWt, for u E Dom 8. 
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More generally, we can define the N-th derivative of F E S by Dt .. tN F = 
Dt

1 
Dt

2 
••• DtN F, and for any p > l the space [)N,p is the completion of S with re-

spect to the norm IIFIIN,p = IIFllu(n) + I:f=l 11 IIDk FIIP(Jk)IILP(íl). 
The following result will we needed in section 3. 

Proposition 1.2. Let F E [)1 •2 . Then for all O ~ s ~ t ~ l 

(1.4) 

We refer the reader to [9] (Proposition A.l) for the proof of this fact, which is an extension 

of a well-known result on the representation of Wiener functionals. 

2. Sufflcient condition for the Doob-Meyer decomposition of an S-quasimar­

tingale. 

Consider the simple example where I = N, the set of all natural numbers, and let 

X = { X n, n 2:: O} be an integrable process such that 

E {Xm - Xn 1 :F(n,mJc} 2: O, for any O~ n < m, (2.1) 

and Xo = O. 

Define An = ¿7,;01 E {Xi+l -X¡ 1 :F{i+l}c }, for n > O, Ao = O and ,Un = Xn -An. 

Then {An, n 2:: O} is an integrable, positive and increasing process, while {Mn, n 2: O} 

is an S-martingale. 

The decomposition Xn = Mn + An is the analogue of the Doob-Meyer representation 

of a discrete submartingale. 

The purpose of this section is to extend this decomposition to continuous time S­

quasimartingales. Along this section X = {Xt, t E [O, 1]} is assumed to be an integrable 

process. 

Let ..ón be the dyadic partition of [0,1) of order n. For every t E [O, 1] we define 

2n-1 

..ó n(X)t = L IE { Xu,(i+1)2-n - xt/\i2-n IF(t/\i2-n' t/\(i+1)2-nJc} 1, 
i=O 

2n-1 + 

..Ó n(x)t = L ( E { Xu,(i+1)2-n - xt/\i2-n l.r(t/\i2-n, t/\(i+l)2-nJc}) , 

i=O 

and ..ón(X);- in the analogous way. 
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We consider the set of random variables Ix(t) = {.6.n(X)t, n ~ 1}. \Ve also consider 

the sets Tl(t) and l"x:(t) defined as lx(t) with .6.n(X)t replaced by .6.n(){)¡ and by 

.6. n( X)¡, respectively. 

To simplify the notations, when t = l we will write .6.n(X),lx,TJi:,Tx instead 

of .6.n(X)1,Ix(l),J,t(l),lx(l), respectively. Notice that if n::; m, E{.6.n(X)} ::; 

E {.6.m(X)}. Thus, if X is continuous in L1 and supn E {.6.n(X)} < +oo, then X is 

an S-quasimartingale. 

Let Q(X)t = supn E {.6.n(X)t}. If X is an L1-continuous S-quasimartingale it is not 

difficult to prove that the function t --+ Q(X)t, defined on [0,1], is continuous. The same 

property holds for Q(X)¡ = supn E {.6.n(X)¡} and Q(X)¡ = supn E {.6.n(X)¡} as well. 

Consider the following hypothesis: 

(H1) The set Ix is uniformly integrable. 

We can state the main result of this section. 

Theorem 2.1. Let X be an L1-continuous S-quasimartingale. Assume that hypothesis 

(H1) holds. Then, there exists a decomposition 

X=M+A, (2.2) 

where Mis an S-martingale and A is a process with paths of bounded variation. More­

over, A0 = O, A is L1-continuous and has a.s. right continuous paths. If X is an S­

submartingale (that means, E{Xt -X8 IF(s,tjC} ~ O, for any s::; t), then A is increasing. 

Proof. Let Q = {rn, n ~ 1} be the set of all rational dyadic numbers contained in [ü,1]. 
We first show the existence of a subsequence {n<n>, n ~ 1} C N, and integrable random 

variables { Atn , n ~ l}, { A;:_ , n ~ l}, such that 

.Ó. n(n) (X)+ --+ A+ J\ n(n) (X)- --+ A-
r¡ r¡, Ll. r¡ r¡ , (2.3) 

respectively, in the weak topology u(L1 , L00
), as n --+ oo, for any i ~ l. 

Indeed, the sets I,t ( r 1 ) and lx ( ri) are uniformly integrable. Thus there exists a 

subsequence { .6. n<iJ, n > l} of { .6. n, n ~ 1}, and integrable random variables At
1

, A~ 

such that 

asn--+oo. 

5 



• . (1<+1) (k) 
By th1s way we can construct recurs1vely a subsequence { ~ n , n 2 1} of { ~ n , n 2 1}, 

and integrable random variables A;:+
1 

, A;,.+
1 
k 2 1 such that 

~n(k+l)(x)+ u(~"°) A+ 
rk+l r1<+1 ' 

and 

as n-+ oo. 

The diagonal sequen ce { ~ n < n), n 2 1}, and the integrable random variables 

{At, A;n, n 2 1} satisfy (2.3). From now on we will write a(n) = n<n). The pro­

cesses { Atn, n 2 1} and {A;:;,, n 2 1} obtained by this procedure are increasing. Indeed, 

assume that r¡ < ri. Then, for sorne n 0 > O we will have ri = k2-no, ri = n-no, k-/:- R. 

Then, for any n 2 no 

2n-not-l 

~n(x)t;-~n(x);; = L (E{X(h+1)2-n -Xh2-n IF(h2-n,(h+1)2-nr})+ 20. 
h=2n-nok 

Hence A~ - At 2 O, because it is the weak limit of a positive sequence. The same 

arguments apply to {A;n, n 2 1}. We set Arn = A-;t - A;n, rn E Q. 
The continuity of Q(X)¡ and Q(X)¡ entails that {Arn, n 2 1} is uniformly continuous in 

L1. In fact, assuming that r¡ < rj, we have 

E IAr; - Ar;I ~ E(At; - A;;)+ E(A~ - A~) 

= (Q(X)t; - Q(X);;) + (Q(X)~ - Q(X);J-+ O, 

as (rj - r¡)-+ O. 

The process {Mrn = Xrn - Arn, n 2 1} is an S-martingale. To prove this fact take 

r¡ < ri anda bounded random variable e which is F(r;,r;Jc-measurable. Using the same 

notations as before it follows that: 

2"(n)-not-1 

E{e(Ar; -Ar;)}= nli_.~ E{ e L E{X(h+l)2-n -Xh2-n IF(h2-n,(h+1)2-nJc} }. 

h=2"(n)-nok 

Consequently 

2"(n)-nol-l 

E { e(Ar; - Ar;)} =;~E { e L E { x(h+1)2-n - Xh2-n I F(r¡,r;Jc}} 
h=2"( n )- no k 

= E { eE { Xn-no - Xk2-no I F(r;,r;Jc}} 

= E { e(Xr; - Xr;}, 
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and the desired result follows. 

Finally, for any t E [O, 1] n qc we define A¡ = limrE@ A;, A; = limrE@ A;-, and 
r!t r!t 

At = A¡ - A¡. N otice that the process { At, t E [O, 1]} has bounded variation paths and 

is continuous in L 1 . 

Moreover {Mt = Xt-At, t E [O, 1]} is an S-martingale. Indeed, let s, t E [O, 1}, s < t 
and consider sequen ces of rational dyadic numbers { s n, n 2:: 1}, { t n, n 2: 1} such that 

Sn < tn for any n 2: 1, Sn l s and tn j t as n ----+ oo. Then 

by the L 1-continuity of X. On the other hand 

E { Xtn - Xsn I F(s,t)c} = E { E { Xtn - Xsn I F(sn,tn]c} 1 F(s,t]c} 

Ll 
= E { Atn - Asn I F(s,t]C} - E { At - As I Fcs,t]<} . 

This finishes the proof of the theorem. D 

Remark. Assume that we are dealing with the Brownian case, and that the process X 

in Theorem 2.1 is adapted. Then, so are A and M. Furthermore, in this case M is a 

martingale. 

3. Necessary and sufficient conditions for the Doob-Meyer decomposition of 

an S-quasimartingale 

In this section we will study the Brownian case. This is our fundamental assumption. 

In the first part we prove that, if the measure induced by the process A constructed in 

Theorem 2.1 is absolutely continuous, then the hypotheses (H1 ) is also necessary for the 

Doob-Meyer decomposition of an L1-continuous S-quasimartingale. In the second part 

we consider the set of L1-continuous S-quasimartingales which are S-submartingales. Vve 

introduce a new hypotheses (H3 ) and prove that it is a necessary and sufficient condition 

for the Doob-Meyer decomposition to hold. As a by-product of our results we will obtain 

the uniqueness of the representation in this particular case. In the last part we will study 

a family of S-quasimartingales derived by transformation of Skorohod integrals. 

Assume that X is a process such that X = M + A where M is an S-martingale and A 

an integrable process of bounded variation, with Ao = O. With the notation of the previous 

section we have 
2n-1 

lx = { ~n(A) = L I E { A(i+1)2-n - A¡2-n 1 .r(i2-n, (i+l)2-nJc} 1, n 2: 1} • (3.1) 
i=O 
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The process A = { At, t E (O, 1]} induces a signed measure on the product space 

[O, 1] x n defined by ,\A((s, t] x F) = E(lF(At - As)), F E F. Let us introduce the 

following condition: 

(H2 ) There exists a deterministic (positive) measure µ on 8([0, 1]), anda measurable process 

{a 8 (w), (s,w) E [O, 1] x n} such that 

AA(G) =EL a8 (w)µ(ds), for any GE 8((0, 1]) ® F. 

We can now establish the following result: 

Proposition 3.1. Let X be an S-quasimartingale. Assume that X = Af + A, where M 

is an S-martingale and A an integrable process whose paths are right continuous and with 

bounded variation, and A0 = O. Furthermore, assume that (H2 ) is satisfied. Then (H1) 

holds. 

Proof Set Ft = F[o,t] and ;:t = F¡t,l]· We notice that ;:t is the cr-algebra generated by the 

increments {Wu - W1, t:::; u:::; 1}. Let wu = W 1 _u - W1. Then {Wu, O:::; u:::; 1} is also 

a Brownian motion, and P = o-{Wu, O :::; u :::; 1 - t}. Given s0 , t 0 E (O, 1] with s0 + t0 = 1, 

we have that {Ws, O:::; s:::; s0 } and {W 8
, O:::; s:::; t 0 } are independent. Consequently, the 

two-parameter filtration {Fes, t¡e = Fs V Ft, O :::; s < t :::; 1} satisfy the usual con di tions 

(Fl) to (F4) of Cairoli and Walsh [2]. 

Let e be a measurable and bounded random variable. Define 

2n-1 

Zn( t, w) = I: E { e I Fc¡2-n, (i+1)2-n¡c} lci2-n' (i+l)2-nJ ( t). 
i=O 

Then, by the results on convergence of two-parameter martingale sequences, we have that, 

for any fixed t E [O, 1], Zn(t,w)--+ e a.s. as n tends to OO. 

The process A can be decomposed as the difference of two increasing integrable pro­

cesses A = A(l) -A(2) . Clearly ~ n(A) :::; ~n(AC1>)+~ n(A(2)). So, in arder to establish the 

uniform integrability of Ix we can assume without loss of generality that A is increasing. 

We want to prove that for any e E L 00 we have 

(3.2) 

We have 
2n-1 

E { e~ n(A)} = E { L (A(i+1)2-n - Á¡2-n) E { e I Fc¡2-n' (i+l)2-nJc}} 
i=O 

= E ¡1 Zn(t,w)dAt = [ Zn(t,w)d>.A(t,w). 
Jo J¡o,1Jxn 

(3.3) 
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Let G = {(t,w) E [O, 1] x n: lirnn-oo Zn(t,w) -1- l(w)}. Then ,\A(G) = o. 
Indeed, by Fubini's theorern and using the fact that the sections Gt = {w: (t,w) E G} 

have probability zero for all t, we have 

,\A(G) = E 11 

la(t,w)at(w)µ(dt) = 11 (fn la(t,w)at(w)dP)µ(dt) = O. 

Hence, by dorninated convergence 

lirn [ Zn(t,w)d,\A(t,w) = [ l(t,w)d,\A(t,w) = E {lAi}. 
n-oo }¡o,1Jxn }¡o,1Jxn 

Then, by (3.3) we obtain the desired convergence. D 

In arder to introduce a new hypothesis we give the following definition. 

Deflnition 3.2. A set 1í of randorn variables is said to be weakly uniformly integrable if 

1í is weakly sequentially cornpact for the weak topology o-(L1 , L00 n [)1 •2 ). That rneans , 

for every sequence of elernents in 1í one can extract a further subsequence which converges 

in the weak topology o-(L1, L00 n 11) 1 ,2 ). 

We can now state condition (H3) as follows. 

(H3 ) The set Ix(t) = {An(X)t, n 2:: 1} is weakly uniforrnly integrable for any t E Q, 
where Q denotes the set of the rational dyadic nurnbers in [0,1]. 

Notice that (H3 ) is weaker than (H1 ). 

The rernaining of this section is devoted to prove the following result. 

Theorem 3.3. (1) Let X be an L1-continuous S-subrnartingale. Assurne that (H3 ) 

is satisfied. Then X = M + A, where M is an S-martingale and A is an increasing 

process. Moreover Ao = O, A is L1-continuous and has a.s. right continuous paths, and 

this decornposition is unique. 

Conversely, 

(2) If X= M + A, with Man S-rnartingale and A an increasing, integrable process with 

A0 =O, then, X is a S-subrnartingale and (H3) is satisfied. 

The proof of this theorern is based on severa! lernrnas. 

Lemma 3.4. Let l be any randorn variable belonging to 0 1
•
2 and {At, t E [O, 1]} an 

integrable, increasing process with A0 = O. As befare, we set 

2n-l 

A n( A) = ¿ E { Á(i+l)2-n - Á¡2-n 1 :F'(i2-n ,(i+I)2-nJc} • 

i=O 
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Then, for any k > O , 

sup sup IE { ~ n(A)e - A1e} 1 -+o' 
llelloo!>A: n 

II D{ il i 2([0, l]X O)!,< 

as € tends to zero. 

Proof. By the definition of ~n(A) and the properties of the conditional expectation 

2n-1 

IE { ~ n(A)e - A101 = IE { L (A(i+1)2-n - A¡2-n) (e - Elel.rc¡2-n, (i+1)2-nJc)} 1 (3.4) 
i=O 

Set Yn = í:;:;;-1 (A(i+l)2-n - A¡2-n) ( e - E ( elF(i2-n, (i+l)2-nJc). Fix 8 > o and M > O; 

we have the following inequalities: 

1 j YndPI 
{ A1 ::;M, max¡ le-E ( elF(irn, (i+i¡2- n1c) 1>6} 

~ 211e11CX) M p { m~x 1e - E(elF(i2-n, (i+1)2-n¡c) 1 > 8} 
1 

2n-1 

~ 211e11CX) M L p { le - E (elF(i2-n, (i+l)2-nJc) 1 > 8} 
i=l 

2n-1 

~ 211e11CX) M 8-2 L Ele - E (el.rc¡2-n, (i+1)2-nJc) 12 
i=l 

2n-1 (i+1)2-n 

= 211e11CX) M 8-2 L El 1-n E(DrelF(r, (i+l)2-n¡c )dWrl2 , 
i=l i2 

2-1 1(i+1)2-n 

= 211e11CX) M 15-2 L E . -n IE(DrelFcr,(i+l)2-nJc) l2dr 
i=l i2 

(see(l.4)) 

2n-1 (i+1)2-n 1 

~ 211€11= M r 2 ~ J,__ E ID,(l2dr = 211ell=M6-2 J. EID,(l2 dr 

= 2llell=M8-2i1Delli2c¡o,1Jxn) · 
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Since A1 E L1(0) given r¡ > O we can choose M > O such that J{Ai>M} A1dP :'.S 6\. 

Hence the supremum when llell 00 :'.S k of the right hand side of (3.5) can be bounded by ¡. 
By the same reason, by choosing 8 = 3 E(Ai) , the right hand side of (3. 7) can be majorized 

by¡. 

Finally taking éo = f l8kMlEA1)2' the supremum when 11e1100 :'.S k and 

IIDel11,2((o,1Jxn) :'.Sé with e :'.S éo of the right side of (3.6) is also bounded by t· Thus, we 

have the result. O 

Lemma 3.5. Let A be a process satisfying the same hypotheses as in the preceding lemma. 

For any random variable e E L 00 n 0 1,2 such that ¡; EIDrel4 dr < +oo, it holds that 

Proof. Let e E L 00 n D1 •2 . For any 8 > O we have 

2"-1 
p { 0$~~-1 1e - E(el.r(i2-",(i+l)2-nJc) 1 > 8} :'.S ~ P{ 1e - E(el.r(i2-n,(i+i)2-nJc) 1 > 8} 

i=O 

(by Proposition 1.2) 

converges in probability to zero, as n tends to infinity. U sing this fact and the same 

arguments as in the proof of Lemma 3.4 we get the desired result. O 

Remark. The conclusions of Lemmas 3.4 and 3.5 also hold if we replace ~n(A) by 

~ n(A)t = ¿¡:~l E { ÁtA(i+l)2-n -AtAi2-n IF(tA(i2-n, tA(i+1)2-nJc} and A1 by Át, t E [O, 1], 

respecti vely. 
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Proposition 3.6. Let A be a process satisfying the hypotheses of Lemma 3.4. For any 

random variable l E L 00 n [)1 ,2 we have 

for any t E [O, l]. 

Proof. Given e E L 00 n [)1,2 , and é > o, let rJe be a smooth functional such that llrJe lloo ~ k, 

for sorne constant k, E fo
1 

IDrrJel 4 dr < 00' and 11ne - Dr¡ellL2([0,l]xn) < é. 

The functional rJe can be obtained using the following argument. First consider a 

sequence of smooth functionals {ln, n 2:: 1} such that ln converges to e in 0 1 ,2 and a.s., 

when n ~ oo. Let a < b be real numbers such that a < b and l( w) E ( a, b) a.s. consider a 

function 1-1) E Ccf(R) such that r.p(ln) converges to e in 0 1 ,2 ' as n tends to OO. The sequence 

{r.p(ln), n 2:: 1} is bounded and satisfies E f0
1 1Drr.p(ln)l4 dr < +oo, for any n 2:: l. 

By Lemma 3.5 we know that limn_.00 E{L\n(A)trJe} = E{Atr¡e}· Then 

lim IE {L\n(A)tl-Atl}I ~ lim IE {L\n(A)t(e- rJe)-At(e- rJe)}I 
n-+oo n-+oo 

+ lim IE {L\n(A)trJe -Atr¡e}I, n-+oo 

and the right hand side of this inequality is zero, due to the preceding remark and Lemma 

3.4. • 

Lemma 3.7. Let A be a Borel subset of [0,1] and X E L 1(f!,FA,P). If E(Xr¡) = O for 

all r¡ E 0 1,2 n L00 (f!, FA, P), then X= O. 

Proof. It is immediate because we can take r¡ = r.p(W(Bi), ... , W(Bn)), where r.p E Ccf(Rn) 

and B¡ e A. • 
Proof. of Tbeorem 3.3. 

(1) Assume first that X is an L1-continuous S-submartingale satisfying (H3 ). The 

construction of the increasing process A follows by the same arguments than in the 

proof of Theorem 2.1 but replacing the convergence in a(L1 , L00
) by the convergence 

in a(L1 , L 00 n 0 1
,2 ). This process A verifies E { e[(Xr; -Xr, )- (Ar; - Ar,)]} =O, for any 

r¡, Tj E Q, r¡ < Tj, and for any F(r;,r;Jc-measurable random variable e E L00 n 0 1
,
2

. Thus 

By Lemma 3. 7 it follows that 

E {Xr; -Xr;IF(r;,r;Jc} = E {Ar; -Ar,IF(r,,r;Jc}, 
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thus Mrn = Xrn - Arn, rn E Q is an S-martingale, and we continue as in the proof of 

Theorem 2.1. 

Let us now establish the uniqueness of the Doob-Meyer decomposition. Assume that 

X is an S-submartingale such that X= M 1 +A1 = M 2 +A2 , where M;, are S-martingales 

and A; right continuous, integrable processes with increasing paths, and Ai(O) = O, i = 1, 2. 

Then for any t E [O, 1], ~n(A1 )t = ~n(A2 )t. Hence, by Proposition 3.6, for any t E [O, 1] 

for any e E L 00 n D1 •2 . Thus, by Lemma 3.7, A1 (t) = A 2 (t), a.s for a fixed t E [O, l]. 

The right continuity of Ai, i = l, 2, implies A1 (t) = A2 (t), for any t E [O, 1], a.s., proving 

umqueness. 

(2) Assume that X= M + A, where Misan S-martingale and A an increasing, integrable 

process with A0 = O. It is clear that X is an S-submartingale. On the other hand 

~n(X)t = ~n(A)t, and property (Ha) follows from Proposition 3.6. 

The proof of the theorem is now complete. O 

Remark. The method used in the proof of Theorem 3.3 cannot be adapted to the case of 

an S-quasimartingale. So we do not have a sufficient condition (similar to condition (Ha)) 

for the Doob-Meyer decomposition of an S-quasimartingale. A necessary condition is 

provided by the results of Section 2. The uniqueness of the decomposition in the Brownian 

case can be deduced by the quadratic variation properties of the Skorohod integral ( see 

(9) and (10, pag 105)). In Corollary 2.4 of [7] these is also a uniqueness property under 

different conditions. 

Following [9], we set lN,p = LP([O, 1]; oN,p) for ali N ~ l and p ~ l. It is known that if 

u E l 2
•2 then u· l¡o,t] E Dom8 for any O::::; t::::; l. 

The next proposition gives an example of S-quasimartingale and its Doob-Meyer 

decomposi tion. 

Proposition 3.8. Let u E L 2 ,2 ,, Xt = 8( u• l¡o,t] ), O ::::; t < l , and f : R ~ R a C2 function 

with an uniformly continuous and bounded second derivative. Then, f(Xt) = Mt + At, 

where 

(i) M = {Mt, O::::; t::::; 1} is an S-martingale, 

(ii) A= { At = ½ J; J"(Xs)u~ds + J; f"(Xs)( J0ª DsurdWr )usds, O::::; t ::::; 1} 

is a continuous, bounded variation process and E f0
1 

ldAt 1 < +oo. 

Consequently {f(Xt), O ::::; t ::::; 1} is an S-martingale. 

Proof. It is clear that the process A given in (ii) is continuous and of bounded variation. 
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The property E f0
1 ldAtl < +oo follows from Schwarz's inequality, the isometry of 

the Skorohod integral and the fact that u E 11.... 
2 ,2 . So, it only remains to prove that 

M = {Mt = f(Xt) - At, O :s; t :s; 1} is an S-martingale. Notice that the properties 

off and A ensure the integrability of M. 

In order to show that Mt is an S-martingale we will use the techniques developed in 

[9] for the proof of the extended Ito formula. 

Let t, t' E [O, 1], t < t', and 7rn = {t = to,n < t1,n < ... < tn,n = t'} be a refining 

sequence of partitions of [t, t'] whose mesh tends to zero. We will write t¡ instead of ti,n, 

for the sake of simplicity. Let F be a F(t,t']c-measurable and bounded element of S, then 

E { (f(Xt,) - f(Xt)) F} 
n-1 

= E { ( L (f'(Xt,)(Xt,+1 - Xt.) + ~f"(.X¡)(Xt,+1 - Xt,/)) F} l 

i=O 

where .X¡ denotes a random point between Xt, and Xt,+i. Define 

n-1 

Cf = E { ( L J'(Xt.)(Xt,+1 - Xt.)) F} l 

i=O 

and 
n-1 

e:; = E { ( I: J"(.X¡)(X1,+1 - Xt, )2
) F}. 

i=O 

Our aim is to prove that 

(3.8) 

and 
t' 

lim e;= E{ ( { J"(Xs)u;ds) F}. 
n-+oo }t (3.9) 

Since F is F(t,t']c-measurable, and using the duality between D and h, we have 
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On the other hand 

E{I ~ {+' [J"(Xt;)( [ D,urdWr) - J"(X,)( [ D,urdWr)]u,dsl} 

'., E{I ~ {+' f"(X,,)( [ D,urDWr)u,dsl} 

+ E{ 1 ~ f +' [f"(X,,) - f"(X,)] ( [ D,urdWr )u,dsl} 

'.> IJf"IJ~ ~ [+' E(I [ D,urdWrllu,l)ds + f3n, 

where /3n = E{ j ¿~=~1 Jt+i [f"(XtJ - J"(Xs)]( Íos DsurdWr )usdsl}. 
Using Schwarz's inequality and the isometry of the Skorohod integral, we can majorize the 

first term in this last inequality by 

n-l 1ti+1 {1 1s 1¡2 

+ E ~ t¡ fo t¡ IDeDsurl
2
drd0ds) , 

which tends to zero as n tends to infinity, since u E L 2 •2 • 

In order to estimate the term f3n we proceed as follows. Fix e > O and let v E 

L4 ([0, 1] x !1) such that llu - vl!L2([o,l]xn) < e. Then we have 

f3n '.>~[+'E{ lf"(X,,) - f"(X,)I 1 [ D,urdWrllu, - v,I} ds 

+~[+'E{ lf"(X,,) - f"(X,)I 1 [ D,urdWrllv,I} ds 

$ 2jjJ"IL,o { ¡1 
E(l ls DsurdWrl2

) ds} 
112 

c (3.10) 

{ ¡1 ¡s }1/2 ( )1/4 + E (1 DsurdWrl 2
) ds llvllL4([0,l]xO) sup E(lf"(Xr) - f"(Xs)l 4

) • 
O O l•-rl$1..-nl 

, ,rE(1,1 1 ] 

The second summand in (3.10) converges to zero as n tends to infinity because 

{!"(Xi), O < t < l} is continuous in LP for all p. The proof of (3.8) is now complete. 
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Let us now prove (3.9). Suppose that n ~ m, and for any i = 1, ... n denote by t~m) 

the point of the partition 1rm which is closer to tf from the left. Then we have 
n-1 t 

1 ~ J"(X¡)(Xt,+1 - Xt.) 2 
- ¡ f"(Xs)u;dsj 

~ D1 + D2 + D3. 
where 

n-1 

D1 = 1 L [f"(.X¡) - J"(Xim) )] (Xt,+1 - Xt, )21, 
i=O 

1 

m-1 t'!'+1 t 
D2 = 1 ~ lt; f"(Xtf )u;ds - lo J"(Xs)u;dsj, 

and 
n-1 m-1 tm 

D3 = 1 ¡: J"(Xt~m))(Xt,+1 - Xt.) 2 
- ¡: 1:+t J"(Xtf )u;dsl. 

i=O 3=0 t; 

Consider the set SH of step processes of the form Vt = ¿7,;01 1]s;,s;+t](t) F¡, where 

F¡ E S. The class SH is dense in L1•2 . Consequently, given é > O, we can find a process 

v E SH such that llu - vll11...1,2 < é. Set Yí = 1; v8 dW8 • Then, we have, 
n-1 

E(D1) :'S; E(I ¡: [f"(.X¡) - f"(Xt~m))] {(Xt,+1 - Xt.) 2 
- (Yí,+i - Yí,) 2 1) 

1=0 

n-1 
+ E(I L [J"(X¡) - f"(X1~m))] (Jlí;

1 
- Jlí;)21) 

i=O 

::;; 2IIJ"lloo llu - vllL1,2llu + vlla..1,2 + rn 
where rn = E(IE~o

1
U"(.X¡)-f"(Xt¡m))](Yí,+1 -Yí,)21)-

Hence it suffices to show that limn rn = O. We can replace f"(.X¡) by 1; 2(1 - >-.)J"(Xt; + 
>-.(Xt,+1 - Xt;) d)... Set!\¡(>-.)= lf''(Xt; + >-.(Xt;+i - XtJ - f"(Xi;m))j. Then we have 

n-1 1 

"In '.Ó E~ J. 2(1 - A) A; (A)(Y,,., - Y,;)2 d,\ 

n-1 

::;; 8 L E [ (Yí;+1 - Yí. )2] 
i=O 

n-1 1 

+ L ¡ 2(1 - >-.)E [ ¡\¡ (>-.)t{t,¡(.\)>c5}(Yí;+1 - Yí; )2] d).. 
i=O O 

:S; 8llvl!L1,2 (3.11) 
n-1 1 

+ 2llf"lloo L { 2(1- >-.)E[l{1x .-x +.\(X. -X -)l>n}. (Yí;+1 -Yí;)2]d>-., . loo t, (m) t,+1 t, ., 
i=O · t¡ 
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where for any 8 > O, the number r¡ > O is such that if lx-yj < r¡ then lf"(x)- J"(y)I < 8. 

The second summand in (3.11) is bounded by 

+E~ [ (i f, D,u,dW,12 + 1 t+• D,u,dW,12
) ds], 

and this expression converges to zero as m-+ oo. The arguments used before to show that 

limn /3n = O imply limm-= D2 = O. 

Finally, 

tends to zero in L2
, as n tends to infinity, for each m fixed, as follows from Theorem 5.4 

of [9). This completes the proof of (3.9), and the proposition is established. • 

Remark. Notice that the assumption of Proposition 3.8 are not strong enough to ensure 

the continuity of the processes Xt and Mt (see [9]). In fact, a sufficient condition for the 

continuity of Xt is u E L2,P with p > 4, and in this case the proof of Proposition 3.8 could 

be shortened. 

Actually, in this case we can apply the Ito formula (see [9]) and get Mt = J; f'(Xs)usdWs 

with f'(X 8 )u 8 locally in L1,2 . 
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