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0. Introduction

In [13], Skorohod introduced a stochastic integral of non-adapted random processes
with respect to a Gaussian measure with orthogonal increments. The Skorohod integral
is an extension of the classical It integral and coincides with the adjoint of the derivative
operator on the Wiener space (see [5]).

The relation between the Skorohod integral and the Malliavin calculus has been ana-
lyzed by Nualart and Zakai in [8]. More recently, a generalized or anticipating stochastic
calculus based on the Skorohod integral has been developed by Nualart and Pardoux [9)
(see also [12, 14, 15]). We also refer to [10] for an exposition of the basic ideas of this
theory.

The anticipating calculus has some special features. One of them is that the “inde-
finite” Skorohod integral does not have the martingale property. However it possesses
an orthogonality property (see Proposition 5.1 (i) in [9]) which can be formulated as
follows: Assume that v = {u,, 0 < ¢ < 1} is a process such that the Skorohod integral
M, = fol u,1l(g,4(8)dW, exists for any t € [0,1]. Then

E{Mt'—Mslf.[s’t]c} =0, (01)

for all s < t, where Fi, ;) denotes the o—field generated by the increments of the Brownian
motion W on [s,t]°.

On the other hand, if f : R — R is a function of class C?, under suitable hypotheses,
and with the same notations as before, it follows from the extended It6 formula that f(X;)
can be written as the sum of a process M, satisfying (0.1), and a process of bounded
variation. This gives the feeling that the property (0.1) plays the role of the martingale
property in the non-adapted case.

The aim of this paper is to study a class of processes X = {X;, t € [0,1]} for which a
generalized Doob—Meyer decomposition holds that means X; = M;+ A, with M satisfying
(0.1) and A a process of bounded variation.

In the first section we introduce the notion of S—quasimartingale. These processes
are the analogue of the quasimartingales of [4] (see also [3], [6], [11]) in the non-adapted
case. We also include the essential tools of the anticipating calculus which are needed in
the development of our work. In the second section we give a sufficient condition for a

S-quasimartingale to have a Doob-Meyer decomposition. Notice that, due to the lack of
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adaptedness, it is not clear how to define the analogue of class D (see [3]) in our situation.
Our sufficient condition has been inspired by the work of Brennan ([1]), where the pro-
blem of the Doob-Meyer decomposition for two—parameter quasimartingales is considered.
No ingredient of anticipating calculus is needed to prove the results of this section. In
section 3, using the anticipating calculus, we give a necessary and sufficient condition
ensuring the Doob-Meyer decomposition of some classes of S—quasimartingales, and we

also prove uniqueness.

1. Preliminaries

Let X = {X,,t € I} be a real stochastic process defined on a complete probability
space (§2,F,P) indexed by a Borel subset I of [0,400) containing 0. Assume we are
given a family of sub o-fields of F, {F4, A measurable subset of I} which are complete
with respect to the probability P, and such that F4 C Fp whenever A C B. Given
s,tel, s<t, wedefine (s,t)j ={u€l:s<u<t}, and (s,t]°=1—(s,t].

Let 7={0=1t9 <t <...<t,} bea finite sequence of elements of I. If X C L}(Q2)
we define

n—1
QX)=sup E Y |E{Xu,, — Xu.| Frritipuie} |- (1.1)
1r =0
Then, by analogy with the adapted case, we can introduce the notion of S—quasimartingale

as follows.

Definition 1.1. An integrable process X is called an S—quasimartingale if and only if
Q(X) < +o0.

The class of S—quasimartingales is nonempty. Indeed, let us call S-martingale any
integrable process X = {X;, t € I} such that

E {Xt - X, |-7:(s,t]"'} =0, (1'2)

for any s,t € I, s <t.
Notice that Q(X) = 0 is equivalent to the fact that X is an S-martingale. The pro-
cess {M;,t € [0,1]} given in the introduction is an S—martingale, and therefore an S-
quasimartingale.

As in the adapted case a S—quasimartingale can be characterized by means of a
Doléans-Follmer measure. Assume for instance that I = [0,1]. We introduce the class
of sets

R={(s,t] x F; 0 < s <, FEf(s’t]c}.
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Let a be the algebra generated by the finite unions of elements in R. Given an integrable
process X = {X,, t € [0,1]} we define

’\X ((S,t] X F) = E{].F(Xt —Xs)},

for any (s,t] x F € R. Then \x is a finitely additive measure on a, and it is easy to check
that the following properties are satisfied:
(i) Ax =0 ifandonlyif Q(X)=0.
(i) Q(X) < oo if and only if MAx is of bounded variation on a, and in this case
A x]((0,1] x ) = Q(X), where |Ax]| is the total variation of Ax.

From now on, we assume in this section that I = [0,1], (©,F, P) is the canonical
space associated with a standard Brownian motion on I, {W;, t € I}, and F4, 4 € B(I),
is the completion with respect to P of the o-algebra generated by {W(B), B C A}. In
the sequel we will call this situation “the Brownian case”. Every random variable defined
on this probability space is called a Brownian functional. We will denote by S the class of

Brownian functionals of the from
F=f(Wt1),...,W(ta)), (1.3)

where f : R®™ — R is an infinitely differentiable function such that f and all its derivatives
are bounded, and t;,...,t, arein I. The elements of S are called smooth functionals

and form a dense subspace of L?(Q).
We recall that the derivative of a smooth functional F of the form (1.3) is the
stochastic process {D,F,t € [0,1]} given by

D.F = Z g—i (W(t1),...,W(tn)) Lio,e(t)-

This defines an unbounded closable operator on L?(2) with values on L2?(I x Q). Then
we define the space D'? as the domain of D, that means, D%:? is the closure of §

with respect to the norm

\Fll1,2 = |FllL2q) + |1DF||L2(rxa) -

Denote by § the adjoint operator of D, and by Dom é its domain. As we have mentioned
in the introduction, é coincides with the Skorohod integral, and we will write é(u) =

fI udWy, for u € Dom é.



F =
Dy Dy,...D,F, and for any p > 1 the space DN? is the completion of S with re-
N
spect to the norm ||F|\np, = |Fllra) + Zopey | ID¥Fll Lyl Leca) -

The following result will we needed in section 3.

More generally, we can define the N-th derivative of F € & by DN

...ty

Proposition 1.2. Let F € D2, Thenforall 0<s<t<1
t
F = E(F|Fyq) + / E (D, F|Fipqe)dW, (1.4)

We refer the reader to [9] (Proposition A.1) for the proof of this fact, which is an extension

of a well-known result on the representation of Wiener functionals.

2. Sufficient condition for the Doob—Meyer decomposition of an S—quasimar-
tingale.

Consider the simple example where I = N, the set of all natural numbers, and let

X = {X,, n > 0} be an integrable process such that
E{Xm—Xn|Fnm} =0, forany 0<n<m, (2.1)

and Xy =0.

Define A, = 310 E{Xiy1—Xi| Fig1ye}, for n >0, 4g =0 and M, = X,—A,.
Then {A,, n > 0} is an integrable, positive and increasing process, while {M,, n > 0}
is an S—martingale.

The decomposition X,, = M, + A, is the analogue of the Doob—Meyer representation
of a discrete submartingale.

The purpose of this section is to extend this decomposition to continuous time S-
quasimartingales. Along this section X = {X4, t € [0,1]} is assumed to be an integrable
process.

Let A™ be the dyadic partition of [0,1] of order n. For every t € [0, 1] we define

2" —1
A™MX), = Z |E {Xt/\(i+1)2—" - Xt/\i2—"|f(t/\i2—",tA(i+1)2-"]C}| ,
i=0
21 +
A = 3 (E{Xengrne-n = Xenizn | Fenamn, iniiamnie }) s
i=0

and A™(X); in the analogous way.



We consider the set of random variables I'x(t) = {A™(X)¢, n > 1}. We also consider
the sets I(¢) and Ix(t) defined as Ix(t) with A™(X), replaced by A™(X)F and by
A™(X);, respectively.

To simplify the notations, when t = 1 we will write A™(X), Ix,I%,Ix instead
of A™(X)1,Ix(1),I%(1),I%(1), respectively. Notice that if n < m, E{A™X)} <
E{A™(X)}. Thus, if X is continuous in L! and sup, E {A™(X)} < +oo, then X is
an S—quasimartingale.

Let Q(X); = sup,, E{A™(X),}. If X is an L' —continuous S—quasimartingale it is not
difficult to prove that the function t — Q(X);, defined on [0,1], is continuous. The same
property holds for Q(X){ = sup, E{A™(X)}} and Q(X); = sup, E {A™(X)[} as well.

Consider the following hypothesis:

(H;1) The set Ix is uniformly integrable.

We can state the main result of this section.

Theorem 2.1. Let X be an L'-continuous S—quasimartingale. Assume that hypothesis
(H;) holds. Then, there exists a decomposition

X=M+A4, (2.2)

where M is an S-martingale and A is a process with paths of bounded variation. More-
over, Ag = 0, A is L'—continuous and has a.s. right continuous paths. If X is an S-
submartingale (that means, E {X, — X,|F(, -} > 0, for any s <), then A is increasing.

Proof. Let @ = {r,, n > 1} be the set of all rational dyadic numbers contained in {0,1].
We first show the existence of a subsequence {n{(™, n > 1} C N, and integrable random
variables {Af , n > 1}, {4, n > 1}, such that

n(®

A (XO)E - AF, AMV(X)5 - AL, (2.3)

respectively, in the weak topology o(L!, L>°), as n — oo, for any i > 1.
Indeed, the sets I%(r;) and I%(r,) are uniformly integrable. Thus there exists a

subsequence {A"(l), n > 1} of {A", n > 1}, and integrable random variables A}, A7

such that

nV a(L , L)

(X3 A%,

LipY

An(l)(X)rl o(I:_g )A:l,

as n — o0.



By this way we can construct recursively a subsequence {A"(Hl) ,n>1}of {A"(k) ,n>1},
and integrable random variables At A= k>1 such that

Te41 ? " Tk
1 =]
An(k+1)(X):’k+l o(L",L )A;{-k+l ,
and L e
k41
An( + )(X):k_H o(L”, )A:,H.1 ’
as 1 — OO.

The diagonal sequence {A"(n), n > 1}, and the integrable random variables
{A} , A7 ,n > 1} satisfy (2.3). From now on we will write a(n) = n(®. The pro-
cesses {A} ,n >1} and {4y, n > 1} obtained by this procedure are increasing. Indeed,
assume that r; < r;. Then, for some no > 0 we will have r; = k2770, r; = £277° &k # £
‘Then, for any n > ng

270 g—1

+
AL =AM XL = Y (E{Xowner = Xnas | Fppen iagaen]s}) 20
h=2"—"ok
Hence A} — Al > 0, because it is the weak limit of a positive sequence. The same
arguments apply to {47 ,n >1}. Weset A,, = A} — A ,r,€Q.
The continuity of Q(X )} and Q(X); entails that {4,,, n > 1} is uniformly continuous in

L'. In fact, assuming that r; < r;, we have
E|A,, — A | S E(A], - A7)+ E(47 - 47)
= (Q(X)!, - @(X)}) + (Q(X);, — QX)) — 0,
as (rj —r;) — 0.
The process {M,, = X,, — A,,,n > 1} is an S-martingale. To prove this fact take

r; <r; and a bounded random variable ¢ which is F(r;,r;]e—measurable. Using the same

notations as before it follows that:

ga(n)-ngp_4
E{¢(Ar; — Ar)} = Jlim E{€ > E{X(ht1y2-» — Xnz-n |f(h2—n,(h+1)2-n]c}}-
h=24{n)—nok
Consequently
2¢(M)=mog_y
E {{(Ar; — Ar)} = lim E {6 > E{Xp4+12-» — Xna-n |~7"(r.-,r,-]c}}
h=28(m)-nok

=F {ﬁE {X[2-"o - sz'"o lf(r.',rj]°}}
=E {ﬁ(Xr,- - Xr-‘} ?
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and the desired result follows.

Finally, for any ¢ € [0,1] N Q@° we define A} = lim,cq A7, A = lim,cq A, and
A, = A} — A;. Notice that the process {4, t € [0,1]} h;,; bounded variatiorrlltpaths and
is continuous in L.

Moreover {M, = X;— A, t € [0,1]} is an S—martingale. Indeed, let s,t € [0,1], s < ¢
and consider sequences of rational dyadic numbers {s,, n > 1}, {t,, n > 1} such that

$p <tp foranyn>1,s, )]s andt, Tt asn — oco. Then
E{X¢- X |Fioqe} = L' = lim E{X,, — X, | F(s0¢},
by the L'-continuity of X. On the other hand
E{Xt, = Xo | Fioue } = B{E {Xuy = Xop | Fion e} | Fo1e}

1
= E{As, — Ay | Flage} == E{Ac— Ay | Flage} -
This finishes the proof of the theorem. g

Remark. Assume that we are dealing with the Brownian case, and that the process X
in Theorem 2.1 is adapted. Then, so are A and M. Furthermore, in this case M is a

martingale.

3. Necessary and sufficient conditions for the Doob—Meyer decomposition of
an S—quasimartingale

In this section we will study the Brownian case. This is our fundamental assumption.
In the first part we prove that, if the measure induced by the process A constructed in
Theorem 2.1 is absolutely continuous, then the hypotheses (H;) is also necessary for the
Doob-Meyer decomposition of an L!-continuous S—quasimartingale. In the second part
we consider the set of L!-continuous S—quasimartingales which are S—submartingales. We
introduce a new hypotheses (H3) and prove that it is a necessary and sufficient condition
for the Doob-Meyer decomposition to hold. As a by-product of our results we will obtain
the uniqueness of the representation in this particular case. In the last part we will study
a family of S—quasimartingales derived by transformation of Skorohod integrals.

Assume that X is a process such that X = M + A where M is an S-martingale and A
an integrable process of bounded variation, with Ag = 0. With the notation of the previous

section we have
2" -1

IX = {An(A) fd Z lE {A(,‘+1)2—n - Ai‘z—n I.f.(i2—n’(t‘+1)2-n]c} l, n Z 1} . (31)

1=0



The process A = {A¢, t € [0,1]} induces a signed measure on the product space
[0,1] x Q defined by A4((s,t] x F) = E(1p(A; — A,)), F € F. Let us introduce the
following condition:
(Hz) There exists a deterministic (positive) measure p on B([0,1]), and a measurable process
{as(w), (s,w) € [0,1] x 2} such that

M(G)=E /Gas(w)p(ds), for any G € B([0,1]) ® F.

We can now establish the following result:

Proposition 3.1. Let X be an S—quasimartingale. Assume that X = M + A, where M
is an S-martingale and A an integrable process whose paths are right continuous and with
bounded variation, and Ay = 0. Furthermore, assume that (H,) is satisfied. Then (H;)
holds.

Proof. Set Fy = Fio,q and F* = F, 1. We notice that F* is the o-algebra generated by the
increments {W, — Wy, t <u < 1}. Let W* = W;_, — W;. Then {W*, 0 < u < 1} is also
a Brownian motion, and F* = o {W™"*, 0 < u < 1—t}. Given s8g,ty € {0,1] with so+ty =1,
we have that {W,, 0 < s < sp} and {W?, 0 < s < ¢y} are independent. Consequently, the
two—parameter filtration {F, 4 = Fs V F', 0 < s <t <1} satisfy the usual conditions
(F1) to (F4) of Cairoli and Walsh [2].

Let ¢ be a measurable and bounded random variable. Define

2" -1

Zn(t,w) = Z E {€| Friz-n, i+1)2-7) } Liz-n, (i41)2-7) (1) -

=0
Then, by the results on convergence of two—parameter martingale sequences, we have that,
for any fixed t € [0,1], Z,(t,w) — £ a.s. as n tends to oo.
The process A can be decomposed as the difference of two increasing integrable pro-
cesses A = AV —A?  Clearly A™(A) < AM(AM)+A™(AP). So, in order to establish the
uniform integrability of Ix we can assume without loss of generality that A is increasing.

We want to prove that for any € € L™ we have

E{ﬁAn(A)} — E{fAl} , asn — 0o (3.2)
We have
271
E{¢A™A)} = E{ D (AGsne-n — Ai-n) E{¢ |f(i2-",(i+1)2-"]°}}
=0
1
=FE /0 Z,(t,w)dA; = V/[o,l]xn Zn(t,w)dAa(t,w). (3.3)
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Let G = {(t,w) € [0,1] X Q : limp—o0 Zn(t,w) # &(w)} . Then Aa(G) =0.
Indeed, by Fubini’s theorem and using the fact that the sections G; = {w : (t,w) € G}

have probability zero for all ¢, we have

2a(G)=E [Jl 1g(t,w)a(w)u(dt) = /1 (/s; lg(t,w)at(w)dP),u(dt) = 0.

0

Hence, by dominated convergence

lim Zn(t,w)dAa(t,w) = / E(t,w)dAa(t,w) = E{{A1}.
o0 Jl0,1]x [o,1]1xQ
Then, by (3.3) we obtain the desired convergence. a

In order to introduce a new hypothesis we give the following definition.

Definition 3.2. A set H of random variables is said to be weakly uniformly integrable if
H is weakly sequentially compact for the weak topology o(L', L N D!?). That means ,
for every sequence of elements in H one can extract a further subsequence which converges
in the weak topology o(L!, L N D"?).

We can now state condition (Hj) as follows.

(H3) The set Ix(t) = {A™(X);, n > 1} is weakly uniformly integrable for any t € @,
where @ denotes the set of the rational dyadic numbers in [0,1].

Notice that (Hj3) is weaker than (H;).

The remaining of this section is devoted to prove the following result.

Theorem 3.3. (1) Let X be an L!'-continuous S-submartingale. Assume that (Hj)
is satisfied. Then X = M + A, where M is an S-martingale and A is an increasing
process. Moreover Ay = 0, A is L'—continuous and has a.s. right continuous paths, and
this decomposition is unique.

Conversely,

(2) If X = M + A, with M an S-martingale and A an increasing, integrable process with
Ay =0, then, X is a S—submartingale and (H3) is satisfied.

The proof of this theorem is based on several lemmas.

Lemma 3.4. Let ¢ be any random variable belonging to D2 and {A4,,t € [0,1]} an
integrable, increasing process with A¢ = 0. As before, we set
2" -1

A™(A) = E E{Agi1y2-n — Aig-n | Fiz=n (i+1)2-7< | -

=0



Then, for any k£ > 0,

sup sup |E {A™(A)¢ — A1€}| — 0,
Helloo <k n

2
NN 5 1o 1yxeny S°

as ¢ tends to zero.
Proof. By the definition of A™(A) and the properties of the conditional expectation
2" -1

|E{A™(A) — A&} = |E{ ) (Ausnz-n — Aiz-n) (€ = ElE|Fa-n, ir1y2-n)) }| (3.4)

=0

Set Yn = E?;;l (A(i+l)2_" - A,‘g-n) (f - F (§|f(i2“",(i+l)2""]°)- Fix é >0 and M > 0,

we have the following inequalities:

/ Y,dP| < 2||.g||°°/ AdP. (35)
{Ar>M,max; |E—E (€| Fi3-n, (i41)2-n1c)1>6} A1>M}
/ Y,dP|
{A1<M, max; 16— (£1Fip-n, (i1)2-nje ) 1>6)
< 2||¢]jc M P { max [§ = E(¢|Fiz-n, 41)2-7)¢) | > 6}
2" -1
<2l|elloe M D P{l6 — E (€1F2-n, (i+1)2-71c)| > 6}
=1
2" —1
< 2lelloo M 672 Y EIE — E (| F(i2-n, i41)2-n))
i=1
2" -1 (i+1)27"
= 2[|¢llo M 672 Z E| / (Dol Fir, ig1y2-nge )WL P, (see(1.4))
(i+1)2—" )
= 20l M 57 Z E[ 1B ) P

2"—1  a(i41)2”"

<2lelec M6 /

= 2|[¢llc M6 2||D€||Lz([o,11xn) : (3.6)

1
E|D.£|%dr = 2||§||00M6‘2/ E|D,£|*dr
0

/ Y.dP| < 6E(4;). (3.7)
{max; IE—“E'(E‘]:(‘2—11, (H_l)g—n]c) 1<6}

10
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Since A; € L'() given n > 0 we can choose M > 0 such that f{A1>M} ApdP < .
Hence the supremum when ||€||o < k of the right hand side of (3.5) can be bounded by 1.
By the same reason, by choosing 6 = g7l , the right hand side of (3.7) can be majorized
by .

Finally taking & = -'13-3- mﬁv’ the supremum when ||{|lc < k and
HDEH%Q((OJ]XQ) < e with ¢ < g¢ of the right side of (3.6) is also bounded by . Thus, we

have the result. O

Lemma 3.5. Let A be a process satisfying the same hypotheses as in the preceding lemma.
For any random variable £ € L™ N DY? such that fol E|D,£|*dr < +o0, it holds that

lim E{AA)} = E{4:¢}.

Proof. Let £ € L NDY2. For any § > 0 we have

2" -1
P{ max [€~E(|F - riz-e)| > 8} < D0 P{I€ ~ E(61Fa-n (i+12-me)| > 6}
o i=0
] 21
< @" Z E{K - FE (€|f(i2_",(i+1)2—n]cl4}
=0
1 3= (i+1)2")
T Z E {I /2 E (Drﬂf(r,(i+1)2—n]c)der4} (by Proposition 1.2)
i=0 12"
c ! (i+1)2-"
S -5—:{ Z E(/ ,E(Drélf(r,(i+1)2—n]c)|2dr)2
=0 12-n
chzlq g2t
< 54 Z Er'{/;_n E|D,¢|*dr

=0
c1 /!
< 2 4
< i /0 E|D.£]*dr.

Consequently, if £ € L>° N D2, the sequence

{ o<iZar € — E(€]Fiz-n, i+1)2-71<) |, n 2 1}
converges in probability to zero, as n tends to infinity. Using this fact and the same

arguments as in the proof of Lemma 3.4 we get the desired result. O

Remark. The conclusions of Lemmas 3.4 and 3.5 also hold if we replace A"(A4) by
AMA), =2 'E {Atni+1)2-n —Ainiz-n | Fingia-n, tai+1)2-n)c | and Ay by Ay, t € [0,1],

respectively.
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Proposition 3.6. Let A be a process satisfying the hypotheses of Lemmma 3.4. For any

random variable £ € L™ N DY? we have
nlirr;oE {A"(A)t {} = E{At £},

for any ¢ € [0, 1].

Proof. Given £ € L®NDY?, and € > 0, let 7. be a smooth functional such that ||7:]|oo < &,
for some constant k, Efol |Drnel*dr < oo, and || D€ — DnellL2(o,1x0) < €-

The functional 5. can be obtained using the following argument. First consider a
sequence of smooth functionals {£,, n > 1} such that ¢, converges to ¢ in D12 and as.,
when n — 00. Let a < b be real numbers such that a < b and £(w) € (a,b) a.s. consider a
function ¢ € C§°(R) such that p(£,) converges to £ in D2, as n tends to co. The sequence
{¢(€r), n > 1} is bounded and satisfies EfoI |Drp(£n)| dr < +o0, for any n > 1.

By Lemma 3.5 we know that lim, o, F {A"(A),ne} = E{Ame}. Then

n@o |E {A™(A)£ — Ak} < nl_i_'{lzo |E {A™(A)i(€ —ne) — A€ — 1)}
+ nlLII;O IE {An(A)tTle - Atne}l’

and the right hand side of this inequality is zero, due to the preceding remark and Lemma
3.4. a

Lemma 3.7. Let A be a Borel subset of [0,1] and X € L1(Q,F4,P). If E(Xn) = 0 for
all n € DY? N L>®(Q, F4, P), then X = 0.

Proof. 1t is immediate because we can take n = (W (B1),...,W(B,)), where ¢ € C§°(R")
and B; C A. ]

Proof. of Theorem 3.3.

(1) Assume first that X is an L!-continuous S-submartingale satisfying (H3). The
construction of the increasing process A follows by the same arguments than in the
proof of Theorem 2.1 but replacing the convergence in o(L',L*) by the convergence
in o(L*, L ND"?). This process A verifies E {¢[(Xr; — Xr;) — (Ar; — Ar,)]} =0, for any

ri,rj € Q, r; <rj, and for any F(,, ,,}c—measurable random variable { € L> N D2, Thus
E{6E{I(Xs; — X))~ (Ary — A )Firmpe}} = 0.

By Lemma 3.7 it follows that
E {er - Xy "7:('"1,1"6]"} =E {A’"j ~ Ay, l]:(r-",fj]“} ’
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thus M,, = X, — A, , rn € @ is an S-martingale, and we continue as in the proof of
Theorem 2.1.

Let us now establish the uniqueness of the Doob-Meyer decomposition. Assume that
X is an S—submartingale such that X = M; + A; = M;+ A,, where M;, are S—-martingales
and A; right continuous, integrable processes with increasing paths, and 4;(0) =0, : =1,2.
Then for any t € [0,1], A"(A,): = A™(A;);. Hence, by Proposition 3.6, for any t € [0,1]

E {(Ai(t) — Aa(t))€} =0,

for any ¢ € L N DY2. Thus, by Lemma 3.7, A;(t) = Ax(¢), a.s for a fixed t € [0,1].
The right continuity of A4;, ¢ = 1,2, implies A;(t) = Ay(t), for any t € [0,1], a.s., proving
uniqueness.

(2) Assume that X = M + A, where M is an S—-martingale and A an increasing, integrable
‘process with 4 = 0. It is clear that X is an S-submartingale. On the other hand
A™(X)¢ = A™(A)¢, and property (Hj) follows from Proposition 3.6.

The proof of the theorem is now complete. a

Remark. The method used in the proof of Theorem 3.3 cannot be adapted to the case of
an S—quasimartingale. So we do not have a sufficient condition (similar to condition (H3))
for the Doob—Meyer decomposition of an S—quasimartingale. A necessary condition is
provided by the results of Section 2. The uniqueness of the decomposition in the Brownian
case can be deduced by the quadratic variation properties of the Skorohod integral (see
[9] and [10, pag 105]). In Corollary 2.4 of [7] these is also a uniqueness property under
different conditions.
Following [9], we set LY'? = L?([0,1); D™?) for all N > 1 and p > 1. It is known that if
u € L%? then u - 1j0,§ € Dom ¢ for any 0 <¢ < 1.

The next proposition gives an example of S—quasimartingale and its Doob-Meyer

decomposition.

Proposition 3.8. Let u € L%, X, = §(u-1p4), 0<t < 1,and f: R - Ra C? function
with an uniformly continuous and bounded second derivative. Then, f(X;) = M, + A,
where

(1) M = {M,, 0 <t <1} is an S—martingale,

(i) A={di=1 [} (X )udds + JE F(X)( 3 DyurdWe)upds, 0< t < 1)

is a continuous, bounded variation process and E fol |dA:| < +o0.

Consequently {f(X:), 0 <t <1} is an S-martingale.

Proof. 1t is clear that the process A given in (ii) is continuous and of bounded variation.

13



The property E fol |dA¢| < 400 follows from Schwarz’s inequality, the isometry of
the Skorohod integral and the fact that « € L2%2. So, it only remains to prove that
M = {M, = f(X;) — A, 0 <t < 1} is an S-martingale. Notice that the properties
of f and A ensure the integrability of M.

In order to show that M, is an S—martingale we will use the techniques developed in
[9] for the proof of the extended It6 formula.

Let t,t' € [0,1],t < t',and 7" = {t = ton < t1,n < ... < tpn = t'} be a refining
sequence of partitions of [t,t'] whose mesh tends to zero. We will write ¢; instead of ¢; ,,

for the sake of simplicity. Let F be a F; yj-~measurable and bounded element of S, then

E{(f(Xv) - f(X0) F}

n—1
1 _
=F { ( Z (f’(Xti)(Xti+1 - Xi.') + §f”(Xi)(Xti+1 - Xt-')z)) F} ’
i=0
where X; denotes a random point between Xy, and X, +1- Define
n—1
ot =E{(X F(Xu)(Xuy, — X)) F},
=0

and

Cr=FE {(nE—1 FUE) Xiiyr — X)) F} .

1=0

Our aim is to prove that

lim oy = E{( /t ' F1(X)( /0 8 D,urdW,)u,ds) F } (3.8)

and
t,
lim CP -—_E{( / F(X,)ulds) F} (3.9)
n—oo t

Since F' is F(; y)c~measurable, and using the duality between D and §, we have

n—1 tig1
op =E{ Ff'(Xt,.)(/t uydW,) |
=0 §
n—1 t;

i+1 ti
f”(Xti)( D,urdWr)uads}.
{ 0

14



On the other hand

n—1

‘;/ f(X)/DudW f(X)/DudW)udsl}
sE{| ;/t+ f"(X“)(/t.- DsurDWr)usds|}

[7X0) = P Dad, |
<1 fi:f[‘t;+l E(l /tj D’urdWrHusl)ds + B,

where B, = E{] S t'“[f"(Xt )= FUXIN( S DourdW, )u, ds|}
Using Schwarz’s inequality and the isometry of the Skorohod integral, we can majorize the

first term in this last inequality by

tig1
oo E/ zds / / D,u,|%drds
1"l (2 [ 2_: D,
E§ o |D¢Dyu, [2drdéd )1/2
SE L[ [mntins)”
t; 0 t; f

i=0

which tends to zero as n tends to infinity, since u € L.2:2.

In order to estimate the term (3, we proceed as follows. Fix ¢ > 0 and let v €
L*([0,1] x Q) such that |[u — v|[12(j0,1jxa) < €. Then we have

ﬂn<; / " B{|x) - 1020 | [ Davet |, — v} s
+}j / B{I"(X) = 7" | [ DouedWe ol ds
<2l { /0 E(| [ Dourdw, ) s} (3.10)
+{ [ B0 [ Davaw ) 2o} ollaoareor e (B x) - £ xo)

The second summand in (3.10) converges to zero as n tends to infinity because
{f"(X:), 0 <t <1} is continuous in LP for all p. The proof of (3.8) is now complete.
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Let us now prove (3.9). Suppose that n > m, and for any : = 1,...n denote by tgm)

the point of the partition #™ which is closer to ¢ from the left. Then we have
n—1 t
|3 P Ky = Xe) = [ 1K puds]
1=0 0

<D:+ Dy + Ds.

where -
Dy =Y [f"(X) = (X om)](Xtigs — X},
i=0
0= /t :m“ £"(Xep Yulds - /0 (X, YuZds)|,
and =

= ol ot
Dy =) (X)Xt = Xe)* = 3 /tm F'(X e Yulds| .
=0 j=0 71

nol 1yy; 00411 (2) Fy, where

Consider the set Sy of step processes of the form v, = Y,

F; € S. The class Sy is dense in L!'%2. Consequently, given ¢ > 0, we can find a process
v € Sy such that ||u — vl||p1.2 <e. Set Y; = fot vsdW,. Then, we have,

E(Dl) < E(' z_: [f"(Xi) - f”(XtS"‘))] {(Xti+1 - Xt.')2 - (Yt-‘+1 - Yt;)2l)

=0

+B(| X () - £(X )] (¥, - )]

i=0

< 2”f”“oo ”u - v”L1»2“u + U”L1,2 + Yn

where 70 = B(| I () = F/(X (Vg Ve F]).
Hence it suffices to show that lim, v, = 0. We can replace f"(X;) by fol 2(1 =) f"(Xe, +
MKty — Xe) dX. Set Ai(A) = [ £ (Xt + M Xtiyr — X5;) = F/(XE™)|. Then we have

n—1 1
Yn < E E/ 2(1 = A) Ay (A)(Yeiy, — Yi,)2 dX
i=0 V0

n—1

<6Y E[(Yuy, - Yu)’]

1=0

n—1 1
DY || 2= DB A )1 a5 (T = Y] 02

S~5||1)||L1,2 (3.11)
n—1 1
2 " oo _ : . . _ ' 9
+ ”f n ;/0 2(1 A)E[1{Ixt.‘_X‘Sm)+)\(Xt.-+1'-Xc;)|>"l} (Y’t'+l },t') ]dA,
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where for any § > 0, the number > 0 is such that if |z —y| < n then |f"(z)— f"(y)| < é.
The second summand in (3.11) is bounded by

2 " =
ALY | 20— VB (1K = X + M = X Vo = Yu2)

AL

,\e[o A 'Z; E(/ vs D, [(Yt.'+1 - Yt.’)lXt‘- - thm) + A(Xt-'ﬂ — Xti)l] d,s)
2||f"||<><= “+ titt

e ; E( / o (5o, /t .~ D,vrdW, )| Xe, — X om) + M Xeoy, — Xe,)| ds

tit1 t; tig
4 [ ol = Vel Qlual 4] [ DewrdWo 1 [ Do, ) ds)
t; t'.m t;

< A

==( sup 2B(1X, — X [Jollk + vl sup (£( LﬂDs5;dWrI2>)l/2J

Ir—sl<I=™|
r.s€(t,t'] aE[a 8]

+[B( s (=) lolle[BC [ st

r.8€(t,t']
n—1 1 t; "
+E2=;/0 (i /tgm DsurdWr|2+i/t‘ + DourdW, ) ds]

and this expression converges to zero as m — 00. The arguments used before to show that
lim,, 8, = 0 imply lim,, .o, D, = 0. ‘
Finally,

m-1 7
Ds = | Z f"(XtJ'."){ Z (Xep,, — Xep)® —/t “3d3}|
7=0

m

k:tpe(ed™, ¢7)) i

tends to zero in L?, as n tends to infinity, for each m fixed, as follows from Theorem 5.4

of [9]. This completes the proof of (3.9), and the proposition is established. O

Remark. Notice that the assumption of Proposition 3.8 are not strong enough to ensure
the continuity of the processes X; and M; (see [9]). In fact, a sufficient condition for the
continuity of X, is u € L%? with p > 4, and in this case the proof of Proposition 3.8 could
be shortened.

Actually, in this case we can apply the It formula (see [9]) and get M, = fot f'(Xs)udW,
with f'(X,)u, locally in L2,
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