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0. Introduction.

The purpose of this paper is to analyze the integrator properties of the Skorohod integral.
It has been proved in [2] that the indefinite Skorohod integral, My = 6{u - 1jg,4) has the
property E{M,—M,| F, 9} =0, forany 0 < s <t < ¢y, where F, s} denotes the o-field
generated by the increments of a standard Brownian motion on [0, {g]—]s, t] . In some sense,
this property plays in the anticipating calculus the analogue role of the martingale property
in the classical 1td’s calculus. Therefore, it is reasonable to attempt the construction of an
anticipating integral of processes with respect to M, as the nonadapted counterpart of
the stochastic integral with respect to semimartingales. This paper contain several results

in this direction.

In Section 2 we prove that, under suitable hypotheses on the process u, the process M =
{M;, 0 €t £ t} defines an L?.stochastic measure on the o-field of predictable sets
(see [1]). Thus, the integral of predictable, bounded processes f with respect to the
anticipating process M can be properly defined.

As has been pointed out in [2] in relation with the Skorohod integral, the price to be paid to
remove the adaptedness of the integrand is some smoothness property precisely described
with the tools of the calculus on the Wiener space. The results of Section 3 confirm this
remark. Here two kinds of integrals with respect to M for anticipating processes f are
presented. One of them coincides with the Skorohod integral of fu , the second one contains

a correction term and is related with Stratonovich anticipating integrals.

1. Preliminaries and notation.

We denote by T' the unit interval [0,1]. Our basic probability space (2, F, P) will be the
canonical space associated with the standard Brownian motionon T', {W,, t € T}.

Given 4 € B(T), Fa4 is the o-field generated by W(B), B¢ B(T), BC A. For A =[0,t]
we write Fy instead of Fo -

Let CJ°(R™) be the set of all functions f : R" — R which are bounded and have bounded

and continuous derivatives of any order. The class & 1s defined as the set of random



variables F: {2 — R having an expression
F=f{Wy,... W), (1.1)

where f € C{°(R™) and t1,....f, € T. & is a dense subset of L?(Q2), for any p € [1,00).

The elements of § are called smooth funclionals.
The derivative of a smooth funetional F given by (1.1) is the process defined by

n 6 .
DtF = Z 6_’{ (I’Vfi yorvr '!Wf-n) 1[0’“] (t) ’

=1

It can be considered as an unbounded operator defined on a dense subset of L%(Q?} and
taking values on L2(T x ). D is a closed operator, its domain is denoted by D2 Notice

that D12 is the adherence of § with respect to the norm

IFlls2 = [|Fllz2) + 1D Fllz2(rxa -
The n — th derivative of a smooth functional F is defined by iteration:

D£F=DI1D!2"'DE F,

hid

where t = (ty,...,t,) € T™.

By analogy with the case n = 1 we define the spaces D™? n > 1, p > 1, as the

completion of & with respect to the norm
iFlnp = I1Fllrcy + D, P Fllzacrsyl| go ey -
=1

The adjoint operator of I is denoted by §, and it is called the Skorohod integral. The
operator ¢ is a closed and unbounded operator on L?(T x ) taking values on L*(Q) such
that:

(1) Dom é is the set of processes u € L¥(T x ) for which there exists a constant C', only
depending on u, with

E( [ DeFucdt)| <CiFlLam,

forany Fe§.

%]



1) fu € Domé, 6{u) is the element of L2(Q) characterized by the integration by parts
formula:

E(F &) = E (/ D, F u, dt),
T
forany F e §.

Most of the interesting properties on the Skorohod integral are proved assuming than u
belongs to a class L1? of processes strictly contained in Dom é. In general, for n > 1 and
p>1 L™Pisthespace LP(T; D™P). We also denote by L># the space Nz» L™, p > 1.
If u belongs to L2, u 1(9,¢ belongs to Domé ,forany t € T .

We also need to introduce the set L}C‘P of processes u in L**? such that there exists a version

of Du satisfying the following conditions

(1) the funetions s — D;u, defined on [0,t] and with values on L?(f2) are continuous
uniformly in ¢, and the same property holds (with a different version of Du) for these
functions defined on [¢,1].

(ii) ess sup,, E(|D,usl?) < 0.
The space Llci2 is connected with the definition of the Stratonovich integral.

Notice that for any process u € L}::p the limits
D?‘ut = lim Dt Upgre
|0
D;—Ug = hm D: Up—ay
)]0
are well defined elements of LP(T x 1) . In this situation we will denote by V the operator
(DY + D7),

The reader is refered to [2] for an extensive treatement of all questions concerning the

anticipating stochastic calculus.



2. Integration of bounded predictable processes with respect to a Skorohod
integral.

Let ‘H; be the set of measurable processes having a representation

n—1

Fltw) =" ¢ 14,(w) Ly 0] (8, (2.1)

1=0

withe, ER, 0=ty <t < ... <th—1 <tp =1, A; € F;,, t =0,...,n—1 and disjoint.

For simplicity we will assume |¢;} < 1.

We also consider the set H] of measurable processes

n—1
fltw) =Y filw) Ly b (1), (2.2)
i=0
where f;, ¢ =0,...,n — 1, are F;,-measurable smooth functionals.

For any process u € L2 we denote by M, the Skorohod integral é (u 1;5.4), t > 0.

We define a mapping I™ : H, — L?(Q,F,P) by IM(f) =30 _0 ¢ 14, (M, —M,,), for
f asin (2.1). IM(f) is said to be the integral of f with respect to M . The following lemma
shows that I™(f) is also a Skorohod integral.

Lemma 2.1. For any u € L!% and f € H,, the process fu belongs to Dom é, and
§(fu)=IM(f).

Proof: Assume without loss of generality that f (t,w) = 14(w) 1)y, +,) (), with A € Fy, .
There exists a sequence {p", n > 1} of F;,-measurable smooth functionals converging to
14 in L*(Q), as n tends to infinity. Let f* (t,w) = ¢™(w) 1js,,1,) (t). The process f*u
belongs to L!'? and

6(f u)w) = / T (w) uy(u) dW, = " (W) (Me, (w) — My, (w)) .

t

Moreover, for any G € §

E(G §(f™u)) = E(Gp™(My, — My,)) = f(DtG) £ uy dt) (2.3)

Taking the limit as n tend to infinity in (2.3) we get
E(G 1A(Mg.2 ﬁtfh = ] DtG lA {127 dt)

4



Consequently

!E(/ DG fr ue dt)\ < C[[Gllzzay
‘ T
with a constant C depending only on f and u.

This implies fu € Dom é and é§(fu) = L4(M,, — M,, ). n

The next result is the essential ingredient to extend the mapping I™ to the class of

predictable and uniformly bounded processes.

Proposition 2.2. Let f be a process belonging to H; , and u € L.°>? . Assume that
1 n 2
sup — || D" uffpe(gatingy < F00. (2.4)

Then
1M (F)llr2) < €, (2.5)

where (' is a constant only depending on u .

Proof: Assume first that f belongs to H]. We will establish that

ITM(A) L2ge) < (1 +v2)a, (2.6)

with
1 8y In
a® = sup E{/ / / [fonse DI oo, u,n+1j2dsn+1...d82dh}.
n g ] 0

The processes fu and f Dju, for any fixed s and any n > 1, belong to LY? Using
the isometry property of the Skorohod integral (see Proposition 3.1 [3]) and the duality
between the operators D and & we get

I =B [ & 52 ds w28 [ wti( [ g Doveaw)as. @)
Indeed,
M (N 20 —E(é(lfu))z o
:Efg u? f3d3+2E/0 (/0 {Dy(fuue) Di(fyus)}ds) dt

5



and, on the other hand,
t t
/ E{D.(fiu)Di( fous)}ds = E{f, u;/ Dy(fouy)dW,}
0 0

t
:E{f:u:f f.Dyuy dW,}.
13

Therefore we obtain (2.7).

By Schwarz’s inequality,

1 $1 2 1/2
WPy < e AUy +2 1 Pl ( / E( f for Doy sy AW,,) " ds1)

We can apply again the identity (2.7) replacing the process fu by fD, ulj,,). Then

WM 200y < Hlu Flld2rxay + 2112 fll2erxn)

1 i 1 9
(E/ f foz Doy 2,2 d sy dso +2(Ef / for Dy ug,lPdsy dsg)'?
o Jo 0 0

1 L1 L) l,u‘“Z
-(E/ / (f foa D2yay thog AW,o)?dsy dsy)' )
0 a 0

1 9n . 1/2
Gn41 = (E/ / f |fs,,+1 D:‘n___al U3"+1| d5n+1 ...d82 dsl) )
0 0 i}

n>0.

Let

Then, recursively we get

WM (L2 < \/af +2a1\/a§+202\/...\/ai+2au A,

where

1 a4 Ih—1 an | 2
Ai = _/0 ]; /0 E(A f8n+1 D;ln...sw. Usn 1 dW3n+1) dsp...dszdsy.

Notice that

1
a® <||fl1%, sup = ID™uli L2 (pnsixq) »
n .

thus, hypothesis (2.4) ensures that a is finite and we can write

HIM(f)”Lz(Q) < \/0.2 + 2(1\/&2 + 2&\/ Vet +2a A, . (28)

6



Let f: [0, co) — [0, oc) be defined by f(z) = (a? + 2azx)*/? . The function f is increas-
ing and concave. Moreover f([a,oc)) C {a,00) and on [a,00), |f'(z)] < 1. Hence, the
rectriction of f on the set [a,00) is a contraction and therefore there exists a unique fixed
point zg € [a, o) (f(_mg) = zy) . It is immediate to check that zo = (1 +\/§)a. Notice that

g > a.

It follows from (2.8) that
M (F)lr2ge) € FP(An), (2.9)

for any n > 1, with the usual notation f* = fo (%o f.

We prove in Lemma 2.3 that hypothesis (2.4) implies sup,, Ap < + 0o. Now two situations

are possible:
either
(1) There exists k > 1 such that Ay < zy,
or
(i1) Ax > z¢, forany k > 1.
In case (i), we have
1M (i) < F5(4) (by (2.9))
< f*(zo) (by the monotony of f)
=(1+v2)a.

Assume now that condition (ii) is satisfled. We want to show that

lim f"(An) = zo. (2.10)
Indeed,
M (An) —xol = |f"(An) — fz0)|
<K [f"71(An) - 2o,
with ' < 1.

Recursively, we obtain
\fH(An) — 2ol £ K" |An — 0],

since sup,, A, < + o0, the convergence {2.10} follows.

Consequently
ITM (A L2eey < lim  f*(An) = 20 = (1 +v2)a,

7




and the proof of the inequality (2.6) 1s complete.

Assume now that f € H;. There exists a sequence {f™, m > 1} of processes in H] ,
bounded by 1, such that f™u — fu in L*(T x Q), as m — oo. From inequality (2.6} it
follows that

1 LT an
I oy < VB swp B[ [ [T 1A, D5 P dsads )
n 0 0 0
1
< (1+v2) sup ;HDHUH?,?(THH x ) -

Using the fact that & is closed and taking the limit, as m — oo we obtain (2.5)
with €% = (1.+ Vv2)? sup, ;}T”D“uﬂizmﬂlxm. The proof of the proposition is now

complete. n

Lemma 2.3. Let f € H] and u € L°%. Then the sequence

{Ai = /01 fn /0 E(/u foner D™ o U, dvr/;,m)2 dsp...dsydsy, n> o}

is bounded.

Proof: By the isometry property of the Skorohod integral we have

1 £ I
2 2
AL < E/ / / |fonsr Dn. sy Yonsrl d8n4r...ds2 dsy
o Jo 0

1 81 $n-1 ap n
1 2
+2Ej / / ] f | fs0sn D,'.‘;t___h Uy, | dspyr drds, .. .dsydsy
o Jo 0 o Jo

1 L3 In-1 In LE S
+2Ef / / / f Dy fanoo DT, tan P dr dsnyy dsn. .. dsydsy
¥ v 0 v 2

— b7 + 267 + 257
We want to prove that sup, b < 00, 1 =1,2,3.

For the sequence {b]', n > 0} we can write
pn 2 1 n, |2
P S filse = D" el zz(rmeixay -

We also have

1 1 8 In_1 a5
B2 < |IFI% E/ (f ] f ] DM o, drds,...ds dsl) dsnt1
5} 4] Ih] D [y

1
< IFI% (

(n+1)! D™t ull Lz sz



and
n 2 1 n 2
8 < IDfIe — 10" ulzrmss e

Therefore, the boundedness of these sequences is ensured by hypothesis (2.4). =

Remark. Let uy =Y o0 I (fm( ;t)) be the Wiener chaos expansion of the random

variable u, . Condition (2.4) is equivalent to the following one
= m
sip 5 (T ) fmlfrme, < +o0.
n m=n

We now give the main result of this section

Theorem 2.4. Let u be a process satisfying the hypotheses of Proposition 2.2, then
(a) The mapping I'™M : H, — L*(Q, F, P), given by IM(f) = 6( fu) can be extended to

the set P of previsible and uniformly bounded processes. This extension will be still
denoted by IM |

(b) For any process f belonging to P, the process fu also belongs to Dom é and I'™(f) =
6(fu).
For f € P we call IM(f) the integral of f with respect to M .

Proof: From Proposition 2.2 it follows that the set {IM(f), f € H;} is bounded in
L2(9).

On the other hand, if f(t,w) = 14{(w) 1y, ¢,){w) with A € F;, , the isometry property of
the Skorohod integral implies that
lim IM(f)=0,

|f2'—t1|—’0
in L?. Consequently, the mapping IM : H; — LYQ,F,P), IM(f) = &(fu) defines
an L2-stochastic measure on the o-field of predictable sets (see [1]) and part (a) of the

Theorem is proved.

Let f € P and {f™, n > 1} a sequence of processes in H; such that f* — f a.s. as
n—oocandin L (TxQ),p>1.

By the results on LP-stochastic measures we know that IM(f) = L? — limp—oo IM(f").
On the other hand I™(f") equals §(f"u). Since § is a closable operator on L2(T x Q)
taking values on L?(f2), we conclude that fu belongs to Dom § and §(fu) = IM(f). This
finishes the proof of the Theorem. |



3. Integration of non adapted processes with respect to a Skorohod integral.

In this section p will be a fixed real number, p > 2, u = {uy, t € T} a measurable process

belonging to L, and f = {f;, t € T} a measurable process in L%, with % + % = %

As in the preceding section M, denotes the Skorohod integral 6(u1jp ), for any ¢t € 7.

QOur aim is to show how we can define an integral of f; with respect to M,.

We introduce the class of measurable processes H3 having a representation of the form
n-1
fltw) =" filw) Ly e (), (3.1)
1=0
where 0 = tg < t; < ... <tp_1 <tp =1, fi e D"? and f; .ﬁthti“]c—measurable, for any
t=0,...,n—1.

A natural definition of the integral of a process f € H, with respect to M, is

IM(f) =: Z fi(Mi.'+1 “Mti)'.' (32)
1=0

whenever f is given by (3.1).
Notice that due to the measurability properties of f;, it holds that IM(f) = §(fu).
The definition (3.2) gives rise to a linear mapping
M Hy — L3(Q).
Moreover, the L?-norm inequalities for the Skorohod integral imply

M (Al ey < B lenellulies - (3.3)

Consequently I™ can be extended to a linear mapping on the closure of H; with respect
to the norm || - fjp1.¢ . We will denote again by I™ this extension.

Theorem 3.1. Given f € L}%, there exists a sequence {f,, n > 1} of elements in H,
such that f, — f, as n — oo, in the L1'? norm. Hence IM(f) is given by the L2-limit
of the sequence 8( f"u), and coincides with 6( fu).

Proof: Denote by {II", n > 1} a sequence of partitions of T, [I" = {0 =t§ <t} < ... <
tF =1} with |II"| — 0, as n — oo. In the sequel the superscript n will be omitted. For
each n > 1 we define

n—1

PO=Y == ([ EUFwnnds) hoa®. 64

=7 tivr — L

10



Then
n—1 1

D, fn(t) = Z t—

ot — b

ti41
( / E (DT f-’ | fif.' .f.'+1]‘ )d‘s) 1]fi,!i+1] (t) 1]\?.' i) (?‘) . (3‘5)
t

Notice that f* is the conditional expectation of f in the probability space (T xQ, B(T)®
F, A x P) with respect to the o-field G* C B(T) @ F generated by {Jt?, tI, | x F' ,F €

.ﬁf?‘t?+llc , 0 €1 <€ n—1}, therefore by the results on martingale convergence we get
f

LT
nt (—x>mf,asntends to oo .
A similar argument holds for the convergence of the derivatives, (see Lemma 4.2 [2]).

Hence f, — f, as n — oo in the L% norm. This convergence also implies fou — fu,
as n — oo in LM%, Thus 6(f,u) — 6(fu), as n — oo in L?(f2), and the proof is
complete. n

A more natural approach to the problem of defining the integral of a process f with respect
to M, could be as follows.

Consider the class of measurable processes Hz having a representation of the form

f(t!w) = Z fi(w) l]ti.fi-u] (t) (36)

where 0 =tg <t < ... <itph_; <t,,=1,andf,-EDl’q.
We define IM(f) by (3.2). In this situation IM(f) is no more a Skorohod integral. In fact,

we have
n—1

IM(F) = 8(fu) + _/: (Z(D’ £i) 1]“,:‘“](3)) Uqgds .

=0

As an element of LY(T x Q), the process {E::Ul (Ds fi) 1ye,00500(8) 4 8 € T} coincides
with {{Vf),, s € T}, consequently

1
IM(f) = 8 fu) + fn (Vf)susds | (3.7)
if f is given by (3.6).

The extension of IM to a larger class than H; is based on the next theorem.

Theorem 3.2. Let f € Ly? and u € L}?. There exists a sequence {f,, n > 1} of
processes in ‘Hj such that

1 1
6(f"u)+-/0 (Vf”)suads—bé(fu)-%-/o (Vf)susds,

11



in L*(Q),asn — co.

Thus, we can define /M (f) = L? — lim,_ o IM{f,) and we have

M) = 6(fu) +f0 (VF)susds.

Proof: Consider a sequence {II" , n > 1} of partitions of T as have been described in the
proof of Theorem 3.1, and define

n—1 1 i1
f (t) = - m (]:l fa ds) l]t."ti.“] (t) (38)
Then 1
n— 1 tig1
D f*(t) = 2 ot ( . D, f, dS) L, 8040] (1) -

The sequence {f,, n > 1} belongs to the class H3. On the other hand f* — f, as
n — oo in the L1 norm (see Lemma 4.2 (2] for the case p = 2). Indeed, f*(t), {Df"(t)) s
the conditional expectation of f, ( the H-valued random variable D f(t)) in the probability
space (T'xQ, B(T)®QF, Ax P) with respect to the o-field generated by |¢?,¢7, || x A, A€
F ,and L%-convergence theorem of martingales can be applied. Consequently f*u — fu,

as n — oo in the L}? norm, and the L%(Q)-convergence of 6( f*u) to §(fu) follows.

Next we establish the convergence

1 L !
/ (VF™), uyds <5 f (VF), uyds, (3.9)
0 0

To this end, notice that

n—1

1 1 it tig1
VM, u,ds = _— s D dtld
fo( ) Z tit: — /t.,' u(./; Je ) °

=10 1

We will prove that

E| /h‘+1 p /ti+1 1 1( +f ) J 2
E S Uy D,fdt——/ D7 fou,ds
tits _t t; g t 2 0

=0

(3.10)

converges to zero, as n — oo. An analogue result with D~ also holds.

12



The expression (3.10) can be bounded by I} + I , where

titt Fit1 2
II—E\; ;+1—t f, (u/ (D,f:—D;"fs)dt)ds

L

1

and
I E\/l (D”’f)(ni1 fign 75 s))ds 1/1(D+f)u ds|”
= Ya a Js lign 5 s Js L
: 0 i=0 tl+ t tei fit ] 2 0
The term I; is majorized by
Cllulirerxa( sup  E{|Ds fo = D7 FAL YLD (3.11)

[a—tig|D7]

Indeed, using Holder’s inequality we can write

I = E‘/ug =
<B|( [ e ([ (_i e e O [ (ufi=DF 19

t|+1 - tl

s tig)] (s) (/01 (D_, ft — D:- f,) 1]_,!¢I.+1] (t)dt) ds ’

. 1]3,!.-+1] () dt))qh ds)ﬂq 2
< “uHiP(TxR) {E(/Ol (g m%t_, ISP (s)(./:(D, fe — fo £)
by aep ()72 as)
Moreover,
E(/: (n_l tit 1— 7. Ntitin] () ’/:(Ds Fo=DF ) Yeitih (t)dt))q;z ds)2
i=p tt1 i
B E(-/ol n:I m Lo iga) (s)( _/:(Ds ft— Dt f)) L)g 600 () dt)q'f2 d5)2
= E(n:l m(‘/jwl (]Ol(Ds fo=DF f3) Ly () dt)q,fz ds))2
n—1 foan :

< E(;=o m{/t. * (/; (Dy fe = DF fo) Lyg0i00] (t)dt)q ds)
. E(n-1 .

tit1 tig
- R 2 q . _ el
(ti+1 —f,')q_l ~/f.|' (‘/; |D8 ft Ds fs| dt) (tl+1 3) dS)
<C suwp E{|D,fi— D] f,|'}.

<t
la—t](TI"]

13



Consequently lim, o, [; = 0. due to the definition of ll_:lclqr .
We also have lim, ..o f» = 0. In fact the sequence
n—1

{ Z tl_H;i 1]ti‘f|'+1] (S) y N Z 1}

Py tivr — 8

converges to 3 in the weak topology of L?(T), and the result follows by domi-
nated convergence. Hence {3.9) is established and the proof of the Theorem is now

complete. n

Remark.

The integral IM(f) given in Theorem 3.2 has the feature of a Stratonovich integral (com-
pare (3.7) with equation (7.3) in Theorem 7.3 [2]).

If we replace M, by the Stratonovich integral N, = f; u,0dW,, with appropiate hypothe-
seson u and f, the integral fN(f) turns out to be the Stratonovich integral fol(f, uy)odW, .
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