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O. Introduction.

The purpose of this paper is to analyze the integrator properties of the Skorohod integral.
It has been proved in [2] that the indefinite Skorohod integral, Mt = S(u • l[o,t]) has the
property E {Mt — Ms | ,P]ait]c} = 0 , for any 0 < s < t < í0 , where J?-]s^ denotes the cr-field
generated by the increments of a standard Brownian motion on [0, to]—]s, í]. In some sense,

this property plays in the anticipating calculus the analogue role of the martingale property
in the classical Itó’s calculus. Therefore, it is reasonable to attempt the construction of an

anticipating integral of processes with respect to M, as the nonadapted counterpart of
the stochastic integral with respect to semimartingales. This paper contain several results
in this direction.

In Section 2 we prove that, under suitable hypotheses on the process u , the process M —

{Mt, 0 < t < to} defines an X2-stochastic measure on the cr-field of predictable sets
(see [1]). Thus, the integral of predictable, bounded processes / with respect to the
anticipating process M can be properly defined.

As has been pointed out in [2] in relation with the Skorohod integral, the price to be paid to
remove the adaptedness of the integrand is some smoothness property precisely described
with the tools of the calculus on the Wiener space. The results of Section 3 confirm this
remark. Here two kinds of integráis with respect to M for anticipating processes / are

presented. One of them coincides with the Skorohod integral of fu , the second one contains
a correction term and is related with Stratonovich anticipating integráis.

1. Preliminaries and notation.

We denote by T the unit interval [0,1]. Our basic probability space (ÍI,.P, P) will be the
canonical space associated with the standard Brownian motion on T, {Wt, t £ T} .

Given A £ B(T), Ta is the <7-field generated by W(B) , B £ B(T) , B C A. For A = [0, t]
we write J-t instead of P[o,<] •

Let C£°(Rn) be the set of all functions / : Rn —► R which are bounded and have bounded
and continuous derivatives of any order. The class S is defined as the set of random
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variables F : Q IR having an expression

F = f(Wtl, ,Wtn), (1.1)

where / G C¿°(IRn) and t\,..., tn G T. S is a dense subset of Lp(£l), for any p G [1, oo).
The elements of S are called smooth functionals.

The derivative of a smooth functional F given by (1.1) is the process defined by

d,f = Y. 1T7. (re,,,. -., (*) -
!=1

3 a

It can be considered as an unbounded operator defined on a dense subset of L2(Q) and
taking valúes on L2{T x fl). D is a closed operator, its domain is denoted by D1’2 . Notice
that D1,2 is the adherence of S with respect to the norm

||-F||i,2 = 11-^1112(0) + \\df\\LHTxíi) ■

The n — th derivative of a smooth functional F is defined by iteration:

D?F = Dtí Dt2...DtnF.

where t = (ti,... ,t„) G Tn .

By analogy with the case n — 1 we define the spaces Dn,í>, n > 1, p > 1, as the
completion of S with respect to the norm

llíiu = ||F|U,(n) + ¿ II IIB'FIU.^) I|„(nl ■
1=1

The adjoint operator of D is denoted by 6, and it is called the Skorohod integral. The
operator 8 is a closed and unbounded operator on L2(T x f!) taking valúes on L2(íl) such
that:

(i) Dom 8 is the set of processes u G L2(T x fl) for which there exists a constant C, only
depending on u , with

E Dt F ut dt'j <C||F||l,(í1),

for any F G <5 .
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(ii) If u £ Domé, 6(u) is the element of L2(Q) characterized by the integration by parts
formula:

E(F6(u))=e[J DtFutdt),
for any F € S.

Most of the interesting properties on the Skorohod integral are proved assuming than u

belongs to a class L1’2 of processes strictly contained in Domé. In general, for n > 1 and
p > 1 Ln,p is the space LP(T ; Bn,p). We also denote by L°°,p the space Dn>i Ln,p , p > 1.
If u belongs to L1,2 , u l[o,<] belongs to Domé, for any t E T.
We also need to introduce the set LqP of processes u in L1,p such that there exists a versión
of Du satisfying the following conditions

(i) the functions s i—> Dtua defined on [0,f] and with valúes on Lp(0) are continuous
uniformly in t, and the same property holds (with a different versión of Du) for these
functions defined on [t, 1].

(ii) ess sups t E (\Dsut\p) < oo.

The space L^2 is connected with the definition of the Stratonovich integral.
Notice that for any process u £ h}¿p the limits

Dfut = lim Dt ut+€ ,
£|0

D^ut — lim Dt ut-e ,

are well defined elements of LP(T xíl). In this situation we will denote by V the operator

i(B++B-).
The reader is refered to [2] for an extensive treatement of all questions concerning the
anticipating stochastic ealculus.
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2. Integration of bounded predictable processes with respect to a Skorohod
integral.

Let Tíi be the set of measurable processes having a representation
n — 1

w^) i]íí,<í+ii (o. í2-1)
t=0

with c¿ <E R, 0 = ío < ti < ... < ín-i < tn = 1, Ai £ Tti , i = 0,...,n — 1 and disjoint.
For simplicity we will assume |c¿| < 1.

We also consider the set 7i[ of measurable processes

71 — 1

= £ /,M l]„,,i+ll (<), (2.2)
t=0

where /¿, ¿ = 0,..., n — 1, are .^-measurable smooth functionals.

For any process u E L1,2 we denote by the Skorohod integral 6 (u l[o,t]), t > 0.
We define a mapping IM : Hi —► L2(Q,E,P) by IM{f) = Ya=o ci 1^4*-Mti), for
/ as in (2.1). IM(f) is said to be the integral of / with respect to M . The following lemma
shows that IM(f) is also a Skorohod integral.

Lemma 2.1. For any u £ L1,2 and / £ 'Hi , the process fu belongs to Domó, and
6 (fu) = IM(f).

Proof: Assume without loss of generality that / (t,o>) = 1,4(0;) l]ti,t2] (0 ) with A £ •

There exists a sequence {<pn , n > 1} of Ttx -measurable smooth functionals converging to
1 a in L2(ü), as n tends to infinity. Let /" (t,u) = ^pn{u) l]tx,t2] (t). The process fnu
belongs to L1’2 and

«(/"«)(u) = f2 <pn(u>) u.(u) dws = <pn (w)(Jlít» - Mt») .Jt i

Moreover, for any G € S

E(G Ó(fnu)) = E(Gipn(Mu - Mtl)) = E^j^DtG) f? ut di) . (2.3)
Taking the limit as n tend to infinity in (2.3) we get

E(G 1 A(Mt2 - Mtx)) =E(ft2 DtG 1A ut dt) .Jt\
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Consequently

E(J DtG ftutdt)\<C\\G\\L2W,
with a constant C depending only on / and u.

This implies fu E Domó and ó(fu) = l^(Aít2 — Mtl) . ■

The next result is the essential ingredient to extend the mapping IM to the class of
predictable and uniformly bounded processes.

Proposition 2.2

Then

Let / be a process belonging to Tii , and u E L°°’2 . Assume that

1
sup —f ¡|B” + ' yü> <+0O (2.4)

PM(/)II¡.><¡!) < C, (2.5)

where C is a constant only depending on u .

Proof: Assume first that / belongs to 7i[ . We will establish that

P"(/)lllP<n)<(HV2)a, (2.6)

with

a =sup e{ í1 r... r if3n+1 di..n JO JO JO
usn+1 I ^ 5n+l • • • “s2 “si... (la. da

The processes fu and / D" u, for any fixed s and any n > 1, belong to L1,2 .Using
the isometry property of the Skorohod integral (see Proposition 3.1 [3]) and the duality
between the operators D and 8 we get

l|JM(/)lll>(!¡) = E[U* ÍS + 2E[ “•/•(/* fr D‘Ur ¿WT)ds. (2.7)

Indeed,

ll^M(/)lli2(n) = mi"))2
= eJ^ u2 /2 ds + 2E j ( J {D3(ftut)Dt(féua)}dsyt,
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and, on the other hand,

Ut)Dt(fsus)}ds = E

= E

{ftut í Dt(fau.)dW.}
Jo

{ftUt Í fs Dt us dWs} .
Jo

Therefore we obtain (2.7).

By Schwarz’s inequality,

||^M(/)||l2(íi) — 11“ f\\2L2(TxU) +2 ||u/||L2(Txn) ^ /«2 DSl uS2 dWS2) dsi^j
We can apply again the identity (2.7) replacing the process fu by /DSlul[0,Sl] • Then

Let

11^ (/)ll¿2(n) ^ llu/IIl2(Txíí) + 2 ||«/||L*(Txn)

(e f1 r I fS2 Dai uS212 dSl ds2+2(E f í 1 |/S2 DSl ua2\2dSl ds2)1v Jo Jo Jo Jo

■(Ej f\j* f„ K.t U„ dW„)2ds2 ds,)1'2)1'2 .

—Kf-f l/3n+l ^.....1 Us»* + l|2 dSn-^-\ . *. ds2d,
n > 0.

Then, recursively we get

||^M(/)||L2(fi) < \ja-l + 2<n}Jal + 2a2yJ... y/án d” 2a„ An ,

where

A"=J!r '"T" £(/*" f’”+i <mr..„y<u„...ds,ds1.
Notice that

°2 ^ WfWlo SUP ll-^nulli2(T"+1xí2) »n

thus, hypothesis (2.4) ensures that a is finite and we can write

l|/M(/)lll=(!1) < ]ja*+2a\f¿ + 2af...s/a2 + 2a An . (2.8)
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Let / : [O, oo) —> [0, oo) be defined by f(x) = (a2 + 2a:r)1/2 . The function / is increas-
ing and concave. Moreover /([a, oo)) C [a, oo) and on [a, oo), |/'(x)| < 1. Henee, the
rectriction of / on the set [a, oo) is a contraction and therefore there exists a unique fixed
point xo 6 [a, oo) (/(xo) = xo) . It is immediate to check that xq = (1 +y/2)a. Notice that
xo > a.

It follows from (2.8) that
I|/M(/)II¿>«1) </"(A„), (2.9)

for any n > 1, with the usual notation fn=f o o /.

We prove in Lemma 2.3 that hypothesis (2.4) implies supn An < + oo . Now two situations
are possible:

either

(i) There exists k > 1 such that Ak < xo ,

or

(h) Ak> xo , for any k > 1.

In case (i), we have

< /‘(Ai) (by (2.9))
< fk(xo) (by the monotony of /)
= (1 + y/2) a.

Assume now that condition (ii) is satisfied. We want to show that

Indeed,

with K < 1.

Recursively, we obtain

lim fn(An) = x0 •
n—►oo

ir(An)-x0| = ir(An)-/(x0)i
<K |/n-1(A„) — x0|,

\fn(An)-x0\<Kn |An-x0|,

since supn An < + oo , the convergence (2.10) follows.

Consequently
\\IM(f)\\mn) < lim fn(An) = x0 = (1 + y/2) a .

(2.10)
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and the proof of the inequality (2.6) is complete.

Assume now that / G Wj. There exists a sequence {/m , m > 1} of processes in ,

bounded by 1, such that fmu —► fu in L2(T x S2), as m —► oo. From inequality (2.6) it
follows that

M f rm\IM(f LHQ) <(l+\/2)2sup E¡ í í ... í \frn+1D^n...SluSn+l\2dsn+1...ds2ds1\
n ' Jo JO JO J

< (1 + y/2)2 sup ^j\\Dnu\\2LHTn+lxíl).
n TI ,

Using the fact that 8 is closed and taking the limit, as m —► oo we obtain (2.5)
with C2 = (1 + \/2)2 supn ^T||^n«||¿2(Tn+ixíí) • The proof of the proposition is now
complete. ■

Lemma 2.3. Let / E PCy and u E L°°’2 . Then the sequence

= E(Jo ^"+l jD”n-Sl Usn+1 dWsn+1) dsn---ds2dSl , n > O}
is bounded.

Proof: By the isometry property of the Skorohod integral we have

A2n<E [ í ... í |/Sn+1 uSn+l |2 dsn+1 ...ds2 dsiJo Jo Jo

nSl fín-1 r»n [Sn• • • / / / l/-„+i ■DPÍ1..*1 U*» + i12 dsn+l dr dsn--- d&2 d*iJo Jo Jo

nSl [9n-l f»n fsn + l•••/ / / \Dr fsn+l D^Sl USn+1\2 dr dsn+1 dsn ... ds2 dsiJo Jo Jo
= 6? + 2&£ + 26” .

We want to prove that supn 6" < oo , i = 1,2,3.

For the sequence {&” , n > 0} we can write

*i < 2 ||I>”u|12
n!

oo | li- -iiL^T^xO) •

We also have

4? < II/IIL E f ( f í“ ... f" |U”+1..., u,„+1|2 drds„...ds2ds¡)ds„+,Jo KJo Jo Jo Jo 7

<
II, 1.00 (n + !)! \\Dn+1 ulllqT"+2xí2) >
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and
1

« < IIWIIL l|0"“lli>(r..+.x n)

Therefore, the boundedness of these sequences is ensured by hypothesis (2.4).

Remark. Let ut — ^“=0 Im(fm( •; t)) be the Wiener chaos expansión of the random
variable ut. Condition (2.4) is equivalent to the following one

\\fm\\ 2

L2(Tm + l) < +OO .

We now give the main result of this section

Theorem 2.4. Let u be a process satisfying the hypotheses of Proposition 2.2, then

(a) The mapping IM : Tíi —► L2{£t,T, P), given by IM(f) = 8(fu) can be extended to
the set V of previsible and uniformly bounded processes. This extensión will be still
denoted by IM .

(b) For any process / belonging to V, the process fu also belongs to Dom 8 and IM(f) =

8(fu).
For / G V we cali IM(f) the integral of / with respect to M.

Proof: From Proposition 2.2 it follows that the set / 6 Wi} is bounded in
L2(ü).
On the other hand, if f(t,co) — Ia(^) ,í2]) with A 6 !Ftl , the isometry property of
the Skorohod integral implies that

lim
|Í2—<1 |-

/"(/) = o,

in L2. Consequently, the mapping IM : Tii —> L2(íí,^r, P), IM(f) = 8(fu) defines
an L2-stochastic measure on the cr-field of predictable sets (see [1]) and part (a) of the
Theorem is proved.

Let / € V and {/” , n > 1} a sequence of processes in Tíi such that fn —y f a.s. as

n —y oo and in LP(T x Í2), p > 1.

By the results on Z^-stochastic measures we know that IM(f) = L2 — limn_00 IM(fn).
On the other hand IM(fn) equals 8(fnu). Since 8 is a closable operator on L2{T x íl)
taking valúes on L2(íl), we conclude that fu belongs to Dom 8 and 8(fu) = IM(f) . This
finishes the proof of the Theorem. ■
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3. Integration of non adapted processes with respect to a Skorohod integral.

In this section p will be a fixed real number, p > 2 , u = {ut, t G T} a measurable process

belonging to L1,p , and / = {/t, t € T} a measurable process in L1’9 , with ¿ + i = |.
As in the preceding section A/t denotes the Skorohod integral 8(u l[o,t]), for any í G T.
Our aim is to show how we can define an integral of /< with respect to .

We introduce the class of measurable processes T-í2 having a representation of the form
n —1

/(¿,a>) = ]T fi(u) l]<;,ti+1] (t), (3.1)
i=0

wliere 0 = t0 < ¿i < .. . < ín_ 1 < tn = 1 , € D1,? and /¿ ^jt-^^^c-measurable, for any
i = 0,..., n — 1.

A natural definition of the integral of a process / G W2 with respect to Mt is
n —1

= (3'2>
»=0

whenever / is given by (3.1).

Notice that due to the measurability properties of /¿, it holds that IM(f) = 8(fu).
The definition (3.2) gives rise to a linear mapping

IM :H2 ~^L2(Q).

Moreover, the L2-norm inequalities for the Skorohod integral imply

l|/"(/)llL*(n)<||/||Li..||«llL^. (3.3)

Consequently IM can be extended to a linear mapping on the closure of H2 with respect
to the norm || • • We will denote again by IM this extensión.

Theorem 3.1. Given / £ L1,?, there exists a sequence {/„ , n > 1} of elements in 7^2
such that /„—►/, as n —► 00, in the L1’9 norm. Henee IM(f) is given by the X2-limit
of the sequence 8(fnu), and coincides with 8(fu).

Proof: Denote by {II" , n > 1} a sequence of partitions of T, ü" = {0 = tg < t" < .. . <
= 1} with |nn| —* 0, as n —*• 00. In the sequel the superscript n will be omitted. For

each n > 1 we define

no = E _ t. ( J' E(/.l^].,•,<„]•)<*() 1|í.,í¡+i)(0 (3.4)
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Then

E(Drfs | ,tt+1]c)<^«) 1]<¿,<,+i](*) 1]í¿,<,+i]c(r) • (3-5)Drfn(t)
n —1

E
1

^t + l ti

Notice that fn is the conditional expectation of / in the probability space (Txfi, B(T) ®
T, A x P) with respect to the <7-field Qn C B(T) (g).P generated by {]<" , í"+1] x P" , P™ €

P]tn(ín+i]C , 0<¿<n — 1}, therefore by the results on martingale convergence we get
V(Txn) , .

/ —► j , as n tends to oo .

A similar argument holds for the convergence of the derivatives, (see Lemma 4.2 [2]).
Henee fn —> /, as n —» oo in the L1’9 norm. This convergence also implies fnu —> fu ,

as n —» oo in L1,2 . Thus 6(fnu) —> 8(fu), as n —► oo in P2(íl), and the proof is
complete. ■

A more natural approach to the problem of defining the integral of a process / with respect
to Mt could be as follows.

Consider the class of measurable processes 7i3 having a representaron of the form
TI — 1

/(í,a>) = ^ fi(u) l]ti,íí+1] (<) (3.6)
¿=o

where 0 = ío < <i < • • ■ < ín-1 < tn = 1, and G D1’9 .

We define IM(f) by (3.2). In this situation IM(f) is no more a Skorohod integral. In fact,
we have

/"(/) = *(/«)+ / 1i«.<.+.iM) •
i=0

As an element of L9(T x íí), the process j Y^=o fi) !]<.,<,+i](s) » s € T| coincides
with {(V/)s , s G T) , consequently

*"(/) = *(/«) + [\vf),u,ds , (3.7)Jo

if / is given by (3.6).
The extensión of IM to a larger class than 'H^ is based on the next theorem.

Theorem 3.2. Let / € and u G L1,p. There exists a sequence {/n, n > 1} of
processes in H3 such that

8(fnu)+ f (Vfn)su3ds^ó(fu)+ í\vf)auads,Jo Jo
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oo.in T2(íí), as n —>

Thus, we can define IM(/) — L2 — limn_oo IM(fn) and we have

ÍM(f) = S(fu)+ í\vf)susds.
Jo

Proof: Consider a sequence {ün , n > 1} of partitions of T as have been described in the
proof of Theorem 3.1, and define

n«) =| ¡^(f+'/. a.) (3.8)

Then
n—1

fl.rw = ¿ w+o (*) •

The sequence {/„ , n > 1} belongs to the class 7i3 . On the other hand fn —► /, as

n —> oo in the L1’9 norm (see Lemma 4.2 [2] for the casep = 2) . Indeed, fn(t) , (£>/n(í)) is
the conditional expectation of /, (the ií-valued random variable Df(t)) in the probability
space (T x íí, B(T) , A x P) with respect to the <7-field generated by ]í”, í"+1] x A, A €
T, and Lq-convergence theorem of martingales can be applied. Consequently fnu —> fu ,

as n —> oo in the L1,2 norm, and the L2(Q)-convergence of 6(fnu) to 6(fu) follows.

Next we establish the convergence

// (V/)aJo Jo
uads, (3.9)

as n —> oo .

To this end, notice that

• i

ds .

We will prove that

n —1
■ ^ /**• + ! /•*;+! ^

P V / ds us I Da ftdt — - I (D+fs)usds
1 “ tj+i - ti Ju J3 ¿ Jo

converges to zero, asn-+oo. An analogue result with D~ also holds.

(3.10)
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The expression (3.10) can be bounded by I\ + I2 , where
n—1 - y*/• t 1 .^

/ ri*+i

/i='E|E t¡J- t. l+'(") ds

and

h = e\ jí1 «.(£>í /.) (2 ^ (*)) ds-\j\o-¡ S,)u, ds
The term I\ is majorized by

CM|!,(Txn)( sup E{\D,f,-Dt f.nY1*.*<t

l*-«l<|nn|

(3.11)

Indeed, using Hólder’s inequality we can write
el n-l 1 / yl

h = E
»=o

el n-1
< E '

»=0

•i]a>ti+1](o^))?/2ds) /9\
• 1 re—1

< ll«"“

el re —1 - .1

UsJ2 7—ZT 1]“-t-'+i] ^ ( / (Ds ft ~ D+ ^s) 1]s>t¿+i) (*)dt)JO i=Q ‘-i+1 ¿i VJ 0 / 1

(/o (E

IIlp(txíi) {«(jf1 (E W.i (*){ f\n. f, -Dt f.)

].,,^(‘)dt)f2dS)yl\
Moreover,

el n-l

n — 1

= s(E
i=0

n — 1

^(E
t=0

re —1

<

í¿+1- + . ]** í*t + l.
ll

n — 1
1

1

¿í (í¿+1 - ti)^2
1

(^i+i — tr)^JU
1 y*íH

(i i+l — tO9"1 i
1 /•*¿H

b(E ¡rit,^¡,-. P.oí/.I5 *)(<<+.-¿T1*)
<C sup E{|fl./,-D+/.|*}.

«<t

l*-«l<|n"|
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Consequently lim^oo I\ = 0 , due to the definition of L^9 .

We also have J2 = 0. In fact the sequence

n —1

{E ¿¿+i —

^i+i U !]*.■,<.+d (5) > n > !)

converges to | in the weak topology of L2(T), and the result follows by domi-
nated convergence. Henee (3.9) is established and the proof of the Theorem is now

complete. ■

Remark.

The integral IM(f) given in Theorem 3.2 has the feature of a Stratonovich integral (com¬
pare (3.7) with equation (7.3) in Theorem 7.3 [2]).
If we replace M* by the Stratonovich integral Nt = usodWs , with appropiate hypothe-
ses on u and /, the integral íN(f) tums out to be the Stratonovich integral Jq(J3 u3)odW3 .
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