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Abstract

The Square Peg Problem, also known as Toeplitz’ Conjecture, is an unsolved problem

in the mathematical areas of geometry and topology which states the following: every

Jordan curve in the plane inscribes a square.

Although it seems like an innocent statement, many authors throughout the last century

have tried, but failed, to solve it. It is proved to be true with certain “smoothness

conditions” applied on the curve, but the general case is still an open problem. We intend

to give a general historical view of the known approaches and, more specifically, focus on

an important result that allowed the Square Peg Problem to be true for a great sort of

curves: Walter Stromquist’s theorem.
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encara més bonic del que ja és (i que l’aprovat d’EDOS fos possible). Moltes gràcies per
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Chapter 1

Introduction

The Square Peg Problem, also known as the Inscribed Square Problem or Toeplitz’ Con-

jecture, is a still open problem which numerous authors have tried to solve for the last

hundred years. It is usually attributed to the German mathematician Otto Toeplitz.

The problem asks whether every Jordan curve in the plane has four points which form a

square:

Conjecture 1.1 (Square Peg Problem). Every continuous simple closed curve in the

plane γ : S1 −→ R2 contains four points that are the vertices of a square.

A continuous simple closed curve in the plane is also called a Jordan curve, and it is the

same as a continuous injective map from the unit circle into de plane. In other words, a

topological embedding S1 ↪→ R2.

Notice that Conjecture 1.1 does not require the square to lie fully inside the curve. We

can see an example in Figure 1.1.

Figure 1.1: Example of the Square Peg Problem

The problem has been solved for curves that are “smooth enough”, but remains open

for the continuous general case. Several authors found positive results by varying the

smoothness condition, which has become weaker over the years. Most of these studies

have in common the claim that there is an odd number of inscribed squares in such a

smooth curve, since proving this fact is a guarantee of the existence of a square.

But, why is the general case still unsolved? One may think that it is natural to approach

the problem by approximating a given continuous curve by a sequence of smooth curves,

which, each of them, is known to inscribe a square (using one of the existing smooth

results). By converging the sequence we would get, therefore, an inscribed square in the

original continuous curve. In other words, given a Jordan curve γ approximated by a
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2 Introduction

sequence γn of certain smooth curves, then, since any γn inscribes a square Qn, there is a

converging subsequence (Qnk
)k (by compactness) whose limit is an inscribed square for the

curve γ. However, it could happen that the approximated inscribed squares degenerate to

a point in the limit. Even if the given curve γ is smooth except for a single singular point,

all squares in the approximating curves could concentrate into that singular point in the

limit. This problem is the reason why it has not been possible to remove the smoothness

condition in the known positive results of the problem so far.

The aim of this text is to show some of the proofs obtained throughout these years. We

focus on a particular result that had a great impact on the problem’s history: Walter

Stromquist’s theorem. He proved the Square Peg Problem for curves that are “locally

monotone”, a smoothness condition that is satisfied for curves that are convex, polygon

or, under certain restrictions, piecewise of class C1 (in Section 3.4 we give the accurate

definition as well as the mentioned proof). We also provide an abstract of the proof of

the first historical result (satisfied for ”smooth enough” convex curves, found in Section

3.2.2) and a survey through most of the solutions found during the last hundred of years.

In order to see the previous matter, we have divided the work into the following three

parts:

In Chapter 2, we recall the definition of Jordan curve, state the Jordan curve theorem

and give a short proof of it.

We start Chapter 3 by giving a deeper historical review of the so far obtained results. We

complement this part by showing some easy results as a motivation of the problem and

then proceed to overview two of the historical proofs which meant an important progress

of the Square Peg Problem.

At the end of the chapter, we provide some topological tools required to follow Stromquist’s

proof. These are from simplicial and singular homology. We conclude Chapter 3 by show-

ing Walter Stromquist’s proof, which is our main object of study.

We have added an extra chapter, Chapter 4, to remark the furthest result of the Square

Peg Problem, provided by the mathematician Terence Tao. It is a quick review of his

work, since its difficulty escapes from the degree’s level.



Chapter 2

Jordan Curve Theorem

The Square Peg Problem is stated for a Jordan curve, as we have seen in the first chapter.

There is a classical theorem in topology which asserts an essential fact about Jordan

curves: the Jordan curve theorem. This theorem was originally conjectured by Camile

Jordan in 1892.

In this chapter, we will introduce the Jordan curve theorem as well as a short proof of

it, using the theorem of the Brouwer fixed point. This ingenious proof belongs to Ryuji

Maehara, who wrote it in [6]. But, before we start, let us give the definition of a Jordan

curve:

Definition 2.1. A Jordan curve is a continuous simple closed curve in R2. That is, the

image of an injective continuous map of the unit circle into the plane:

γ : S1 −→ R2.

Thus, a Jordan curve is the homeomorphic image of a circle.

We will also be talking about “arcs”. We denote by arc the homeomorphic image of a

closed interval [a, b], where a < b.

Now we are ready to introduce the chapter’s main theorem:

Theorem 2.2 (Jordan Curve Theorem). The complement in the plane R2 of a Jordan

curve J consists of two components, each of which has J as its boundary.

In other words, the Jordan curve theorem states something geometrically visual: a simple

closed curve always divides the plane into two parts, the outer and the inner part. Let us

note two facts concerning the components of R2 − J , where J is the Jordan curve:

1. R2 − J has exactly one unbounded component.

2. Each component of R2 − J is path-connected and open.

The assertion (1) follows from the boundedness of J , and (2) from the local path-

connectedness of R2 and the closedness of J .

In order to prove the Jordan curve theorem, we will first introduce two theorems: the

Brouwer fixed point and Tietze extension theorem. The Brouwer fixed point theorem will
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4 Jordan Theorem

be used during the main proof, as we mentioned before, while Tietze extension theorem

will be applied to prove our first lemma (Lemma 2.5, found below).

Theorem 2.3 (Brouwer Fixed Point Theorem). Every continuous map from a disk into

itself has a fixed point.

Theorem 2.4 (Tietze Extension Theorem). Let X be a normal space and A a closed

subspace of X.

1. Any continuous map from A to the closed interval [a, b] of R can be extended to a

map from all X to [a, b].

2. Any continuous map from A to R can be extended to a continuous map from all X

to R.

We will now introduce and prove two lemmas which will be needed during Jordan curve

theorem’s proof. Once we have proved them, we will finally proceed with the chapter’s

main proof.

Lemma 2.5. If R2 − J is not connected, then each component has J as its boundary.

Proof. By assumption, R2 − J has at least two components. Let U be an arbitrary

component. Since any other component W is disjoint from U and is open, we have that

W contains no point of the closure U and, hence, no point of the boundary U ∩U c of U .

Thus, U ∩ U c ⊂ J .

Now we suppose that U ∩ U c 6= J . We will show that this leads to a contradiction.

Since U ∩U c 6= J , there exists an arc A ⊂ J such that U ∩U c ⊂ A. By (1), we know that

R2 − J has at least one bounded component. Let o be a point in a bounded component.

If U itself is bounded, we choose o in U .

Let D be a large disk with center o such that its interior contains J . Then the boundary

of D, which we will note by S, is contained in the unbounded component of R2−J . Since

A is an arc, we know it is homeomorphic to the interval [0, 1]. By the Tietze Extension

Theorem, the identity map A −→ A has a continuous extension r : D −→ A. This is

possible since D is a normal space and A is a closed interval of R.

We define a map q : D −→ D−{o}, according as if U is bounded or not. If U is bounded

we define it by

q(z) =

{
r(z) for z ∈ U,
z for z ∈ U c,

Otherwise by

q(z) =

{
z for z ∈ U,
r(z) for z ∈ U c.
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By U ∩ U c ⊂ A, the intersection of the two closed sets U and U c lies on A, on which r is

the identity map. Thus, q is well defined and continuous. Note that q(z) = z if z ∈ S.

Now let p : D − {o} −→ S be the natural projection and let t : S −→ S be the antipodal

map. Then the composition t ◦ p ◦ q : D −→ S ⊂ D has no fixed point. This contradicts

the Brouwer fixed point theorem and, therefore, we prove the lemma.

The previous proof implicity contains a proof that no arc separates R2. This is often a

lemma to the Jordan curve theorem.

Before getting into the next lemma, let us denote the rectangular set {(x, y) | a ≤ x ≤
b, c ≤ y ≤ d} in the plane R2 as E(a, b; c, d), where a < b and c < d.

Lemma 2.6. Let h(t) = (h1(t), h2(t)) and v(t) = (v1(t), v2(t)), where −1 ≤ t ≤ 1, be

continuous paths in E(a, b; c, d) satisfying

h1(−1) = a, h1(1) = b, v2(−1) = c, v2(1) = d.

Then the two paths meet, i.e., h(s) = v(t) for some s,t in [−1, 1].

In other words, when t = −1, h(−1) = (a, h2(−1)) and v(−1) = (v1(−1), c). Whereas

when t = 1, we have h(1) = (b, h2(1)) and v(1) = (v1(1), d). This means that h(t) will

trace its path horizontally from a to b, while v(t) will do it vertically from c to d. Then,

both will meet at some point.

Proof. Suppose h(s) 6= v(t) for all s, t. LetN(s, t) denote the maximum-norm of h(s)−v(t)

N(s, t) = max{|h1(s)− v1(t)|, |h2(s)− v2(t)|}.

Then N(s, t) 6= 0 for all s, t. We define a continuous map F from E(−1, 1;−1, 1) into

itself by

F (s, t) =

(
v1(t)− h1(s)
N(s, t)

,
h2(s)− v2(t)
N(s, t)

)
.

Notice that if N(s, t) takes the value |h1(s)− v1(t)|, then

F (s, t) =

(
±1,

h2(s)− v2(t)
|h1(s)− v1(t)|

)
.

While if N(s, t) = |h2(s)− v2(t)|, then

F (s, t) =

(
v1(t)− h1(s)
|h2(s)− v2(t)|

,±1

)
.

Therefore, the image of F is in the boundary of E(−1, 1;−1, 1) and, in fact, the map F

goes from E(−1, 1;−1, 1) into itself, as we previously said.

We need to see that F has no fixed point, so it contradicts the Brouwer fixed point

theorem.

Assume F (s0, t0) = (s0, t0). By the above remark, we have |s0| = 1 or |t0| = 1. Suppose,
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for example, s0 = −1. Since h1(−1) = a, v1(t0)− a ≥ 0. Also, N(−1, t0) ≥ 0. Then, the

first coordinate of F (−1, t0), (v1(t0) − h1(−1)/N(−1, t0)), is nonnegative. Hence, it can

not equal s0 (= −1). Similarly, the other cases of |s0| = 1 or |t0| = 1 can not occur. This

implies that F (s, t) has no fixed point. But since E(−1, 1;−1, 1) is homeomorphic to a

disk, this contradicts the Brouwer fixed point theorem.

Now that we have seen both lemmas, we can prove the Jordan curve theorem.

Proof (Jordan curve theorem). By Lemma 2.5, we only need to show that R2−J has one

and only one bounded component. This is because by assertion (1) R2 − J has exactly

one unbounded component. So if we see, that besides this one, R2 − J has one bounded

component, Lemma 2.5 will imply that both components have J as their boundary, which

is exactly what Jordan curve theorem says.

The proof will be divided into three parts: establishing the notation and defining a point

z0 in R2 − J , proving that the component U containing z0 is bounded and proving that

there is no bounded component other than U .

Since J is compact, there exist points a, b in J such that the distance ‖a−b‖ is the largest.

We may assume that a = (−1, 0) and b = (1, 0). Then the rectangular set E(−1, 1;−2, 2)

contains J , and its boundary, that we will denote by Γ, meets J at exactly two points a

and b, as shown in Figure 2.1.

Figure 2.1: Construction of E(−1, 1;−2, 2) containing J

Let n be the middle point of the top side of E(−1, 1;−2, 2), n = (0, 2), and s the middle

point of the bottom side, s = (0,−2). The segment ns meets J by Lemma 2.6, where

we take h(t) as J and v(t) as ns. Let l be the y-maximal point (that means the point
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(0, y) with maximal y) in J ∩ ns. Points a and b divide J into two arcs. We denote the

one containing l by Jn, and the other by Js. Let m be the y-minimal point in Jn ∩ ns.
Possibly l = m. Then the segment ms meets Js; otherwise the path nl+ lm

_
+ms (where

lm
_

denotes the subarc of Jn with end points l and m) could not meet Js, contradicting

Lemma 2.6. Let p and q denote the y-maximal point and the y-minimal point in Js ∩ms,
respectively. Finally, let z0 be the middle point of the segment mp.

We have defined our point z0, which we have ensured to be in R2 − J via the previous

construction and, more specifically, in the supposed bounded component of R2 − J . Now

we will show that U , the component of R2 − J that contains z0, is, in fact, bounded. To

prove so, let us suppose U is unbounded. Since U is path-connected, there exists a path

α in U from z0 to a point outside E(−1, 1;−2, 2). Let w be the first point at which α

meets the boundary Γ of E(−1, 1;−2, 2). We denote αw the part of α from z0 to w. If w

is on the lower half of Γ, we can find a path ws_ in Γ from w to s which contains neither a

nor b. Now consider the path nl + lm
_

+mz0 + αw + ws_. This path does not meet Js, by

hypothesis, contradicting Lemma 2.6. Similarly, if w is on the upper half of Γ, the path

sz0 + αw + wn_ fails to meet Jn, where wn_ is the shortest path in Γ from w to n. The

contradiction shows that U is a bounded component.

We have proven the existence of the bounded component. Let us see its uniqueness.

Suppose that there exists another bounded component W (W 6= U) of R2 − J . Clearly,

W ⊂ E(−1, 1;−2, 2). We denote by β the path nl + lm
_

+mp+ pq_ + qs, where pq_ is the

subarc of Js, from p to q. Notice that β has no point of W . This is because the path mp

belongs to U , since it meets z0, and we have supposed that W 6= U . Also, the subarcs lm
_

and pq_ can not be in W because lm
_ ⊂ Jn and pq_ ⊂ Js. Since a and b are not on β, there

are circular neighborhoods Va, Vb of a, b, respectively, such that each of them contains no

point of β. By Lemma 2.5, a and b are in the closure W . Hence, there exist a1 ∈W ∩ Va
and b1 ∈W ∩ Vb.
Since W is path-connected, there exists a path from a1 to b1. Let a1b1

_
be this path in W .

Then, the path aa1+ a1b1
_

+b1b fails to meet β, because we have shown that β has no point

of W . But by Lemma 2.6 we know that the path intersects β. This is a contradiction

and, therefore, this completes our proof.



Chapter 3

Square Peg Problem

In this chapter we will focus on the history of the Square Peg Problem. We will start by

introducing the most important studies with their chronological order and overviewing

some of these proofs. More precisely, we will see in detail the first proof provided by

Arnold Emch, so we acknowledge the initial attempts of the problem. At the end of the

chapter we will study Walter Stromquist’s proof and see how he managed to get one of

the weakest smoothness conditions.

3.1 History of the problem

Most part of the historical chronology found in this section has been extracted from the

survey [7] made by Benjamin Matschke.

The Square Peg Problem first appeared in 1911. Otto Toeplitz gave a talk whose second

part had the title “On some problems in topology”, in which he mentioned the problem

and claimed to have the solution only for convex curves. However, it seems that Toeplitz

never published the proof.

In 1913, Arnold Emch proved it for “smooth enough” convex curves [1], which was the

first major result. Two years later, Emch published in [2] a further proof that required a

weaker smoothness condition and in which he wrote that he did not know that Toeplitz

and his students discovered the problem independently two years earlier. Despite this

fact, the conjecture is usually attributed to Toeplitz. Emch presented a third paper in

1916 [3], where he proved the Square Peg Problem for curves that are piecewise analytic

with a finite number of inflexions and other singularities. We will show his first proof in

the next section (Section 3.2.2).

In 1929, Schnirelmann proved the problem for a class of curves that is slightly larger than

C2: curves with piecewise continuous curvature. This paper was published in a Russian

publication, but an extended version, which corrects some minor errors, was published

posthumously in 1944 [13]. Schnirelmann noted that for a generic curve, the parity of the

number of inscribed squares must be invariant as the curve is deformed. The proof uses

a local lemma on existence of inscribed square for closed curves. Heinrich Guggenheimer

studied Schnirelmann’s proof and claimed that it still contained errors. He corrected

8
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several technical points and concluded that the curve needs to have a bounded variation

so the proof works.

In 1961, Jerrard [5] examined the case of real-analytic curves (curves whose coordinate

functions are each real-analytic) and showed that each such curve admits an odd number

of inscribed squares.

In 1989, Walter Stromquist [14] proved one of the furthest results of the Square Peg

Problem. He introduced the smoothness condition “locally monotone” which is satisfied

when the curve is convex, polygon or, under certain restrictions, piecewise of class C1.

We will study this proof in detail at the end of this chapter (Section 3.4).

Other results are due to Hebbert, when γ is a quadrilateral, Nielsen and Wright for curves

that are symmetric across a line or about a point (see Section 3.2.1), Pak [12] for piecewise

linear curves, Cantarella, Denne, McCleary for C1 curves and Matschke [8] for an open

dense class of curves (curves that did not contain small trapezoids of a certain form), as

well as curves that were contained in annuli in which the ratio between the outer and the

inner radius is at most 1 +
√

2.

The latest result is due to Terence Tao [15] in 2017, where he proves the Square Peg

Problem if the curve is the union of two Lipschitz graphs that agree at the endpoints,

and whose Lipschitz constants are strictly less than one. The condition he provides goes

a little bit further than the condition of locally monotone. We will overview Tao’s paper

in the next chapter (Chapter 4).

3.2 Several results

3.2.1 Witty and easy results

Before we get into the important dense results obtained by some of the previously men-

tioned authors, we would like to offer some quick and clever proofs as a motivation of the

problem.

Square inscribed in a function

Suppose we form a simple closed curve by adjoining the segment of the x-axis from x = 0

to x = 1 to the graph of a continuous function

f : [0, 1] −→ R

such that f(0) = f(1) = 0 and f(x) > 0, for 0 < x < 1, as seen in Figure 3.1. Let us see

that this curve inscribes a square.

Proof. We will only need the extreme value theorem and the intermediate value theorem

in order to proof it.

First, by the extreme value theorem, the function f assumes its maximum value m at

some x1. In other words, f(x1) = m, where f(x) ≤ m for any value of x.

Now, we define a function g : [0, 1] −→ R such that

g(x) = x+ f(x).
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Then, we have

g(0) = 0

g(1) = 1

Using the intermediate value theorem, there is some x2 between 0 and 1 so that

g(x2) = x1.

Now, we define another function h like

h(x) = f(x)− f(g(x)).

To assure that this definition makes sense, we will consider f(x) = 0 for all values of x

outside [0, 1]. Then, h(x1) = f(x1) − f(g(x1)) = m − f(g(x1)) which is positive or zero,

since m is the maximum value of the function f . But we also have h(x2) = f(x2) −
f(g(x2)) = f(x2)− f(x1) = f(x2)−m, which is negative or zero.

By the intermediate value theorem, there is a value x0 between x1 and x2 such that

h(x0) = 0, which is the same as

f(x0) = f(x0 + f(x0)).

Therefore, the points x = x0 and x = x0 + f(x0) on the x-axis are the base corners of the

inscribed square, as shown in Figure 3.1.

Figure 3.1: Square inscribed in a function

Square inscribed in symmetric curve

In this case, we are going to see the theorem proved by Mark J. Nielsen and S.E. Wright

in [11], where the curve is a Jordan curve symmetric about a point.

Theorem 3.1. Every simple closed curve that is symmetric about the origin has an

inscribed square.
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Figure 3.2: Jordan curve symmetric about O

Proof. Let J be a Jordan curve symmetric about the origin O. This means that for each

point P on J , the point −P (whose coordinates are negatives of the coordinates of P )

is also on J . Let f : R2 −→ R2 be the function that rotates each point in the plane 90

degrees about the origin.

Figure 3.3: J and its rotated image f(J)

We can see in Figure 3.3 that J and its rotated image f(J) intersect each other. If we

suppose they do, they must share a point in common. Then, if we choose a point f(P ) on

f(J) that is also on J , the points P, f(P ),−P,−f(P ) form the vertices of a square (see

Figure 3.4). And, since all four points are on J , then we have that J inscribes a square.

All that remains now is to see that J and f(J) intersect. To show this, consider Pnear
and Pfar to be the points on the curve J that are at minimum and maximum distance

from the origin respectively. Then, f(Pnear) is as close to O as any point of J , since f
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does not change any distance, and f(Pfar) is as far from O as any point of J . Thus, we

have the cases of f(Pnear) being inside or on J and f(Pfar) being outside or on J .

If either of them is on J , we are done, since J and f(J) would intersect on that point.

Otherwise, if f(Pnear) is inside J and f(Pfar) is outside J , then f(J) must connect both

points, and hence it must cross J somewhere (because of the Jordan curve theorem).

Figure 3.4: P, f(P ),−P,−f(P ) form the vertices of a square

3.2.2 Arnold Emch

Arnold Emch provided the first result of the Square Peg Problem for convex curves. Here

we will give an overview of his paper Some Properties of Closed Convex Curves in a Plane,

noting the theorems and previous conditions he states before proving the main theorem:

It is always possible to inscribe a square in an oval.

Emch denotes a “closed convex curve” with the term “oval”, as we will define below. The

aim of his work, then, is to prove that at least one square is inscribed in a convex closed

curve.

Let us first introduce his definition of “oval”. He considers a convex domain as the

regular definition of convex domain (a finite, closed domain which contains with any two

points also the entire segment between them), indicating that through every point of the

boundary of such a domain, there is at least one straight line so that all points of the

domain which are not on the line lie only on one side of the line. This line is denoted

with the term supporting line. Then, an oval encloses such a domain, including the oval

itself. Emch defines it parametrically by two distinct continuous single-valued periodic

functions

x = φ(t), y = ψ(t),

where t ∈ R and both have period w.

Now, he places several restrictions on these functions. First, he considers its derivatives

φ′(t), ψ′(t) w-periodic and continuous for all definite values of t. He excludes singular
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points by assuming that both derivatives φ′(t), ψ′(t) do not vanish simultaneously for any

values of t and he excludes any straight portions of the boundary by including in the

definition of an oval that for no parts of the period-interval, the functions φ(t) and ψ(t)

remain constant or depend linearly upon t.

He also assumes that at every point of the oval there exists a definite tangent and, if the

point of tangency varies continuously, the direction of the tangent varies continuously.

Also, for t = 0 or t = w, none of the functions φ(t), ψ(t), φ′(t), ψ′(t) vanish and we have

φ(0) = φ(w), φ′(0) = φ′(w), ψ(0) = ψ(w), ψ′(0) = ψ′(w).

Now that we have defined all the conditions on the oval imposed by Emch, we will intro-

duce some theorems he states first in order to prove the main result afterwards.

Theorem 3.2. There are always two and only two tangents to an oval parallel to any

given direction.

This is true since if there were three distinct parallel tangents t1, t2, t3, with t2 between

the other two, then there would be points belonging to the domain of both sides of t2,

which can not occur (according to the property of a supporting line).

Emch denotes by “reentrant quadrangle” a quadrangle A1A2A3A4 in which one of the

vertices lies within the boundary of the triangle formed by the remaining three, as seen

in Figure 3.5, where the mentioned vertex corresponds to A4. This is shown by getting in

contradiction with the assertion that all points outside of a segment AiAj are excluded

from the domain. Then, we have:

Theorem 3.3. No reentrant quadrangle can be inscribed in an oval.

Figure 3.5: Reentrant quadrangle A1A2A3A4.

Theorem 3.4. Two distinct rhombs with corresponding parallel sides or parallel axes can

never be inscribed in the same oval.
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This is proved by using the fact that wherever the two rhombs are placed, four of their

vertices will always form a reentrant quadrangle. Thus, no oval can pass through them.

Theorem 3.5. Let a and b be two distinct real numbers, and let λ = φ1(θ), µ = ψ1(θ)

be two uniform continuous real functions of a parameter θ, subject to the only condition

that two distinct values α and β of the parameter θ exist, so that

φ1(α) = ψ1(β) = a,

φ1(β) = ψ1(α) = b;

then there exists at least one value of θ, say θ = γ, for which φ1(γ) = ψ1(γ).

This follows from the fact that φ1(θ)− ψ1(θ) is continuous and, hence, takes every value

between a−b and b−a. That is, there is at least one value of θ, γ, such that φ1(γ) = ψ1(γ).

Using all the previous results, Emch proves the main theorem:

Theorem 3.6. It is always possible to inscribe a square in an oval.

Proof. Emch uses a geometric construction to prove the existence of a rhombus inside an

oval, seen in Figure 3.8. He proceeds as follows:

Having our curve placed in the plane, we assume any point O, outside the curve, and

we draw any line lα through this point. Now, we draw the chords of the oval parallel to

lα, determining their respective midpoints, and we add the tangents parallel to lα as well

as their points of tangency, denoted by Sα and Tα. If we connect all the midpoints, we

obtain a continuous curve Cα from Sα to Tα. In his later publications, Emch will denote

this locus of midpoints by median. This construction is seen in Figure 3.6.

Figure 3.6: Chords of the oval parallel to lα and the curve Cα through their midpoints.
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Next, we draw through O a line lβ perpendicular to lα, and we repeat the same construc-

tion with respect to this line. Thus, we obtain a continuous curve Cβ extending from Sβ
to Tβ, as well as the two tangents of the oval parallel to lβ.

The two tangents parallel to lα and the two parallel to lβ form a rectangle. Also, the

curves Cα and Cβ necessarily intersect within the domain of the oval. In fact, there is

always only one real point of intersection between Cα and Cβ, that we will denote as Pαβ.

This is true, since if there were two points of intersection, then there would exist two

rhombs with parallel axes inscribed in the oval, in contradiction with Theorem 3.4. We

can see the construction of the chords parallel to lβ and the curve Cβ in Figure 3.7, where

the old construction is on a slightly softer colour and the newer one is on a stronger one.

Figure 3.7: Chords of the oval parallel to lβ and the curve Cβ through their midpoints.

If we draw the lines parallel to lα and lβ that pass through Pαβ, we see that they intersect

the oval at four points A,B,A′, B′, which form a rhombus ABA′B′. Thus, with every

pair of orthogonal rays lα and lβ through O is associated one definite rhombus inscribed

in the oval, and this same rhombus is evidently obtained when lα and lβ are interchanged.

Now that we have shown that a rhombus is inscribed in the curve, the final step is to

prove that this rhombus becomes a square.

Emch notes that if we turn a line lξ through O continuously from lα to lβ, then its

orthogonal ray lη will turn in the same sense from lβ to lα. The corresponding curves

Cξ and Cη also change continuously, since their extremities Sξ, Sη, Tξ and Tη on the oval

change continuously. Therefore, their point of intersection Pξη describes a continuous

curve and hence the corresponding rhombus, denoted by XYX ′Y ′, changes continuously.

Then, the axes λ = XX ′ and µ = Y Y ′ of this rhombus may be expressed as uniform
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and continuous functions of a parameter θ associated with the direction of lξ, within the

interval between lα and lβ (including these limits). This θ may be chosen as the positive

angle between lξ and the positive part of the axis X.

Now, if we designate the diagonals of the original rhombus by a and b, the parameters

associated with lα and lβ by α and β, and the axes of the rhombus by

λ = φ(θ), µ = ψ(θ)

within the interval α ≤ θ ≤ β, where λ and µ are the uniform and continuous functions

of θ, then we have

a = φ(α), b = ψ(α).

If now we turn the line lξ from lα to lβ, the rhombus XYX ′Y ′ changes from ABA′B′ to

BA′B′A, so that in the second position we have

λ = φ(β) = b, µ = ψ(β) = a.

That is, the diagonals are interchanged in the positions θ = α and θ = β. Thus, the

situation is exactly as stated in Theorem 3.5. There exists, therefore, at least one direction

lγ for which φ(γ) = ψ(γ) (λ = µ), i.e., where the rhombus becomes a square. In Figure

3.8 we have an overview of the whole construction.

Figure 3.8: Rhombs in the oval

Notice that Emch gives strong conditions on the curve, such as being differential and

excluding straight portions of the curve. This, as we mentioned, was the first approach (or

at least the first one known) of the Square Peg Problem. When we introduce Stromquist’s
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proof at the end of this chapter, we will see that his results are much stronger than this

one.

Let us briefly summarize the idea of the above proof using the notation Emch uses in his

later publications. He denotes by set of medians the set of all midpoints of the secants

(chords) of the curve parallel to a given direction. He shows that all medians of a closed

convex analytic curve are continuous and analytic curves. With each pair of directions σ

and τ there are associated two medians Mσ and Mτ , which always intersect in one and

only one point. Moreover, he sees that with every pair (σ, τ) there is a rhomb associated

whose diagonals are parallel to σ and τ and whose vertices lie on the curve. Finally, he

concludes that to every closed convex analytic curve without rectilinear segments, at least

one square may be inscribed.

Besides this paper, Emch published two further proofs in [2] and [3], as we mentioned

before. In his second paper, On the Medians of a Closed Convex Polygon, he proves that

at least one square may be inscribed in any convex rectilinear polygon, and generally

in any closed convex curve formed by a finite number of ordinary analytic arcs. In his

third paper, On some properties of the Medians of Closed Continuous Curves formed by

Analytic Arcs, he generalises his result for any closed continuous curve composed of a

finite number of analytic arcs with a finite number of inflexions and other singularities.

3.2.3 Lev Schnirelmann

In 1929, Lev G. Schnirelmann offered a solution for curves with piecewise continuous

curvature.

The following summary’s idea is obtained from [7], since we were not able to access to

Schnirelmann’s official publication.

Schnirelmann’s idea is to describe the set of inscribed squares as a preimage. For instance,

in the following way:

Let γ : S1 −→ R2 be the given curve. The space (S1)4 parameterizes quadrilaterals that

are inscribed in γ. We construct a so-called test-map

fγ : (S1)4 −→ R6,

which sends a 4-tuple (x1, x2, x3, x4) of points on the circle to the mutual distances between

γ(x1), . . . , γ(x4) ∈ R2, i.e., to (||γ(x1)−γ(x2)||, ||γ(x2)−γ(x3)||, ||γ(x3)−γ(x4)||, ||γ(x4)−
γ(x1)||, ||γ(x1)− γ(x3)||, ||γ(x2)− γ(x4)||).

Let V be the 2-dimensional linear subspace of R6 that corresponds to the points where

all four edges are of equal length and the two diagonals are of equal length. The preimage

f−1γ (V ) is parameterizing the set of inscribed squares. Within this set, there are degener-

ate components. That is, points where x1 = x2 = x3 = x4 and, more generally, 4-tuples

where x1 = x3 and x2 = x4.

Schnirelmann claims that an ellipse inscribes exactly one square up to symmetry. Using

some smooth isotopy, he deforms the ellipse into the given curve γ via other curves

γt, where t ∈ [0, 1]. By smoothness, these inscribed squares do not come close to the
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degenerate quadrilaterals during the deformation. Thus, they do not degenerate to a

point. Therefore, the nondegenerate part of all preimages f−1γt (V ) forms a 1-manifold

that connects the solution sets for γ and the ellipse. Using this result, he sees that the

parities of the number of inscribed squares on γ and on the ellipse coincide, leading to

the conclusion that any smooth curve inscribes generically an odd number of squares.

3.3 Previous tools

In this section we will give some previous needed theory in order to follow the proof

provided by Walter Stromquist. The following homology theory is extracted from [10]

and [4]. We only intend to give a basic and general idea of it, in order to understand the

tools required in the next section. This is why, we will state a summarized scheme.

Our object of study will be simplicial and singular homology. Simplicial homology de-

pends on an associated topological space which allows a triangulation (we will work with

simplicial complexes, see Definition 3.10), this is why it makes it easy to compute. Sin-

gular homology, on the other hand, is better adapted to theory than computation, which

gives it much advantage over singular homology. It is defined for all topological spaces

and depends only on the topology, not on any triangulation.

We will begin with the properties of simplicial homology, followed by the ones for sigular

homology. At the end, we will see that both agree for spaces that can be triangulated.

In this section, RN will denote the affine euclidian space of dimension N with the topology

fixed with the euclidian distance.

Let v0, v1, . . . , vn be points of RN . These are affinely independent if the vectors v1 −
v0, . . . , vn−v0 are linearly independent. Equivalently, these points are affinely independent

if there is no affine subvariety of RN of dimension less than n where the points lie. In this

case, every point of the generated affine subvariety allows a unique expression represented

by x = λ0v0 + . . .+ λnvn, where λi ∈ R verify
n∑
i=0

λi = 1

Definition 3.7 (Simplex). Let N > 0 and v0, v1, . . . , vn, with n ≥ 0, n + 1 affinely

independent points of RN . A n-dimensional simplex of vertices v0, . . . , vn is a subset

∆(v0, . . . , vn) of RN defined by

∆(v0, . . . , vn) = {x ∈ RN | x =

n∑
i=0

λivi,
n∑
i=0

λi = 1 , λi ≥ 0, i = 0, . . . , n}.

When referring to a simplex of dimension n we will use the expression n-simplex. Thus,

0-simplices are points, 1-simplices are segments, 2-simplices are triangles, etc., as shown

in Figure 3.9.

Lemma 3.8. 1. Every simplex is a compact, connected, locally path-connected and con-

tractible space.

2. Any two n-dimensional simplices are homeomorphic.
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Figure 3.9: Example of 0-simplex, 1-simplex, 2-simplex and 3-simplex

Definition 3.9. Let ∆(v0, . . . , vn) be an n-simplex and k ≥ 0. We call k-dimensional

faces of ∆(v0, . . . , vn) the simplices

∆(vi0 , vi1 , . . . , vik),

where 0 ≤ i0 < . . . < ik ≤ n.

If we delete one of the n+ 1 vertices of an n-simplex ∆(v0, . . . , vn), then the remaining n

vertices span an (n− 1)-simplex which is a face of ∆(v0, . . . , vn). We adopt the following

convention: The vertices of a face, or of any subsimplex spanned by a subset of the

vertices, will always be ordered according to their order in the largest simplex.

Definition 3.10. A simplicial complex is a finite set of simplices of RN , K = {σ1, σ2, . . . , σn},
such that

1. If σi is a simplex of K, then all the faces of σi belong to K.

2. If σi and σj are simplices of K, then σi ∩ σj = ∅ or σi ∩ σj is a face of σi and σj.

Definition 3.11. Given a simplicial complex K, the simplicial polyhedron associated to

K, and denoted by |K|, is the subspace of RN defined by the reunion of all the simplices

of K:

|K| = ∪σi∈Kσi.

The simplicial polyhedrons are topological spaces. This fact will allow us to relate both

homologies (the simplicial and the singular one) on the polyhedrons.

If K is a simplicial complex, the simplices σi ∈ K are the faces of K and K is a triangu-

lation of |K|.

Definition 3.12. Let K be an ordered simplicial complex. For every p ≥ 0, it is called

group of p-dimensional chains of K, and is denoted by Cp(K), the free abelian group

generated by the set of p-dimensional ordered faces. In other words, the group of p-

dimensional chains is

Cp(K) := ⊕Z[σ],

where the direct sum extents to the set of p-dimensional ordered faces.

If p > dimK, then Cp(K) = 0.

The p-dimensional chains can be written as finite formal sums
∑

i kiσi, where ki ∈ Z are

coefficients. Such a sum can be thought of as a finite collection (or “chain”) of p-simplices

in K with integer multiplicities.
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For instance, in the case of a 2-simplex [v0, v1, v2], it has associated the ordered sim-

plicial complex formed by the 2-dimensional face [v0, v1, v2], the 1-dimensional faces

[v0, v1], [v0, v2], [v1, v2] and the 0-dimensional faces [v0], [v1], [v2]. Then, we would have:

C0(∆) = Z[v0]⊕ Z[v1]⊕ Z[v2] ∼= Z3,

C1(∆) = Z[v0, v1]⊕ Z[v0, v2]⊕ Z[v1, v2] ∼= Z3,

C2(∆) = Z[v0, v1, v2] ∼= Z.

As we can see in Figure 3.10, the boundary of a n-simplex [v0, . . . , vn] consists of the

various (n − 1)-dimensional simplices [v0, . . . , v̂i, . . . , vn] (where the hat over v̂i indicates

that this vertex is removed from the sequence v0, . . . , vn). In terms of chains, we would

like to say that the boundary of [v0, . . . , vn] is the (n − 1)-chain formed by the sum of

the faces [v0, . . . , v̂i, . . . , vn]. However, it turns out to be better to insert certain signs

and let the boundary of [v0, . . . , vn] be
∑

i(−1)i[v0, . . . , v̂i, . . . , vn]. This is because the

signs will take the orientation into account, so that all faces of the simplex are oriented.

The “boundary operator”, which we will define below, is the algebraic version of this

geometrical concept.

Figure 3.10: Examples of the boundary operator

Definition 3.13. Let K be an ordered simplicial complex. For every p ≥ 1, the boundary

operator ∂p : Cp(K) −→ Cp−1(K) is the morphism of abelian groups defined by

∂p[vi0 , . . . , vip ] =

p∑
k=0

(−1)k[vi0 , . . . , v̂ik , . . . , vip ],

where [vi0 , . . . , v̂ik , . . . , vip ] denotes the ordered (p − 1)-simplex obtained when we delete

the vertex vik . For p = 0, we define ∂0 = 0.

As we can see in Figure 3.10, for the case of a 1-simplex [v0, v1] we would have ∂1[v0, v1] =

[v1]− [v0]. Also, for the case of the 2-simplex [v0, v1, v2], we would have

∂2[v0, v1, v2] = [v1, v2]− [v0, v2] + [v0, v1].

This, in fact, gives us the simplex ordered.

In the following proposition we introduce an important property of the boundary operator.

This fact will be applied in the demonstration of Stromquist.
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Proposition 3.14. Let K be an ordered simplicial complex. The composition

Cp+1(K)
∂p+1−−−→ Cp(K)

∂p−→ Cp−1(K)

is null for every p ≥ 1, i.e., ∂2 = 0.

We are now ready to define the simplicial homology group, which is our main object of

study in this section.

Definition 3.15. Let K be a simplicial complex. For every p ≥ 0, the pth simplicial

homology group of K is defined as the quotient group

Hp(K) := Zp(K)/Bp(K),

where

Zp(K) := ker (∂p : Cp(K) −→ Cp−1(K))

is the group of p-dimensional cycles of K and

Bp(K) := im (∂p+1 : Cp+1(K) −→ Cp(K))

is the group of p-dimensional boundaries.

Notice that Hp(K) = 0 if p > dimK.

The simplicial homology is only applied to one class of topological spaces: the polyhe-

drons. However, the singular homology is defined for every topological space, is functorial

regarding continuous maps and matches with the simplicial homology on polyhedrons.

Everything described above can be applied equally to singular simplices.

Let ∆p denote a p-simplex, where p ≥ 0 is an integer.

Definition 3.16. Let X be a topological space. A singular p-simplex of X is a continuous

map σ : ∆p −→ X.

Definition 3.17. Let X be a topological space. The group of singular p-dimensional

chains of X, denoted by Sp(X), is the free abelian group generated by the singular p-

simplices of X:

Sp(X) = {
r∑
i=1

λiσi; λi ∈ Z, σi : ∆p −→ X continuous}.

The boundary operator is introduced as ∂p : Sp(X) −→ Sp−1(X) and it is defined by

∂p(σ) =

p∑
i=0

(−1)iσ ◦ δi,

where δi : ∆p−1 −→ ∆p, 0 ≤ i ≤ p, is the continuous map defined by

δi(x0, x1, . . . , xp−1) = (x0, x1, . . . , xi−1, 0, xi, . . . , xp−1).
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So we can define the singular homology group by

Hp(X) = Ker ∂p/Im ∂p+1.

Proposition 3.18. Let X,Y be topological spaces and f : X −→ Y a continuous map.

Then f induces a morphism of complexes

S∗(f) : S∗(X) −→ S∗(Y )

such that

Sp(f)(σ) = f ◦ σ,

for every singular p-simplex σ of X.

Now that we have translated all the simplicial properties to the singular field, it is time

to introduce the functoriality of the singular homology, where Top will represent the

category of topological spaces and Ab the category of abelian groups:

Proposition 3.19. Let X,Y be topological spaces and f : X −→ Y a continuous map.

Then, the morphism S∗(f) induces a group morphism

H∗(f) : H∗(X) −→ H∗(Y )

such that, if [c] is a cycle of X, then H∗(f)([c]) = [S∗(f)(c)].

If f = idX , then

H∗(idX) = idH∗(X),

and, if g : Y −→ Z is another continuous map, then

H∗(g ◦ f) = H∗(g) ◦H∗(f).

Thus, H∗ defines a functor

H∗ : Top −→ Ab∗.

From this functoriality it immediately follows the topological invariance of the singular

homology:

Theorem 3.20 (Topological invariance). Let X,Y be topological spaces and f : X −→ Y

a homeomorphism. Then, the morphism

H∗(f) : H∗(X) −→ H∗(Y )

is an isomorphism.

We also have that singular homology is invariant under homotopy. Recall that, given

two topological spaces X and Y , they are of the same homotopy type if there exists

f : X −→ Y and g : Y −→ X continuous such that the compositions f ◦ g and g ◦ f are

homotopic to the corresponding identities: f ◦ g ' idY , g ◦ f ' idX .
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Theorem 3.21 (Homotopic invariance). Let X,Y be topological spaces and f, g : X −→ Y

continuous maps. Then, if f is homotopic to g,

H∗(f) = H∗(g) : H∗(X) −→ H∗(Y ).

As an immediate consequence of this result, we get:

Corollary 3.22. Let X and Y be topological spaces of the same type of homotopy. Then,

the groups of singular homology of X and Y are isomorphic, i.e., H∗(X) ∼= H∗(Y ).

We have seen the basic properties of simplicial and singular homology required for Strom-

quist’s proof. We need a final step to relate both homologies. We show that these

properties allow us to compare the simplicial homology of a polyhedron to its singular

homology.

Let K be an ordered simplicial complex and V = {v1, v2, . . . , vr} its vertices. Let C∗(K)

be the complex of simplicial chains of K. The polyhedron |K| associated to the complex

K is a topological space and, hence, we can consider the complex of singular chains of

|K|: S∗(|K|).

If s is an ordered p-dimensional simplicial face of K, s = [vi0 , . . . , vip ], s defines a singular

simplex p-dimensional σ = (vi0 , . . . , vip). Then, we have the map

ν : C∗(K) −→ S∗(|K|)
s 7−→ σ

Lemma 3.23. The morphism ν is a morphism of complexes, natural in K.

Therefore, ν induces a morphism in the respective homologies

H∗(ν) : H∗(C∗(K)) −→ H∗(S∗(|K|)),

that is, we have the morphism

H∗(ν) : H∗(K) −→ H∗(|K|)

from the simplicial homology of the simplicial complex K to the singular homology of the

topologic space |K|.

3.4 Walter Stromquist’s proof

In this section we present Walter Stromquist’s result, which is titled Inscribed squares and

square-like quadrilaterals in closed curves. We will provide some extra annotations to his

original proof.

In this proof, we use the term smooth to refer to a curve which has a continuous turning

tangent, i.e., which is C1. We will show that for every smooth curve in Rn, there is a

quadrilateral with equal sides and equal diagonals whose vertices lie on the curve. In the

case of a smooth plane curve, the quadrilateral corresponds to a square.

We will give a weaker smoothness condition which will still satisfy the existence of an

inscribed square for curves that are convex, polygon or piecewise of class C1 (with certain

restrictions that we will state later).
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Definitions and necessary tools Let us begin with some initial definitions. A simple

closed curve is a continuous function w : R −→ Rn which satisfies w(x) = w(y) if, and

only if, x − y is an integer, where w is determined by its values in [0, 1]. This can also

be seen as an injective continuous map S1 −→ Rn where, if n = 2, it is a Jordan curve.

Henceforth, “curve” will mean simple closed curve.

The curve w is smooth if it has a continuous non-vanishing derivative. Any curve with

a continuously turning tangent can be parameterized so as to be smooth in this sense.

A quadrilateral is inscribed in the curve w if all of its vertices lie on w. In the case of

Rn, a quadrilateral may be inscribed even if its sides do not lie in the interior of the curve.

We shall introduce some required tools before getting into the first lemma. We will work

with a simplex Q, which will represent the set of quadrilaterals inscribed in w. That is,

all possible geometric elements inscribed in w that could be the square we want. We will

also work with four subsets Q1, Q2, Q3, Q4 that will cover our Q and whose intersection

will correspond to a set of inscribed rhombuses (we will see the definition of rhombus at

the end of this section). This set is going to be our main object of study, as we will see

later.

Denote by Q the set

Q = {(x1, x2, x3, x4) ∈ R4 | 0 ≤ x1 ≤ x2 ≤ x3 ≤ x4 ≤ 1}.

This is a 4-simplex with vertices

v0 = (1, 1, 1, 1),

v1 = (0, 1, 1, 1),

v2 = (0, 0, 1, 1),

v3 = (0, 0, 0, 1),

v4 = (0, 0, 0, 0),

and faces F0, . . . , F4 numbered so that each Fi is opposite vi. Each face Fi is generated

by all the vertices stated above except for vi. For instance, the face F0 is formed by

v1, v2, v3, v4.

We will use the notation x to represent an element (x1, x2, x3, x4) of Q.

In Figure 3.11 we illustrate the simplex Q. Since it is a 4-dimensional object, it is difficult

to represent. Let us note some details to clarify the form of our Q. Each face Fi is a

tetrahedron, since it is a 3-simplex. However, notice that in Figure 3.11 we have not

drawn F0 and F4 as tetrahedrons. Also, the face F0∩F4 is a 2-simplex, which means that

it is actually a triangle. But in our illustration we have represented it as a line segment

(the right edge of the figure).

Given a curve w, we associate with each point x ∈ Q an inscribed quadrilateral with

vertices w(x1), w(x2), w(x3), w(x4). That is, we identify the points of Q with the cor-

responding geometric figures on w and refer to points of Q as quadrilaterals. Thus, Q

represents the set of quadrilaterals inscribed in w.
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Figure 3.11: The simplex Q of quadrilaterals

The vertices of each quadrilateral have the same cyclic order in the quadrilateral as in

w. Some of these quadrilaterals are degenerate (have one or more sides of zero length),

and some of the degenerate quadrilaterals are one-point quadrilaterals (all four sides have

zero length). That is, the possibility x1 = x2 = x3 = x4 is not excluded.

Let us mention an important fact about the faces F0 and F4. You can think of F0 as

quadrilaterals with the vertex w(0) fixed, while F4 is the face where quadrilaterals have

vertex w(1) fixed. Thus, both faces are morally the same since w(0) = w(1) (by definition

of simple closed curve). In other words, if we define h : F0 −→ F4 by

h(0, x, y, z) = (x, y, z, 1),

then h(x) represents the same quadrilateral as x but with the vertices numbered differ-

ently. Hence, the points of F4 represent the same quadrilaterals as the points of F0.

Now, for each i = 1, 2, 3, 4, we define

si(x) = ‖ w(xi+1)− w(xi) ‖

as the length of the i-th side of the quadrilateral corresponding to x. For the case

i = 4, xi+1 becomes x1. Each si is a continuous function on Q.

For each i, we define Qi to be the closure of the set

{x ∈ Q0 | si(x) = max
j
sj(x)}.

Here Q0 denotes the interior of Q. Qi is the set of quadrilaterals whose i-th side is their

longest side, except that a quadrilateral in ∂Q is included in Qi only if it is the limit of

quadrilaterals in Q0 with the same property.

Each Qi is still closed and we still have
⋃
iQi = Q. The purpose of this device is to prevent

one-point quadrilaterals from being elements of every Qi, as we will need afterwards.

But the device works perfectly only if the curve is sufficiently smooth. We will see this

smoothness requirement later.
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Now we will introduce a lemma that requires w to be smooth. We are going to prove its

stronger version later (see Lemma 3.30), as well as specify the smoothness condition that

we will apply.

We will work as it follows: first we will prove the Square Peg Problem for curves that

satisfy the following Lemma 3.24, i.e., which are smooth. Once we have this proof, we

will introduce a new smoothness condition called “Condition A” that will still guarantee

this Lemma 3.24 and, hence, the proof of the Square Peg Problem will still be implied.

Therefore, the following lemma is a tool to be able to prove the Square Peg Problem later

for this so called “Condition A”. Let us first introduce it and then explain its meaning.

Lemma 3.24. If w is a smooth curve, then each one-point quadrilateral is contained in

only one set Qi. In particular, vi ∈ Qi for i = 1, 2, 3 and x ∈ Q4 for each x on the edge

connecting v0 and v4.

In order to understand better the above lemma, we will explain it more precisely. The

vertices v0, v1, v2, v3, v4 are one-point quadrilaterals. This is because w(0) = w(1), by

definition of w, and hence for each vi we have s1 = s2 = s3 = s4 = 0, where i = 0, 1, 2, 3, 4.

Then, we will have that v1 ∈ Q1, v2 ∈ Q2, v3 ∈ Q3, whereas v0, v4 and the whole edge

between them will be in Q4 (this fact will be proven in the stronger version of the lemma).

So, why do we consider the case of the edge connecting v0 and v4 differently?

Since v0 = (1, 1, 1, 1) and v4 = (0, 0, 0, 0), all points placed on this edge are represented by

(λ, λ, λ, λ), where λ ∈ [0, 1]. Therefore, all their associated quadrilaterals are one-point

quadrilaterals. This does not occur on the other edges of Q. For instance, the points on

the edge connecting v3 = (0, 0, 0, 1) and v4 are represented by the quadruple (0, 0, 0, λ).

These correspond to quadrilaterals with only one side with no zero length (except for the

limit cases where λ = 0 or λ = 1). It works similarly for the edges between the other

vertices.

Therefore, all points settled on the edges joining our five vertices (excluding the vertices

themselves) represent quadrilaterals with three sides of zero length, except for the case of

the edge linking v0 and v4, where they are associated to one-point quadrilaterals.

Furthermore, we can take a look at the points on the faces of Q. The points situated on

the 2-simplices are associated to a quadrilateral with one side of zero length. For example,

the points in F0∩F4 are represented by (0, µ, λ, 1), where µ, λ ∈ [0, 1], and since our curve

w is closed (w(0) = w(1)), two of its vertices are associated implying that its quadrilateral

is degenerate (has one side of zero length).

Also, the points found on faces F1, F2 and F3 are, as well, degenerate quadrilaterals with

one of their sides with length equal to zero. But, points situated in the interior of F0 and

F4 might be non degenerate quadrilaterals. In the case of F0, its points are represented by

(0, λ, µ, γ) and for F4 we have (λ, µ, γ, 1), where λ, µ, γ ∈ [0, 1]. Both of them with one of

its vertices fixed (w(0) and w(1) respectively). Therefore, their points are non degenerate

unless λ = µ, λ = γ or µ = γ.

We intend to avoid all of the degenerate cases, so we can proof the existence of a quadri-

lateral with equal sides and equal diagonals. This is why we will work with faces F0 and

F4, where their points are generically non degenerate quadrilaterals.
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For i = 1, 2, 3 notice that Qi includes vi but does not intersect the opposite face Fi (where

si(x) = 0). For instance, v1 ∈ Q1, but the points of F1 are represented by (λ, λ, µ, γ),

λ, µ, γ ∈ [0, 1]. Then s1 = ‖w(λ) − w(λ)‖ = 0, which means that s1 is not the largest

side of any associated quadrilateral in F1. The case of i = 4 is different: Q4 includes the

entire segment from v0 to v4, and avoids the opposite 2-simplex F0 ∩ F4.

The smoothness of w is only required for this lemma. Henceforth, we assume that w is

any curve for which the result of Lemma 3.24 is valid.

Now let R =
⋂
iQi. Since we defined Qi as the set of quadrilaterals whose i-th side is

their longest side and R as the intersection of all Qi, then R corresponds to the set of

those quadrilaterals which have all four sides with the same value. We call a point x ∈ R
a rhombus. Thus, a rhombus corresponds to an inscribed quadrilateral whose sides are

equal and nonzero (we made sure that each one-point quadrilateral can only be in one

Qi). A square-like quadrilateral is a rhombus which satisfies

d13(x) = d24(x)

where

d13(x) = ‖w(x3)− w(x1)‖

and

d24(x) = ‖w(x4)− w(x2)‖.

In other words, a square-like quadrilateral is an inscribed quadrilateral with equal sides

and equal diagonals. In R2, a square-like quadrilateral is an inscribed square, but we use

the term rhombus to include equilateral quadrilaterals which do not lie in a plane.

A thin rhombus is one which satisfies d13 ≥ d24, and a fat rhombus is one such that

d13 ≤ d24. A rhombus which is both thin and fat is a square-like quadrilateral.

Denote by RTHIN and RFAT the subsets of R consisting of thin and fat rhombuses

respectively. Then, R = RTHIN ∪ RFAT . Note that if x ∈ F0 is a rhombus, then so is

h(x). But if x is thin, then h(x) is fat and vice versa.

Before continuing, let us make a quick overview of the general strategy. So far we have

seen the definitions and tools required to set the problem we would like to solve. Our

strategy will consist on studying the set of rhombuses in Q, and especially the rhombuses

on F0 and F4. We will show that there must be, in a sense, an odd number of rhombuses in

F0. Notice that if we proved that the number of rhombuses is even, we would not discard

the case of a zero number of rhombuses. Therefore, we need to see that the number is

odd.

Moreover, if the number of thin rhombuses on F0 is even, for instance, then the number

of fat rhombuses on this face must be odd. The correspondence based on the function h

shows that these parities must be reversed on F4. But we will also show that the parities

can not be reversed - in effect because the bottom face can be lifted continuously up

through Q onto the top face - unless RTHIN and RFAT intersect.

To prove all of this we will need some machinery from homology theory.
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The degree of a set of rhombuses In this part of the section we will define the

concept of the degree of a subset K of a simplex, given a cover of the simplex by closed

sets. In the next part, our K will be a set of rhombuses, and the degree will be our way

of counting the rhombuses modulo 2. Additionally, all homology groups will be simplicial

homology groups with coefficients in Z2.

Let A be an n-simplex. We will use the notations vi and Fi for the vertices and faces of

A respectively. A cover of closed vertex neighborhoods in A, or simply a cover, is a

family of closed subsets A0, . . . , An of A such that vi ∈ Ai but Fi ∩Ai = ∅ for each i, and

such that
⋃
iAi = A. This cover is denoted as {Ai}. We are going to show that

⋂
Ai is

nonempty and that, in a certain well defined sense, it is odd.

Let {Ai} be a cover. Let K be any subset of
⋂
Ai which is both open and closed relative

to
⋂
Ai. We include the possibilities K = ∅ and K =

⋂
Ai. In other words, we take K as

a connected component of
⋂
Ai and we want to define the degree of the cover {Ai} around

our K. This degree is an element of Z2; in effect it tells whether we should consider K

to be even or odd.

A reversing map for the cover {Ai} is a function

f :
(
A−

⋂
Ai

)
−→ ∂A

which maps each set Ai into the opposite face Fi; that is, f(Ai) ⊆ Fi for each i. We see

this fact more precisely once we define our f . Let us show that a reversing map always

exists. For each i, let d(x, Ai) denote the distance from x to Ai and define f by

f(x) =
∑
i

d(x, Ai)∑
j d(x, Aj)

vi.

The sum
∑

j d(x, Aj) normalises each coefficient, since it is the sum of all distances from

x to each Ai, for i = 0, . . . , n. Notice that we can not have the case where all distances

have zero value, since no x is in the intersection
⋂
Ai.

Given a k, if x belongs to Ak, then

d(x, Ak) = 0.

Therefore we would get a lineal combination with all vertices except the vertex vk, which

implies that f(x) is in Fk (face which does not have vk). Thus, each x is sent to the

opposite face of the subset where it belongs.

Normalising the coefficients ensures that the image is restricted to that specific boundary;

it gives f(x) as a convex combination of the vertices vi so that f(x) ∈ A.

Now let L =
⋂
Ai −K. Triangulate A finely enough that no simplex of the triangulation

touches both K and L. Let Γ be the n-chain consisting of the n-simplices which touch

K. We triangulated A such that only one face of each n-simplex touches K. A face of an

n-simplex is an (n − 1)-simplex. Then, the boundary of Γ represents an homology class

γ ∈ Hn−1(A−
⋂
Ai). The (n−1)-dimension is due to the faces of the n-simplices touching

K; and it is an homology of A −
⋂
Ai because the n-simplices only touch K with one
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of their faces. Therefore, the boundary of Γ consists of the n-simplices (contained in A)

without the faces that do not touch K (which are in the set
⋂
Ai since

⋂
Ai = L ∪K).

We denote this class by γK . It is the unique homology class that surrounds all of K but

none of L.

The degree of {Ai} around K is defined as the image f∗(γK) in Hn−1(∂A), where f is

any reversing map for {Ai}. The group Hn−1(∂A) can be identified with Z2, and we will

regard the degree to be an element of Z2. Its value is independent of the choices made

in the above construction. We will denote it by deg{Ai}K or, when the cover is identified

by context, by degK.

In particular, suppose B is any simplex and f : A −
⋂
Ai −→ ∂B is any function which

maps each Ai into a different face of B. Then the degree of K could just as well have

been defined as f∗(γK) in Hn−1(∂B), since there is an isomorphism g : B −→ A which

makes gf a reversing map, and (gf)∗(γK) = f∗(γK) (both being regarded as elements of

Z2). In this case we say that f is “isomorphic to a reversing map”.

We can collect some facts about these degrees. If K = ∅, then γK = 0 (the zero element

of Hn−1(A −
⋂
Ai)). If K is the disjoint union of open and closed subsets K1 and K2,

then γK = γK1 + γK2 . Therefore we have the following lemmas:

Lemma 3.25. deg ∅ = 0.

Lemma 3.26. If K = K1 ∪K2, then degK = degK1 + degK2.

Lemma 3.27. deg(
⋂
Ai) = 1.

In other words, Lemma 3.27 tells us that the degree of
⋂
Ai is odd, as we wanted to show.

Let us see its proof.

Proof (Lemma 6). Let Sn−1 denote the (n − 1)-sphere, and let g : Sn−1 −→ Sn−1 be

any continuous map without fixed points. We see that a map that has no fixed points is

homotopic to the antipodal map of Sn−1:

Let a : Sn−1 −→ Sn−1 be the antipodal map of the sphere. Since g has no fixed points,

we have that g(x) 6= x, for x ∈ Sn−1. We denote by O the center of the sphere. We

know that the segment [a(x), x], for x ∈ Sn−1, passes through the center O. This implies

that the segment [a(x), g(x)] does not pass through O (using that g(x) 6= x). Thus,

tg(x) + (1− t)a(x) does not pass through O either, for t ∈ [0, 1], implying that it cannot

be equal to zero. Taking into account this result, we can define an homotopy

H : I × Sn−1 −→ Sn−1

(t, x) 7−→ tg(x) + (1− t)a(x)

||tg(x) + (1− t)a(x||
.

This is continuous and, therefore, well-defined.
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Then we have that g is homotopic to the antipodal map, as we wanted to show. This

implies that g and a generate the same map in homology; that is, g∗ = a∗. But a is an

homeomorphism of the sphere; and so g∗ : Hn−1(S
n−1) −→ Hn−1(S

n−1) is the identity

map. Now, since A is an n-simplex, ∂A is homeomorphic to Sn−1 and any reversing map

f restricts to a function ∂A −→ ∂A without fixed points, so f induces the identity map

on Hn−1(∂A) = Z2. Looking at ∂A itself as a representative of the homology class that

generates Hn−1(∂A), we can conclude that f∗(∂A) = 1. But ∂A surrounds
⋂
Ai, and so

represents γ∩Ai . Therefore f∗(γ∩Ai) = 1, which proves the lemma.

The main result We are now ready to return to the problem of searching for a square-

like quadrilateral in the simplex Q.

In Lemma 3.24 we saw that if w is smooth, then each one-point quadrilateral is in a

different Qi. Here we are going to prove the Square Peg Problem for the case of w being

smooth, and hence for the curves that satisfy Lemma 3.24.

Theorem 3.28. If w is a smooth curve, then w admits an inscribed quadrilateral with

equal sides and equal diagonals.

Proof. Let Q, R and their subsets be as before. We will suppose that there is no square-

like quadrilateral in Q. Then, R can be written as a disjoint union R = RTHIN tRFAT .

The face F0 is a simplex, and it has a cover {F0 ∩Qi} of closed vertex neighborhoods for

i = 1, 2, 3, 4 (each Qi includes vi, this is why we can build this cover with the family of

closed subsets F0 ∩Q1, F0 ∩Q2, F0 ∩Q3 and F0 ∩Q4). Since R =
⋂
iQi, the intersection

of the above sets in the cover is

F0 ∩R = (F0 ∩RTHIN ) t (F0 ∩RFAT ).

From Lemma 3.26 and Lemma 3.27 we have

deg(F0 ∩RTHIN ) + deg(F0 ∩RFAT ) = deg(F0 ∩R) = 1,

from which we deduce that

deg(F0 ∩RTHIN ) 6= deg(F0 ∩RFAT ). (3.1)

We will obtain a contradiction by showing that each side of (3.1) is equal to deg(F4 ∩
RTHIN ), which is measured in the simplex F4. Notice that this idea is reasonable, since

deg(F0∩RFAT ) and deg(F4∩RTHIN ) should be equal because the quadrilaterals on both

faces are the same but with the vertices numbered differently and deg(F0 ∩ RTHIN ) =

deg(F4 ∩RTHIN ) should also occur since the degree of RTHIN must change continuously

from one face to the other (as we will prove afterwards).

The map h : F0 −→ F4 is not only an homeomorphism of the faces, it is also an iso-

morphism of the covers {F0 ∩ Qi} and {F4 ∩ Qi}. As we have mentioned, h will change

F0 ∩RFAT into F4 ∩RTHIN because they are the same quadrilaterals but with the order

of the vertices changed. Which means that the longest diagonal of one rhombus (d24 for
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the fat rhombus) will become the shortest one, while the originally shortest diagonal will

play the role of the new longest diagonal (d13). Thus,

deg{F0∩Qi}(F0 ∩RFAT ) = deg{F4∩Qi}(h(F0 ∩RFAT )) = deg{F4∩Qi}(F4 ∩RTHIN ).

That takes care of the right side of (3.1).

Let us prove the left side of (3.1) by showing that deg(F0 ∩RTHIN ) = deg(F4 ∩RTHIN ).

We claim that degRTHIN is the same whether it is measured in F0 or in F4. Intuitively,

this is true because the degree of RTHIN must change continuously (i.e., remain constant)

as we progress smoothly up through slices of Q from the bottom face to the top face of

the simplex. Making this arguments precisely takes some work.

Construct f : (Q−R) −→ ∂F0 as follows:

d(x, Qi) = distance from x to Qi;

f(x) =

4∑
i=1

d(x, Qi)∑
j d(x, Qj)

vi.

Then f maps each Qi into the face F0∩Fi of F0. Therefore f restricted to F0 is a reversing

map for the cover {F0 ∩Qi}, and also f restricted to F4 is isomorphic to a reversing map

for the cover {F4 ∩Qi}.

Triangulate Q finely enough that no simplex touches both RTHIN and RFAT , and let

∆ be the 4-chain consisting of simplices of the triangulation which touch RTHIN . Now

∂∆ is a 3-chain in (Q − R). Let Γ be the 3-chain consisting of those simplices in ∂∆

which are not contained in F0 or F4. In the simplest cases, Γ can be thought of as a tube

surrounding RTHIN , and with its ends abutting F0 and F4, as in the figure shown below.

More generally, Γ may consist of many tubes and more complicated shapes.

Figure 3.12: Simplest case of Γ

Now the boundary ∂Γ is a 2-chain which must represent the zero element of H2(Q−R).

This is because ∂Γ is the boundary of the boundary, and by homology this is zero. There-

fore f∗(∂Γ) = 0 ∈ H2(F0). But ∂Γ contains two components: one surrounds (RTHIN∩F0)

in F0, and one surrounds (RTHIN ∩ F4) in F4. We have:

0 = f∗(∂Γ) = f∗(∂Γ ∩ F0) + f∗(∂Γ ∩ F4);
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so

f∗(∂Γ ∩ F0) = f∗(∂Γ ∩ F4) (3.2)

But the left side of (3.2) measures the degree of RTHIN ∩F0, and the right side measures

the degree of RTHIN∩F4. Therefore, these two degrees are equal, completing the promised

contradiction and establishing the theorem.

The smoothness requirement. So far we have proved the Square Peg Problem for

curves that are smooth which satisfy Lemma 3.24. In this part we give a weaker hypoth-

esis: Condition A. It is sufficient for Lemma 3.24. and, therefore, for the existence of an

inscribed square or square-like quadrilateral. Smooth curves satisfy it, and so do polygons

with only obtuse angles (corners where the curve changes direction by less than 90◦). We

will talk about chords. A chord is a line segment joining two points of w.

Definition 3.29. A curve w satisfies Condition A if each point w(y) of the curve has a

neighborhood U(y) in Rn such that no two chords in U(y) are perpendicular.

This definition is purely geometric: it depends only on the image Imw and not on the

parameterization. An equivalent definition, intuitively, is that each point of the curve has

a neighborhood (in the curve) in which any two chords (oriented in the direction of the

curve) differ in direction by less than 90◦. More precisely, we have the following: if w

satisfies Condition A, then each y ∈ R has a neighborhood (y − µ, y + µ) such that, if

x1, x2, x3, x4 ∈ (y − µ, y + µ) with x1 < x2 and x3 < x4, then

(w(x2)− w(x1)) · (w(x4)− w(x3)) > 0.

The periodicity of w and the compactness of [0, 1] insure that µ can be chosen indepen-

dently of y.

As we have mentioned, this condition is satisfied for smooth curves and polygons with all

their angles being obtuse:

Any point w(y) situated on a smooth curve w will always have a sufficiently small neigh-

borhood U(y) in which all the chords will form an angle > 90◦. In Figure 3.13 we can

see that, although it may seem that the chords will be perpendicular in an specific neigh-

borhood, we can choose an even smaller neighborhood where no two chords will differ in

direction by less than 90◦.

Figure 3.13: Smooth curves satisfy Condition A
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For the case of polygons, we ask them to have all their angles obtuse. In Figure 3.14 we

have an example of a polygon with an angle of < 90◦. In this case, although we choose a

small neighborhood in this corner, we will always have at least two chords that form the

same angle of the polygon’s angle. And, since this is < 90◦, we will not have Condition

A satisfied. On the other hand, if our polygon had all their angles obtuse, there would

always be a neighborhood where the chords form, at least, the same angle as the respective

obtuse angle. Thus, Condition A would be satisfied.

Figure 3.14: Polygons with a non obtuse angle do not satisfy Condition A

Now, let us introduce Lemma 3.24 for curves that satisfy Condition A. If we prove that

curves with this weaker smoothness condition satisfy 3.24, then this will imply that they

admit an inscribed square, as shown in Theorem 3.28.

Lemma 3.30. If w satisfies Condition A, then each one-point quadrilateral in Q is con-

tained in exactly one set Qi. In particular, vi ∈ Qi for i = 1, 2, 3 and y ∈ Q4 for each y

on the edge connecting v0 and v4.

Proof. Let y = (y, y, y, y) be a one-point quadrilateral on the edge from v0 to v4. We shall

show that y has a neighborhood in Q such that, for any x in the neighborhood which is

also in Q0, the fourth side of x is the unique longest side. This will imply that y is in

Q4, but not in any other Qi.

Let µ be as above. The required neighborhood of y consists of those elements x ∈ Q

whose coordinates x1, . . . , x4 are in (y−µ, y+µ). Let x be an element of this neighborhood

which is also in Q0. Therefore we have 0 < x1 < . . . < x4 < 1. Let z1, z2, z3, z4 be vectors

in Rn representing the sides of the quadrilateral x. We have z1 = w(xi+1) − w(xi) for

i = 1, 2, 3 and z4 = w(x4)−w(x1). We will show that z4 is the longest of these sides. Let

us see, for instance, that z4 > z2. We have

z4 = z1 + z2 + z3,

so

z4 · z2 = z1 · z2 + z2 · z2 + z3 · z2,

and since all of these dot products are positive, in particular we have

z4 · z2 > z2 · z2.
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But if z4 has a larger component in the direction of z2 than z2 itself does, then the fourth

side must be strictly longer that the second side. Similarly, the fourth side is longer than

the first and the third sides. Since the fourth side is the unique longest side, x is in Q4

and no other Qi’s. Then, if it is true for every x ∈ Q0 sufficiently near y, it is also true

for y itself.

This proof, taken literally, works for v0 and v4. The cases of v1, v2 and v3 require more

delicacy in their statement, but are essentially similar.

Lemma 3.30 implies the following improvement of Theorem 3.28:

Theorem 3.31. If w satisfies Condition A, then w admits an inscribed quadrilateral with

equal sides and equal diagonals.

Locally monotone curves in R2. In this part we define a much less restrictive smooth-

ness condition: local monotonicity. We will see that this condition still guarantees the

existence of an inscribed square. Smooth curves, convex curves polygons, and most piece-

wise C1 curves satisfy this condition. This is, therefore, the strongest result provided by

Stromquist.

Let us begin by defining this smoothness condition and all the previous definitions required

to understand it.

Definition 3.32. A segment of a curve w corresponding to an interval (a, b) is the

restriction of the function to that interval. That is: w|(a,b).

We call (b − a) the length of the segment. This length is measured in parameter space

and not in R2.

Definition 3.33. The segment is monotone in the direction u (where u is a non-zero

vector in R2) if the dot product w(x) ·u is a strictly increasing function of x, for x ∈ (a, b).

We can think of this as the orthogonal projection of w(x) onto u. Notice that if u was a

unit vector, we would have w(x) · u = ‖w(x)‖ · ‖u‖ = cosα, where α is the angle formed

by w(x) and u.

Figure 3.15: Segment monotone in the direction of u

No square inscribed in w (at least, not one with its vertices in the same cyclic order in the

square as in the curve) can be inscribed in a monotone segment of w. If the vertices of

the square were all placed on a monotone segment, it would imply that the square itself

is monotone to a given direction, but this is not true.
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Definition 3.34. The curve is locally monotone if, for every y ∈ R, there is an interval

(y − µ, y + µ) and a direction u(y) such that w|(y−µ,y+µ) is monotone in the direction of

u(y).

If w has this property, then the periodicity of w and the compactness of [0, 1] allow us

to choose the number µ to be a constant, independent of y. In this case, every segment

of w with length at most 2µ is monotone in some direction, and we say that w is locally

monotone with constant µ.

Since locally monotonicity is a geometric condition, we offer an equivalent definition which

is more visual and, hence, easier to understand:

Definition 3.35 (Equivalent definition of 2.12). A curve w is locally monotone if for

every point w(y) of the curve, there are a neighborhood U(y) in R2 and a direction n(y)

such that no chord of the curve is contained in U(y) and parallel to n(y). The direction

n(y) is normal to u(y) and can be thought of as a kind of a normal vector (even if the

curve is not differentiable).

We will motivate this definition with the examples in Figure 3.16 and Figure 3.17. Let p

be a point of the curve w. We consider the neighborhood of p in R2 to be the open ball

B(p, ε), with center p and radius ε > 0. To check whether w is locally monotone, we need

to see that no chord of w contained in B(p, ε) is parallel to n(p).

Figure 3.16: Locally monotone curves

In Figure 3.16 we have two curves that are locally monotone. Let us start with the figure

on the left side. The shaded region represents the union of lines containing a chord in

w ∩ B(p, ε). In this case, we have two regions separating the plane. Then, any vector

crossing the shaded region may play the role of n(p) (as seen in the image).

As long as w is smooth in the neighborhood of p, this union of lines is close to a straight

line and finding n(p) is simple. But if w has sudden changes in B(p, ε), as shown in the

figure on the right side, then this shaded region covers a greater area. In our example,

since the union of lines containing a chord in w′∩B(p′, ε′) covers all the plane, there does

not exist any possible assignment of n(p′). Then, to see in this case that w′ is locally

monotone we may use a smaller value of ε′, so we can choose a n(p′).
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In Figure 3.17 we have an example of a non locally monotone curve. We have replaced

the spiral found in Figure 3.16 with another spiral which has infinitely many turns, but

preserving the Jordan curve. The resulting curve will not be locally monotone.

Figure 3.17: Non-locally monotone curve

As we have mentioned before, smooth curves, convex curves polygons and most piecewise

C1 curves are locally monotone curves.

Let us start by seeing that smooth curves are locally monotone. Note that these are

C1 curves. Using Definition 3.35, we could take n(y) to be the normal vector on each

neighborhood U(y). No chord contained in U(y) would be parallel to this vector. We

could also use Definition 3.34 by taking u(y) = w′(y). In this case, for every y ∈ R there

would be an interval where w would be monotone in the direction of w′(y).

The case of convex curves is even simpler. To see that convex curves are locally monotone,

take n(y) to be a vector from w(y) toward any interior point.

Let us make precise which piecewise C1 curves are locally monotone. We say that a curve

is piecewise C1 if there exist numbers x0, . . . , xk satisfying 0 = x0 < . . . < xk = 1 such

that w has a continuous non-vanishing derivative w′ on each interval [xi−1, xi], including

the one-sided derivatives at the endpoints. We denote the one-sided derivatives at xi by

w′−(xi) and w′+(xi). The curve has a cusp at xi if these two vectors point in opposite

directions; that is, if w′+(xi) is a negative multiple of w′−(xi). Then it can be shown that

a piecewise C1 curve without cusps is locally monotone. For the direction u(xi) take any

convex combination of w′−(xi) and w′+(xi).

Geometrically, we could see why a piecewise C1 curve with cusps is non locally monotone

using the same tools we used in the above examples. In this case, the shaded region would

cover the whole plane, incapacitating the choice of n(p).

We are now ready to extend the main result to locally monotone curves in R2.

Theorem 3.36. If w is a locally monotone curve in R2, then w admits an inscribed

square.

Proof. Assume that w is locally monotone with constant µ.
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Our strategy in this proof will be to approximate w using smooth curves wε, each of which

contains an inscribed square by Theorem 3.28. As ε→ 0, a subsequence of these inscribed

squares converge to a square inscribed in w. The difficulty is in proving that the limiting

square does not have size zero, i.e., is non degenerate. To show this, we will first show

that each wε is itself locally monotone with constant at least 1
2µ. This will allow us to

establish a lower bound on the size of the square we find in wε.

For this proof, we define the size |x| of an element x = (x1, x2, x3, x4) ∈ Q to be the

smallest of these four numbers: (x4−x1), ((1+x3)−x4), ((1+x2)−x3) or ((1+x1)−x2).
Therefore, |x| is the same as the length of the smallest segment of the curve that can

contain all of the points w(x1), w(x2), w(x3), w(x4). Note that |x| is measured in param-

eter space, and it is not directly related to the lengths of the sides of the corresponding

quadrilateral or any other measurement in R2. Nevertheless, the only quadrilaterals with

size zero are the one-point quadrilaterals and, since |x| is continuous on Q, any sequence

of quadrilaterals whose sizes have a positive lower bound can not converge to a one-point

quadrilateral.

Now, let ε > 0 and choose δ > 0 such that |x− y| < δ implies that ‖w(x)−w(y)‖ < ε. In

any case, choose δ < 1
2µ. Define wε : R −→ R2 by

wε(x) =
1

δ

∫ δ

t=0
w(x+ t)dt.

Then, wε satisfies ‖wε(x)− w(x)‖ < ε, since

‖wε(x)− w(x)‖ = ‖1

δ

∫ δ

t=0
w(x+ t)dt− 1

δ

∫ δ

t=0
w(x)dt‖ ≤ 1

δ

∫ δ

t=0
‖w(x+ t)− w(x)dt‖ < ε

for all x, and wε has a continuous non-vanishing derivative given by

w′ε(x) =
1

δ
(w(x+ δ)− w(x)).

For sufficiently small ε, using the local monotonicity of w, we see that wε is actually a

smooth curve. We may, therefore, apply Theorem 3.28 to find a square Sε inscribed in

wε, whose vertices are in the same cyclic order in the square as in the curve.

We will show that wε is locally monotone with constant 1
2µ. Let y ∈ R and let u(y) be

chosen such that w|(y−µ,y+µ) is monotone in the direction u(y). Let x1, x2 be contained

in (y − 1
2µ, y + 1

2µ), with x1 < x2. Then

(wε(x2)− wε(x1)) · u(y) =
1

δ

∫ δ

t=0
(w(x2 + t)− w(x1 + t))dt) · u(y) > 0,

because we have chosen w to be monotone in the direction u(y). That is, the monotonicity

of w forces the integrand to be strictly positive. Therefore, the chord from wε(x1) to wε(x2)

has a positive component in the direction of u(y), as required.

It follows that the inscribed square Sε can not have size less than µ, or its vertices would

be contained in some interval of length µ, in which wε would have to be monotone (but

we have seen that a square can not be inscribed in a monotone segment of the curve). We

repeat this construction for a sequence of values of ε approaching zero. Some subsequence

of the squares Sε will converge to a square S, which must have size at least µ and must

be inscribed in w. This completes the proof of Theorem 3.36.



Chapter 4

Latest study

After a whole century’s history, the Square Peg Problem remains open for its full gen-

erality. The latest work is due to Terence Tao, who published in 2017 An integration

approach to the Toeplitz Square Peg Problem [15].

Terence Chi-Shen Tao, borned in Australia in 1975, has been professor of mathematics at

the University of California, Los Angeles (UCLA) since 1999. He started to learn calculus

when he was 7, as well as beginning high school at that same age. By 9 he was already

very good at university-level calculus. He earned his Ph.D. from Princeton University

when he was 20, and UCLA promoted him to full professor at age 24.

Tao was awarded the prestigious Fields Medal in 2006 “for his contributions to partial

differential equations, combinatorics, harmonic analysis and additive number theory”.

Many mathematicians, like John Garnett, professor and former chair of mathematics at

UCLA, think that Tao could be the best mathematician in the world right now.

Tao himself tried to solve the Square Peg Problem, as we have mentioned. Here, we intend

to give a general idea of his new approach to the problem and explain in what differs from

the other previous results.

In his paper, Tao proposes to modify the homological approach to the problem, by focusing

not only on the parity of intersections between some geometric objects associated to the

curve, but also on bounding certain integrals associated to these curves. He still needs

to establish a certain regularity (i.e., smoothness condition) on the curves, as in previous

results from other authors, in order to initially define these integrals. Thus, there is still

an inability to remove smoothness conditions. But, the integrals enjoy more stability

properties under limits than intersection numbers. This is why it may offer a way to

establish more cases of the Square Peg Problem.

Tao gives a positive result, which appears to be new:

For any I ⊂ R and any function f : I −→ R, we define the graph Graphf : I −→ R2 to

be the function Graphf (t) := (t, f(t)), so in particular, Graphf (I) ⊂ R2 is the set

Graphf (I) := {(t, f(t)) : t ∈ I}.

Such a function f is said to be C-Lipschitz for a given C > 0 if |f(s) − f(t)| ≤ C|s − t|
for all s, t ∈ I.
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This C is actually giving us the approximate maximum slope the curve can have. Since

|f(s)− f(t)|
|s− t|

≤ C,

we would have that there is an angle α such that

tanα =
|f(s)− f(t)|
|s− t|

which is smaller that the value of C.

Theorem 4.1 (The case of small Lipschitz constant). Let [t0, t1] be an interval, and let

f, g : [t0, t1] −→ R be (1 − ε)-Lipschitz functions for some ε > 0. Suppose also that

f(t0) = g(t0), f(t1) = g(t1), and f(t) < g(t) for all t0 < t < t1. Then, the set

Graphf ([t0, t1]) ∪Graphg([t0, t1])

inscribes a square.

In other words, the Square Peg Problem holds for curves that traverse two Lipschitz

graphs, as long as the Lipschitz constants are strictly less than one. Tao notes that

the condition of having Lipschitz constant less than one is superficially similar to the

property of being locally monotone, as Stromquist considered in his result. However,

due to a potentially unbounded amount of oscillations at the endpoints Graphf (t0) =

Graphg(t0) and Graphf (t1) = Graphg(t1), the sets in Theorem 4.1 are not necessarily

locally monotone at the endpoints. Thus, the results in Stromquist’s proof do not directly

imply Theorem 4.1. Similarly for the other existing positive results on the Square Peg

Problem. Therefore, by proving this fact, he achieves a slightly further case of the Square

Peg Problem regarding the so far seen previous results.

Tao explains that without the hypothesis of small Lipschitz constant, the Jordan curve

theorem would no longer be available, and he does not know how to adapt the argument

to prove the Square Peg Problem in full generality.



Conclusions

Although the Square Peg Problem looks like an innocent conjecture, it has been an open

problem for more than a century. We have shown several results throughout this text,

some with weaker smoothness conditions than others.

Stromquist made an incredible step by proving it for locally monotone curves, since it

includes a great variety of curves, like the smooth ones. However, it seems like we are still

not able to remove a certain smoothness condition, incapacitating, therefore, the proof

for its full generality.

At present, Terence Tao is the mathematician who has gone further on this topic. But he

has needed too complex machinery in order to only sightly weaken Stromquist’s result.
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