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O. Introduction 

The purpose of this note is to present a general result on the composition of large deviation 

principies (Theorem 1.2) and to apply this theorem to obtain large deviations estimates 

for solutions of anticipating stochastic differential equations. 

This problem was suggested to us by G. Benarous and we would like to thank him for 

his stimulating remaks. 

The composition theorem is stated and proved in Section l. Its proof is based on a 

recent result of P. Baldi and M. Sanz [2] about the equivalence between large deviations 

estimates and a continuity property. Section two contains the application of the composi­

tion result to deduce a large deviation principie for the solutions of anticipating stochastic 

differential equations. Two types of equations have been consídered. Frist we <leal wíth the 

Stratonovich stochastic differential equation studied by D. Ocone and E. Pardoux in [7]. In 

this case the large deviation principie we present is based on the large deviation principie 

for stochastic flows proved in [5], and it generalizes the large deviation results obtained 

previously by the authors in [5]. The second type of anticipating equation is a quasilinear 

equation introduced by R. Buckdahn in [3]. For this equation we generalize the results 

of [4]. 

l. Composition of large deviation principies 

Let (f!,F,P) be a probability space and (E,d) be a Polish space. Considera family 

(Ve, € > O) of E-valued random variables whích satis:fies a large deviation principie 

(LDP) with rate function >. : E -+ [O, +oo]. That means, for every open (resp. closed) 

subset G ( resp. C) of E we have 

lim inf e log P(Ve E G) ~ - inf { >.(J) : f E G} 
e!O 

lim sup e log P(Ve E C) :s; - inf { >.(!) : f E C} . 
e!O 

In the applications presented in the next section, ve will be ~ W where W 1s a 

standard Brownian motion. 

Suppose that ( E2 , d2 ) is another Polish space and (e, e > O) a family of E 2-valued 

random variables. Assume also that there exists a map e : { >. < +oo} -+ E2 such that 
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the restriction of l to the compact sets {A~ a}, a E [O, oo), is continuous. The following 

result has been proved by P. Baldi and M. Sanz in [2, Theorem 3]. 

Proposition 1.1. The following properties are equivalent: 

(Pl) The family ((Ve,ee), e> O) satisfies a LDP with rate function 

>.(J, e) = { +A(
00
f) if A(j) < oo 

otherwise, 
and e= ((f), 

for f E E, e E E2. 

(P2) For every R > O, r, > O and f E E such that A(j) < oo there exist a > O and 

co > O such that for O < e ~ co 

Let (F, p) be another Polish space and let K be a compact metric space. We denote 

by d1 the Euclidean distance on IRd and by d1 and p the distances inducing the 

topology of uniform convergence on C(K, IRd) and C(K, F), respectively. Let J be a 

distance on C(IRd, F) inducing the topology of uniform convergence on compact subsets 

of IRd. 

Given any e > O we consider random variables xe : !1 --+ C(K, IRd), ye : !1 --+ 

C(IRd, F) and set xe =(Ve, Xe), ye: =(Ve:, ye). We introduce the following assumptions, 

which correspond to condition (Pl) of Proposition l. l. 

(Hl) There exists a map X : { A < oo} --+ C( K, IRd) such that its restriction to the compact 

sets {A~ a}, a E [O,oo), is continuous, and the family (Xe:, e> O) satisfies a LDP 

with rate function 

j_
1 
(f, 

9
) = { A(j) if A(j) < oo and g = X(f), 

+oo otherwise, 

for f E E, g E C(K, IRd). 

(H2) There exists a map Y : { A < oo} --+ C(IRd, F) such that its restriction to the compact 

sets { A ~ a}, a E [O, oo), is continuous, and the family (fe:, e > O) satisfies a LD P 

with rate function 

'J..
2
(f, h) = { A(j) if A(f) < oo and h = Y(f), 

+oo otherwise, 

for f E E, h E C(IRd, F). 
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Then the following theorem states a LDP for the composition of ye and Xe. 

Theorem 1.2. Suppose that the assumptions (Hl) and (H2) are satisfied. For each 

e > O, let ze : O -+ C(K, F) be defined by ze = ye o xe. Then ( ze, e > O) satisfies a 

LDP with rate function defined on C(K, F) by 

-\3 (g) = inf {-\(!): Y(f) o X(f) = g}. (1.1) 

Proof: It suffices to show that the pair (Ve, ze) satisfies a LDP with rate function 

~
3
(f, ) = {-\(!) if -\(f_) < oo and g = Y(f) o X(f), 

g +oo otherw1se, 

where f E E, g E C(J{, F). Note that conditions (Hl) and (H2) imply that the mapping 

f ~ Y(f)oX(f) is continuous on the level sets {,\~a}, O~ a< oo. By Proposition 1.1 

this is equivalent to the continuity property (P2) for ( ze, e > O) : 

(C): For every R > O, r¡ > O and f E E such that -\(f) < oo there exists a > O and 

co > O such that for O < e ~ co, if 

then 

(1.2) 

This continuity property will be deduced from similar continuity properties for (Xe, e > O) 

and (Ye, e > O), which are equivalent to our hypotheses (Hl) and (H2), respectively, 

due again to Proposition 1.1. In order to complete the details of the proof of (C), fix 

R > O, r¡ > O and f E E such that -\(!) < oo and define, for any 8 > O and a> O 

Be= { d1(Xe,X(f)) ~ h, d(Ve,f) ~O'.} 
ce= { J1 (Xe, X(f)) < h, d(Ve, f) ~ a, p(Ze, Y(f) o Xe) ~ i} 
De= { d1 (X\X(f)) < h, p(Y(f) o Xe, Y(f) o X(f)) ~ i} . 

Clearly A e e Be U ce U De. By (Hl) and Proposition 1.1 there exists a 1 > O, c1 > O 

suchthatfor 0<a~a1 , 0<c~c1 , P(Be)~exp(-:) 
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Suppose O < h S 1, and set , = 1 + sup IX(f)(k)I - Then IXe(w)I S , for each 
kEK 

w E ce, and there exists r¡' > O such that 

ce e {d(Ve,f) s a, sup p(Ye(x), Y(f)(x)) 2 ~} 
lxl:::;'Y 

e {d(Ve,f) s a, d(Ye, Y(f)) 2 r¡'}. 

By (H2) and Proposition 1.1 there exists é 2 > O, a 2 > O such that for O < é S é2, O < 

a < a 2 , P( ce) S exp (- ~) . On the other hand, since Y(f) is uniformly continuous 

on {x: lxl s ,} we can find h E (O, 1] such that ne= </J. Therefore for é < min(s1,c2) 

and a s min ( a 1 , a 2 ) we obtain P( A e) S 2 exp ( - ~) which completes the proof of the 

continuity condition (C). • 

The following result shows that if two families of random variables are "close" and 

one of them satisfies a LDP, then the other one also satisfies a LDP with the same rate 

function. 

Proposition 1.3. Let (E,d) be a Polish space, and let (ee, é > O) and (r¡e, é > O) be 

E-valued random variables. 

Assume that: 

(i) The family (e, é > O) satisfies a LDP with rate function I: E-+ [O, +oo]. 

(ii) For any a > O 

limsup e log P(d(e, r¡e) 2 a)= -OO. 
e!O 

Then the family (r¡e, E> O) also satisfi.es a LDP with rate function I. 

(1.3) 

Proof: Let G be an open subset of E. Let g E G and fix a neighborhood U of g such 

that 

U o: = { x E E : d( x, U) < a} e G. 

Then for any é > O 

Hypothesis (i) yields 

liminf E log P(e E U) 2 -inf {I(f): f E U} 2 -I(g). 
e!O 
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Therefore (ii) implies that liminf e log P(rye E G) 2:': -I(g), and since g is arbitrary we 
dO 

obtain 

lim inf e log P( rJe E G) 2:: - inf { I(g) : g E G} . 
e!O 

Now let F be a closed subset of E, a> O and set Fa= {x E E: d(x, F) < a}. Then 

Since limsupe logP(e E Fa):::; -inf{I(g): g E Fa}, (ii) yields that for any a> O 
e!O 

limsupe log P(rye E F):::; -inf {I(g): g E Fa}. 
e!O 

Finally, letting al O we obtain 

lim supe log P( rJe E F) :::; - inf { I(g) : g E F} . • 
e!O 

2. Large deviations for anticipating stochastic differential equations 

In this section we will give two applications of Theorem 1.2 to the solution of anticipating 

stochastic differential equations. First we will consider the equations studied by Ocone 

and Pardoux in [7]. 

Let (Wt , t E [O, 1]) be a k-dimensional standard Brownian motion defi.ned on the 

canonical probability space (n, :F, P). Suppose that b, u¡ : IRd ----+ IRd, 1 :::; i :::; k, and 
k 

m = ~ L ~O' i O' i : IRd ----+ IRd are functions of class C2 with bounded partial derivatives 
2 i=l X 

up to order 2. Let (<.pe, e > O) denote the family of stochastic flows defi.ned on IRd x [O, 1] 
by 

(2.1) 

Here we made the convention of summation over repeated indices and the first stochastic 

integral is defined in the Stratonovich sense. 

Define 

1-(,k = {f :[0,1]----+ IRk: J(t) = 1t j(s)ds, 

-\(f) : = ~ 11 

\js \2 ds < oo} , 
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and set >..(!) = +oo if f (j. Hk . 

Given f E Hk let h = S(f) denote the solution of the ordinary differential equation 

(2.2) 

called the skeleton of <p} ( x) . 

Let E : = n = C0([0, 1), Rk) be the set of continuous functions from [0,1) into ffk 

which vanish at O, endowed with the distance d defined by the supremum norm on [0,1], 
and let C([O, 1] x Rd, Rd) be endowed with a distance p inducing the topology of uniform 

convergence on compact sets. 

Note that by Gronwall's lemma, the restriction of Sto each level set {>.. ::; a}, a E 

[O, oo), is continuous. 

Then, given f E rtk , r¡ > O and R > O there exists a > O and éo > O such that, for 

O < é ::; éo 

P (1>(<t?e, S(f)) ?_ r¡, d(\f'EW, f) ::=;a) ::=; exp ( - ~) . (2.3) 

This result is a kind of uniform Ventzell-Freidlin estimation and has been proved in [5, 

Theorem 2.1 ]. As a consequence, by Proposition 1.1, the pair (vc W, <pe) satisfies a LDP 

with rate function 

I
2
(f, h) = { >..(!) if >..(!) < oo and h = S(f), 

+oo otherwise. 

Then we have the following result: 

Proposition 2.1. Let (Xó, é > O) be a family of ffd-valued random variables verifying 

the following condition: 

(i) There exists a mapping ( : Hk --+ ffd such that its restriction to the compact sets 

{ >.. ::=; a} , a E [O, oo), is continuous, and the pair ( JE W, Xó) satisfies a LDP on 

C0 ([0, 1], Rk) x ffd with rate function 

Ii (f, g) = { >..(!) if >..(!_) < oo and g = ((f) , 
+oo otherw1se. 

Let (<p\ é > O) be the stochastic flow solution of (2.1). Then (Zf = <pf (Xó), t E [O, 1)) is 

a solution of the anticipating stochastic differential equation 

Zf = Xó + 1t o-¡ (Z!) o aw; + 1t b(Z!)ds 
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and it satisfies a LDP with rate function 

I(g) = inf { I(f) : S(f) ( ((f)) = g} , (2.5) 

for any g E C ([O, l], !Rd). 

Proof: It suffices to apply Theorem 1.2 in the following context. Let K = {O}, 

F = C([O, 1], IRd), and as above E = C0 ([0, 1], IRk). Then C(K, IRd) ~ IRd and C(IRd, F) ~ 
C([O, 1] x IRd, IRd). Condition (i) implies (Hl) for X= ( and xe = Xg. 

Moreover we have seen that ye = r.pe and Y= S satisfy condition (H2). This completes 

the proof of the proposition. • 

Remark 2.2. Proposition 2.1 generalizes the large deviation estimates obtained in [5]. 

Indeed, the con di tion 

lim é log P (lxg - Xo 1 > r¡) = -oo , 
eLO 

(2.6) 

for any r¡ > O and sorne x 0 E IRd, can be considered as a particular case of the assumption 

(i) in Proposition 2.1. More precisely, let (0 : 1-{k ---+ IRd be defined by (o(J) = xo. Then 

(2.6) implies that the family ((ve W, Xg), é > O) satisfies a LDP on Co([O, 1], IRk) x IRd 

with rate function 

11 (f,x) = { :VJ if X= Xo 

if X-:/- Xo . 

In fact, by Proposition 1.3 it suffices to show that the family ((ve W, x 0 ), E> O) satisfies 

a LDP with rate function 11 and this is straightforward. 

Now we proceed to deduce large deviation estimates for a different type of anticipating 

stochastic differential equation. Set K = [O, 1] and let (n, :F, P) be the canonical probabil­

ity space associated with a standard one-dimensional Brownian motion. Fix a Lipschitz 

function b: IR ---+ IR anda constant a -:/-O. For any é > O and t E [O, 1) set 

Consider the family of transformations A¡ : n ---+ n defined by 

and set Tte = (A¡)-1
, that means 

Tt(w)(s) =Ws +ve a(t/\s). 
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We denote by (z¡ (w, x), t E (O, 1]) the solution of the ordinary differential equation 

zf (w,x) = x + 1t [7P! (Tf (w))]-
1 b [7P! (Tt (w)) z! (w,x)] ds. 

Then if Me ( t, x, w) = z¡ ( A¡ ( w), x) we have that 

Me ( t, x, w) = x + 1t exp (-'1i cr W 8 + i cr 2 s) b [ exp ('1i cr W 8 - i cr2 s) Me( s, x, w)] ds. 

(2.7) 

Furthermore, the stochastic flow ( (:) solution of 

(f (X) = X + V€ 1t cr (! (X) d Ws + 1t b ( (! ( x)) ds 

is given by 

(2.8) 

(2.9) 

Given a random variable Xó E [)1,P for sorne p > 1, it has been proved in (3,4] that 

the process Z¡ = (¡ [Xó(AD] has a continuous version and it is the unique solution of the 

anticipating quasilinear stochastic differential equation 

Zf = Xg + '1i 1t crZ! dWs + 1t b(Z!)ds, (2.10) 

where the stochastic integral is defined in the Skorohod sense. We refer the reader to [6] 
for the definition and main properties of the Skorohod integral and the Sobolev spaces 
[)1,p. 

We at first prove that the pair (( ..,fe W, (e), e > O) satisfies a LDP on C0 ((0, 1]) x 

C([O, 1] x R) . The very particular nature of (e, with a constant diffusion coefficient in 

dimension one, allows to obtain this result under milder assumptions on b than those 

required for the general uniform Ventzell-Freidlin estimates. As before p will denote the 

metric on C([O, 1] X R), which induces the topology of uniform convergence on compact 

sets. 

Let r¡e ( t, x, w) be the solution of the ordinary differential equation ( for each fixed 

w En) 

r¡e(t,x,w) = x + 1t exp (-crw8 + i cr2 s) b [exp (crw8 - i cr2 s) r¡e(s,x,w)] ds, 

then r¡e ( t, x, ..,fe w) = Me ( t, x, w) . Similarly, let r¡( t, x, w) be the sol u tion of the diff erential 

equation 

r¡ ( t, x, w) = x + 1 t exp ( -cr w s) b [ exp ( cr w s) r¡ ( s, x, w)] ds . 
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Consider the mappings He, H: C0 ([0, 1])---+ C([O, 1] x IR) given by 

(2.11) 

H ( w) ( t, x) = exp ( o- Wt) r¡ ( t, x, w) . (2.12) 

Notice that for any f E 1í1 C n, H(f) is the skeleton associated with f and the 

stochastic flow ( (:(x)) introduced in (2.8). That means, H(f) is the solution of the 

ordinary differential equation 

Proposition 2.2. The pair (( JE W, (e), t: > O) satisfies a LDP on C0 ([0, 1]) xC([O, 1] xlR) 

with rate function 

I
2
(f, ) = { >.(f) if >.(J) < oo and g = H(f), 

g +oo otherw1se, 
(2.13) 

where 

{ 

1 ¡1 · 2 
>.(J) = 2 Jo lfsl ds if f E 1í1 

+oo otherwise 

denotes the rate function of the Brownian motion. 

Proof: For any t: > O set ce(w) = (w, He(w)) and C(w) = (w, H(w)). Then it is not 

difficult to check that C and ce are continuous functions on n = C0 ([0, 1]) and lim ce = C 
e!O 

uniformly on compact subsets of n. 
Let pe denote the law of JE W on n; then (Pe, t: > O) satisfies a LDP on n with rate 

function >.. Let Qe denote the law of ce( JE W) = (JE W, H(ve W)). Then (cf. [8, 

Theorem 2.4]) ( Qe, t: > O) satisfies a LDP with rate function. 

I2(f, g) = inf { >.(f') : C(f') = (f, g)} 

= { >..(f) if >.(f) < oo and 

+oo , otherwise. 

g = H(f)' 

Furthermore, by construction He ( ve W) = exp ( a-ve Wt - ~ 6 o-2 t) r( ( t, X, Vé W) -

ipf (w) Me(t, x,w) = (:(x) (w). • 
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Note that the restriction of H to the compact sets { ,\ ~ a} , a E [O, oo), is continuous. 

The second ingredient in the proof of large deviation estimates for the solution of 

(2.10) will be a LDP for the pair (-Je W, Xó(A0)). 

Proposition 2.3. Let (Xi, E- > O) be a family of real-valued random variables verifying 

the following conditions: 

(i) There exists a mapping X : 'H.1 --+ IR such that its restriction to the compact sets 

{>.~a}, a E [O, oo), is continuous and the pair ((-Je W, Xó), E.> O) satisfies a LDP 

on C0 ([0, l]) x IR with rate function 

>.o(f, g) = { >.(!) if >.(!) < oo and g = X(f), 
+oo otherw1se. 

(2.14) 

(ii) For each E- > O, Xó belongs to O1,P, p > l, and for any M > O there exists E.o > O 
such that 

sup E r1 exp [M IDs x;12
] ds < 00. 

O<es;eo lo (2.15) 

For any E- > O and t E [O, l], set x; (w) = Xó (A~ (w)). Then xe has a version with 

continuous paths and ((-Je W, xe), E.> O) satisfies a LDP with rate function 

11 (f, ) = { >.(f) if >.U) < oo 
g +oo otherw1se, 

and gt = X(f) for all t E [O, l], 
(2.16) 

where f E Co([0, l]), g E C([0, l]). 

Proof: As it has been proved in [4, Proposition 1.3] the existence of a continuous version 

for (X:) follows from the formula 

for any s ~t. Condition (i) implies that ((vc'W, Xó), E.> O) satisfies a LDP on C0 ([0, l]) x 

C([0, l]) with rate function (2.16). Here we have identified Xó with a constant function. 

Then, using Proposition 1.3 it suffices to show that 

limsup E. log P ( sup 1Xó(A1) - Xól ~ a) = -oo , 
eto 099 

(2.17) 

for any a > O. This has been proved in [4, Proof of Theorem 2.1]. For the sake of com­

pleteness we give below the main steps of this proof which is based on the condition (2.15). 
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Given R > O, let k > O be such that P ( sup 1-fi"Wtl 2 k) :s; exp (- R) . Let 
099 é 

B = sup 1-fi" Wt 1 :s; k . Then g1ven M such that -- > R we have { } 
. Ma 

099 u 

P (B n { sup ¡xg(AD -xg¡ 2 a}) 
o::;t9 

:s; P ( B n { exp ( M fo 1 1( D s xg) (A:) l 2 ds) 2 exp ( ~) } ) 

< exp ( - ~) L exp [M 11 

l(Ds Xg) (A:)12 ds] dP 

:s; exp ( - ~) fo
1 L exp ( Ml(Ds Xg) (A!)l2

) dP ds 

:s;exp (- R) [1 j exp(MIDsXtl2 ) e-uy1eW,-tu
2

sds 
é Jo {sup0 :5t:5i lvle"Wt!:s;k'} 

:s; C' exp ( - ~) , 

and (2.17) is proved. • 

Now we can state the LDP for the solution of (2.10). 

Proposition 2.4. Let (Xg, é > O) be a family of real-valued random variables verifying 

the assumptions (i) and (ii) of Proposition 2.3. Then the family (ze:, é > O) of solutions 

of (2.10) satisfies a LDP on C([O, 1]) with rate function 

i(g) = inf {>,(!): H(J) (t, X(f)) = gt, t E [O, 1]}, 

where H is defined in (2.12). 

(2.18) 

Proof: Set d = 1, K = [O, 1], E = IR, ye: = yÉW and F = C([O, 1]). We want to 

apply Theorem 1.2 to the random variables xe: = Xg (A.e:) : n ----• C (K, IR) and ye: = 

(e: : n ----• C (IR, F) . By Propositions 2.2 and 2.3 the hypotheses (Hl) and (H2) hold. 

Consequently the family of random variables ze: : n ----• C([O, 1], F) ~ C([O, 1]2) defined 

by ze:(s, t) = (:(X!) satisfies a LDP with rate function 

l (J, g) = inf { ,\ (J) : H ( f) ( t, X ( f)) = g ( t, s) , ( s, t) E [O, 1] 2 
} • 

Let II : C([O, 1]2) ----? C([O, 1]) be the continuous mapping defined by II(g)t = g(t, t). 

Then Z¡ = II(Ze:)t and, therefore, the family (ze:, é > O) satisfies a LDP with the rate 

function (2.18). • 
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Taking into account Remark 2.2 it follows that Proposition 2.4 generalizes the large 

estimations results obtained in [4] for the anticipating quasilinear equation. 
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