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WEDGE CANCELLATION AND GENUS

IRENE LLERENA

§1. INTRODUCTION

Let P be the set of homotopy types of base-pointed finite CW-complexes.
The wedge operation X VY (union with base points identified) gives P a
structure of commutative monoid. It is known that P is not a cancellation
monoid; that is, there are examples of spaces X,Y, Z such that

XVZ~YVZ, but X#&Y.

This phenomenon was first observed in the stable category by Freyd; see
[3] and [4]. Freyd studied its relationship with the genus of the spaces (in
the stable sense) and proved the following.

Theorem. In the stable homotopy category of finite C W-complexes, the
following conditions are equivalent:

(i) There is a space Z such that X VZ ~Y Vv Z.
(ii) X VB ~Y VB, where B is the wedge of spheres with the same Betti
numbers as X.
(iii) X and Y are of the same (stable) genus.

The same sort of results as Freyd obtained are expected to hold in the
unstable case; however the situation is more complicated here. In [6], Hilton
gave examples of spaces X,Y such that for a certain sphere S,

XVS~YVS X¢Y
2X ~ 2V 2X £ XVY.

In these examples, X and Y are CW-complexes with three cells in dimen-
sions 0,n and m, m—1 > n > 1, and with attaching maps a, 8 € 1,,—1(S™)
of finite order. For this kind of spaces E.A. Molnar [9] proved the following.

Theorem. Let a and f be elements of finite order in 7y, (S™), m -1 >
n > 1, and denote by C, and Cp their mapping cones. Then the following
conditions are equivalent:

(i) Cq and Cpy are of the same genus.
(ii) CoVS*VSm~CgVv STV S™
(i11)) There is a wedge of spheres T such that Co VT >~ Cg vV T.




If, in addition, n and the orders of @ and # are odd, these conditions are
also equivalent to

(iv) CaV S™ =~ CsV S™.
(v) CaV 8™ ~CsV S™.

Actually, Hilton and Roitberg had already proved in [6] that (i) always
implies (v) and that, if a is a suspension element, (i) also implies (iv).

In this paper we shall study the case of certain CW-complexes with a fi-
nite number of cells in dimension n and one cell in dimension m. Our spaces
will be mapping cones Co and Cg of elements a and § in 7rm_.1(Vk S™), of
finite order. By the Hilton-Milnor Theorem,

k
Tm—1(V* ™) @wm-l(sn) & @Wm—l(snj) ,
i=1 J

where the S™ are spheres of dimension greater than 2(n — 1). The direct

summands 7,1 (S™ ) are embedded in 7m_; (/¥ $™) by composition with

certain Whitehead products, so the suspension elements a in 7, -3 (\/k Sm)
k

belong to the subgroup @ mm-1(S™) each component being itself a sus-

1=1
pension element in 7, _;(S"). Our main result is the following.

Theorem. Let a and § be elements of finite order in m,,, (Vk S5"), m—-1>
n > 2. If a is a suspension element then the following conditions are
equivalent:

(i) Co ~ Cag.
(i) Ca Vv V¥S™~Cpv VFsm
(iii) There is a wedge of spheres T such that C, VI ~ CgV T.

We shall prove this in §3. The proof uses a criterion for C, and Cp to
be of the same genus, that will be proved in §2. We also give an example
that shows that, in general, (i) does not imply Co V S™ ~ Cg V S™.

In this paper all the spaces are finite CW-complexes with base point. A
basic reference for p-localization and genus of these spaces is [8].

We shall always suppose m —1 > n > 2.

The author wishes to thank P. Hilton, W. Dicks and P. Menal for helpful

conversations concerning this paper.



§2. A CRITERION FOR Cq ~ Cg TO HOLD

Suppose

B — Y » Cg

is a commutative diagram such that ¢, 6§ are homotopy equivalences and A
is a Moore-space K'(G,n). If G is free, or if n > 2 and Y is 2-connected,
then there is a homotopy equivalence ¥ : A — B completing the diagram,
see [5]. In particular, if 0,8 € Tm_1(V*S™), m =1 > n > 2, then a
homotopy equivalence between the p-localizations Cq(p) and Cpg(,) arises
from a homotopy commutative diagram

-1 a(p) k
S —— V 54

7| |7
B(pr)
m-—1 k
S(p) V S(r;’) ’

where ¥ and 3 are homotopy equivalences. Thus, ¥ is a unit in

(St , SGy ! Z,, the p-localization of the ring Z.  Similarly,

Va Sloys Vo Syl is isomorphic to the ring of k x k matrices over Z,),
and P is a homotopy equivalence if and only if its determinant is a unit in
Z;). In fact, when a is a suspension element, we can assume that ¥, and
the elements in the matrix of @, are integers. For, if [ is the least common
multiple of the denominators that appear in ¥ and in the entries of the

matrix of P, then ! is coprime to p. Now, take maps 3’ : S("‘p)_1 — S(';)—l

and ¢’ : Sy — VA S{p) With matrices [ and I, respectively, where I is
the k x k identity matrix. Clearly ¢’ o a(p) ~ a(p) o ¢’ and the homotopy
equivalences ¢ = B 0 ¢’ and ¥ = ¥ 0 9’ can replace % and ¥ in the above
diagram.

In our arguments, we will often use the same symbol to denote a self-map
between a wedge of spheres and its matrix.

Proposition 1. Let a,f € wm_l(vk S™) be of finite order with a a sus-
pension element. Then Cq(p) = Cp(p) if and only if there is a homotopy




commutative diagram
st T\ sn

] |¢
- B k
sm 1 V sn ,
where 9 and ¢ have integer matrices with determinants coprime to p.

Proof. If a prime ¢ does not divide the order |a| of a, then a(g) = 0;
otherwise, |a(g)| is a power of g. So we can find an integer s coprime to p
and divisible by |a(q)| and |8(g)| for all primes ¢ # p. Now, if Cy(p) 2 Cp(py,

take ¥ and ¢ as above and define J) = sp, ¢ = sp. It is easy to see
that ($ o a)(g) = 0 = B(g) o = (B o $)(g) for any prime ¢ # p and
(¢ 0 a)(p) = (B0 $)(p). This implies poa =B oy, #

The following criterion — that generalises theorem 1.9. in [9) — provides
us with an useful tool for the study of further results.

Theorem 2. Let o, € 7rm—1(Vk S™) be elements of finite order with
a a suspension element. Then, Cq ~ Cp if and only if there is a map

@ \/’c ST — \/k S™ such that 3 = ¢ o & and det ¢ is coprime to |a|.

This follows from the next three lemmas.

Lemma 3. Let 8 be an element of finite order in 7,3 (V'c S™). I, for each
prime p, v, is an integer coprime to p, then there is a map
Y : §™71 o S™=1 of degree coprime to |B], such that for every prime

b,
(Bov)p) =v,8(p)

Proof. By the Chinese Remainder Theorem we can find ¥ € Z such that
Y= EP mod |B(p)| for every p dividing |3|. Let us use ¥ to denote also
the map S™~! — S™~! of degree . Then (8o ¢)(p) = ¥B8(p) = -'djpﬂ(p)
for every p.

In order to prove that (¢, |8|) = 1, assume that ¢ is a prime number di-
viding v and |8|. Since ) = ¢ o mod |B(q)|, g divides z,bq which contradicts
the hypothesis. #

Now, let a be a suspension element in 7, ( Vk S™). As we observed in
the introduction,

k k
a=(a,...,a*) € Prm-1(S") Crm_1(\/ ™),
1=1



each a’ being a suspension. « determines a one-column matrix, with ele-
ments in T, -1(S™), that we will also denote by a. Then the composite of
« and amap ¢ : \/k St — Vk S™ is obtained by matrix multiplication; see
[7] Lemma 3.

Lemma 4. Let a € mn—1(V/* S™) be a suspension element of finite order.

If, for each prime p, @, is an integer matrix with determinant coprime to

p, then there is a map ¢ : Vk $™ — \/¥ 5™ such that the determinant of its
matrix is coprime to |a|, and for every prime p,

(¢ 0 a)(p) = Ppa(p) -

Here ,a(p) denotes matrix multiplication.

Proof. Let @, = (cpi;). By the Chinese Remainder Theorem we can find
integers c;; such that

cij = cpij mod |a'(p)] if p divides |a'],

Cij = cpi; mod p if p divides |a| but does not divide |a'|.

Denote by ¢ : V'c ST — Vk S™ the map associated with the matrix (c;;).
Then for every prime p we have

(¢ oa)(p) = pa(p) = (Z Cijai(p)) =

= (Z Cpijai(P)) = ppa(p) -

In order to prove that (det ¢y, |a|) = 1, suppose that a prime ¢ divides
detp and |a|. Clearly, dety = detd, (modg), so ¢ must divide det 7,
which contradicts the hypotheses. #

Lemma 5. Let v be an element of finite order in 1rm_1(V’c S"). fpoy =0
and detp # 0, then

(i) there is a map ' with scalar matrix ¢'I such that ¢' oy =0,
(i1) ¢' divides det ¢,
(iii) ¢' and |v| have the same prime divisors.
Proof. Take P such that Py =detp]. Thendetploy=Pogpoy=0.
Let detp = ¢' - ¢", where (¢",|y]) = 1 and if p divides ¢, then p divides
lv]. For each prime p dividing |y|, the map ¢"I : wn(Vk Sty) — 7r,,(Vk St)
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is an isomorphism, since (p,¢") = 1. But v(p) # 0, so ¢"I o y(p) # 0 and,
therefore,

¢"'Ioy#0.

Observe that, in general, for a € 7rm_1(\/k S™) of finite order, if ¢"Joa =0
and (¢",|a|) = 1, then a = 0. In particular, for a = ¢'To~y, ¢"Io(¢'Toy) =
det I oy = 0. Moreover, |v|(¢'I 0v) = ¢'I o |7|y = 0 implies that |¢g'T o 4|
divides [y| so that |¢'] o 4| is coprime to ¢". Thus ¢'T o~y = 0.

To prove (iii) observe that, by the definition of ¢/, if a prime p divides
q¢', p also divides |y|. Now, if p divides |y| but p does not divide ¢', then
v(p) #0andq'I: wn(vk SG) — 7rn(\/k S{py) is an isomorphism. Therefore
¢'Iov(p) #0, and ¢'I oy # 0 which is not true.#

Proof of Theorem 2. Suppose C, ~ Cg. Then, for every prime p there
is a homotopy commutative diagram

a(p)
Sot = VE S

AN

B8(p)
m—1 k
Sy — V' 50,

as in Proposition 1. Take maps 3 and ¢ as in Lemmas 3 and 4. Then
(Bow)(p) = (¢ 0 a)(p) for every prime p, so that Bo ¥ = poa, (i, |8]) = 1
and (det ¢, |a]) = 1. But, clearly, |3(p)| = |a(p)] for every prime p, so that
ol = 18-

Now take integers r,s such that r¢ + s|3] = 1. Then 8 = (r¢) o « and
det(ry) = r*det ¢ is coprime to |a] = |4].

Conversely assume there is a map ¢ such that 8 = poa, with (det ¢, |a|) =
1. We first prove that |a] = |#|. On one hand, |a|8 = |a|(yoa) = pola|a =
0, so |B| divides |a|. On the other hand, 0 = |3]8 = |Bl(p o a) = v o |Bla
and, by Lemma 5, there is an integer ¢' such that ¢'Jo |f|la = 0 and p
divides ¢' if and only if p divides | |8] a| which, in turn, divides |a]. Hence,
if |Bla # 0, (¢', |a]) # 1 and (det ¢, |a]) # 1 against the hypothesis. So
|6l @ = 0 and |a| divides |8|. Therefore, |a| = |3]|.

Now the conclusion follows easily from Proposition 1. #

§3. THE MAIN THEOREM

Theorem 6. Let a and 8 be elements of finite order in mn_;(\V* S™),
m —1>n > 1. If a is a suspension element then the following conditions
are equivalent:

(i) Co ~ Cj.



(ii) CaVVFS™ >~ Cpv V5™
(iii) There is a wedge of spheres T such that Co VT ~ Cg V T.
Proof. (i) = (ii). Assume that C, ~ Cg. Theorem 2 tells us that there
is a map ¢ such that # = ¢ o a and (det ¢, |a|) = 1. Choose r,s such that
rdet ¢ — s|a| = 1, and a matrix @ such that Py = det ¢I. The diagram
(e,0)

sm=1 —, \FenvyEer — ¢, v VEST

! d

(ﬁ’o)
sm=t , \Esrv ks —— cpv st

where & = (I:l I :é) , is homotopy commutative. Moreover

& — ( P 0) (I s(detcp)“l’cp')
lall I)\0 (detep) 'y
so that & is unimodular and we obtain a homotopy equivalence
Co V V¥ §™ ~ Cg v \/* S™. This proves (ii).

Obviously (i1) = (iii).

(iii) = (i). Suppose that Co VT ~ Cg VT. We may assume that T
has no spheres of dimension less than n, for if T = T' Vv \/ §% with k; < n
and T’ is a wedge of spheres of dimension > n, then we may suppose that
the given homotopy equivalence takes \/ §* into \/ $* and, hence, that it
induces a homotopy equivalence Co VT’ — Cs V T'. We may also assume
that T has no spheres of dimension greater than m, by restricting to the
m-skeletons. Finally, we may assume that the number of n-spheres in T is
k times the number of m spheres, by adding as many spheres as necessary.

Now, consider the diagram

sm-ly . ygm-1 20, \kgny  v\ESPVTY — CuVT

¢l tbl lz
-1 -1 _PVO k k 7
sgly...vsmt — S VP S*v... vV SPVT! — CpV T,
where T is the wedge of spheres in T of dimension strictly between n

and m. We may assume ¢ cellular, so that ¥ and & are represented by
unimodular matrices of the form

b“ bl,-

- _(¥ A
d)- : ] Q—’(O B) ’
bry ... by



¥11 Pir
and § = ( is also unimodular; here each p;; is a k X k-matrix.

Pri .- Prr
From the commutativity of the left square in the diagram we get

Boby=¢noa, ﬂ°b1j=0, pjroa=0, for 7=2,...,r.

In particular, 0 = f o b;; = b;;8 implies that |5| divides b,;, 2 < j < r.
Hence (b11,|8]) = 1.

On the other hand, for each prime p, we can find matrices A; over Z(p)
such that the determinant of @13 + 3°; 4;pji1 is a unit in Z(p); see [1},
Lemma 6.4. Now, we can always choose an integer N coprime to p and
such that the matrices NA; have integer entries. Write

@=N‘191]+EJNAJ3011 and b’llszn .

Then we have
©oa = Nypjjoa=po0b),

Thus © o |Bla = |B|(© o a) = |B]b);# = 0 and, by Lemma 5, if a prime
divides the order of |[|a it also divides det ©. So we have

(] 1Bla],p) = 1 for every prime p = |B|a = 0 = |ajdivides|F| .
But

lelb11 B = |e|(Bobn1) = |al(pn10a) =11 0lala=0
= ‘ﬂl = Ibllﬁl divides |a| .

Therefore |a| = |8|. Now, if p{la|, a(p) = 0 = B(p) and Cqu(p) = Cp(p); if
P Hal, Ca(p) = Cpy(p) follows from © o = B o by;, since both det © and b;;
are coprime to p. This proves Co ~ Cjs. #

Theorem 6 shows, in particular, that C, V 5™ ~ Cg V S™ implies
Co ~ Cg. The converse was proved for k£ = 1 by Hilton and Roitberg
in [6], but it does not hold when k > 2, as the following shows.

Example. Consider o € (a',a®) € 7p=1(S™) + Tm-1(S™) C Tm-1(S™ V
S™), where a! and o? are elements of order 5 such that the subgroups they
generate are disjoint. Take § = (—a?,2a'). By Theorem 2, Cq ~ Cjp.
Now, suppose Co VS™ =~ CgV S™. Then there is a homotopy commutative
diagram

gm—1y gm-1 if.f.: V2 Sh ey C,VS™

(c0)l= o =
sm-tygm-t S22 \ron L opysm

8



20

®—a (g _0]) are divisible by 5 and det® = 2a%, modulo 5. Hence

det @ # x1, so @ is not a homotopy equivalence. Thus C,VS™ & CgV S™.

Thus Poa = af = a ((0 'l) oa) so all the entries of the matrix

Our final theorem simply says that wedge cancellation by means of k
n—spheres (or one m-sphere) holds exactly in the same cases as wedge
cancellation of more than k n-spheres (or several m-spheres).

Theorem 7. Suppose a,f € 7rm—1(\/k S™) of finite order.
(1) CaVS™mV...VS™ ~ CgVvS™V...VvS™ if and only if
CaVSm QCﬂVSm.
(i1) If a is a suspension element and [ > k then C, V \/l S* >~ CyaV V' Sn
if and only if Co V V¥ 5™ ~ Cg v V* 7.
Proof. (i) Consider the homotopy commutative diagram

1 <a,0,...,0> k
sty . .vgm !l — 5 V'S —— CoVS™V...VS™

0| ol B

<f8,0,...,0>
Smly,..vsmt T VRS, VSTV VST

where ¢ = (b;;) and ¢ are unimodular. The commutativity of the left
square implies that So by = poa and foby; =0for2 <:i <r. In
particular, lﬁl‘bﬂ, 2 <1< r. Hence (b3, |8]) = 1.

Take integers z and y, such that b,y — |8z = 1, and consider

a,l
gm-1ygm-1 S0 ko ooy gm

(%) I+
sm=tygm-1 S22 kg oy gm

Using matrix multiplication one easily checks that the left square is ho-
motopy commutative, so the vertical maps induce a homotopy equivalence
between the mapping cones: Co V S™ >~ Cg V S™.

(i1) is an obvious consequence of Theorem 6. #
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