UNIVERSITAT DE BARCELONA

WEDGE CANCELLATION AND GENUS

by

Irene Llerena

AMS Subject Classification: 55P60

Mathematics Preprint Series No. 85
November 1990

WEDGE CANCELLATION AND GENUS

Irene Llerena

§1. Introduction

Let P be the set of homotopy types of base-pointed finite $C W$-complexes. The wedge operation $X \vee Y$ (union with base points identified) gives P a structure of commutative monoid. It is known that P is not a cancellation monoid; that is, there are examples of spaces X, Y, Z such that

$$
X \vee Z \simeq Y \vee Z, \quad \text { but } \quad X \nsupseteq Y
$$

This phenomenon was first observed in the stable category by Freyd; see [3] and [4]. Freyd studied its relationship with the genus of the spaces (in the stable sense) and proved the following.

Theorem. In the stable homotopy category of finite $C W$-complexes, the following conditions are equivalent:
(i) There is a space Z such that $X \vee Z \simeq Y \vee Z$.
(ii) $X \vee B \simeq Y \vee B$, where B is the wedge of spheres with the same Betti numbers as X.
(iii) X and Y are of the same (stable) genus.

The same sort of results as Freyd obtained are expected to hold in the unstable case; however the situation is more complicated here. In [6], Hilton gave examples of spaces X, Y such that for a certain sphere S,

$$
\begin{array}{ll}
X \vee S \simeq Y \vee S & X \not \approx Y \\
2 X \simeq 2 Y & 2 X \not \approx X \vee Y
\end{array}
$$

In these examples, X and Y are $C W$-complexes with three cells in dimensions $0, n$ and $m, m-1>n \geq 1$, and with attaching maps $\alpha, \beta \in \pi_{m-1}\left(S^{n}\right)$ of finite order. For this kind of spaces E.A. Molnar [9] proved the following.

Theorem. Let α and β be elements of finite order in $\pi_{m-1}\left(S^{n}\right), m-1>$ $n \geq 1$, and denote by C_{α} and C_{β} their mapping cones. Then the following conditions are equivalent:
(i) C_{α} and C_{β} are of the same genus.
(ii) $C_{\alpha} \vee S^{n} \vee S^{m} \simeq C_{\beta} \vee S^{n} \vee S^{m}$.
(iii) There is a wedge of spheres T such that $C_{\alpha} \vee T \simeq C_{\beta} \vee T$.

If, in addition, n and the orders of α and β are odd, these conditions are also equivalent to
(iv) $C_{\alpha} \vee S^{n} \simeq C_{\beta} \vee S^{n}$.
(v) $C_{\alpha} \vee S^{m} \simeq C_{\beta} \vee S^{m}$.

Actually, Hilton and Roitberg had already proved in [6] that (i) always implies (v) and that, if α is a suspension element, (i) also implies (iv).

In this paper we shall study the case of certain $C W$-complexes with a finite number of cells in dimension n and one cell in dimension m. Our spaces will be mapping cones C_{α} and C_{β} of elements α and β in $\pi_{m-1}\left(V^{k} S^{n}\right)$, of finite order. By the Hilton-Milnor Theorem,

$$
\pi_{m-1}\left(V^{k} S^{n}\right) \cong \bigoplus_{i=1}^{k} \pi_{m-1}\left(S^{n}\right) \oplus \bigoplus_{j} \pi_{m-1}\left(S^{n_{j}}\right)
$$

where the $S^{n_{j}}$ are spheres of dimension greater than $2(n-1)$. The direct summands $\pi_{m-1}\left(S^{n_{j}}\right)$ are embedded in $\pi_{m-1}\left(\bigvee^{k} S^{n}\right)$ by composition with certain Whitehead products, so the suspension elements α in $\pi_{m-1}\left(V^{k} S^{n}\right)$ belong to the subgroup $\bigoplus_{i=1}^{k} \pi_{m-1}\left(S^{n}\right)$ each component being itself a suspension element in $\pi_{m-1}\left(S^{n}\right)$. Our main result is the following.

Theorem. Let α and β be elements of finite order in $\pi_{m-1}\left(\bigvee^{k} S^{n}\right), m-1>$ $n>2$. If α is a suspension element then the following conditions are equivalent:
(i) $C_{\alpha} \sim C_{\beta}$.
(ii) $C_{\alpha} \vee \bigvee^{k} S^{n} \simeq C_{\beta} \vee \bigvee^{k} S^{n}$.
(iii) There is a wedge of spheres T such that $C_{\alpha} \vee T \simeq C_{\beta} \vee T$.

We shall prove this in §3. The proof uses a criterion for C_{α} and C_{β} to be of the same genus, that will be proved in §2. We also give an example that shows that, in general, (i) does not imply $C_{\alpha} \vee S^{m} \simeq C_{\beta} \vee S^{m}$.

In this paper all the spaces are finite $C W$-complexes with base point. A basic reference for p-localization and genus of these spaces is [8].

We shall always suppose $m-1>n>2$.
The author wishes to thank P. Hilton, W. Dicks and P. Menal for helpful conversations concerning this paper.

$$
\text { §2. A CRITERION FOR } C_{\alpha} \sim C_{\beta} \text { TO Hold }
$$

Suppose

is a commutative diagram such that φ, δ are homotopy equivalences and A is a Moore-space $K^{\prime}(G, n)$. If G is free, or if $n \geq 2$ and Y is 2 -connected, then there is a homotopy equivalence $\psi: A \rightarrow B$ completing the diagram, see [5]. In particular, if $\alpha, \beta \in \pi_{m-1}\left(\bigvee^{k} S^{n}\right), m-1>n>2$, then a homotopy equivalence between the p-localizations $C_{\alpha(p)}$ and $C_{\beta(p)}$ arises from a homotopy commutative diagram

where $\bar{\psi}$ and $\bar{\varphi}$ are homotopy equivalences. Thus, $\bar{\psi}$ is a unit in $\left[S_{(p)}^{m-1}, S_{(p)}^{m-1}\right] \cong \mathbf{Z}_{(p)}$, the p-localization of the ring \mathbf{Z}. Similarly, $\left[\mathrm{V}^{k} S_{(p)}^{n}, \bigvee^{k} S_{(p)}^{n}\right]$ is isomorphic to the ring of $k \times k$ matrices over $\mathbf{Z}_{(p)}$, and $\bar{\varphi}$ is a homotopy equivalence if and only if its determinant is a unit in $\mathbf{Z}_{(p)}$. In fact, when α is a suspension element, we can assume that $\bar{\psi}$, and the elements in the matrix of $\bar{\varphi}$, are integers. For, if l is the least common multiple of the denominators that appear in $\bar{\psi}$ and in the entries of the matrix of $\bar{\varphi}$, then l is coprime to p. Now, take maps $\psi^{\prime}: S_{(p)}^{m-1} \rightarrow S_{(p)}^{m-1}$ and $\varphi^{\prime}: \bigvee^{k} S_{(p)}^{n} \rightarrow \bigvee^{k} S_{(p)}^{n}$ with matrices l and $l I$, respectively, where I is the $k \times k$ identity matrix. Clearly $\varphi^{\prime} \circ \alpha(p) \simeq \alpha(p) \circ \psi^{\prime}$ and the homotopy equivalences $\varphi=\bar{\varphi} \circ \varphi^{\prime}$ and $\psi=\bar{\psi} \circ \psi^{\prime}$ can replace $\bar{\varphi}$ and $\bar{\psi}$ in the above diagram.
In our arguments, we will often use the same symbol to denote a self-map between a wedge of spheres and its matrix.

Proposition 1. Let $\alpha, \beta \in \pi_{m-1}\left(\bigvee^{k} S^{n}\right)$ be of finite order with α a suspension element. Then $C_{\alpha(p)} \simeq C_{\beta(p)}$ if and only if there is a homotopy
commutative diagram

where $\tilde{\psi}$ and $\tilde{\varphi}$ have integer matrices with determinants coprime to p.
Proof. If a prime q does not divide the order $|\alpha|$ of α, then $\alpha(q)=0$; otherwise, $|\alpha(q)|$ is a power of q. So we can find an integer s coprime to p and divisible by $|\alpha(q)|$ and $|\beta(q)|$ for all primes $q \neq p$. Now, if $C_{\alpha(p)} \simeq C_{\beta(p)}$, take ψ and φ as above and define $\tilde{\psi}=s \psi, \tilde{\varphi}=s \varphi$. It is easy to see that $(\tilde{\varphi} \circ \alpha)(q)=0=\beta(q) \circ \tilde{\psi}=(\beta \circ \tilde{\psi})(q)$ for any prime $q \neq p$ and $(\tilde{\varphi} \circ \alpha)(p)=(\beta \circ \tilde{\psi})(p)$. This implies $\tilde{\varphi} \circ \alpha=\beta \circ \tilde{\psi} . \#$

The following criterion - that generalises theorem 1.9. in [9] - provides us with an useful tool for the study of further results.
Theorem 2. Let $\alpha, \beta \in \pi_{m-1}\left(\bigvee^{k} S^{n}\right)$ be elements of finite order with α a suspension element. Then, $C_{\alpha} \sim C_{\beta}$ if and only if there is a map $\varphi: \bigvee^{k} S^{n} \rightarrow \bigvee^{k} S^{n}$ such that $\beta=\varphi \circ \alpha$ and $\operatorname{det} \varphi$ is coprime to $|\alpha|$.

This follows from the next three lemmas.
Lemma 3. Let β be an element of finite order in $\pi_{m-1}\left(\bigvee^{k} S^{n}\right)$. If, for each prime $p, \bar{\psi}_{p}$ is an integer coprime to p, then there is a map $\psi: S^{m-1} \rightarrow S^{m-1}$ of degree coprime to $|\beta|$, such that for every prime p,

$$
(\beta \circ \psi)(p)=\bar{\psi}_{p} \beta(p)
$$

Proof. By the Chinese Remainder Theorem we can find $\psi \in \mathbf{Z}$ such that $\psi \equiv \bar{\psi}_{p} \bmod |\beta(p)|$ for every p dividing $|\beta|$. Let us use ψ to denote also the map $S^{m-1} \rightarrow S^{m-1}$ of degree ψ. Then $(\beta \circ \psi)(p)=\psi \beta(p)=\bar{\psi}_{p} \beta(p)$ for every p.

In order to prove that $(\psi,|\beta|)=1$, assume that q is a prime number dividing ψ and $|\beta|$. Since $\psi \equiv \bar{\psi}_{q} \bmod |\beta(q)|, q$ divides $\bar{\psi}_{q}$ which contradicts the hypothesis. \#

Now, let α be a suspension element in $\pi_{m-1}\left(V^{k} S^{n}\right)$. As we observed in the introduction,

$$
\alpha=\left(\alpha^{1}, \ldots, \alpha^{k}\right) \in \bigoplus_{i=1}^{k} \pi_{m-1}\left(S^{n}\right) \subset \pi_{m-1}\left(\bigvee^{k} S^{n}\right)
$$

each α^{j} being a suspension. α determines a one-column matrix, with elements in $\pi_{m-1}\left(S^{n}\right)$, that we will also denote by α. Then the composite of α and a map $\varphi: \bigvee^{k} S^{n} \rightarrow \bigvee^{k} S^{n}$ is obtained by matrix multiplication; see [7] Lemma 3.
Lemma 4. Let $\alpha \in \pi_{m-1}\left(\bigvee^{k} S^{n}\right)$ be a suspension element of finite order. If, for each prime $p, \bar{\varphi}_{p}$ is an integer matrix with determinant coprime to p, then there is a map $\varphi: \bigvee^{k} S^{n} \rightarrow \bigvee^{k} S^{n}$ such that the determinant of its matrix is coprime to $|\alpha|$, and for every prime p,

$$
(\varphi \circ \alpha)(p)=\bar{\varphi}_{p} \alpha(p)
$$

Here $\bar{\varphi}_{p} \alpha(p)$ denotes matrix multiplication.
Proof. Let $\bar{\varphi}_{p}=\left(c_{p i j}\right)$. By the Chinese Remainder Theorem we can find integers $c_{i j}$ such that

$$
\begin{array}{lll}
c_{i j} \equiv c_{p i j} & \bmod \left|\alpha^{i}(p)\right| & \text { if } p \text { divides }\left|\alpha^{i}\right| \\
c_{i j} \equiv c_{p i j} & \bmod p & \text { if } p \text { divides }|\alpha| \text { but does not divide }\left|\alpha^{i}\right|
\end{array}
$$

Denote by $\varphi: \mathrm{V}^{k} S^{n} \rightarrow \mathrm{~V}^{k} S^{n}$ the map associated with the matrix $\left(c_{i j}\right)$. Then for every prime p we have

$$
\begin{aligned}
(\varphi \circ \alpha)(p) & =\varphi \alpha(p)=\left(\sum_{i} c_{i j} \alpha^{i}(p)\right)= \\
& =\left(\sum_{i} c_{p i j} \alpha^{i}(p)\right)=\bar{\varphi}_{p} \alpha(p)
\end{aligned}
$$

In order to prove that $(\operatorname{det} \varphi,|\alpha|)=1$, suppose that a prime q divides $\operatorname{det} \varphi$ and $|\alpha|$. Clearly, $\operatorname{det} \varphi \equiv \operatorname{det} \bar{\varphi}_{q}(\bmod q)$, so q must divide $\operatorname{det} \bar{\varphi}_{q}$, which contradicts the hypotheses. \#
Lemma 5. Let γ be an element of finite order in $\pi_{m-1}\left(V^{k} S^{n}\right)$. If $\varphi \circ \gamma=0$ and $\operatorname{det} \varphi \neq 0$, then
(i) there is a map φ^{\prime} with scalar matrix $q^{\prime} I$ such that $\varphi^{\prime} \circ \gamma=0$,
(ii) $q^{\prime} \operatorname{divides} \operatorname{det} \varphi$,
(iii) q^{\prime} and $|\gamma|$ have the same prime divisors.

Proof. Take $\bar{\varphi}$ such that $\bar{\varphi} \varphi=\operatorname{det} \varphi I$. Then $\operatorname{det} \varphi I \circ \gamma=\bar{\varphi} \circ \varphi \circ \gamma=0$.
Let $\operatorname{det} \varphi=q^{\prime} \cdot q^{\prime \prime}$, where $\left(q^{\prime \prime},|\gamma|\right)=1$ and if p divides q^{\prime}, then p divides $|\gamma|$. For each prime p dividing $|\gamma|$, the map $q^{\prime \prime} I: \pi_{n}\left(\bigvee^{k} S_{(p)}^{n}\right) \rightarrow \pi_{n}\left(V^{k} S_{(p)}^{n}\right)$
is an isomorphism, since $\left(p, q^{\prime \prime}\right)=1$. But $\gamma(p) \neq 0$, so $q^{\prime \prime} I \circ \gamma(p) \neq 0$ and, therefore,

$$
q^{\prime \prime} I \circ \gamma \neq 0
$$

Observe that, in general, for $\alpha \in \pi_{m-1}\left(\mathrm{~V}^{k} S^{n}\right)$ of finite order, if $q^{\prime \prime} I \circ \alpha=0$ and $\left(q^{\prime \prime},|\alpha|\right)=1$, then $\alpha=0$. In particular, for $\alpha=q^{\prime} I \circ \gamma, q^{\prime \prime} I \circ\left(q^{\prime} I \circ \gamma\right)=$ $\operatorname{det} \varphi I \circ \gamma=0$. Moreover, $|\gamma|\left(q^{\prime} I \circ \gamma\right)=q^{\prime} I \circ|\gamma| \gamma=0$ implies that $\left|q^{\prime} I \circ \gamma\right|$ divides $|\gamma|$ so that $\left|q^{\prime} I \circ \gamma\right|$ is coprime to $q^{\prime \prime}$. Thus $q^{\prime} I \circ \gamma=0$.

To prove (iii) observe that, by the definition of q^{\prime}, if a prime p divides q^{\prime}, p also divides $|\gamma|$. Now, if p divides $|\gamma|$ but p does not divide q^{\prime}, then $\gamma(p) \neq 0$ and $q^{\prime} I: \pi_{n}\left(\bigvee^{k} S_{(p)}^{n}\right) \rightarrow \pi_{n}\left(\bigvee^{k} S_{(p)}^{n}\right)$ is an isomorphism. Therefore $q^{\prime} I \circ \gamma(p) \neq 0$, and $q^{\prime} I \circ \gamma \neq 0$ which is not true.\#
Proof of Theorem 2. Suppose $C_{\alpha} \sim C_{\beta}$. Then, for every prime p there is a homotopy commutative diagram

as in Proposition 1. Take maps ψ and φ as in Lemmas 3 and 4. Then $(\beta \circ \psi)(p)=(\varphi \circ \alpha)(p)$ for every prime p, so that $\beta \circ \psi=\varphi \circ \alpha,(\psi,|\beta|)=1$ and $(\operatorname{det} \varphi,|\alpha|)=1$. But, clearly, $|\beta(p)|=|\alpha(p)|$ for every prime p, so that $|\alpha|=|\beta|$.

Now take integers r, s such that $r \psi+s|\beta|=1$. Then $\beta=(r \varphi) \circ \alpha$ and $\operatorname{det}(r \varphi)=r^{k} \operatorname{det} \varphi$ is coprime to $|\alpha|=|\beta|$.

Conversely assume there is a map φ such that $\beta=\varphi \circ \alpha$, with $(\operatorname{det} \varphi,|\alpha|)=$ 1. We first prove that $|\alpha|=|\beta|$. On one hand, $|\alpha| \beta=|\alpha|(\varphi \circ \alpha)=\varphi \circ|\alpha| \alpha=$ 0 , so $|\beta|$ divides $|\alpha|$. On the other hand, $0=|\beta| \beta=|\beta|(\varphi \circ \alpha)=\varphi \circ|\beta| \alpha$ and, by Lemma 5 , there is an integer q^{\prime} such that $q^{\prime} I \circ|\beta| \alpha=0$ and p divides q^{\prime} if and only if p divides $||\beta| \alpha|$ which, in turn, divides $|\alpha|$. Hence, if $|\beta| \alpha \neq 0,\left(q^{\prime},|\alpha|\right) \neq 1$ and $(\operatorname{det} \varphi,|\alpha|) \neq 1$ against the hypothesis. So $|\beta| \alpha=0$ and $|\alpha|$ divides $|\beta|$. Therefore, $|\alpha|=|\beta|$.

Now the conclusion follows easily from Proposition 1. \#

§3. The main theorem

Theorem 6. Let α and β be elements of finite order in $\pi_{m-1}\left(\bigvee^{k} S^{n}\right)$, $m-1>n>1$. If α is a suspension element then the following conditions are equivalent:
(i) $C_{\alpha} \sim C_{\beta}$.
(ii) $C_{\alpha} \vee \bigvee^{k} S^{n} \simeq C_{\beta} \vee \bigvee^{k} S^{n}$.
(iii) There is a wedge of spheres T such that $C_{\alpha} \vee T \simeq C_{\beta} \vee T$.

Proof. (i) \Rightarrow (ii). Assume that $C_{\alpha} \sim C_{\beta}$. Theorem 2 tells us that there is a map φ such that $\beta=\varphi \circ \alpha$ and $(\operatorname{det} \varphi,|\alpha|)=1$. Choose r, s such that $r \operatorname{det} \varphi-s|\alpha|=1$, and a matrix $\bar{\varphi}$ such that $\bar{\varphi} \varphi=\operatorname{det} \varphi I$. The diagram

$$
\begin{aligned}
& S^{m-1} \xrightarrow{(\alpha, 0)} V^{k} S^{n} \vee \bigvee^{k} S^{n} \longrightarrow C_{\alpha} \vee \bigvee^{k} S^{n} \\
& 1 \downarrow \quad \Phi \\
& S^{m-1} \xrightarrow{(\beta, 0)} \mathrm{V}^{k} S^{n} \vee \bigvee^{k} S^{n} \longrightarrow C_{\beta} \vee \bigvee^{k} S^{n}
\end{aligned}
$$

where $\quad \Phi=\left(\begin{array}{cc}\varphi & s I \\ |\alpha| I & r \bar{\varphi}\end{array}\right)$, is homotopy commutative. Moreover

$$
\Phi=\left(\begin{array}{cc}
\varphi & 0 \\
|\alpha| I & I
\end{array}\right)\left(\begin{array}{cc}
I & s(\operatorname{det} \varphi)^{-1} \bar{\varphi} \\
0 & (\operatorname{det} \varphi)^{-1} \frac{1}{\varphi}
\end{array}\right)
$$

so that Φ is unimodular and we obtain a homotopy equivalence $C_{\alpha} \vee \bigvee^{k} S^{n} \simeq C_{\beta} \vee \bigvee^{k} S^{n}$. This proves (ii).

Obviously (ii) \Rightarrow (iii).
(iii) \Rightarrow (i). Suppose that $C_{\alpha} \vee T \simeq C_{\beta} \vee T$. We may assume that T has no spheres of dimension less than n, for if $T=T^{\prime} \vee \bigvee S^{k_{i}}$ with $k_{i}<n$ and T^{\prime} is a wedge of spheres of dimension $\geq n$, then we may suppose that the given homotopy equivalence takes $\bigvee S^{k_{i}}$ into $\bigvee S^{k_{i}}$ and, hence, that it induces a homotopy equivalence $C_{\alpha} \vee T^{\prime} \rightarrow C_{\beta} \vee T^{\prime}$. We may also assume that T has no spheres of dimension greater than m, by restricting to the m-skeletons. Finally, we may assume that the number of n-spheres in T is k times the number of m spheres, by adding as many spheres as necessary.

Now, consider the diagram

where $T^{\prime \prime}$ is the wedge of spheres in T of dimension strictly between n and m. We may assume Φ cellular, so that ψ and Φ are represented by unimodular matrices of the form

$$
\psi=\left(\begin{array}{ccc}
b_{11} & \ldots & b_{1 r} \\
\vdots & & \\
b_{r 1} & \ldots & b_{r r}
\end{array}\right), \quad \Phi=\left(\begin{array}{cc}
\bar{\varphi} & A \\
0 & B
\end{array}\right)
$$

and $\bar{\varphi}=\left(\begin{array}{ccc}\varphi_{11} & \ldots & \varphi_{1 r} \\ \vdots & & \\ \varphi_{r 1} & \ldots & \varphi_{r r}\end{array}\right)$ is also unimodular; here each $\varphi_{i j}$ is a $k \times k$-matrix. From the commutativity of the left square in the diagram we get

$$
\beta \circ b_{11}=\varphi_{11} \circ \alpha, \beta \circ b_{1 j}=0, \varphi_{j 1} \circ \alpha=0, \text { for } j=2, \ldots, r
$$

In particular, $0=\beta \circ b_{1 j}=b_{1 j} \beta$ implies that $|\beta|$ divides $b_{1 j}, 2 \leq j \leq r$. Hence $\left(b_{11},|\beta|\right)=1$.

On the other hand, for each prime p, we can find matrices A_{j} over $\mathbf{Z}(p)$ such that the determinant of $\varphi_{11}+\sum_{j} A_{j} \varphi_{j 1}$ is a unit in $\mathbf{Z}(p)$; see [1], Lemma 6.4. Now, we can always choose an integer N coprime to p and such that the matrices $N A_{j}$ have integer entries. Write

$$
\Theta=N \varphi_{11}+\Sigma_{j} N A_{j} \varphi_{j 1} \quad \text { and } \quad b_{11}^{\prime}=N b_{11}
$$

Then we have

$$
\Theta \circ \alpha=N \varphi_{11} \circ \alpha=\beta \circ b_{11}^{\prime}
$$

Thus $\Theta \circ|\beta| \alpha=|\beta|(\Theta \circ \alpha)=|\beta| b_{11}^{\prime} \beta=0$ and, by Lemma 5, if a prime divides the order of $|\beta| \alpha$ it also divides $\operatorname{det} \Theta$. So we have

$$
(||\beta| \alpha|, p)=1 \text { for every prime } p \Rightarrow|\beta| \alpha=0 \Rightarrow|\alpha| \text { divides }|\beta|
$$

But

$$
\begin{aligned}
|\alpha| b_{11} \beta=|\alpha|\left(\beta \circ b_{11}\right)=|\alpha|\left(\varphi_{11} \circ \alpha\right) & =\varphi_{11} \circ|\alpha| \alpha=0 \\
& \Rightarrow|\beta|=\left|b_{11} \beta\right| \text { divides }|\alpha|
\end{aligned}
$$

Therefore $|\alpha|=|\beta|$. Now, if $p \nmid|\alpha|, \alpha(p)=0=\beta(p)$ and $C_{\alpha(p)} \simeq C_{\beta(p)}$; if $p\left||\alpha|, C_{\alpha(p)} \simeq C_{\beta(p)}\right.$ follows from $\Theta \circ \alpha=\beta \circ b_{11}$, since $\operatorname{both} \operatorname{det} \Theta$ and b_{11} are coprime to p. This proves $C_{\alpha} \sim C_{\beta}$. \#

Theorem 6 shows, in particular, that $C_{\alpha} \vee S^{m} \simeq C_{\beta} \vee S^{m}$ implies $C_{\alpha} \sim C_{\beta}$. The converse was proved for $k=1$ by Hilton and Roitberg in [6], but it does not hold when $k \geq 2$, as the following shows.
Example. Consider $\alpha \in\left(\alpha^{1}, \alpha^{2}\right) \in \pi_{m-1}\left(S^{n}\right)+\pi_{m-1}\left(S^{n}\right) \subset \pi_{m-1}\left(S^{n} \vee\right.$ S^{n}), where α^{1} and α^{2} are elements of order 5 such that the subgroups they generate are disjoint. Take $\beta=\left(-\alpha^{2}, 2 \alpha^{1}\right)$. By Theorem $2, C_{\alpha} \sim C_{\beta}$. Now, suppose $C_{\alpha} \vee S^{m} \simeq C_{\beta} \vee S^{m}$. Then there is a homotopy commutative diagram

$$
\begin{array}{lll}
S^{m-1} \vee S^{m-1} & \xrightarrow{\langle\alpha, 0\rangle} V^{2} S^{n} \longrightarrow C_{\alpha} \vee S^{m} \\
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \downarrow \simeq & \perp \mid \simeq & \downarrow \simeq \\
S^{m-1} \vee S^{m-1} & \longrightarrow \beta, 0\rangle \\
V^{2} S^{n} \longrightarrow C_{\beta} \vee S^{m}
\end{array}
$$

Thus $\Phi \circ \alpha=a \beta=a\left(\left(\begin{array}{cc}0 & -1 \\ 2 & 0\end{array}\right) \circ \alpha\right)$ so all the entries of the matrix $\Phi-a\left(\begin{array}{cc}0 & -1 \\ 2 & 0\end{array}\right)$ are divisible by 5 and $\operatorname{det} \Phi \equiv 2 a^{2}$, modulo 5 . Hence $\operatorname{det} \Phi \neq \pm 1$, so Φ is not a homotopy equivalence. Thus $C_{\alpha} \vee S^{m} \not \approx C_{\beta} \vee S^{m}$.

Our final theorem simply says that wedge cancellation by means of k n-spheres (or one m-sphere) holds exactly in the same cases as wedge cancellation of more than $k n$-spheres (or several m-spheres).
Theorem 7. Suppose $\alpha, \beta \in \pi_{m-1}\left(V^{k} S^{n}\right)$ of finite order.
(i) $C_{\alpha} \vee S^{m} \vee \ldots \vee S^{m} \simeq C_{\beta} \vee S^{m} \vee \ldots \vee S^{m} \quad$ if and only if $C_{\alpha} \vee S^{m} \simeq C_{\beta} \vee S^{m}$.
(ii) If α is a suspension element and $l \geq k$ then $C_{\alpha} \vee \bigvee^{l} S^{n} \simeq C_{\alpha} \vee \bigvee^{l} S^{n}$ if and only if $C_{\alpha} \vee \bigvee^{k} S^{n} \simeq C_{\beta} \vee \bigvee^{k} S^{n}$.
Proof. (i) Consider the homotopy commutative diagram

where $\psi=\left(b_{i j}\right)$ and φ are unimodular. The commutativity of the left square implies that $\beta \circ b_{11}=\varphi \circ \alpha$ and $\beta \circ b_{i 1}=0$ for $2 \leq i \leq r$. In particular, $|\beta| \mid b_{i 1}, 2 \leq i \leq r$. Hence $\left(b_{11},|\beta|\right)=1$.

Take integers x and y, such that $b_{11} y-|\beta| x=1$, and consider

$$
\begin{aligned}
& S^{m-1} \vee S^{m-1} \xrightarrow{\langle\alpha, 0\rangle} V^{k} S^{n} \longrightarrow C_{\alpha} \vee S^{m} \\
&\left(\begin{array}{cc}
b_{11} & |\beta| \\
x & y
\end{array}\right) \\
& S^{m-1} \vee S^{m-1} \xrightarrow{<\beta, 0\rangle} V^{k} S^{n} \longrightarrow C_{\beta} \vee S^{m}
\end{aligned}
$$

Using matrix multiplication one easily checks that the left square is homotopy commutative, so the vertical maps induce a homotopy equivalence between the mapping cones: $C_{\alpha} \vee S^{m} \simeq C_{\beta} \vee S^{m}$.
(ii) is an obvious consequence of Theorem 6. \#

References

[1]. Bass, H., "K-theory and stable algebra", Publ. Math. I.H.E.S., 22, Paris (1964).
[2]. Bokor, I., "On Genus and Cancellation in Homotopy", (to appear).
[3]. Freyd, P.J., "Stable homotopy", Proc. Conf. Cat. Alg., La Jolla, Springer, Berlin (1966), 121-172.
[4]. Freyd, P.J., "Stable Homotopy II", Proc. Symp. in Pure Math., 17, Am. Math. Soc. Providence, R.I. (1970).
[5]. Hilton, P.J., "Homotopy theory and duality", Gordon and Breach, New York (1965).
[6]. Hilton, P.J., "On the Grothendieck group of compact polyhedra", Fund. Math 61 (1967), 199-214.
[7]. Hilton, P.J., "Note on the Homotopy Type of Mapping Cones", Comm. in Pure and Appl. Math. 21 (1968), 515-519.
[8]. Hilton, P.J., Mislin, G. and Roitberg, J., "Localization of Nilpotent Groups and Spaces", Math. Studies, 15, Amsterdam, North Holland (1975).
[9]. Molnar, E.A., "Relation between Wedge Cancellation and Localization for Complexes with two Cells", J. of Pure and Appl. Alg. 3, (1972), 77-81.

Departament d'Àlgebra i Geometria
Facultat de Matemàtiques
Universitat de Barcelona
(1)

