UNIVERSITAT DE BARCELONA

-

WEDGE CANCELLATION AND GENUS

by

Irene Llerena

AMS Subject Classification: 55P60

BIBLIOTECA DE	LA UNIVERSITAT	DE BARCELONA
		ANAL ANAL INCLUDE
	0701570681	

16

Mathematics Preprint Series No. 85 November 1990

WEDGE CANCELLATION AND GENUS

IRENE LLERENA

§1. INTRODUCTION

Let P be the set of homotopy types of base-pointed finite CW-complexes. The wedge operation $X \vee Y$ (union with base points identified) gives P a structure of commutative monoid. It is known that P is not a cancellation monoid; that is, there are examples of spaces X, Y, Z such that

$$X \lor Z \simeq Y \lor Z$$
, but $X \not\simeq Y$.

This phenomenon was first observed in the stable category by Freyd; see [3] and [4]. Freyd studied its relationship with the genus of the spaces (in the stable sense) and proved the following.

Theorem. In the stable homotopy category of finite CW-complexes, the following conditions are equivalent:

- (i) There is a space Z such that $X \vee Z \simeq Y \vee Z$.
- (ii) $X \lor B \simeq Y \lor B$, where B is the wedge of spheres with the same Betti numbers as X.
- (iii) X and Y are of the same (stable) genus.

The same sort of results as Freyd obtained are expected to hold in the unstable case; however the situation is more complicated here. In [6], Hilton gave examples of spaces X, Y such that for a certain sphere S,

$$\begin{array}{ll} X \lor S \simeq Y \lor S & X \not\simeq Y \\ 2X \simeq 2Y & 2X \not\simeq X \lor Y \end{array}$$

In these examples, X and Y are CW-complexes with three cells in dimensions 0, n and m, $m-1 > n \ge 1$, and with attaching maps $\alpha, \beta \in \pi_{m-1}(S^n)$ of finite order. For this kind of spaces E.A. Molnar [9] proved the following.

Theorem. Let α and β be elements of finite order in $\pi_{m-1}(S^n)$, $m-1 > n \ge 1$, and denote by C_{α} and C_{β} their mapping cones. Then the following conditions are equivalent:

- (i) C_{α} and C_{β} are of the same genus.
- (ii) $C_{\alpha} \vee S^n \vee S^m \simeq C_{\beta} \vee S^n \vee S^m$.
- (iii) There is a wedge of spheres T such that $C_{\alpha} \vee T \simeq C_{\beta} \vee T$.

If, in addition, n and the orders of α and β are odd, these conditions are also equivalent to

(iv) $C_{\alpha} \vee S^n \simeq C_{\beta} \vee S^n$. (v) $C_{\alpha} \vee S^m \simeq C_{\beta} \vee S^m$.

Actually, Hilton and Roitberg had already proved in [6] that (i) always implies (v) and that, if α is a suspension element, (i) also implies (iv).

In this paper we shall study the case of certain CW-complexes with a finite number of cells in dimension n and one cell in dimension m. Our spaces will be mapping cones C_{α} and C_{β} of elements α and β in $\pi_{m-1}(\bigvee^k S^n)$, of finite order. By the Hilton-Milnor Theorem,

$$\pi_{m-1}(\vee^k S^n) \cong \bigoplus_{i=1}^k \pi_{m-1}(S^n) \oplus \bigoplus_j \pi_{m-1}(S^{n_j}) ,$$

where the S^{n_j} are spheres of dimension greater than 2(n-1). The direct summands $\pi_{m-1}(S^{n_j})$ are embedded in $\pi_{m-1}(\bigvee^k S^n)$ by composition with certain Whitehead products, so the suspension elements α in $\pi_{m-1}(\bigvee^k S^n)$ belong to the subgroup $\bigoplus_{i=1}^k \pi_{m-1}(S^n)$ each component being itself a suspension element in $\pi_{m-1}(S^n)$. Our main result is the following.

Theorem. Let α and β be elements of finite order in $\pi_{m-1}(\bigvee^k S^n)$, m-1 > n > 2. If α is a suspension element then the following conditions are equivalent:

(i) $C_{\alpha} \sim C_{\beta}$. (ii) $C_{\alpha} \vee \bigvee^{k} S^{n} \simeq C_{\beta} \vee \bigvee^{k} S^{n}$. (iii) There is a wedge of spheres T such that $C_{\alpha} \vee T \simeq C_{\beta} \vee T$.

We shall prove this in §3. The proof uses a criterion for C_{α} and C_{β} to be of the same genus, that will be proved in §2. We also give an example that shows that, in general, (i) does not imply $C_{\alpha} \vee S^m \simeq C_{\beta} \vee S^m$.

In this paper all the spaces are finite CW-complexes with base point. A basic reference for p-localization and genus of these spaces is [8].

We shall always suppose m - 1 > n > 2.

The author wishes to thank P. Hilton, W. Dicks and P. Menal for helpful conversations concerning this paper.

Suppose

is a commutative diagram such that φ, δ are homotopy equivalences and A is a Moore-space K'(G,n). If G is free, or if $n \geq 2$ and Y is 2-connected, then there is a homotopy equivalence $\psi: A \to B$ completing the diagram, see [5]. In particular, if $\alpha, \beta \in \pi_{m-1}(\bigvee^k S^n), m-1 > n > 2$, then a homotopy equivalence between the *p*-localizations $C_{\alpha(p)}$ and $C_{\beta(p)}$ arises from a homotopy commutative diagram

where $\overline{\psi}$ and $\overline{\varphi}$ are homotopy equivalences. Thus, $\overline{\psi}$ is a unit in $[S_{(p)}^{m-1}, S_{(p)}^{m-1}] \cong \mathbb{Z}_{(p)}$, the *p*-localization of the ring \mathbb{Z} . Similarly, $[\bigvee^k S_{(p)}^n, \bigvee^k S_{(p)}^n]$ is isomorphic to the ring of $k \times k$ matrices over $\mathbb{Z}_{(p)}$, and $\overline{\varphi}$ is a homotopy equivalence if and only if its determinant is a unit in $\mathbb{Z}_{(p)}$. In fact, when α is a suspension element, we can assume that $\overline{\psi}$, and the elements in the matrix of $\overline{\varphi}$, are integers. For, if l is the least common multiple of the denominators that appear in $\overline{\psi}$ and in the entries of the matrix of $\overline{\varphi}$, then l is coprime to p. Now, take maps $\psi' : S_{(p)}^{m-1} \to S_{(p)}^{m-1}$ and $\varphi' : \bigvee^k S_{(p)}^n \to \bigvee^k S_{(p)}^n$ with matrices l and lI, respectively, where I is the $k \times k$ identity matrix. Clearly $\varphi' \circ \alpha(p) \simeq \alpha(p) \circ \psi'$ and the homotopy equivalences $\varphi = \overline{\varphi} \circ \varphi'$ and $\psi = \overline{\psi} \circ \psi'$ can replace $\overline{\varphi}$ and $\overline{\psi}$ in the above diagram.

In our arguments, we will often use the same symbol to denote a self-map between a wedge of spheres and its matrix.

Proposition 1. Let $\alpha, \beta \in \pi_{m-1}(\bigvee^k S^n)$ be of finite order with α a suspension element. Then $C_{\alpha(p)} \simeq C_{\beta(p)}$ if and only if there is a homotopy

commutative diagram

where $\tilde{\psi}$ and $\tilde{\varphi}$ have integer matrices with determinants coprime to p.

Proof. If a prime q does not divide the order $|\alpha|$ of α , then $\alpha(q) = 0$; otherwise, $|\alpha(q)|$ is a power of q. So we can find an integer s coprime to p and divisible by $|\alpha(q)|$ and $|\beta(q)|$ for all primes $q \neq p$. Now, if $C_{\alpha(p)} \simeq C_{\beta(p)}$, take ψ and φ as above and define $\tilde{\psi} = s\psi$, $\tilde{\varphi} = s\varphi$. It is easy to see that $(\tilde{\varphi} \circ \alpha)(q) = 0 = \beta(q) \circ \tilde{\psi} = (\beta \circ \tilde{\psi})(q)$ for any prime $q \neq p$ and $(\tilde{\varphi} \circ \alpha)(p) = (\beta \circ \tilde{\psi})(p)$. This implies $\tilde{\varphi} \circ \alpha = \beta \circ \tilde{\psi}$. #

The following criterion — that generalises theorem 1.9. in [9] — provides us with an useful tool for the study of further results.

Theorem 2. Let $\alpha, \beta \in \pi_{m-1}(\bigvee^k S^n)$ be elements of finite order with α a suspension element. Then, $C_{\alpha} \sim C_{\beta}$ if and only if there is a map $\varphi : \bigvee^k S^n \to \bigvee^k S^n$ such that $\beta = \varphi \circ \alpha$ and det φ is coprime to $|\alpha|$.

This follows from the next three lemmas.

Lemma 3. Let β be an element of finite order in $\pi_{m-1}(\bigvee^k S^n)$. If, for each prime $p, \ \overline{\psi}_p$ is an integer coprime to p, then there is a map $\psi: S^{m-1} \to S^{m-1}$ of degree coprime to $|\beta|$, such that for every prime p,

$$(\beta \circ \psi)(p) = \overline{\psi}_p \beta(p)$$

Proof. By the Chinese Remainder Theorem we can find $\psi \in \mathbb{Z}$ such that $\psi \equiv \overline{\psi}_p \mod |\beta(p)|$ for every p dividing $|\beta|$. Let us use ψ to denote also the map $S^{m-1} \to S^{m-1}$ of degree ψ . Then $(\beta \circ \psi)(p) = \psi \beta(p) = \overline{\psi}_p \beta(p)$ for every p.

In order to prove that $(\psi, |\beta|) = 1$, assume that q is a prime number dividing ψ and $|\beta|$. Since $\psi \equiv \overline{\psi}_q \mod |\beta(q)|$, q divides $\overline{\psi}_q$ which contradicts the hypothesis. #

Now, let α be a suspension element in $\pi_{m-1}(\bigvee^k S^n)$. As we observed in the introduction,

$$\alpha = (\alpha^1, \ldots, \alpha^k) \in \bigoplus_{i=1}^k \pi_{m-1}(S^n) \subset \pi_{m-1}(\bigvee^k S^n),$$

each α^j being a suspension. α determines a one-column matrix, with elements in $\pi_{m-1}(S^n)$, that we will also denote by α . Then the composite of α and a map $\varphi: \bigvee^k S^n \to \bigvee^k S^n$ is obtained by matrix multiplication; see [7] Lemma 3.

Lemma 4. Let $\alpha \in \pi_{m-1}(\bigvee^k S^n)$ be a suspension element of finite order. If, for each prime $p, \overline{\varphi}_p$ is an integer matrix with determinant coprime to p, then there is a map $\varphi : \bigvee^k S^n \to \bigvee^k S^n$ such that the determinant of its matrix is coprime to $|\alpha|$, and for every prime p,

$$(\varphi \circ \alpha)(p) = \overline{\varphi}_{p} \alpha(p) .$$

Here $\overline{\varphi}_{p}\alpha(p)$ denotes matrix multiplication.

Proof. Let $\overline{\varphi}_p = (c_{pij})$. By the Chinese Remainder Theorem we can find integers c_{ij} such that

 $\begin{array}{lll} c_{ij} \equiv c_{pij} & \mbox{mod } |\alpha^i(p)| & \mbox{if } p \mbox{ divides } |\alpha^i| \,, \\ c_{ij} \equiv c_{pij} & \mbox{mod } p & \mbox{if } p \mbox{ divides } |\alpha| \mbox{ but does not divide } |\alpha^i| \,. \end{array}$

Denote by $\varphi : \bigvee^k S^n \to \bigvee^k S^n$ the map associated with the matrix (c_{ij}) . Then for every prime p we have

$$(\varphi \circ \alpha)(p) = \varphi \alpha(p) = \left(\sum_{i} c_{ij} \alpha^{i}(p)\right) = \\ = \left(\sum_{i} c_{pij} \alpha^{i}(p)\right) = \overline{\varphi}_{p} \alpha(p) .$$

In order to prove that $(\det \varphi, |\alpha|) = 1$, suppose that a prime q divides $\det \varphi$ and $|\alpha|$. Clearly, $\det \varphi \equiv \det \overline{\varphi}_q \pmod{q}$, so q must divide $\det \overline{\varphi}_q$, which contradicts the hypotheses. #

Lemma 5. Let γ be an element of finite order in $\pi_{m-1}(\bigvee^k S^n)$. If $\varphi \circ \gamma = 0$ and det $\varphi \neq 0$, then

- (i) there is a map φ' with scalar matrix q'I such that $\varphi' \circ \gamma = 0$,
- (ii) q' divides det φ ,
- (iii) q' and $|\gamma|$ have the same prime divisors.

Proof. Take $\overline{\varphi}$ such that $\overline{\varphi}\varphi = \det \varphi I$. Then $\det \varphi I \circ \gamma = \overline{\varphi} \circ \varphi \circ \gamma = 0$. Let $\det \varphi = q' \cdot q''$, where $(q'', |\gamma|) = 1$ and if p divides q', then p divides $|\gamma|$. For each prime p dividing $|\gamma|$, the map $q''I : \pi_n(\bigvee^k S^n_{(p)}) \to \pi_n(\bigvee^k S^n_{(p)})$ is an isomorphism, since (p, q'') = 1. But $\gamma(p) \neq 0$, so $q''I \circ \gamma(p) \neq 0$ and, therefore,

$$q''I\circ\gamma\neq 0.$$

Observe that, in general, for $\alpha \in \pi_{m-1}(\bigvee^k S^n)$ of finite order, if $q''I \circ \alpha = 0$ and $(q'', |\alpha|) = 1$, then $\alpha = 0$. In particular, for $\alpha = q'I \circ \gamma$, $q''I \circ (q'I \circ \gamma) = det \varphi I \circ \gamma = 0$. Moreover, $|\gamma|(q'I \circ \gamma) = q'I \circ |\gamma| \gamma = 0$ implies that $|q'I \circ \gamma|$ divides $|\gamma|$ so that $|q'I \circ \gamma|$ is coprime to q''. Thus $q'I \circ \gamma = 0$.

To prove (iii) observe that, by the definition of q', if a prime p divides q', p also divides $|\gamma|$. Now, if p divides $|\gamma|$ but p does not divide q', then $\gamma(p) \neq 0$ and $q'I : \pi_n(\bigvee^k S^n_{(p)}) \to \pi_n(\bigvee^k S^n_{(p)})$ is an isomorphism. Therefore $q'I \circ \gamma(p) \neq 0$, and $q'I \circ \gamma \neq 0$ which is not true.#

Proof of Theorem 2. Suppose $C_{\alpha} \sim C_{\beta}$. Then, for every prime p there is a homotopy commutative diagram

as in Proposition 1. Take maps ψ and φ as in Lemmas 3 and 4. Then $(\beta \circ \psi)(p) = (\varphi \circ \alpha)(p)$ for every prime p, so that $\beta \circ \psi = \varphi \circ \alpha$, $(\psi, |\beta|) = 1$ and $(\det \varphi, |\alpha|) = 1$. But, clearly, $|\beta(p)| = |\alpha(p)|$ for every prime p, so that $|\alpha| = |\beta|$.

Now take integers r, s such that $r\psi + s|\beta| = 1$. Then $\beta = (r\varphi) \circ \alpha$ and $det(r\varphi) = r^k det \varphi$ is coprime to $|\alpha| = |\beta|$.

Conversely assume there is a map φ such that $\beta = \varphi \circ \alpha$, with $(\det \varphi, |\alpha|) = 1$. We first prove that $|\alpha| = |\beta|$. On one hand, $|\alpha|\beta = |\alpha|(\varphi \circ \alpha) = \varphi \circ |\alpha| \alpha = 0$, so $|\beta|$ divides $|\alpha|$. On the other hand, $0 = |\beta| \beta = |\beta|(\varphi \circ \alpha) = \varphi \circ |\beta| \alpha$ and, by Lemma 5, there is an integer q' such that $q'I \circ |\beta| \alpha = 0$ and p divides q' if and only if p divides $||\beta| \alpha|$ which, in turn, divides $|\alpha|$. Hence, if $|\beta| \alpha \neq 0$, $(q', |\alpha|) \neq 1$ and $(\det \varphi, |\alpha|) \neq 1$ against the hypothesis. So $|\beta| \alpha = 0$ and $|\alpha|$ divides $|\beta|$. Therefore, $|\alpha| = |\beta|$.

Now the conclusion follows easily from Proposition 1. #

§3. The main theorem

Theorem 6. Let α and β be elements of finite order in $\pi_{m-1}(\bigvee^k S^n)$, m-1 > n > 1. If α is a suspension element then the following conditions are equivalent:

(i)
$$C_{\alpha} \sim C_{\beta}$$
.

- (ii) $C_{\alpha} \vee \bigvee^k S^n \simeq C_{\beta} \vee \bigvee^k S^n$.
- (iii) There is a wedge of spheres T such that $C_{\alpha} \vee T \simeq C_{\beta} \vee T$.

Proof. (i) \Rightarrow (ii). Assume that $C_{\alpha} \sim C_{\beta}$. Theorem 2 tells us that there is a map φ such that $\beta = \varphi \circ \alpha$ and $(\det \varphi, |\alpha|) = 1$. Choose r, s such that $r \det \varphi - s |\alpha| = 1$, and a matrix $\overline{\varphi}$ such that $\overline{\varphi}\varphi = \det \varphi I$. The diagram

where $\Phi = \begin{pmatrix} \varphi & sI \\ |\alpha|I & r\overline{\varphi} \end{pmatrix}$, is homotopy commutative. Moreover

$$\Phi = \begin{pmatrix} \varphi & 0\\ |\alpha|I & I \end{pmatrix} \begin{pmatrix} I & s(\det \varphi)^{-1}\overline{\varphi}\\ 0 & (\det \varphi)^{-1}\overline{\varphi} \end{pmatrix}$$

so that Φ is unimodular and we obtain a homotopy equivalence $C_{\alpha} \vee \bigvee^{k} S^{n} \simeq C_{\beta} \vee \bigvee^{k} S^{n}$. This proves (ii).

Obviously (ii) \Rightarrow (iii).

(iii) \Rightarrow (i). Suppose that $C_{\alpha} \vee T \simeq C_{\beta} \vee T$. We may assume that T has no spheres of dimension less than n, for if $T = T' \vee \bigvee S^{k_i}$ with $k_i < n$ and T' is a wedge of spheres of dimension $\geq n$, then we may suppose that the given homotopy equivalence takes $\bigvee S^{k_i}$ into $\bigvee S^{k_i}$ and, hence, that it induces a homotopy equivalence $C_{\alpha} \vee T' \rightarrow C_{\beta} \vee T'$. We may also assume that T has no spheres of dimension greater than m, by restricting to the m-skeletons. Finally, we may assume that the number of n-spheres in T is k times the number of m spheres, by adding as many spheres as necessary.

Now, consider the diagram

where T'' is the wedge of spheres in T of dimension strictly between n and m. We may assume Φ cellular, so that ψ and Φ are represented by unimodular matrices of the form

$$\psi = \begin{pmatrix} b_{11} & \dots & b_{1r} \\ \vdots & & \\ b_{r1} & \dots & b_{rr} \end{pmatrix} , \qquad \Phi = \begin{pmatrix} \overline{\varphi} & A \\ 0 & B \end{pmatrix} ,$$

and $\overline{\varphi} = \begin{pmatrix} \varphi_{11} & \cdots & \varphi_{1r} \\ \vdots \\ \varphi_{r1} & \cdots & \varphi_{rr} \end{pmatrix}$ is also unimodular; here each φ_{ij} is a $k \times k$ -matrix. From the commutativity of the left square in the diagram we get

$$\beta \circ b_{11} = \varphi_{11} \circ \alpha$$
, $\beta \circ b_{1j} = 0$, $\varphi_{j1} \circ \alpha = 0$, for $j = 2, \ldots, r$.

In particular, $0 = \beta \circ b_{1j} = b_{1j}\beta$ implies that $|\beta|$ divides b_{1j} , $2 \le j \le r$. Hence $(b_{11}, |\beta|) = 1$.

On the other hand, for each prime p, we can find matrices A_j over $\mathbb{Z}(p)$ such that the determinant of $\varphi_{11} + \sum_j A_j \varphi_{j1}$ is a unit in $\mathbb{Z}(p)$; see [1], Lemma 6.4. Now, we can always choose an integer N coprime to p and such that the matrices NA_j have integer entries. Write

$$\Theta = N\varphi_{11} + \Sigma_j N A_j \varphi_{j1} \quad \text{and} \quad b'_{11} = N b_{11} .$$

Then we have

$$\Theta \circ \alpha = N\varphi_{11} \circ \alpha = \beta \circ b'_{11}$$

Thus $\Theta \circ |\beta|\alpha = |\beta|(\Theta \circ \alpha) = |\beta|b'_{11}\beta = 0$ and, by Lemma 5, if a prime divides the order of $|\beta|\alpha$ it also divides det Θ . So we have

$$(|\beta|\alpha|, p) = 1$$
 for every prime $p \Rightarrow |\beta|\alpha = 0 \Rightarrow |\alpha|$ divides $|\beta|$.

But

$$|\alpha|b_{11}\beta = |\alpha|(\beta \circ b_{11}) = |\alpha|(\varphi_{11} \circ \alpha) = \varphi_{11} \circ |\alpha|\alpha = 0$$

$$\Rightarrow |\beta| = |b_{11}\beta| \text{ divides } |\alpha|$$

Therefore $|\alpha| = |\beta|$. Now, if $p/|\alpha|$, $\alpha(p) = 0 = \beta(p)$ and $C_{\alpha(p)} \simeq C_{\beta(p)}$; if $p||\alpha|$, $C_{\alpha(p)} \simeq C_{\beta(p)}$ follows from $\Theta \circ \alpha = \beta \circ b_{11}$, since both det Θ and b_{11} are coprime to p. This proves $C_{\alpha} \sim C_{\beta}$. #

Theorem 6 shows, in particular, that $C_{\alpha} \vee S^m \simeq C_{\beta} \vee S^m$ implies $C_{\alpha} \sim C_{\beta}$. The converse was proved for k = 1 by Hilton and Roitberg in [6], but it does not hold when $k \geq 2$, as the following shows.

Example. Consider $\alpha \in (\alpha^1, \alpha^2) \in \pi_{m-1}(S^n) + \pi_{m-1}(S^n) \subset \pi_{m-1}(S^n \vee S^n)$, where α^1 and α^2 are elements of order 5 such that the subgroups they generate are disjoint. Take $\beta = (-\alpha^2, 2\alpha^1)$. By Theorem 2, $C_{\alpha} \sim C_{\beta}$. Now, suppose $C_{\alpha} \vee S^m \simeq C_{\beta} \vee S^m$. Then there is a homotopy commutative diagram

Thus $\Phi \circ \alpha = a\beta = a\left(\begin{pmatrix} 0 & -1 \\ 2 & 0 \end{pmatrix} \circ \alpha\right)$ so all the entries of the matrix $\Phi - a\begin{pmatrix} 0 & -1 \\ 2 & 0 \end{pmatrix}$ are divisible by 5 and det $\Phi \equiv 2a^2$, modulo 5. Hence det $\Phi \neq \pm 1$, so Φ is not a homotopy equivalence. Thus $C_{\alpha} \vee S^m \neq C_{\beta} \vee S^m$.

Our final theorem simply says that wedge cancellation by means of k *n*-spheres (or one *m*-sphere) holds exactly in the same cases as wedge cancellation of more than k *n*-spheres (or several *m*-spheres).

Theorem 7. Suppose $\alpha, \beta \in \pi_{m-1}(\bigvee^k S^n)$ of finite order.

- (i) $C_{\alpha} \vee S^m \vee \ldots \vee S^m \simeq C_{\beta} \vee S^m \vee \ldots \vee S^m$ if and only if $C_{\alpha} \vee S^m \simeq C_{\beta} \vee S^m$.
- (ii) If α is a suspension element and $l \ge k$ then $C_{\alpha} \lor \bigvee^{l} S^{n} \simeq C_{\alpha} \lor \bigvee^{l} S^{n}$ if and only if $C_{\alpha} \lor \bigvee^{k} S^{n} \simeq C_{\beta} \lor \bigvee^{k} S^{n}$.

Proof. (i) Consider the homotopy commutative diagram

where $\psi = (b_{ij})$ and φ are unimodular. The commutativity of the left square implies that $\beta \circ b_{11} = \varphi \circ \alpha$ and $\beta \circ b_{i1} = 0$ for $2 \leq i \leq r$. In particular, $|\beta| |b_{i1}, 2 \leq i \leq r$. Hence $(b_{11}, |\beta|) = 1$.

Take integers x and y, such that $b_{11}y - |\beta|x = 1$, and consider

$$S^{m-1} \vee S^{m-1} \xrightarrow{\langle \alpha, 0 \rangle} \bigvee^{k} S^{n} \longrightarrow C_{\alpha} \vee S^{m}$$

$$\begin{pmatrix} b_{11} & |\beta| \\ x & y \end{pmatrix} \downarrow \qquad \qquad \qquad \downarrow \varphi$$

$$S^{m-1} \vee S^{m-1} \xrightarrow{\langle \beta, 0 \rangle} \bigvee^{k} S^{n} \longrightarrow C_{\beta} \vee S^{m}$$

Using matrix multiplication one easily checks that the left square is homotopy commutative, so the vertical maps induce a homotopy equivalence between the mapping cones: $C_{\alpha} \vee S^m \simeq C_{\beta} \vee S^m$.

(ii) is an obvious consequence of Theorem 6. #

References

[1]. Bass, H., "K-theory and stable algebra", Publ. Math. I.H.E.S., 22, Paris (1964).

- [2]. Bokor, I., "On Genus and Cancellation in Homotopy", (to appear).
- [3]. Freyd, P.J., "Stable homotopy", Proc. Conf. Cat. Alg., La Jolla, Springer, Berlin (1966), 121-172.
- [4]. Freyd, P.J., "Stable Homotopy II", Proc. Symp. in Pure Math., 17, Am. Math. Soc. Providence, R.I. (1970).
- [5]. Hilton, P.J., "Homotopy theory and duality", Gordon and Breach, New York (1965).
- [6]. Hilton, P.J., "On the Grothendieck group of compact polyhedra", Fund. Math 61 (1967), 199-214.
- [7]. Hilton, P.J., "Note on the Homotopy Type of Mapping Cones", Comm. in Pure and Appl. Math. 21 (1968), 515-519.
- [8]. Hilton, P.J., Mislin, G. and Roitberg, J., "Localization of Nilpotent Groups and Spaces", Math. Studies, 15, Amsterdam, North Holland (1975).
- [9]. Molnar, E.A., "Relation between Wedge Cancellation and Localization for Complexes with two Cells", J. of Pure and Appl. Alg. 3, (1972), 77-81.

Departament d'Àlgebra i Geometria Facultat de Matemàtiques Universitat de Barcelona

