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Abstraet The standard and semistandard maps are considered in C2 and the behaviour of the
iterates on complex invariant manifolds of them is studied. This is an attempt to understand
complicated real dynamics by looking at the enlarged complex dynamics. Expansions of the
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§ 1. Introduction

One of the most interesting problems of dynamics is the study of the coexistence of
regular and stochastic behaviour of the trajectories of a Hamiltonian System [A], [AKN],
[LL], [MP], [M2]. Essentially the problem reduces to the study of the behaviour of the
separatrices (stable, Wa, and unstable, Wu, manifolds) of periodic hyperbolic orbits. The
homoclinic phenomena give rise to a very complicated pattem of the net created by Wa
and Wu, as pointed out by Poincaré [P] many years ago. Nevertheless, little is known, up
to now, about the structure of this net.

It seems natural to apply to this problem the principie of analytical continuation into
the complex domain. What happens to the trajectories lying on the analytical continua-
tions of Wu and W*? The aim of this paper is to malee the first step in that direction: to
explore numerically simple models.

A good model to study the mentioned coexistence of random and regular motion in
Hamiltonian systems with two degrees of freedom is the dynamical system generated by
iterations of the standard map ([G], [C], [Ll]), defined by

5M(x,y) = (ri,yi),
(1.1) x\ = x + yi,

yi = y + e sin x.

Usually SM is considered as a map of the cylinder (R/27rZ) x R into itself (one can also
consider as a map in the 2-torus (R/2ttZ)2). We prefer here to consider (1.1) as a map in
R2, keeping in mind its commutativity with the shifts in the x and y directions by 2n.

*• Since sinx is an entire function (1.1) can be prolonged analytically to an analytic
diffeomorphism in C2. We retain the same notation for the map, SM, and the vari¬
ables (x,y). The SM preserves the area and the orientation. This is equivalent to the
preservation of dx A dy :

(1.2) dx i A dyx = dx A dy.

This equation remains valid in C2. We will refer to an analytical map (x,y) —► (xi,yi)
satisfying (1.2) as an analytical symplectic map.

Let us change the variables (x,y) to the new ones (ti, v) by means of

x = -t log - + t ti,

(1.3) y = * t>.
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Then SM is written as (u,t;) —► (ui,t>i) with

(1.4) “i = « + t>i,

vi = v + eu — c * .

4

If Im x is positive and sufficiently laxge, the last terna in the second line of (1.4) is small.
We may consider it as a small perturbation when studying the motion of a point under the
iterations of SM in that part of the complex phase space. The unpertnrbed map, known
as the semistandard map (SSM), appears to be independent of e and reads

SSM(u,v) = (ui,vi),
(1.5) ui = u + vi,

vi = v + eu .

This map was introduced (in a slightly different form) by Greene and Percival [GP] and
has been studied by many authors ([Pe], [Ma], [LST]).

In the present paper we study numerically the global behaviour of the complex tra-
jectories of SM and SSM belonging to the unstable separatrices (of the origin for SM
and of “minus infinity” for SSM). We found that the points which go ultimately to the
domain with “wild” hyperbolic features, form a pattem on a fundamental domain of Wu
which reminds the leaves of a fem, in the case of SSM. For the SM some of the end points
of the leaves reach the real line exactly at homoclinic points.

§ 2. Parametric representaron for the unstable separatrix of SM

For positive valúes of the parameter e, the origin (0,0) is a hyperbolic fixed point,
the largest eigenvalue of the linear part of SM at this point being

(2.1) A = l + - + \/e + e2/4.

By using Moser’s Theorem ([MI] or [SM]), one can assert the existence of an analytical
symplectic local diffeomorphism, $, defined in a complex neighbourhood, U, of (0,0) such
that $(0,0) = (0,0) and it carnes SM to the normal form:

(2.2) * o SM o : (í,,) —> (í ■ A« • i,), i,/A({ • ij)) ,
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where A is an analytical function of one complex variable defined in a neighbourhood of
0 and satisfying A(0) = A. Furthennore, by [FS], the neighbourhood U is independent of
e for 0 < e < £o, £o fixed. The projections £ = prx$, rj = pr2$ can be considered as

(symplectic) coordinates in U: they are the normal coordínates.
Consider the complexified unstable manifold of the origin:

W“ = {(x,y) € C2 : SM~n(x,y) -* (0,0) as n —► +oo} .

It follows from (2.2) that the subset of U defined by r¡ = 0, denoted by Wj“c , is contained
in W“, and

W‘ = U SMn (W,”e) .
n>0

The coordínate £, being restricted to Wj“c, can serve as a coordínate on Wj“c. One can
deduce from Moser’s Theorem that this coordínate is defined uniquely up to a non zero

constant multiplier. It is not difficult to obtain the parametric representation for Wj“c :

(2.3) {«'“(í) = (*“(£). y“(«),
oo oo

*’(o = Ea*í‘- =
k=i k=i

The map SM\ reads, in terms of £, as £ t—► A £.
| *ioc

To obtain (2.3) is cheaper to look directly for the parametric representation instead
of computing the normal form (see [S] for general comments). By using the fact that sin
is an odd function we introduce

*#■

(2.4) *” = £>., í2“+1 - V" = E 6" (2”+1 •
n>0 n>0

From the first line of (1.1) and the expression of SM\ in terms of £ we get
| "loe

(2.5) o„(A2"+1 - 1) = 5„A2"+1.

Let us introduce two auxiliar series

(2.6) E^í2”= <»s (Ea”í2”+1
n>0 \n>0

XI í2”+1 = dn Ea-f2”+1

4



From (2.6), by derivation and product, we obtain the recurrences

n —
2n ^ dmak{2k + l),

m+fc=n—1

(2.7) _

2n + 1 Cm ’
m+t=n

started with co = 1, do = «o •

From the second line of (1.1) we obtain

(2.8) &„(A2"+1-1)=£<¡„.

As an is obtained from bn by (2.5), that one from dn by (2.8) and dn in (2.7) contains
an, we introduce dn, for n > 1, by

1 n_1
(2.9) dn = —— y\ cn-k ak(2k + 1).2"+1fe
When dn is available we compute dn by

e A2n+1 l"1
(A2n+i_i)2 *

If all the coefficients are known up to the Índex n — 1 we compute successively
c„, dn, dn, bn and an by (2.7), (2.9), (2.10), (2.8) and (2.5). The normalization ao = 4
has been choosen. In this way we obtain the entire functions of (2.4).

We will also consider another coordínate z which parametrizes W|“c\{(0,0)} and is
linked with ^ by the formula

(2.11) C = /*V,

where y. is a fixed positive constant. The map SMi reads, in terms of z, as
I "loe

(2.12) z * > z -|-1 •

On the other hand, the valúes of z which differ by an integer times (log A)-1 • 2n i
correspond to the same points of Wj“c. So, it is sufficient to look for the behaviour under
the iterations of SM of the points with the valúes of z lying in the fundamental domain

0 < He z < 1, 0 < Im z < (log A)-1 • 2tt .
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By using coordinates which are real in the real domain and taking into account the sym-

metry (x,y) •—► (—x, —y) we can reduce our Btudy to one quarter of the fundamental
domain, that is, to

(2.13) = < 0 < Re 2 < 1, 0 < Im z < --— —
l 21og A

Finally we can also parametrize one quater of the fundamental domain by setting

(2.14) =

Then, instead of T> it is enough to consider the domain, independent of e,

(2.15) D = {0 < a < 1, O<0<1}.

The suitable valué of ¡x should be selected according to A (and, therefore, to e) and the
number of terms retained in (2.4).

§ 3. Parametric representation for the unstable separatix of SSM

The semistandard map SSM given by (1.5) does not possess a fixed point. Neverthe-
less, the minus infinity of Re u can be considered in some sense as a fixed point. It was

proven in [Ll] that SSM has an invariant curve, T_, which approximates, in the complex
domain, the unstable separatrix Wu of SM if we change variables according to (1.3).
The curve T_(x) can be represented parametrically as

x .—► (u_(x),u_(x)),
<•

where u_(x) and t;_(x) are entire functions of the complex variable x, u_(x) satisfying
the equation

(3.1) v_(x) = ií_(x) — tt_(x — 1).

Then the parameter x goes to x + 1 when we do one iteration of SSM.
It was also proven in [Ll] that u_(x) admits the following asymptotic expansión

(3.2) u_(x) = - log ^- + YlPkX~2k ’
*>i

which is uniformly valid in a sector 6q < Arg x < 2ir — S0, ¿0 fixed positive.
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The coefficients p* are obtained as follows. Let

(3.3) »i_(x) = - log y + w(x), w(x) = ) pnX
n>l

and S2 the second order centered difference operator

(62u_)(x) = u_(x + 1) — 2u_(x) + tz_(x -

The invarianee of T_ is equivalent to the equation

(3.4) (¿2u_)(x) = exp(t¿_(x)).

FVom (3.4) and (3.3) we have

(3.5) (¿2tu)(x) = ¿2 l°g y+ exp (u_(x)) = 62 log y 4-
Let us introduce an auxihar expansión by

(3.6) exp(u>(x)) = 52 gn
~2n ’

n>0

giving, by derivation and product, the recurrence

n—1
i

?«
1 n_1

=-^2qicPn-k(n-k), 5o — 1 •
*=0

(3.7)

Using also the relations

(3;S)

¿Mog^=21og (l-¿) =-253 i

,-(2i+2n)

J>1

and substituting (3.6) and (3.8) in (3.5) we obtain
m—1

(3.9) 4m

FVom (3.7) and (3.9) we isolate pr, with r = m — 1 :

ür» + r - 1 ^ 2(r " - 7TT ” 2(3.10) Pr =
L *=l

—2 n

1).

2
“2 exp (u>(x)).

2i

/ -2k

Pk\2(r + l-k)
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In (3.10) if r = 1 the summation sings run over an empty set, and pi = ——.

Proceeding with (3.7) and (3.10) we obtain the desired coefficients.
(2k + 1)!The coefficients p¿ increase qnickly with k, like (27r)2fc

p*. This is coherent with (3.7) and (3.10). In fact, if we define s* by

, and qk is very cióse to

(3.11) p‘-(_1) ~WFr ’

then Sk seems to converge to 1.5034... when k —» +oo.

We remaxk that the stable manifold of “minus infinity”, T+(z) can be parametrized
by

(3.12) r+(z) = («+(*), t7+(x)), u+(x) = u_(-z), v+(x) = —v-(—x + 1).

§ 4. Escaping región to —oo for SSM

Consider the iteration of a point (u, v) € C2 under the semistandard map

(un,vn) = SSMn(u,v), n = 0,1,2,....

We say that (u,u) is escaping to —oo if there exists afinite lim vn whose real part is
n—*+oo

negative. In this case the real part of u„ goes to —oo, and the behaviour of the trajectories
is quite regular.

' If we restrict SSM to R2 the phase space is divided by the real portions of T_
and r+ in three regions. To leam about the real behaviour of T_ and T+ we need two
lemmas.

Lemma 1. Fot Reu —♦ — oo, T_ and T+ can be represented by graphs of functions,
V- = 0_(u), v+ = <7+(u), respectively, of the type g±(u) = £,->i (a±)j eJ'“/2 .

Proof: For shortness we skip the ±sign. Let p = eu¡2. In the (p, v) variables the SSM
is given by

(4.1) SSM:
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Let g(u) = 53¿>i otjpi. Then the invariance is obtained by imposing

(4.2)

Let

(4.3)

^aJpi+p2 = ^afcpfcexp í|(^ampm+p2) J .
j> 1 fc>l \ m>l )

^2 0k,mPm = exp ( ^(5ZQnPn+P2
m>0 y n>l

We introduce a¿ = a¿ 4- 6jt2, where Sj>2 = 1 if j = 2 and is zero otherwise. From (4.3)
one has the recurrences

(4.4)
1 m

01,m — g ^ ^ 01 ,m—n *7 an, fbr *71 > 1, ^1,0 = 1?
n=l

m

0k,m— 5 n 01 n 0k—l,m—tu Ibr ÍTi ^ 1, ^jfc 0 — 1*
m '

n=l

Then, from (4.2) and (4.3) we have

(4.5)
¿-i

aj = ^ ^ 0j—m,m OCj-m-
m=0

However (4.4) and (4.5) define a¿, for j > 1, in an implicit way. We make it explicit as
follows:

ai = ± y/2 (with sign + for T_ and - for I+), 0i>o = 1, 02,o = 1, 0i,i = ~ ,

á2 = \ M then a2 = ~ ^)> 03,o = 1, 02,i = «i, 01,2 = and, for j >4
»

(4.6) 0jtO — 1, 0j-.Sj8 = ^ ^ ti 0i n 0j—t—itg—n, for s = 1,... ,j’ — 2,c ■ *

n=l

J-2
“ 1 ^ *
01,j~ 1 = 2(j — 1) 53 01,j-l-n TI án ,

a._j = - -
jai

i-2

5 > 0j—n,n Qj—n "f al 01,j—l
n=2

» 01J-1 = 01J-1 + ~ Qj-1-

In fact it tums out that = 0 for all j > 2 even, and that all aJt j odd, contain
ai as a factor, the coefficient of ai in a¿ j odd, being the same for T+ and T_ .
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Lemma 2. Let T+ (resp. T-) restricted to the real component, be given by thc graph
of a function g+(u) (resp. g-(u)). Then g+(u) < O, <7+(ti) < O for all u and both g'+
and g+ behave like —eu for u —► -foo (resp. gL(u) > O, g'l(u) > O for all u and
g'_(u) ~ 1 — u-1, g’!_{ti) ~ ti-2 for ti —* +oo).

Proof: From T 1 í U ) = ( U ^ we obtain\9+(u)J V^+(“)-exp(u-?+(u))y \v-i /

(4-7) 3ÜÍ7 = rr^T) - exp(“ -s+(u))’ = (1 -íítw - “rf" -s+(u)) •
As the assertion of the lemma is trae in a fundamental domain for tt < 0, |u| large enough,
as a consequence of Lemma 1, from (4.7) we obtain <7+ < 0, g+ < 0 by induction. The
limit behaviour follows immediately. The assertions for T_ are proved in a similar way.

If we restrict to real behaviour the points below T+ escape to ti = —oo with a finite
valué of v < 0. Those points, under iterations of SSM~1 escape to u — -foo with
u ~ — eu. The points above T_ escape, under SSM, to ti = -foo with t; ~ u, and, under
SSM~*, to tt = —oo with v > 0 finite. Finally, the points between T_ and r+ escape to
u = -foo both under SSM and SSM~l, approaching T_ or T+, respectively. However,
during the iterations they can reach points cióse to the u axis with ti < 0. As v is always
increasing it seems that 55M|RJ has a real analytical integral everywhere. Positive (resp.
negative) iterates of the ti axis give T_ (resp. T+) . For u —» —oo the behaviour of T±

, , _ , ,2 log ti log(log u)
is given by Lemma 1. For u —► +oo one has r ~ u — log ti H —-—- -f ...

ti tt
for r_ and v ~ —ett — ti + log ti + ... for T+.

It is useful to find explicitely a domain in C2 such that all the points in it are escaping
to —oo. We cali such a domain a swallowing domain.

Lemma 3. If the projection of (ti,t>) on R2 is below T+ then (ti, t?) belongs to a

swallowing domain.

Proof: Let ti = a + bi, v = c -f di, tij = ai + fei¿, t>i = C\ -f d\i. Then ai =

a + c + e4 eos fe, ci = c + e° eos 6. The passage from (a, c) to (ai, Ci) consists of two
motions. One of them, (a, c) —► (a + c, c), is a translation to the left. The other is simply
to add e° eos fe(j). But this is bounded for the case fe = 0, corresponding to real motion.
Using Lemma 2 the conclusión follows. ■

If Re u is negative enough one can use Lemma 1 to obtain a swallowing domain. For
Re u positive large it is better the next criterion.
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Lemina 4. The domain ílg defined by the inequality

Rev < g(Re u),

where

(4.8) g(x) = - log

is swallovñng.

(l + le'+ _ (l e' +^' + e*^ ,

Proof: The set Qg can be represented as the unión Qg = Uk>o where, given a
positive valué of K, the domain flx is defined by the inequality

Rev < -fx(R-eu), /*:(*) = K +
,K+X

eK — 1'

Indeed, g(x), is the envelop of the family {—/«■}. On the other hand, each CIk is swal-
lowing. To prove this let us note that:

(i) Qk is invariant, i.e. SSM(Qk) C &k- Using the notation of the proof of Lemma 3
for the real and imaginary parts of u,u,ui,vi, this follows from

.K+a
K + Cj = K + c + e“ eos b < ,K_1

+ e° eos b =
e^+°(l — eos b) + e° eos b

exp(a + K + c + e° eos 6) t,K+a
~ eK — 1

because K + c + e° eos b <

eK — 1

< 0.

iK -1 ’

e*-l
(ii) Rev < —K for all (u,v) G ÍÍjc .

We have, using (1.5),

Reu„<Reu — nK, and |v»»+i — un| < e~nK .

The last inequality ensures the existence of lim vn, with the real part less than or equal
to —K. m

We remark that, for real u, <7+(u), as given in Lemma 1, approaches very well T+ for
u < —5, with a relative error less than 10~16. On the other hand g, as given by Lemma 4,
approaches very well T+ for u > 30. For u = 0 a direct numérica! computation gives for
1 + the valué -2.0441929... . Using and g we obtain -2.0598158... and -2.5804576... ,

respectively.
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§ 5. Hyperbolicity

There is another type of behaviour of the trajectories zn = (u„,rn) of SSM which
are characterized by the property Re vn —* +oo as n —> +oo, or, at least, Reun> K for
all n > n0, K being positive sufficienty large. Such trajectories posses hyperbolic features.
The same is true for the trajectories of SM having the property Im x —► +oo (or —oo)
as n —» +oo.

More precisely, the statement about hyperbolicity can be expressed as follows.

Lemma 5. (Existence of a contracting direction).
Let zn = (un,t>„), n > no be a semitrajectory of SSM such that

Reun> K > log (2 + VE)

for all n >n0. Then ihere exists a nonzero vector £ such that

||r,noSSMmC||<A"*||C||,

where

X =
VE

< i.
eK — 2

Rere || • || is the usual Euclidean norm in C2 : ||£||2 = |f|2 + |r/|2 when ( = ({,tj)t .

Proof: It follows from (1.5) that the tangent TZSSM at z — (u, v) is given by the matrix

Denote its inverse at a point zn = (tín,t>n) by

Consider the cone K C C2 defined by the inequality |f | < i|r/| for ( — (£, r¡)T £ C2.
Applying Mn the cone K remains invariant provided Reun > K > log 4. Indeed, if
(£,t])T 6 fC, then |£| < — (77], and (£,,t),)t = Mn(Z,r¡)T satisfies the relations

M = lí'-íl<lí'l + |M. W<2|í'|,
b'l>eKin-|-/l>(e'f-2)|í'|>2|f’|.
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Also Mn stretches the vectors belonging to tC

||MnC|| > w\ > e* |€'| - \v\ > Q e* - l) M .

Since HCII = ||(£,»?)r|| < ^ M for 6 K* we have
iiMncn> A-^ieii.

Xt follows that the sequence

^t»o ^ítto+1 • • * ^no*fw ^ C ^

converges to a nontrivial closed cone (in fact a line). The vectors of this line satisfy the
thesis of the Lemma 5. ■

Remark 1. It follows from the preservation of du A dv that SSM stretches other
directions different from the one of L«mma 5. In particular, we obtain the mentioned
uniqueness of this direction. (The intersection of the cones MnoMno+\ •.. Mn(K.) for all
n > no is a line).

Remark 2. The same proof goes for SM represented in the from (1.4). One has to
replace the condition Reun> K > log(2 + y/E) by the more complicated one

ettn > e
K

i- ^ i K>\og(2 + VS),

for all n > no.

§ 6. Numérica] explorations

Several explorations have been done conceming the behaviour of points on the un-

stable manifold (of the origin for SM and of minus infinity for SSM). We describe the
procedures and summarize the results. First we present them for the semistandard map.

Using (3.2) a fundamental domain in the plañe of the parameter x is an strip of the
form xo < Re x < xo + 1 < 0. We looked first for a valué of xo such that the minimum
term in the sequence ||p*+1(xo + l)_2fc-2|j be less than 10-20 . íVom (3.11), for a fixed
k the minimiim of |pfc+ix 2k 2| is attained for |x| = ((2A; H- 2)(2A: 3))1/2/27t, and the
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valué of the mínimum is, roughly, 1.5034-
(2k + 3)!

• This is less than 10 20
((2fc + 2)(2fc + 3))*+*

for k > 26, and we can use x < —8.6736. In all the computations with the SSM we shall
use aro = —10 and the sum in (3.2) up to no = 26. The relation SSM(T-(x)) = r_(x-fl)
is satisfied for all the points tested except for the rounding errors (in double precisión).

Given a point T_(x), •with x in the strip, one computes successively iterates up to a
máximum of N. If some of them is in swallowing domain, then the iteration is stopped.
To this end Lemma 1 and Lemma 4 are used. If for the n-th itérate one has Re tin > M,
with M positive big, one considers that the point has entered the wild or hyperbolic set
and the point is marked as a dot in the x strip. Of course, it is possible (almost sure) that
the point will retum to the finite part or to a swallowing domain after further iterates,
but this has been the cutting criterion in our computations. If after N iterates the point
does not enter the wild ñor the swallowing región, then the computation is stopped for
the orbit of this point. In most of the cases it turas out, looking to the orbit, that the
point escapes to — oo very slowly, requiring a big number of iterates before reaching the
swallowing domain given by Lemma 1. One topic for further research is to use energy-time
canonical variables, as in [L2], to speed up the process.

The figure 1 displays the wild set in the x plañe for —10 < Rex < —9, \Imx\ < 3.
Due to the symmetry it is enough to consider one half strip, and we have chosen Im x < 0.
It becomes apparent that the figure is self similar, except in what concems the narrow black
región going down. It seems that this región extends to Im x —► —oo. For valúes of Im x

less than —2 it becomes so narrow that it can be fitted by a curve. The temptative valué

(6.1) Rex = —10 + 3/4 — y/S exp(\/8 Im x)

is proposed. Several tests have been done using (6.1) and we have found an escape towards
big valúes of Re u for all of them. One difficulty is that during the iterations the points
go to Re u < 0 (reaching a minimum valué of Re u ~ 2irlm x + 7.02) and the number of
iterates before reaching Re u > M becomes very large (cióse to 0.1328 exp(—tt Im x)). We
remark that to use M = 500 or M = e500 requires, only, one extra iteration. For starting
points given by (6.1) the final valúes of Im u and Im v tend to —2tt and 0, respectively.

The figures 2 to 9 contain various enlargements of fig. 1. The self similarity becomes
more apparent and fem-like structures are clear, specially in figures 4 to 8. The figure 10
contams a big horizontal magnification of a part of the black narrow región that seems to
lie around the curve given by (6.1).

We can also describe the behaviour of the orbits corresponding to black points in the
preceeding figures. To this end it is only necessary to describe the behaviour of {t¿n},
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(1.5) giving vn = un- itn—i • If Im
(2ku6h

1 2k + l
—ir, —-—ir we say that the code of u2 7 2

is k. Then we can consider the itinerary as the sequence of codes of the successive points
in the orbit. For instance, any real orbit in T- has itinerary with all the entries equal to
zero. The branch of the wild región going down to minus infinity in fig. 1 has itinerary
0°°, —1, (—2)°°. We give some itineraries which show the pattem of formation. The tip of
fig. 6 has itinerary 0°°, —1, —4, s = —2, where s = j means that from —4 on the step is
—2, that is, we get —6, —8, —10,.... The tips of the principal leaves in fig. 7 (the central
one being magnified in fig. 8) have itineraries (from top to bottom) 0°°, -1,-4, s = —2,
-42,-45,-47,-49,-52, s = -2; 0°°,-l,-4, s = -2, -44,-47,-49,-51,-54, s = -2;
0°°, — 1, —4, s = —2, —46,—49,—51,—53,—56, s = —2, respectively. Those leaves are se-

condary ones in the full picture. The itinerary of points in a tertiary leave, such as

the one appearing to the right lower part in fig. 8 has another pattem. For this
point we found 0°°, —1, —4, s = —2,—42,—45,—47,—49,—51,—54, s = —2, —92,-95,
—97, —99, —102, s = —2. The tip of the branch which appears to the right upper part in
fig. 2 is 0°°, —1, —6, s = -4.

On the other hand it seems that the dynamics of the SSM should be influenced by
the one of exp. Going from exp to SSM wemovefrom Au = exp(ti) to 62u = exp(u), A
being the forward finite difference. Some results for exp can be found in [DK], [DT], [V].
We skip some conjectures conceming the behaviour of SSM to the final discussion.

For SM we use (2.4) with the parameters of (2.14). One can take higher order
in (2.4) to be able to use |£j relatively large and avoid initial iterates. This is quite
convenient if e is small. Now there is no swallowing región and the stopping criterion
is to reach |Jmxn| > M for some M big. The points start in Imx > 0 and they are

classified according to the number of times that they jump from Im x > 0 to Im x < 0
or viceversa, before stopping.

The figures 11 to 14 have been obtained for e = 0.5. Figure 11 shows the points (in
the £ domain, represented by the parameters a and /?) that reach |Im x\> M with 0
jumps, that is, they escape to Im x > M. One can see a central part which tends to the
real axis in fig. 11. It goes to a real homoclinic point. If in one fundamental domain of the
real part of Wu we look at the two main homoclinic points (the ones with all the iterates
on 0 < x < 2ir) we define the principal homoclinic point as the one which has one itérate
on x = ir, the other being denoted as secondary. The limit point on the central branch of
fig. 11 is the secondary homoclinic. The figures 13 and 14 show a magnification of fig. 11
around the secondary homoclinic point by factors of 102 and 104, respectively. Again
the fera like structures become apparent. The figure 12 shows the points escaping after 1
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jump. The limit on the real axis of the branch going downwards cióse to the right border
of the figure is the principal homoclinic point, and the magnifications look Hke figures 13
and 14.

Finally, the figures 15 and 16 correspond to £ = 0.1. They give the points escaping
after 1 jump and a magnification by a factor 104 of the lower limit of the central branch,
respectively.

Beyond different scaling pattems we can ask for another difference when reducing
£. Such a decrease in e produces the dissappearition of real homoclinic points by means

of tangential homochnic points. To study numerically the behaviour of them one should
not use small e because, due to the exponentially small size of the distances between the
manifolds (see [Ll] and [FS]), the simulations should be done with very high precisión
routines. Instead we take e rather big. Going down with e, two homochnic points
dissappear cióse to 1.31903953 and they move to the complex plañe. Table I displays some

valúes cióse to this homochnic tangency. Henee, it seems that when e increases, many

tips of leaves of the fem-like structure for the SM move towards the real axis.

valúes of a for homoclinics valúes of a and f3 for homoclinics
10000 0.277030527, 0.283242278 3950 0.280191408 ± i 0.000058952

9000 0.277308070, 0.282982918 3940 0.280191499 ± i 0.000105855

8000 0.277613833, 0.282695339 3920 0.280191681 ± i 0.000163294

7000 0.277959179, 0.282368176 3900 0.280191863 ± i 0.000205243

6000 0.278366075, 0.281979463 3000 0.280200046 ± i 0.000858965

5000 0.278890192, 0.281473531 2000 0.280209138 ± i 0.001229161

4000 0.279921479, 0.280460428 1000 0.280218231 ± i 0.001511248

3980 0.279989393, 0.280392877 0 0.280227273 ± i 0.001748406

3960 0.280097598, 0.280285037
3955 0.280163005, 0.280219721

Table I. Here (i = 108(e - 1.319).

§ 7. Discussion

It tums out that the behaviour of the standard and semistandaxd maps in C2, on

some of their unstable separatrices, is extremely rich, with zones of regular motion and
others of wild character. Furthermore the wild set seems to be, partially, self similar. We
hope that the understanding of some properties of this complex map will clarify the real
behaviour. We rise some questions.
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a) Conceming SSM:
1) The wild set (black set in fig. 1) has zero measure if the cutting valué M tends

to +oo.

2) All the structures, except the central one, have branches, of all the levels, which
end at a finite point. Which one is the meaning of this point?

3) The central branch goes to Imx —> —oo with the asymptotic behaviour given
by (6.1). Then it divides the fundamental domain or, equivalenty, if it belongs to
a line 7 with imaginary part going from —00 to 0, then the región between 7
and 7 + 1 = Ti7 (the shift of 7 by 1 real unit) is a fundamental domain.

4) Let be the set of points in the fundamental domain between 7 and 7 +1 (as
in 3)) not belonging to the wild set. Then the Fatou set is

JFUJF, where T = (J -

and T denotes the complex conjúgate of T.
Furthermore let

u00(x)=pr2 lim SSMnT-(x).
n—»+oo

Then vx maps To into the left halfplane (i2e(ü00(x)) < 0). When we approach
the tip of one of the branches of the wild set, while remaining in To-, the image
vQO(x) goes to a rational múltiple of 2ir in the imaginary axis.

5) Inside each one of the branches there is a filament (a hair as in the case of the
iteration of the complex exponential map) going to infinity. This filament is

*■ associated to some definite symbolic dynamics.

b) Concerning SM :

1) The fraction of points escaping after j jumps, with j fixed, goes to zero when
M goes to +00.

2) The tips of the branches which go to the real axis are homoclinic points. They
are dense on the real part of the domain of the variable £.

3) The tips of branches not reaching the real axis are complex homoclinic points.
When an homoclinic (real) tangency is produced, for varying valúes of e, and
the homoclinic point dissappears, it becomes complex homoclinic.
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Captions for the figures

figure 1.
Wild set for the SSM. Order of the expansión (3.2) : n0 = 26. Cutting criterion : M — 700.
Máximum number of iterates : N — 20000. Domain of x for r_ : Rex e (-10,-9], Imx e (-3,0].
Points in the grid: 480 x 1440. The domain magnified in figure 2 is shown.

Figure 2.
Magnification of figure 1. Domain of x for T_ : Hez € (—10 + 0.8,—10+ 1.0],Imx e (—0.6,—0.4].
Points in the grid: 1440 x 1440. The domain magnified in figure 3 is shown.

Figure 3.
Magnification of figure 2. Domain of x for T_ :Rex € (-10+0.88,—10+0.92], 7mx € (-0.53,-0.49].
Points in the grid: 1440 x 1440. The domain magnified in figure 4 is shown.

Figure 4.
Magnification of figure 3. Domain of x for T_ : Re x £ (-10 + 0.90125,-10 + 0.90225],
/mx€ (-0.520, -0.519].
Points in tiie grid: 1440 x 1440. The upper side of the domain magnified in figure 5 is shown.

Figure 5.
Magnification of figure 3. Domain of x for T_ : Rex G (-10 + 0.90145,-10 + 0.90170],
Imxe (-0.52025,-0.520].
Points in the grid: 1440 x 1440. The domains magnified in figures 6 and 7 are shown.

Figure 6.
Magnification of figure 5. Domain of x for T_ : Re x € (-10 + 0.9014625, —10 + 0.9015125],
Imx € (-0.520225,-0.520175].
Points in the grid: 1440 x 1440.

Figure 7.
Magnification of figure 5. Domain of x for T_ : Rexe (-10 + 0.9016, -10 + 0.90165],
Imx £ (-0.52005,-0.52].
Points in the grid: 1440 x 1440. The domains magnified in figures 8 and 9 are shown.

Figure 8.
Magnification of figure 7. Domain of x for T_ -.Rexe (-10 + 0.90162375, -10 + 0.90163375],
Imxe (-0.520035,-0.520025].
Points in the grid: 1440 x 1440.

Figure 9.
Magnification of figure 7. Domain of x for T_ :Rex£ (-10 + 0.9016075, -10 + 0.9016125],
Imxe (-0.5200125,-0.5200075].
Points in the grid: 1440 x 1440.

Figure 10.
Magnification of figura 1. Domain of x for T_ -.Rexe (-10+0.7475,-10+0.75], Imx e (-3.5, -2.5].
Points in the grid: 480 x 1440.

Figure 11.
Wild set for the SM with e = 0.5. Order of the expansión (2.4): n0 = 50. Cutting criterion : M = 700.
Scale factor : n = 0.25. Maximun number of iterates : N = 20000. Domain D : (0,1] x (0,1].
Number of jumps :j = 0. Points on the grid: 1440 x 1440.

Figure 12.
Same as figure 11 but with j = 1.
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Figure 13.
Magnification of figure 11 around the secondary real homoclinic by a factor of 100.
Range in D : (0.409,0.419] x (0,0.01]. Points in the grid: 1440 x 1440.

Figure 14.
Magnification of figure 11 around the secondary real homoclinic by a factor of 10000.
Range in D : (0.4140675,0.4141675] x (0,0.0001]. Points in the grid: 1440 x 1440.

Figure 15.
Same as figure 12 but for e = 0.1.

Figure 16.
Magnification of figure 15 around the primary real homoclinic by a factor of 10000.
Range in D : (0.3626925,0.3627925] x (0,0.0001]. Points in the grid: 1440 x 1440.
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