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Interpolation theorems of sorne 
weighted quasi-Banach spaces 

EUGENIO HERNÁNDEZ AND JAVIER SORIA 

Abstract. We give severa) results concerning weighted Hardy's inequalities for the 
case q < 1, and using some techniques based upon a reiteration theorem, we study 
the weighted version of severa! int.erpolation theorems for quasi-Banach spaces. 

§1. Introduction. In a series of pa.pers (see [16), [17] and [5)) severa! authors 

have considered the interpolation of sorne quasi-Banach spaces with respect to the 

complex method of interpolation, and more generally for the case of families indexed 

by the boundary of the unit disk, (see [4]). The idea to identify the intermediate 

spaces obtained is to get a reiteration formula that goes back to the work of [9). In 

[10) a generalization of this formula is given to the case of weighted Banach spaces 

and as a consequence, the interpolat.ion spaces, for the weighted Lorentz spaces, 

are found in the Banach case. \:Ve take up now the interpolation of these spaces in 

the quasi-Banach case for which we will improve the results of [16), by using the 

techniques of [10] for a certain class of weights. 

In §2 we prove sorne results related t.o t.he weighted Hardy's inequalities. In section 

§3 we show an interpolation theorem for families of log-subharmonic operators. In 

§4 we complete the interpolation results with a part.ial reiteration formula. Finally 

in §5 we obtain as an application, the results mentioned a.hove, concerning the 

weighted Lorentz spaces, and some ot.lwrs for the weighted Hardy spaces. 

In this paper, we denote by L11 (w) the space of functions f sa.tisfying f w E LP, 

and C is a constant which may be <lifferent from line to line, but irrelevant to the 

conclusion otherwise. 

§2. Weighted inequalities. \Ve will consider a class of weights satisfying Hardy's 

inequalties for O < q ~ oo, restricted t.o non-increasing functions. These weights 

were characterized in [1] and tum out to be precisely the weights w for which the 



Hardy-Littlewood maximal operator Al, is bounded on Aq( w ), the weighted Lorentz 

space. The weights for which the inequality holds for all functions (i.e., boundedness 

of the Hardy operator S, on weighted Lq ), were chara.cterized in [12]. A first result 

shows that for the case O < q < l there exists a. big difference when restricted 

to non-increasing functions, since the only weight satisfying the inequality for all 

functions is the trivial weight, (we give a stronger result by considering the weak-L9 

version). 

THEOREM 2.1. Let S be tl1e Hai·d.Y opera.tor 

1 ( 
S f ( t) = t j 

O 
f ( s) ds, 

and suppose tha.t w is a. 11on-11egative locally integrable function on ( O, oo ). If 

O< q < l, w is continuous on an interval I and sa.tisfies 

[ ·w(s)ds ~ e ¡e~:) lf(t)lqw(t)dt, 
J{s: SJ(s)>t} tq Jo 

for some C > O, all t > O and all f = ">..¡, (I' subinterval oí I), tl1en w = O on l. 

PROOF: Suppose oo > w(t0 ) # O and let € > O be such that w =j; O on the interval 

I' = (t0 - é, t0 + é) C J. Let t > O ancl let .f = X.¡,. Then it is very easy to show 

that 

{s: Sf(s) > t} = { (to~¿ 2~) 
1 - t' t 

if t > 2e / ( t O + e) 

if O < t < 2e / ( to + e). 

Hence, 

12e/t . C ¡to+e-
w(s) ds ~ q w(s)ds. 

(to-e)/(1-t) t to-e 

'\\Tith t = e/(to + e) we get 

eq-1 J2(to+t) C ¡to+e 
w(s)ds < - w(s)ds. 

(to+ é)q (tg-e-2)/to - 2e to-e 

If we now let e go to infinity, we get tha.t the left hand side tends to infinity, (since 

O < q < 1 ), and the right ha.ne! side tends to Cw( t0 ), giving a contradiction. 1 
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In view of the results of [1] and [12], it is now natural to consider what happens 

with the boundedness of Son A9 (w), O< q:::; oo. We show that this is equivalent to 

the boundedness of M on the same space and, as a. consequence we can give a way 

to construct weights under these condit.ions, in terms of sorne function parameters, 

( see [ 1 O] for sorne related resul ts). Recall t.hat a function f E A 9 ( w) if 

( 
r>C )1/q 

IIJIIM(w) = lo (r(t)w(t)) 9 dt < oo, 

where f • is the non-increasing reanangement of f. 

PROPOSITION 2.2. Suppose w is a weight on R+ and O < q < oo. Then Sis a 

bounded operator on A 9 ( w) if ai1d only if 111 is bounded on A 9 ( w ). 

PROOF: If S: A9(w)--+ A9(w) boundedly, then 

(1) 100 

((Sf)*(t)w(t))9 dt:::; C 100 

(f*(t)w(t)) 9 dt. 

We want to show (see [1]) that if .f is a 11011-increasing positive function, then 

(2) 100 

(Sf(t)w(t))q dt:::; C 100 

(.f(t)w(t))9 dt, 

which is trivial by (1) and t.he fact t.hat J• = f and (Sf)* = SJ. 
Conversely if (2) holds then, since, for all t > O, 

r1 .f 5: t f* 
.fo Jo 

we have tha.t (Sf)*(t):::; S(f*)(t) and hence, 

which is (1 ). 1 

100 

((Sf)*(t)w(t)) 9 dt:::; fo00 

(S(f*)(t)w(t)) 9 dt 

< C ¡00 

(f*(t)w(t)) 9 dt, 
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DEFINITION 2.3. (See [8]) Suppose c.p : R+ --+ R+, c.p E C 1. We say tbat r.p is a 

function parameter ( r.p E B,¡,) if 

. tr.p'(t) tr.p'(t) 
O< o.i.,, = mf-) :S sup-(-) = /3i.,, < l. t>0 r.p{t t>0 '{) t 

This family of function parameters enjoys a great <leal of properties, ( see e.g. 

[14)) useful to obtain weighted inequalities and interpolation theorems for both 

real and complex methods, as we will see la ter. 

COROLLARY 2.4. Suppose c.p E B-w, O< q :S oo and Jet w(t) = tl-l/q /r.p(t). Then S 

is a bounded operator on A9(w). 

PROOF: By the previous proposition and the characterization of [1], we know that 

it suffices to show that for every r > O, 

¡00 (w(x)) 9 
C ir -- d:r < - (w(x)) 9 dx. 

r X r9 o 

If we denote by r.p(t) = sups>O c.p((Si)) and using properies ( 4), (12) and (13) in [8) 
c.p s 

we obtain, 

roo (w(x))q dx . roo (-1 )q dx :5 (-1 )q (1 (r.p(t))9 dt 
lr X Jr c.p(:r) X r.p(r) Jo t 

q ( ir ( t ) q dt) ( 11 
dt) 1 ir <- -( ) - (c.p(t))q - = C9 ,i.,,- (w(t))9 dt. 1 

r9 0 r.p t t O t rq 0 

REMARK: lf 1 $ q, then much more can be said about w. In fact, in [10) it was 

proved that w satisfies Hardy's inequalities for all functions, and not only restricted 

to non-increasing ones, as the corollary shows. 

§3. An interpolation theorem for fa111ilies of log-subhar1no11ic operators. 

The complex method of int.erpolation for families of qua.si-Bana.ch spaces, as given 

in [16) and [17), follows the same ideas as the Bana.ch ca.se in [4]. Let us give the 

main definitions involved in or<ler to fix the notation used in the sequel. 

Let T = {z E C : lzl = 1}. To simplify notation we shall write (} ET instead 

of ei8 E T. Let {B(fJ)}eeT be a family of quasi-Banach spaces, and denote by 

4 



C( 8) the constants in the quasi-triangle inequality. We sa.y that this family is an 

interpolation family (of quasi-Banach spaces) if ea.ch B(8) is continuously embedded 

in a Hausdorff topological space U, the function 8 --+ 11 bll B( 8) is measura.ble for 

each b E nseT B( 8), and log C( 0) E L 1 
{ T). Set 

B = { b E nseT B(0): ¡2

1r log+ llbll B(B) d0 < oo }· 

B is called the log-intersection space of the given fan1ily and U is called the con­

taining space. 

Let us denote by Q = ( B( · ), T) the space of all 8-valued analytic functions of the 
m 

form g(z) = ¿ X;(z)b; for which 11911= = sup8 llg(8)IIB(9) < oo, where X; EN+ 
j=l 

and b; E B, j = l, ... , m. (N+ denotes the positive Nevalinna class for the unit disc 

D = {z E C: lzl :5 l}.) For every b E 8, and z E D we define 

lalz = inf { ll9ll oo: g E Q, g(z) = b }. 

If Nz denotes the set of elements of B such that lalz = O, the completion B(z) of 

(B/Nz, l · lz) will be called the interpolation space at z of the family {B(8)}eeT• It 

can be shown that this is a quasi-Banach space with quasi-triangle constant 

C(z) =exp (l logC(8)Pz(0)d0), 

where Pz(0) is the Poisson kernel. 

In order to prove our next result, we need the follm-.ring de:finition. 

DEFINITION 3.1. Let N be the set of all measurable complex-valued íunctions on 

sorne measure space (X,µ) and Jet {B(8)}eeT be an interpolation family of quasi­

Banach spaces with containing space U. A family of operators lifz : U --+ N, 

z E D, is said to be log-subhanno11ic if for all f E Q(B(·), T) anda.e. x E X, 

log 11\fzf(z)(x)I 

is subhannonic in D. 
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THEOREM 3.2. Let {l\1.z}zeD be a log-subhannonic family of opera.tors as in Defi­

nition 3.1 and such that lif.:f(z)(·) is locally integrable in x. Suppose tba.t for all 

a E B wehave 

(3) 

1 
where O < p(B) < oo, p(·) E L 1(T) and logf] E L1(T). Then, for a1l a E 8 and 

zED, 

ll.l\f::allLP<•l(w,) :5 77(z )lalz, 

where ptz) = LptB)Pz.(B)d(} 1md 17(:z-) =exp (L(log7J(8))Pz(B)d8). 

PROOF: Let a E B; there exists f(z) = í:,'J= 1 <.pj(z)aj E Q(B(·), T) such that 

f(zo) = a and 

(4) llflloo :5 lalz.o(l + é), 

zo E D, e > O fixed. 

\Ne claim the following: 

The function z--+ log IIA1.:.f(z)( ·)IIL*' is subharmonic in D. 

The claim gives the result since, by (3) and (4), 

IIM.:oªIILP(•oJ = 11-M:o.f(zo)llu<•ol 

:5 exp ( h ( log lll\1uf( B)IILP<•l )P.:0 ( 8) dB) 

:5 exp (l (log(17(8)lf(B)le))P.:0 (8)d8) 

:5 ll.flloo7J(zo) :5 lal:: 0 (1 + é)TJ(zo). 

Let us now give the proof of thf' claim. Let p > O be such that Bp(zo) CD and 

r > O such that O < r < p( z) for all ;; E B p( zo ). This is posible since p( z) is strictely 

positive on D. 1t· is enough to show 
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for any such p > O. Define l(z) = 1 - p[z) and let g be a simple and positive 

function on X of the form I:f=1 a/X E;, with O:j > O a.nd Ej pairwise disjoint sets 

of finite measure. Then g(x)1<z) is a. log-subhannonic function in the disc for every 

fixed x. Consider 

l(z) = J,g(x) 1(z)lll1zf(z)(x)r dx 

N 

= k. a?) k, JM,!(z)(x)J' dx 

N 

= ¿/3j(z), 
j=l 

w hich is well defined sin ce .llf:J ( z )( ·) is locally integrable in x. 

We want to prove that J( z) is log-subharmonic and therefore it is enough to show 

that each /1j(z) is log-subhannonic. Si~ce, 

log/3j(z) = l(z)logaj +log (L; 1111..f(z)(x)lr dx), 

it remains to show that 

Dj(Z) = log ( L. ¡.Mzf(z )(x )r dx) 
, 

is subharmonic. 

Since, by hypothesis, l.l\fzf(z)(.r)I is log-subharmonic, l.l\1f(z)(x)lr is also log­

subharmonic, and so, for any romplex number a, 

leºzºle6;(zo) = !eª=o¡ { l•H:o.f(zo)(;r)lr d:r 
ÍE; 

:5 k, (
2
~ h leº'"+,,;'l¡JM,.+,,"/(zo + pe")(x)J' d9) dx 

= 2:_ r lea·(zo+pei 11 )¡e6;(zo+pt/')dx. 
21r ÍT 

This shows that loge6;(z) = Dj(z) is subharmonic, by Rado's criteria. Thus, if 

IIYIIL1 = 1 and using Holder's inequality with exponents q = p(z0 + pei8 )/r > 1 and 



q' = 1/l(zo + pei8
) we have, 

log (L g(x)l(zo)IAiz0 f(zo)(x)¡r dx) 
=logl(zo) $; ;'Tí fr 1ogl{zo + pci8 )d8 

=
2
~ l log (Lg(x)1<zo+Pt;

9

)l1\1zo+peiBf(zo + pei8 )(x)( dx) d8 

$:
2
1
7r l log (llgll~~o+pe;')ll.l\lzo+pei•f(zo + pei8 )(·)11~p(zo+Pei•>) d8 

r [ ·e 
=21r }T log 111\,Jzo+pe;,f(zo + pe' )(·)IILP(•o+,ei'> d8. 

Therefore, taking the supremum over all such functions g, we have 

log ll.l\,fz 0 f(zo )( · )11~,.,, 0 ) = r log 111\fzof(zo)IILP<•ol 

which proves the claim and hence the theorem. 1 

REMARK: This theorem improves Theorem 2.3 of [16] for analytic families of opera­

tors 1\fz such that log l1\1zf(z)(x)I is subharmonic, which generalizes the well-known 

result of Stein and \Veiss, (see [15]). 

Theorem 3.2 gives usa theorem for operators with values in weighted LP spaces, 

which is stated after the following definition. 

DEFINITION 3.3. (See [16]) 

Let M be the set oí measurable complex-valued functions on some measure space 

(Y, 11 ). An operator 1\1 mapping .,\.1 into tl1e class ./1/+ oí non-negative-valued mea.­

surable functions on some otl1er measure spa.ce (X,µ) is said to be oí maximal type, 

provided it satisfies: 

(a) M(>.a) = l>-IM a, for all >. E C, a. E M. 

(b) M(a) = M(lal), a E M. 

(e) M(a)(x) $; M(b)(x), if la(y)I $; lb(y)¡. 

(d) M(lf(·,8)dB)(x) $; h AJ(f(·,B))(x)dB. 

8 
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THEOREM 3.4. Let {B(0)}eeT be an interpolation family of quasi-Banacb spa.ces, 

{ w8 } a family of weights in N+ and AJ : U --t N+ an operator whicb can be 

expressed as the composition 1110 o L of a. linear operator L and oí a. maximal type 

operator Mo. Suppose tbat for a.Ji a E 13 we l1a.ve 

ll.l\Jallv,11>cw,J < 17(0)lale, 

wbere O< p(8) < oo, p~·) E L1(T) and log17 E L1 (T). Tl1en, for all a E B 

ll.i\1 allL1>!•l(w,.) S r¡(z )lalz, 

17( z) = exp ( l (log 17( B) )Pz( B) d(}) and 

Wz(x) = exp (l (logwe(x))Pz(0)d8). 

PROOF: Let 1\1z(u)(x) = _i\l(u)(:dwz(x), u E U. It is enough to observe that 

{.l\lz}zeD is a log-subharmonic family of operators, since for all f E Q(B(·), T) 

log IA1zf(z )(x )1 = log Afzf(z )(:r) + log wz(x ), 

and the first factor is subharmonic (by Proposition 2.1 of (16]) and the second is a 

harmonic function. The result now follows by applying Theorem 3.2. 1 

§4. Reiteratio11. 

As we ha.ve mentioned in the introduction, our goal is to find a partial reiteration 

theorem for the interpola.tion of sorne v:eighted quasi-Banach spa.ces. These spaces 

will be constructed by mea.ns of t.he real interpolation method with a function 

para.meter, that we now review. 

Let Ao, A1 be two quasi-Banach spa.ces. We sa.y that A0 and A1 a.re compatible 

if there is a Hausdorff topological vector space U such that Ao and A1 are subspaces 

of U. We then can form their sum and their intersection. We set A = ( Ao, A1 ) and 

E(A) = A0 + A1 and define the Peetre I{-funct.ional by 

I<(t,a) = J{(t,a;A) = inf (llaoll.4o +tlla11lA1 ), 
a=ao+a1 

all t > O, a E E(A)· 
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We also need to introduce the J-functional. Set A(A) = Ao n A 1 , and for each 

a E A(A) and t > O, define 

Í(t,a) = Í(t,a.;A.) = max(lalo,tlali), 

where lalo = limi .... 00 K(t, a) and lali = limi .... o K(t, a)/t are the so called Gagliardo 

completion norms, ( see [3]). 

Given a couple A = (Ao, A1 ) of compatible quasi-Banach spaces, a function 

para.meter c.p E B-.,., and O < q :5 oo we define 

- { - /

00 

( 1 , )q dt } A¡p,q,K = (Ao, A1)ip,q,K = a E '.E(A.) : lla.11~,q,K = Jo c.p(t) 1\. (t, a) T < 00 • 

This is the continuous version of the norm. There exists an analogous discrete norm, 

(see Proposition 2.6 of [10)). For the J-functional, we give directly this discrete 

definition: 

Ac,,,q,i = { a E :E(A): a= ¿an}, 
n 

where the sum converges in :E(A) and 0 11 E A(.4). In this case, we have 

( 
q) 1/q 

llall::r _= inf L( (~")J(2",an)) 
,p,q,J {a,,),. <.p -

n 

It can be proved that these two definitions give rise toan equivalent qua.si-norm 

on the intermediate space A.,,, 9 • \Ve will only show the inequality needed for our 

main result. 

LEMMA 4.1. Set p = log2/log(2max(C'o.C1 )), where C¡ is the quasi-triangle con­

stant for A¡, and suppose a E A(A). Tlien 

where 

(5) K~., = ( ,¡,(2) )221 I '(log 2)1l•-1
/' ( 1.= ( min(l, 1/t)<p(t) )'~t )'

1 
'. 
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PROOF: Suppose a E D.(A) and a.= ¿
11 

a,,, with a,, E D.(A). It is known that for 

p = log 2/ log(2max(C0 , C1 )) we have 

( )

1/p 

]{(t,a)$21
/P ¿(J((t,a,,)P , 

11 

(see [3]). Using now the fact that l{(t,a,,) $ min(l,t/s)i(s,a11 ) anda. change of 

variables (witb t = 2µ), we obtain 

and hence, using the discrete characterization for 11 · 11,p,q;K, (see Proposition 2.6 of 

[10)), 

( ( 
1 )q)l/q 

llall<P,q;K < (f)(2)(log 2)1
/ 9 ¿ cp(

2
,,) K(2µ, a) ,, 

( )
1/p( ( )q)l/q 

~\?(2)(log2)1 l•21
/• ~ min(l, 2"•)\?(r'•) ~ 'l'(~•/(2• ,a.) • 

But, by a monotonicity argument, 

and hence, 

and the integral is finit.e by Proposition 1.1 of [8]. 1 

DEFINITION 4.2. Let B = (B0 , B 1 ) be a pair of compatible quasi-Bana.ch spa.ces 

with quasi-triangle constants Co a11d C1 respectively. 1Ve say tha.t a pair of mea­

surabJe functions F: T x R+ --+ R+ a11d q: T--+ (O, oo) sa.tisñes condition S if 

for p(0) = min(p, q(0)), (p as a.bove), n·e liave 

(i) Fe(t) = F(0, t) E Blll, for e,·ery 8 E T. 
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(ii) h logFe(max(2, Ci/C0 )) dO < oo. 

(iii) h qt0) d0 < OO. 

f ( r= . dt)1/q(6) 
(iv) ÍT log+ Jo (Fe(t)min(l, 1/t))q<B) t d0 < oo. 

/ 1 ( /oo dt) 1/p{B)I 
(v) ÍT log Jo (Fe(t)min(l, 1/t))p(B) t d0 < oo. 

LEMMA 4.3. If Bo, B1 are quasi-Bai1ach spaces with constants Co and C1, <p E B~ 

and O< q < oo, then (B0 , Bi)'P,q is a quasi-Banach space with constant 

(6) Ce;,,q = Co¡p( Ci/C0 ) max(l, 21
/q-l ). 

PROOF: Suppose a, b E (Bo, B1 )<P,q· Since 

K(t, a+ b) $ Co (I{( C1t/C0 , a)+ K(C1t/Co, b)), 

using the properties that i.p satisfies, (see for example Proposition 1.1 of [8]), we 

have, 

( 
(>0 ( 1 ) q dt ) 

1 
/ 

9 

!la+ bll<P,q = Ío cp(t/{(t, a+ b) t 

S ( J.00 
C)i{º (Jl(C1t/Co, a)+ K(C1t/Co, b)) )' ~

1
)'

1
' 

S Co max(l,2
1
/H i( ( J.00 

( <¡>~t/((C1t/C0 , a)) 9 

~t)'
1
' + 

+ (f Ut)K(C1t/Co, b))' ~tt ') 
= Co max(l, 2t/q-l )( ( 1.00 Ccco~/C,) K(t, a)) q ~) 1/q + 

( 

/

00 

( 1 . )q dt)l/q) 
+ Ío cp(Cot/Ci) Ji (t, b) t 

< Comax(l,2119
-

1 }<p(Ci/Co)(llallip,9 + llbllip,9 ) • 1 
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LEMMA 4.4. Let (Bo, B 1 ) be a pafr oí comparable quasi-Banach spaces and F and 

q satisfying condition S. Set B(B) = (B0 , B1 )F,,q(B)· Let 8 be the log-intersection 

space oí the íamily {B(B)}eeT• TlJe11 

Bo nB1 e B. 

PROOF: Let b E B0 n B 1 • Then, 

( 
(X) ( 1 ) q(8) dt) 1/q(B) 

llbllF,,q(B) = lo Fe(t') K(t, b) T 

( 
¡= ( 1 ) q(9) dt) 1/q(B) 

< llbllBonB1 lo Fe(t) min(l, t) t 

( 
¡= dt)l/q(9) 

::; llbllBonB 1 lo (Fe(t) min(l, 1/t)t(B) T . 

The desired result now follows from ( iv) of condition S, for the case q( 8) < oo. If 

q(B) = oo, using the estimate (see for example Proposition 1.1.9 of [14]), 

we obtain 

J{(t,b) min(l,t) 
llbllF,,q(B) = ~~~ Fe(t) :;; llbllBonB1 ~~~ Fe(t) 

< llbl!BonB1 max (supt_ª.F,+l ,supt-PF,) = llbllBonBi· 1 
t:9 1~1 

THEOREM 4.5. Let (Bo, B1 ) be a pair of comparable quasi-Banach spaces and F 

and q satisfying condition S. Set B(0) = (Bo,Bi)F,,q(B)· Then {B(B)}eeT is an 

interpolation íamily of quasi-Banad1 spaces and 

(7) 

where Fz(t) = exp ( l log F( 8, t )P:( 8) c/8) and qtz) = l qtB) Pz(B) d8. 

PROOF: The fact that Fi E Bw, z E D, needed to define the space (Bo,Bi)Fz,q(z), 

is proved as in [10]. 
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Our next step is to show that {B(B)}eeT is an interpolation family oí quasi­

Banach spaces in the sense oí [16]. First B(B) C B 0 + B 1 and 

where 

( 
foo - . (8) ds )-1/q(B) 

k(B) = Jo ((Fe(s ))-1 min(l, s )t -;- , 
(see Proposition 2.4 oí (10]). Secondly, if C(B) = CF,,q(B) as in (6), the fact that 

log C( 8) E L1 (T) is a consequence of condition S. 

We are going to show that ií b E Bon B 1 

lhlz ~ C(z)llbllF.,,q(z), 

where Fz and q(z) are as a.hove. 

By Proposition 3.19 of [16], we know that there exists a representation oí b oí 

the form b = Í:¡n¡=:;N bn, with bn E Bon B1 such that 

Fix t > O and set Ge(t) = tF6(t)/Fo(t). Let G((,t), ( E D be the harmonic 

conjugate of G(·, t) normalized by G(z, t) = O. Similarly, let (1/q)~ be the harmonic 

conjugate of 1/q such that (1/q)~(z) = O. Set l-l'((, t) = G((, t) + iG({, t), and 

1 1 (1)~ 
s(e) = q(O + i q (e), { E D· 

L H( ) b h l
r. tH'(e, t) . 

et (, t e so t at '11 (e, f) = H ( ; that IS e, o 

( f' lF(( s) ) 
H ( {, t) = exp j 

1 
s ' ds · 

Define 
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where 

K(O = exp (l IogK(0)He(0)d0) 

and K(0) = J<F,,q(8) is the constant in (5), and 

L(!) = exp ( l log L( 0)He(0) d0) 

where 

L(0) = 4max(Co, C1 )q(z)/q(B) _!..:::.,_ • (
F.(?)) q(z)/q(8) 

log2 

/((!) and L(e) are well defined by condition S. To show that Bn E N+(D) we 

observe that it can be written as a quotient of two functions in H 00
, so that the 

one at the bottom has no singular pa1·t, ( see [7]): 

IH((,2")1 = exp ([" W(~
2
") ds) < 2", 

sin ce W (e, s) :$; 1 and for the other fa.ctors one observes that they are exponentials of 

either bounded functions or functions whose reciprocals are bounded (and therefore 

have no singular part). 

Define 

g(O = L bnBn(e). 
lnl~N 

Observe that g( z) = b. Also, 

- , ( ( n -11H(0,2n) (i(2",bn))q(z)/a(8)-ll _ n )q(8))1/q(8) 
-l\ (z) L Fo(2 ) F (211 ) F-("") J(2 , bn) X 

lnl~N z N -

X L(z) llblll-q(z)/q(8) 
L( B) Fz ,q(z) 
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X llblll-q(%)/q(8) 
F,, ,q(.i) 

<J<( )__!._(4 (C e ))q(.i)/q(8) _!...:.._ llbllq(.i)/q{8);1-q(z)/q(8) L( ) 
(

-F. (?)) q(::)/q(8) 

- z L(B) max o, 1 log2 F,.,q(z);R 

=l{(z)L(z)llbllF,,,q(z);K < OO. 

Using the density of B0 n B 1 in (B0 ,B1 )F,,,q(.i), we conclude the proof of (7). 1 

REMAR!(: \1/e do not know if the equality (B0 ,B1 )F.,q(z) = [B(B)]z holds for the 

case of quasi-Banach spaces, which \Ve know is true for Bana.ch spaces, (see [10]). 

§5. Applications to some weighted quasi-Banach spaces. 

The results given in the previous sections provide us with a very useful tool to 

obtain, for example, the intermedia.te spa.ces for sorne weighted spaces, namely the 

weighted Lorentz spa.ces, for which there has been lately a great deal of int.erest (see 

[1], [10], [13]). For our second example, we will give a partial inclusion and will 

make sorne comments about the full answer. 

PROPOSITION 5.1. Suppose w: T x R+ - R+ and q: T - (O, oo) are two mea­

surable functions satisfying that w8 is a weight for the Hardy operator on Aq(B)( w8 ), 

(see Proposition 2.2), 1/q E L 1(T) a11d 

where c+(we,q(B)) is the constai1t for tl1e boundedness of Son Aq(B>(w8 ). Tben, 

if A9<8>( w9) is an interpolation family of quasi-Banach spaces, 

where 1 / q( z) is the harmonic extension oí 1 / q( B) and 

tv:(t) = exp ( L log(ws(t))P:(B) d9) · 
16 



1 t 
PROOF: Let Mf(t) = f**(t) = S(.f*)(t) = t Jo f*(s)ds. Mis an operator of 

ma.ximal type, since by the equality, (see [2]) 

- lif f(t) = sup ~ f f(s)ds 
IEl=t t JE 

it is easy to verify conditions (a), (b), (e) and (d) of Definition 3.3. Moreover, 

smce, 

( 
¡oo ) l/9(8) 

llli1 fllL,<•>(w,) = Jo (S(f*)(t)we(t)) 9<
9>dt 

( 
¡oo ) 1/q(B) 

< c+(wg, q(0)) lo (f*(t)we(t))q(B)dt = c+(wg, q(B))llfllM(')(w,)· 

We can now apply Theorem 3.4 to conclude 

IIAffllLq(•)(wz) ~ C(wz,q(z))llfll¡M<1 >(uo,)]z' 

wbere, 

C(wz,q(z)) = exp (l log(C+(we,q(0)))Pz(B)d8). 

Since M f = f**, and f* :5 J**, the a.hove inequality implies, 

IIJIIA9(zl(w,) = llf*IILq(z)(tt>:) ~ llf**IILt(z)(u,,.) 

= 11.llf fllLq(z)(w,) ~ C( Wz, q(z ))llfll[At(l)(w,)]z, 

which, by a density argument, proves the <lesired result. 1 

To prove the converse, we vdll need to recall the following result (see [11]): 

LEMMA 5.2. If 'P E B-.v, O < q < oo and we set w(t) = t 1 - 1 / 9 /cp(t), then 

(L1 , L00 )1p,q = A"( w ), with equivalent quasi-norms. 

THEOREM 5 .3. Let B = ( B 0 , B 1 ) be a pair of compatible quasi-Banach spa.ces with 

quasi-triangle constants C0 and C1 respectively, and suppose tha.t the functions 

F: T x R+ --+ R+ and q: T--+ (O, oo) satis~v condition S. Set 

w(0, t) = tl-I/q(B) /Fs(t). 

li 



Then, {Aq(B>(w(B, •))}eeT is az1 iuterpola.tion family of quasi-BBJ1ach spaces BJ1d 

with equivalent quasi-norms, where 

1 1 1 
q(z) = }T q(B)Pz(B)d8 

and 

w(z,s) = exp (f/1ogw(8,s))Pz(B)d8)· 

PROOF: By Lemma 5.2 

By Theorem 4.5, {Aq(B>(w(B, •))}eeT is an interpolation family, and 

The other inclusion is a trivial consequence of the fact that by Corollary 2.4 and 

condition S, we are under the hypothesis of Proposition 5.1. 1 

Theorem 3.4 can also be applied to other situations in which the spaces are 

defi.nided in terms of maximal functions, namely the HP spaces over very general 

domains (homogeneous type, product domajns, ... ). Our next theorem gives results 

for weighted HP spaces. We say tha.t .f E HP(w), O< p < oo, if for t.p ES, with 

J 'P # o, 
111f(x) = sup lf * 'Pt(Y)I E LP(w1IP), 

li:-yl<t 

and we denote llfllHP(ui) = IIAf fllu•(u,1/P)· 

THEOREM 5.4. Let O < p(B) ~ oo aJ1cl w : T x R+ --+ R+ be two measurable 

functions, witb 1/p E L1(8). If {HPC 9\we)}eeT is an Íllterpolation family of quasi­

BBJ1acb spaces, then 
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where 1 / p( z) is the harmonic extension oí 1 / p( 0) and 

Iogwz(x) = J, logwe(x) Pz(B)dB. 
p(z) T p(fJ) 

PROOF: It is clea.r that Mf(x) = sup¡r-yj<t l.f * 'Pt(Y)I is an operator of maximal 

type associated to HP(
9
)(w9). Moreover, IIMfllu<'>(w!'"<'>) = llfllH,,<•>(w,), so that 

by Theorem 3.4, 

and a density a.rgument will finish the proof. 1 

REMARK: Equality of spaces on the previous result is still an open question. For 

the case where the weight is constant, au affirmative answer was found in [16). 
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