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Interpolation theorems of some
weighted quasi-Banach spaces

EUGENIO HERNANDEZ AND JAVIER SORIA

Abstract. We give several results concerning weighted Hardy’s inequalities for the
case ¢ < 1, and using some techniques based upon a reiteration theorem, we study
the weighted version of several interpolation theorems for quasi-Banach spaces.

§1. Introduction. In a series of papers (see [16], [17] and [5]) several authors
have considered the interpolation of some quasi-Banach spaces with respect to the
complex method of interpolation, and more generally for the case of families indexed
by the boundary of the unit disk, (see [4]). The idea to identify the intermediate
spaces obtained is to get a reiteration formula that goes back to the work of [9]. In
[10] a generalization of this formula is given to the case of weighted Banach spaces
and as a consequence, the interpolation spaces, for the weighted Lorentz spaces,
are found in the Banach case. We take up now the interpolation of these spaces in
the quasi-Banach case for which we will improve the results of [16], by using the
techniques of [10] for a certain class of weights.

In §2 we prove some results related to the weighted Hardy’s inequalities. In section
§3 we show an interpolation theorem for families of log-subharmonic operators. In
§4 we complete the interpolation results with a partial reiteration formula. Finally
in §5 we obtain as an application. the results mentioned above, concerning the
weighted Lorentz spaces, and some others for the weighted Hardy spaces.

In this paper, we denote by L”(w) the space of functions f satisfying fw € L?,
and C is a constant which may be different from line to line, but irrelevant to the

conclusion otherwise.

§2. Weighted inequalities. We will consider a class of weights satisfying Hardy’s
inequalties for 0 < ¢ < oo, restricted to non-increasing functions. These weights

were characterized in [1] and turn out to be precisely the weights w for which the
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Hardy-Littlewood maximal operator A, is bounded on A%(w), the weighted Lorentz
space. The weights for which the inequality holds for all functions (i.e., boundedness
of the Hardy operator S, on weighted L?), were characterized in [12]. A first result
shows that for the case 0 < ¢ < 1 there exists a big difference when restricted
to non-increasing functions, since the only weight satisfying the inequality for all
functions is the trivial weight, (we give a stronger result by considering the weak-L?

version).

THEOREM 2.1. Let S be the Hardy operator

Sﬂﬂ=%£f@ﬂ&

and suppose that w is a non-negative locally integrable function on (0,00). If

0 < ¢ < 1, w is continuous on an interval I and satisfies

/ ww@sgf F(0)]"u(t) dt,
{s: Sf(s)>1} td 0

for some C > 0, allt > 0 and all f =\ (I' subinterval of I), then w =0 on I.

PROOF: Suppose oo > w(tp) # 0 and let € > 0 be such that w # 0 on the interval
I'=(ty—¢e,tg+¢e)C I Lett>0andlet f =X;. Then it is very easy to show
that

0 ift > 2e/(to +¢)
: S >t} = to—¢ 2=
{s: 5f(s) > 1} (" °,-—) 0 <t <2/ (to +€).
1—-¢t ¢
Hence,
2¢/t C to+e
/ w(s)ds < — w(s)ds.
(to—)/(1~1) 1 Jio—e

With t = ¢/(to + €) we get

91 /‘2(¢o+!) C tot+e
— w(s)ds < — w(s) ds.
(to +€)7 Juz—ery 1, 2¢ Jyo—e

If we now let € go to infinity, we get that the left hand side tends to infinity, (since

0 < g < 1), and the right hand side tends to Cw(to), giving a contradiction. §
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In view of the results of [1] and [12], it is now natural to consider what happens
with the boundedness of S on A?(w), 0 < ¢ £ co. We show that this is equivalent to
the boundedness of M on the same space and, as a consequence we can give a way
to construct weights under these conditions, in terms of some function parameters,

(see [10] for some related results). Recall that a function f € A%(w) if

o 1/q
Hfllaeqw) = (/0 (F (Hw(t))* dt) < oo,

where f* is the non-increasing rearrangement of f.

PROPOSITION 2.2. Suppose w is a weight on RY and 0 < ¢ < 00. Then S is a
bounded operator on AY(w) if and only if M is bounded on AY(w).

PROOF: If S: AY(w) — A?(w) boundedly, then

(1) /Ooo (SH)*()w(t))? dt < C/Oco (F*(t)w(2))? dt.

We want to show (see [1]) that if f is a non-increasing positive function, then
@ | ssownyase [T Gouw) e

which is trivial by (1) and the fact that f* = f and (Sf)* = Sf.

Conversely if (2) holds then, since, for all t > 0,

/offs/otf‘

we have that (S£)*(t) < S(f*)(t) and hence,
/oo (SH*(t)w(t))! dt < /oo (S(F)(w(2))? dt
0 0
<c ["(ruw)a,
0

which is (1). §



DEFINITION 2.3. (See [8]) Suppose ¢ : R* — R*, o € C!. We say that ¢ is a
function parameter (¢ € By ) if

to'(t to'(t
0<a,=inf ——— ‘P() < su _&o_(_)_

= 1.
>0 o(t) ~ >0 (L) Pe <

This family of function parameters enjoys a great deal of properties, (see e.g.
[14]) useful to obtain weighted inequalities and interpolation theorems for both

real and complex methods, as we will see later.

COROLLARY 2.4. Suppose ¢ € By, 0 < ¢ < oo and let w(t) = t'72/9/p(t). Then S

is a bounded operator on AY(w).

PROOF: By the previous proposition and the characterization of [1], we know that

it suffices to show that for every r > 0,

[ (22) w < & [(teyras.

If we denote by P(t) = sup,5q #lst) and using properies (4), (12) and (13) in [8]
we obtain,

(%)
L (wgr))qd“*/m< ) < (55 (r)) /(W”qg%t'
([ o) 2)([omor8) - e

REMARK: If 1 < g, then much more can be said about w. In fact, in [10] it was

proved that w satisfies Hardy’s inequalities for all functions, and not only restricted

to non-increasing ones, as the corollary shows.

§3. An interpolation theorem for families of log-subharmonic operators.
The complex method of interpolation for families of quasi-Banach spaces, as given
in [16] and [17], follows the same ideas as the Banach case in [4]. Let us give the
main definitions involved in order to fix the notation used in the sequel.
Let T = {z € C: |z| = 1}. To simplify notation we shall write § € T instead
of ¢ € T. Let {B(6)}set be a family of quasi-Banach spaces, and denote by
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C(6) the constants in the quasi-triangle inequality. We say that this family is an
interpolation family (of quasi-Banach spaces) if each B(#) is continuously embedded
in a Hausdorff topological space U, the function § — ||b||g(s) is measurable for

each b € NgeT B(6), and log C'(6) € L}(T). Set

2r
B= {b € Nget B(9): / 10g+ 1]l B(6) df < oo}
0

B is called the log-intersection space of the given family and U is called the con-
taining space.

Let us denote by G = (B(-), T') the space of all B-valued analytic functions of the
form g(z) = i X;j(2)b; for which ||g|lec = supy ||g(6)||B(e) < o0, where X; € N+

i=1
and b; € B, j = 1,...,m. (N1 denotes the positive Nevalinna class for the unit disc

D={z€ C:|z|] £1}.) For every b € B, and z € D we define

lal. = inf {llgllec = ¢ €, g(z) = ).

If N, denotes the set of elements of B such that |a|. = 0, the completion B(z) of
(B/N_,|-|.) will be called the interpolation space at z of the family {B(6)}set. It

can be shown that this is a quasi-Banach space with quasi-triangle constant

C(z)=-exp (/ log C(6)P.(6) dﬁ),
T
where P,(8) is the Poisson kernel.
In order to prove our next result, we need the following definition.

DEFINITION 3.1. Let N be the set of all measurable complex-valued functions on
some measure space (X, p) and let {B(8)}peT be an interpolation family of quasi-
Banach spaces with containing space U. A family of operators M, : U — N,

z € D, is said to be log-subharmonic if for all f € G(B(-),T) and a.e. z € X,

log [M, f(2)(z)]

is subharmonic in D.



THEOREM 3.2. Let {M.}.ep be a log-subharmonic family of operators as in Defi-
nition 3.1 and such that M, f(z)(-) is locally integrable in . Suppose that for all

a € B we have

(3) i Moall Lror(wy) < n(6)lals,

where 0 < p(8) < oo, T)- € LY(T) and logn € L*(T). Then, for all a € B and
z € D,

M- all Lo w,) < (2)lals,

1

where —— p(z) /rp(G)P (8)d8 and n(z) =exp (/(logn(ﬂ))P (6) d9>

PROOF: Let a € B; there exists f(z) = Ej=1 pj(z)a; € G(B(:),T) such that
f(z0) = a and

(4) 1 flleo < lalzo(1 + ),

zg € D, € > 0 fixed.
We claim the following;:
The function z — log || M. f(z)(*)ll Lr:) is subharmonic in D.

The claim gives the result since, by (3) and (4),

IM:oall Loczo) = 1M 20 F(20)]l Lociod
< exp ([ (10 [Mef @)l Pos(6) 0

< exp ( [ (1osn@15()1e)) (@) de)
SN Fllen(z0) £ lalzo(1 + €)n(z0)-

Let us now give the proof of the claim. Let p > 0 be such that B,(2¢) C D and
r > 0 such that 0 < r < p(2) for all = € B,(2). This is posible since p(z) is strictely

positive on D. It is enough to show

1 T
10g 1M, £ (20) () ooy < 5= /T 1g M, peie £(20 + PEOY( M tagtseiry 46
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for any such p > 0. Define I(z) = 1 — cp—(rt)- and let g be a simple and positive
function on X of the form Eﬁ__l a;Xg;, with a; > 0 and E; pairwise disjoint sets

of finite measure. Then g(z)!*) is a log-subharmonic function in the disc for every

fixed z. Consider
I(z) = /\ g(2)! DM, f(2)(z)] da
Il’ i(z)
= M. f(z)(=)|" dz

N J
=" Bi(2),
i=1

which is well defined since M, f(z)(-) is locally integrable in z.
We want to prove that I(z) is log-subharmonic and therefore it is enough to show

that each §;(z) is log-subharmonic. Since,

log Bj(z) = l(z)log a; + log </E I-sz(z)(m)rdl’)»

it remains to show that

6;(z) = log (/E I"\'Iz.f(z)(af)lrdx)

is subharmonic.
Since, by hypothesis, |]\-I 2 f(::)(:c)l is log-subharmonic, IJ\I f(z)(:c)]r is also log-

subharmonic, and so, for any complex number a,
|ea=o|ebi(z0) = |e°"°|/ |AL., f(z0)(x)| da

E;
1 cot pei® )

</ ('2—/ e P4 i £(20 + pe*"xw)l'd“’) @

E; ™ Jr
= .}./ ICO'('70+P(’M)Ieﬁj(:o+P€“)dx'
27T T

This shows that loge%(?) = 0j(z) is subharmonic, by Rado’s criteria. Thus, if

llgllr = 1 and using Holder’s inequality with exponents ¢ = p(zo + pe'?)/r > 1 and
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¢' = 1/1(20 + pe'?) we have,

log(/;{g(z)l(zo)MIZOf(zo)(a:)lrdx)

=logI(zo)$—1—/ log I(zo + pe'®) d8
27 T

1 - 8 : r
=o [ 108 ([ o@D My e o + o6& e )

1 e i
<o [ 108 (Il 1M,y i S G20 4 YO e ) 2

=2_,r/ 10g ||M o4 peie F(20 + €'Y M| Locao+aeivy dF.
T

Therefore, taking the supremum over all such functions g, we have
log || M, f(20 )( )| Lrxe) = 7 log || Mo f(20)l Lrcso)

r i
< 5 / log H]\Izo-i-pe“’f(zo + pe 0)(')”[,9(‘g+u“) dé,
T T

which proves the claim and hence the theorem. J

REMARK: This theorem improves Theorem 2.3 of [16] for analytic families of opera-
tors M, such that log [.M = f (z)(:z")l is subharmonic, which generalizes the well-known

result of Stein and Weiss, (see [15]).

Theorem 3.2 gives us a theorem for operators with values in weighted L? spaces,

which is stated after the following definition.

DEFINITION 3.3. (See [16])

Let M be the set of measurable complex-valued functions on some measure space
(Y,v). An operator M mapping M into the class N'* of non-negative-valued mea-
surable functions on some other measure space (X, y) is said to be of maximal type,
provided it satisfies:

(a) M(Aa)=|A|Ma, forall A€ C,a e M.

(b) M(a) = M(lal), a€ M.

(c) M(a)(z) < M(b)(z),  ifa(y)] < [b(y)].

@ m( [ 5008 @ < [ deseonerae,

8
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THEOREM 3.4. Let {B(6)}seT be an interpolation family of quasi-Banach spaces,
{wg} a family of weights in Nt and M : U — Nt an operator which can be
expressed as the composition My o L of a linear operator L and of a maximal type

operator My. Suppose that for all a € B we have

”A‘Ia“Lp(O)(w” < n(6)lale,

where 0 < p(8) < oo, ;J—(l-—) € LY(T) and logn € L(T). Then, for all a € B

IMallLr(w,) < n(2)lals,

1 1
where 1—3(2—5 = /I‘ mP,(G) dé, n(z) = exp (L(logn(e))Pz(G) dG) and

w,(z) = exp (/ (log we(2))P.(8) dG).
T

PROOF: Let M,(u)(z) = M(u)(a)w.(z), u € U. It is enough to observe that
{M. }:ep is a log-subharmonic family of operators, since for all f € G(B(-),T)

log | M. £(2)(2)] = log M, f(z)() + log w.(z),

and the first factor is subharmonic (by Proposition 2.1 of [16]) and the second is a

harmonic function. The result now follows by applying Theorem 3.2. J

§4. Reiteration.

As we have mentioned in the introduction, our goal is to find a partial reiteration
theorem for the interpolation of some weighted quasi-Banach spaces. These spaces
will be constructed by means of the real interpolation method with a function
parameter, that we now review.

Let Ap, A; be two quasi-Banach spaces. We say that Ay and A; are compatible
if there is a Hausdorff topological vector space U such that Ag and A; are subspaces
of U. We then can form their sum and their intersection. We set A = (A, 4;) and

$(A) = A¢ + A; and define the Peetre K -functional by
K(t,a) = K(t,a;A) = . ing (llaoll a0 + tlla1ll 4, ), all t>0, a € I(4)
=ap+t+a)

9



We also need to introduce the J-functional. Set A(Z) = Ao N A;, and for each
a € A(A) and t > 0, define

j(t,a) = j(t,a;i) = max(|alo, t}al;),

where |alo = limy—~oo K(¢,a) and |a|; = lim,—o K (t,a)/t are the so called Gagliardo
completion norms, (see [3]).

Given a couple 4 = (Ap,A;) of compatible quasi-Banach spaces, a function
parameter ¢ € By and 0 < g < 0o we define

- - ®/71 1 dt
Rpac = (o, Ao = {a e S ol = [ (SrKa) T <oo}-

This is the continuous version of the norm. There exists an analogous discrete norm,

(see Proposition 2.6 of [10]). For the J-functional, we give directly this discrete

definition:

Z%q,j = {a eX(A): a= Zan},

n

where the sum converges in £(4) and a,, € A(4). In this case, we have

2 <¢(;n)f(2n’an))4) l/q'

n

lallz, ,, = af, (

It can be proved that these two definitions give rise to an equivalent quasi-norm
on the intermediate space Ep,q. We will only show the inequality needed for our

main result.

LEMMA 4.1. Set p = log2/log(2max(Cy.C})), where C; is the quasi-triangle con-
stant for A;, and suppose a € A(A). Then

el < I\’quua”(p,q;ja
where
had dt i/p
(5) K,q= (‘4,5(2))221/0(log 2)1/9—1/9(/ (min(1, l/t)c'p'(t))p-t—) .
0

10



PROOF: Suppose a € A(4) and a = ¥, a,, with a, € A(A). It is known that for
= log 2/ log(2max(Cy, C;)) we have

1/p
K(t,a) < QI/P(Z(K(t,au)P) ,

(see [3]). Using now the fact that K(¢,a,) < min(1,t/s)J(s,a,) and a change of

variables (with t = 2#), we obtain

1/e
K(2%,a) < 21/”(Z(mi11(1,2")j(2“'",a#_,,))p) ,

and hence, using the discrete characterization for || - ||,,¢;x, (see Proposition 2.6 of

[10)),

lalle.gx < _93(2)(log2)1/9(2 ( e I\( ,a)) q)llq

H

55(2)(1%2)1/4«21//:(Zmin(L?"")co‘(‘z‘”"))l/p(Z( PeONGE “")> )
p

v

1/g

But, by a monotonicity argument,

1/p

/e d
(Zminu,z"ﬂ)a(z-“’)) < loga)l/,,( [ minta, 1y t) :

and hence,

oo di 1/p
lalle.qre < (¢(2))22”"(log2)‘/"“/"( /0 (nun(l,l/t)a(t))"T) el g:3-
and the integral is finite by Proposition 1.1 of [8]. I

DEFINITION 4.2. Let B = (By.B;) be a pair of compatible quasi-Banach spaces
with quasi-triangle constants Cy and C; respectively. We say that a pair of mea-
surable functions F : T x R* — R* and ¢ : T — (0, oo} satisfies condition S if

for p(8) = min(p, ¢(6)), (p as above), we have
(1) Fe(t) = F(6,t) € By, for every 8 € T.

11



(i1) Llogﬁ(mw(Q,Cl/Co))d0<w.
(i) /r'éfleT)de < oo.
oo . dt 1/¢(6)
Gv) | log* (Fa(t)min(1,1/1))* "2 dé < oo.
o (] )
(v) /r log(/o (Fo(t)min(1,1/t))" -t—)

LEMMA 4.3. If By, B; are quasi-Banach spaces with constants Cy and Cy, ¢ € By

dé < oco.

and 0 < ¢ £ oo, then (By, B1)y,q is a quasi-Banach space with constant
(6) Cyp.g = CoP(C1/Co) max(1,2/971).
PROOF: Suppose a,b € (Bg, By),. Since

K(t,a+ b) < Co(K(C1t/Cy,a) + K(C1t/Co, b)),

using the properties that o satisfies, (see for example Proposition 1.1 of [8]), we

have,

lla +bll.q = (/Ooo (;?731‘ (t,a+ b))q‘it)w
< (/Ow (-?—)c (Ix(Clt/Co,a)+I\(Clt/co’b)))th)l/9
([ (i) )"
* (/ow( (t)I‘(Clt/Co,b)) ‘”)w)

([ (mﬁm"“””)qi‘t)m)

< Comax(1,2"9"13(C1/Co)(lallg.g + 1Bllo.q) - B

12
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LEMMA 4.4. Let (Bg, By) be a pair of comparable quasi-Banach spaces and F' and
g satisfying condition S. Set B(6) = (Bgy, B1)F, q6)- Let B be the log-intersection
space of the family {B(6)}¢et. Then

By N B, C B.

PROOF: Let b € By N B;. Then,

o 1 9(8) g4\ 1/9(8)
W2l £y 908y = (/0 (Fa(t K(t, b)) _t')
© /1 9(8) g4\ 1/9(8)
< ~ i —
< ||8l| Bons, (/; (F D rnm(l,t)) - )

1/q¢(6)
<nbns,,nal( / (F5(t) min(1, 1/t))"“’)dt) .

The desired result now follows from (iv) of condition S, for the case ¢(6) < co. If

q(8) = oo, using the estimate (see for example Proposition 1.1.9 of [14]),
Fy(t) > min(toFs  tPFe ),

we obtain

K(t b) min(1,%)
“bllFo g(6) = SUP Folt) = < ol Bons, stulg Fo0)

< 8l Bonp, max (supt"“”"o +1,supt'ﬁﬁ) = ||bllBonB:- §
1<1 1>1

THEOREM 4.5. Let (By,By) be a pair of comparable quasi-Banach spaces and F
and q satisfying condition S. Set B(6) = (Bo, By)r, q6)- Then {B(6)}scT is an

interpolation family of quasi-Banach spaces and
(7) (-B()s -Bl )F,,q(:) - [B(G)]zs

where F,(t) = exp (/rlogF(O,t)P:(G)dG) and —— q( ] [rq(e)P (6) d6.

PROOF: The fact that F, € By, z € D, needed to define the space (Bo, B))F, q(:)
is proved as in [10].

13



Our next step is to show that {B(68)}¢eT is an interpolation family of quasi-
Banach spaces in the sense of [16]. First B(8) C By + B; and

llall B+ B, < k(6)llallB(o),

where
1/4(6)

10 = ([ (@ mina, ) @)

(see Proposition 2.4 of [10]). Secondly, if C(6) = Cg, 4¢) as in (6), the fact that
log C(8) € L!(T) is a consequence of condition S.
We are going to show that if b € By N B,

1bl: < C(2)IbllF, q(2)>

where F, and ¢(z) are as above.
By Proposition 3.19 of [16], we know that there exists a representation of b of
the form b = EInI<N by, with b, € By N By such that

J(2",b,) < 4max(C, C;)K (2™, b).

Fix t > 0 and set Gg(t) = tFy(t)/Fo(t). Let G(£,t), £ € D be the harmonic
conjugate of G(-,t) normalized by G Gz, t) = 0. Similarly, let (1/¢)™ be the harmonic
conjugate of 1/¢ such that (1/q)~(z) = 0. Set W(£,t) = G(£,t) + ié({,t), and

H=m5+i(3) ©  ¢en

s(€)  q(€) q
Let H(£,t) be so that W(&,t) = t;{;(;;t)); that is

t -
H(E t) =exp (/ E%flds)-
1

H(E,2Y) (2 0)\ DO K(2) L(2) ) mg(e)/ate)
Bn(€) = F@w(az)) (0 T(6) 1o

Define

14



where
K(€) = exp (/ log K(6)H¢(6) dG)
T

and K () = KF, 4(¢) is the constant in (5), and

L(§) = exp (/r log L(8)H¢(6) de)

where

T, (2)/9(8)
W)=4max<co,cl)«=>/q<o>(Fe@))“ "

log 2
K(€) and L(¢) are well defined by condition S. To show that B, € N¥(D) we
observe that it can be written as a quotient of two functions in H, so that the

one at the bottom has no singular part, (see [7]):

2" 7 on
|H<a,2")|=exp(/l W2 4 )sz",

C

since W (€, s) < 1 and for the other factors one observes that they are exponentials of
either bounded functions or functions whose reciprocals are bounded (and therefore
have no singular part).

Define
g(&) = D baBn(£).

Inl<N

Observe that g(z) = b. Also,
I9(OIFo g(on:c < K(O)lg(8)l p, q00:5

51\’(0)( )

X 1/q(8)
(Fa(Qn)_lJ(Q”, ann(e)))q(m)
Inl<N

H(8,27) [ J(2", b)) 12/ ®-1
Fz(zn) ( Fz(gn) )

-.:K(z)( > (Fe(zn)-l

[ni<N

. g(0)\ 1/9(8)
J(2",bn)) ) X

L(Z) —q(2)/4(8)
ol

15



—K(z )L(Z)(

1/4(
n\— ¥ n (z -
L(6) z:m@>‘”2&mqv nuﬁ%“’

Inl<N

<K(z) L= )(4max(Co,Cl))9(=)/q(0)(

1/4(8)
ny—177ron g(z)
10 T (REMIRE",b) ) .

Inl<N

1— 4
x |1blE, oy ™

Fo(2)
log 2

o

'“)ﬁg“mﬂaxmwww(

=K (2)L(2){Ibll 7, acerikc < 0.

=)/q(6)
9(x)/q “b”q(,)/q(o)+1-q(z)/q(o)
Fr,q()iK

Using the density of Bo N B in (Bo, B1)F, ), We conclude the proof of (7). i
REMARK: We do not know if the equality (By,B1)F, 4z) = [B(6)]. holds for the

case of quasi-Banach spaces, which we know is true for Banach spaces, (see [10]).

§5. Applications to some weighted quasi-Banach spaces.

The results given in the previous sections provide us with a very useful tool to
obtain, for example, the intermediate spaces for some weighted spaces, namely the
weighted Lorentz spaces, for which there has been lately a great deal of interest (see
[1], [10], [13]). For our second example, we will give a partial inclusion and will

make some comments about the full answer.

PROPOSITION 5.1. Supposew : TXxR* — R* and ¢ : T — (0, o0} are two mea-
surable functions satisfying that wy is a weight for the Hardy operator on A9%) (wy),

(see Proposition 2.2), 1/q € L(T) and
log C*(wq.¢(6)) € LY(T),

where C*(wg,q(8)) is the constant for the boundedness of S on AY9(wg). Then,

if A9®) (wy) is an interpolation family of quasi-Banach spaces,
[Aq(e)(wg )] C A"(’)(w ),

where 1/g(z) is the harmonic extension of 1/q(6) and
w,(t) = exp (/ log(we(t))P.(6) d0>.
T
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v 1 [t :
PROOF: Let Mf(t) = f**(t) = S(f*)(¢) = ?/ f*(s)ds. M is an operator of
0
maximal type, since by the equality, (see [2])

it is easy to verify conditions (a), (b), (¢) and (d) of Definition 3.3. Moreover, .
M : AT (wg) — L9 (wy),

since,

oe 1/9(6)
1M £ 1l a3y = ( /0 (S(f*)(t)we(t))m)dt)

oo 1/4(6)
sc+(wa,q(o>)( /o (f‘(t)wo(t))"(”’df> = C* (e, ¢ fllastorcen-

We can now apply Theorem 3.4 to conclude

NM fll e,y S Clwz, g(2) flliase) (we))s s
where, ‘
Clws,a(2)) = exp (| 108(C* w0, (6))P:(6) a8 ).
Since M f = f**, and f* < f**, the above inequality implies,
I llaecercw,y = W Leorwny S NF ™l Loy uws)

= ”]uf”L?“)(w,) < C(w:v Q(z))”f”[A'(’)(wg)],s

which, by a density argument, proves the desired result. |§

To prove the converse, we will need to recall the following result (see [11]):

LEMMA 5.2. If p € By, 0 < ¢ < oo and we set w(t) = t'~1/9/5(t), then

L', L*®), . = A%(w), with equivalent quasi-norms.
¥sq

THEOREM 5.3. Let B = (By, B)) be a pair of compatible quasi-Banach spaces with
quasi-triangle constants Cy and C) respectively, and suppose that the functions

F:T xRt — R* and ¢: T — (0, o0} satisfy condition S. Set

w(f,t) = 7198 Fy(e).
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Then, {A19(w(8,-))}set is an interpolation family of quasi-Banach spaces and
(AT (w(6, )]s = A" (w(z, ")),

with equivalent quasi-norms, where

1 1
-q(—z)_[rmP,(O)dO

and
w(z,s) = exp (/r(log w(8, s))P.(6) dO)-

PROOF: By Lemma 5.2
AT (w(8,-)) = (L', L) y(6),9(0)"
By Theorem 4.5, {Aq(o)(w(G, -))}eeT is an interpolation family, and
AT (w(z, ) = (L', L), g C [A1O(0(6, )]s

The other inclusion is a trivial consequence of the fact that by Corollary 2.4 and

condition S, we are under the hypothesis of Proposition 5.1. }

Theorem 3.4 can also be applied to other situations in which the spaces are
definided in terms of maximal functions, namely the H? spaces over very general
domains (homogeneous type, product domains,...). Our next theorem gives results
for weighted H? spaces. We say that f € HP(w), 0 < p < o0, if for ¢ € S, with
e #0,

Mf(z)= sup [f+*e@uy)| € LP(w!/P),
Jz—yl<t

and we denote || f||gr(w) = 1M fllLr(wize)-

THEOREM 5.4. Let 0 < p(6) € o0 and w : T x Rt — R* be two measurable

functions, with 1/p € L'(8). If {H?®(wg)}seT is an interpolation family of quasi-

Banach spaces, then

[H"O(we)], € Y (wy),

18



where 1/p(z) is the harmonic extension of 1/p(6) and

log w.(z) _ log we(z)
= | P

PROOF: It is clear that M f(2) = sup|,_,i<: |f * ¢¢(y)| is an operator of maximal
type associated to HP(®)(wg). Moreover, ”Mf”Lr(')(w}/’(')) = || fll gr@)(w,)» 80 that
by Theorem 3.4,

Al Ere ey = BMFl oo irzey < WSl o,

and a density argument will finish the proof. i

REMARK: Equality of spaces on the previous result is still an open question. For
the case where the weight is constant, an affirmative answer was found in [16].
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