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ABSTRACT

A general distance based method for allocating an observation
to one of several known populations, on the basis of both con-
tinuous and discrete explanatory variables, is proposed and stu-
died. This method depends on a given statistical distance be-
tween observations, and leads to some classic discriminant rules
by taking suitable distances. The error rates can be easily com-
puted and, unlike other distance classification rules, the prior
probabilities can be taken into account.
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1. INTRODUCTION

The problem of allocating an individual to one of two populations was
proposed by Fisher (1936), who obtained the linear discriminant function
(LDF). Optimality of LDF under the assumption of multivariate normality,
with a common covariance matrix, is a well-known property. LDF gives
a good performance even when the above assumptions are violated and
several studies have been carried out on LDF as well as alternative methods
(Krzanowski, 1977, Seber, 1984, Raveh, 1989). The discrimination pro-
blem leads to a quadratic discriminant function (QDF) when the covariance
matrices are not equal.

LDF is essentially based on continuous variables (Wald, 1944, Ander-
son, 1958). However, most problems in applied statistics fall in the mixed
case, i.e., the variables are both continuous and discrete. An interesting
approach, based in the location model (LM), has been given by Krzanowski
(1975, 1986, 1987). LM is applicable when the data contain both continuous
and binary variables. This method computes an LDF for each pattern of the
binary variables, is optimal under the assumption of conditional normality
and can be extended to the multistate case for discrete variables (Lachen-
bruch and Goldstein, 1979). However, the LM approach needs a conside-
rable computational effort and has not been implemented in the standard
packages (Knoke, 1982). Moreover LM cannot be used when there are not
enough data for many locations (Vlachonikolis and Marriott, 1982).

Logistic regression (LR) is another interesting approach, which includes
quite a wide class of models and also allows discrimination with mixed va-
riables (Anderson, 1972). LR also requires a large amount of computing.

LDF, QDF, LM and LR are all based on the ratio of probability density
functions, the maximum likelihood rule (ML). The ML rule is a particular
case of the Bayes discriminant rule (BR), the rule obtained after supposing
that the populations have prior probabilities. BR provides a general ap-
proach to discriminant analysis which has certain optimal properties from a
theoretical point of view.

Another general approach, first studied by Matusita (1956) is based on
the concept of distance. Let d(w, ;) be a distance between w to =, i =
1,2, where w is an individual to be allocated. The allocation rule is: allocate
w to the nearest population ;.



LDF is closely related to the Mahalanobis distance and both approaches,
ML and distance, are equivalent for multivariate normal data (Mardia et al,
1979). If we substitute the covariance matrix by the identity matrix, we
obtain the Euclidean distance classifier (EDF), which is an alternative to
LDF (Marco et al, 1987), and has advantages when the number of variables
is large relative to the training sample size. EDF is a distance rule based on
Euclidean distance. The distance rule is also equivalent to BR (including
ML rule), for the LM model, as is proved by Krzanowski (1986, 1987).

A distance-based approach (DB) for regression and classification with
mixed variables was proposed by Cuadras (1989) and Cuadras and Arenas
(1990). Although considerable research has been done on discrimination,
and the State of the Art of allocation has reached such a high level that it
seems difficult to furnish original ideas, this paper has the aim of examining
further aspects and applications of discrimination by the above mentioned
DB approach.

Given every couple of individuals w,w’, the DB method uses a distance
d(w,w') to compute discriminant functions. The assumption underlying this
method is the following: in some circumnstances (mixed data, for example),
it is easier to obtain a distance d(.,.) than a probability density function

p(.).

2. A DISTANCE-BASED CLASSIFICATION RULE IN TWO
POPULATIONS OBTAINED FROM SAMPLE DATA

Let 7,72 be two populations and suppose that w is an individual to be
allocated. Suppose that a distance function é(.,.) is defined on the basis
of several (mixed) variables. The distance-based rule (1), or DB rule, is
introduced and some of its properties are studied by Cuadras (1989).

2.1 Training sets

Suppose that samples C; and C, of sizes n; and n, are availables from
71 and 7w, respectively. Suppose that an =n; X n; intradistance matrix
Dy = (6;;(1)) can be computed on C; by using the distance é(.,.), as
well as the distance 6;(1),¢ = 1,---,n;, from w to each of the set C;.



D, = (6;;(2)), and 6;(2),i=1,---,n, are analogously introduced.

Let us define the discriminant functions as follows:

1 1
filw) = — > 63 k) - 2 Y 8h(k)y k=12 (1)
kT Mk G
A decision rule for allocation of w is:

allocate w to m; if fi(w) = min {f1(w), f2(w)} (2)

This rule leads to a minimum-distance classification rule, as a consequence
of theorem 1.

Let us denote C = {1,2,---,n}. D = (6;;) is an n X n distance matrix,
(n 4+ 1) is a new individual, é;,---,é, are the distances from (n + 1) to
each of C and f(n+1) is defined according to (1). Then (n+1) and C can
be represented by the points P,Py,---,P, € R" x g R®, where g = /=1
and r+ s =n—1. The coordinates are given by

P
P;

(=', 9y, 2)
(='i, 99’5, 0) i=1,---,n

and it is satisfied that
6% = (P, Py) = |l — 511 - lly; — ;I

where || - || means the Euclidean norm. An explicit construction of P, Py, ---,
P, is given in the following:

£(. ‘w)=d*P,P)

In particular, if D is a Euclidean distance matrix and n+1, C are repre-
sented by x,2,,---,2, € RP, then



f(w) = &*(2,%) = ||l= - =|}?

Proof. Let B = (b;;) = HAH, where H is the centring matrix and
A = (ai;) = —3(8%). If B >0, i.e. D is a Euclidean distance matrix,
let A; be the diagonal matrix of positive eigenvalues and X the matrix
of corresponding eigenvectors. The rows of X, a'y,---,2',, verify 6?]- =
ll&; — x;||> and constitute the classical solution of MDS (Mardia et al.,
1979).

In general (D need not be Euclidean), we must also consider a diago-
nal matrix A, of negative eigenvalues of B, whose corresponding eigen-
vectors are the columns of the matrix Y, and y'y,---,¥%’, are the rows
of Y (Lingoes, 1971). Each element i (say) of C' can be represented by
P; = (z';,99';,0) and (n+1) by (2’,¥y’,2). Note that, as 1 is an eigenvec-
tor of B of eigenvalue 0, then X1 =0 and Y'1=0,s50 T = (Y a;)/n=
0,y= (E!h)/n = 0.

Gower (1968) proves that if B > 0, the coordinates of (n+1) are given
by

1
z = -2-A;1X'v

1
2 _ - 2 _ !
@ = - (E{ & tra.B) 'z

where
!
v = (b= 6, ,bun = 67)
If D is a non-Euclidean distance matrix, it is easily proved that
1 _
y= §Ay ly'v
where v is the same vector but z must be obtained from

1
2 2 / I
z == (E, LE —traB) - ('z - y'y)
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On the other hand
Zéfj =2ntra B
1y

hence

fin+1) =2+ (z'z - y'y)

Since =0 and ¥ =0, all coordinates of P are null. Hence the distance
between P and P = (2',9¥’,2) is f(n+1). D

Now it is clear that decision rule (2) is equivalent to
allocate w to m; if d*(P,P) < d*(Q,Q)

otherwise to 75, where P,P,Q and @ are suitably constructed. Note that
this construction is not needed to obtain fi(w) and fr(w).

Decision rule (2) leads to standard discriminant functions for continuous
data and usual distances. Let @xy,---,Zkn,, k = 1,2, be the training
samples and & the observation to be allocated. Then (2) is based on the

LDF . ,
L(:B) = [:z - E (i] +E2)] S-l (51 -—-2-!-2),

where S is the pooled sample covariance matrix, provided that the square
distance is the Mahalanobis distance

(ki — Fh;) S7 (Fni — Fnj) - (3)
If the covariance matrices need not be equal and we replace S for Sj in

(3), then rule (2) is based on a QDF.

Finally, if we choose the Euclidean distance, this decision rule is based
on the EDF

B)= [e-3 @ +2)]| @i-7).

2.2 Error rates

The leaving-one—out method to estimate the probability of misclassi-
fication (Lachenbruch, 1975} can be applied with simple additional com-
putation. Let us denote A = (ai;), B = (b;;) and C = (cij), where
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ai; = 8%(1), b; = &%(2) and ¢;; = 6*(4,j), where i € C; and j € C;.
A,B and C are n; X n3,n2 X na and n; X nz matrices respectively.

If

ni n2
a= E a5, G¢ = E :air, . = 2 Ciry

t<J r=1 r=1

and b,b; and c; are similarly defined, to allocate ¢ € Cy we use the
discriminant function

fi)=(m-1)ai - (n - 1)7%(a - a))

and
fo(i) = n;lc;_ - n;zb.

Hence

my = freqiecl [f](l) - fz(z) > 0] (4)

is the frequency of individuals misclassified in Cy. The frequency my of
misclassification in C, is analogously obtained as a function of b,b; and
cj. If the n = ny + ny observations are random samples from 7, U m, the
error rate is estimated by

my + mp

é= 5
n1 + n2 )
Thus é is directly computed from A,B and C.
Now suppose that C; and C; are nonoverlapping classes, that is,
& (x;,T-i) < d® (21,7) VieC (6)

and



@ (v;,9-;) <& (%)  VieC ()

where z;,z] are the Euclidean representation of ¢ as a member of C,,C3,
respectively, and T_; is the mean on C; after leaving out individual 1.
Similarly we have y;,y} and §_;.

It is easily proved that

AG) = & (=,T-),
L) = & (2},7).

Thus, if both (6) and (7) apply, m; = m; = 0 and a perfect classification
for nonoverlappling classes is obtained.

2.3 Distance between samples

Suppose that the observable variables are both quantitative and qualita-
tive (nominal, ordinal, dichotomous) and that the distribution of the varia-
bles is unknown. Then we may use any distance function chosen among the
wide repertory available. One candidate is the square distance d?j = 1-s;j,
where s;; is the all-purpose measure of similarity proposed by Gower (1971)
and well described by Seber (1984). This distance provides a Euclidean
distance matrix and gives good results in regression with mixed data, see
Cuadras and Arenas (1990). When some values are missing, d;; can also be
obtained but it could be a non-Euclidean distance. However, rule (2) also
applies. Therefore, this DB method can be used for handling missing values
in discriminant analysis.

For continuous variables, letting (zi1,-+,Zip), (%1, ,Zjp) be two ob-
servations for individuals i and j, we also use the square distance

&} = |zin = zjn| + - + [2ip — 255 (8)

which will be confronted with the Mahalanobis and Euclidean distances in
the examples given in section 6.



3. CLASSIFICATION WHEN THE DISTRIBUTIONS ARE
KNOWN

Suppose that the observable variables are related to a random vector
with a probability density p;(z) with respect to a suitable measure A, if
comes from 7, i = 1,2,

Let & be an observation to be allocated and é(., .) a distance function.
The discriminant function which generalizes (1) is given by

fi(zo) = /62 (o, 2) pi(x) dM\(z) - %/62(-‘0,3!)17;(2)?;(31)d)\(w)df\(y)
= Hij- % H;. (9)

Hyo is the expectation of the random variable 62 (2g,2) on 7;. We assume
x,y tobeindependent to obtain H;, the expectation of 62 (x,y) on m;xm;.
The decision rule for allocating ¢ is

allocate g to m; if fi(xo) = min{f1(xo0), f2(x0)} (10)

Before presenting some properties of the DB rule (10), we introduce
a distance between individuals based on the so—called Rao distance (Rao,
1945) and studied later by Burbea and Rao (1982), Oller and Cuadras (1985)
and others.

3.1 A distance between individuals

Suppose that the random vector X is related to a statistical model § =
{p(x;0}, where® is an n-dimensional vector parameter and p(z,0) is a
probability density. Assume the usual regularity conditions and consider
the efficient score

d
Zg = 55 log (X 6) (11)

Then E(Zp) = 0 and G = E(ZyZ;) is the Fisher information matrix,
where Zy is interpreted as a column vector.
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Transform two observations «;,z; to 23,2, by using (11). The square
distance between x;,2; with respect to the statistical model § = {p(x,0)}
is given by

62(21,22) = (Zl - Zz)'G_1 (Z] - Zg) (12)

This distance was introduced by Cuadras (1988, 1989) and especially Oller
(1989), who provides further theoretical justification.

If p(x,8) is the N(u,X) distribution (X being fixed), then Z, =
XY X - p),G= X1 and (12) reduces to the familiar Mahalanobis dis-
tance.

H X = (z;,-+-,z;») has the multinomial distribution []pi*, where
z € {0,1}, k= 1,.--,m, z, falls in the cell r and z; falls in the cell s, we
obtain the square distance

62(‘”1’32) =(1- 61‘3)(1’:1 +P:1) (13)

where §,, is the Kronecker delta.

In general, distance (12) is related to the quadratic form Z;GZg, where
Zg is given by (11), which satisfies (Oller, 1989)

E(2'4G™'2y) = E (1aG™'2'y2") = tra (G'G) = n. (14)

Suppose next that the random variables are related to a random vector
W = (X;,X32), where X; is a random vector with density p;(z;,60;) with
respect to a measure JA;, ¢ = 1,2. Suppose that thereis a density p(w,#6,,6;)
with respect to a suitable measure p, with marginals p;(z;,6;), i = 1,2.

Letting
0
Zo: = ‘a? log pi(zis 9:)

let us define
Gij = E(Ze.- Zé,) t,j=1,2
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and the symmetric matrix

Gun G
G =
( Ga G2 )’
the expectation taken with respect to p(w,8,,8;).

Since

Gi = //Ze,zf;,p(zlyzz,el,gz)d'\l(ivl)dl\z(wz)

= /ZgiZé' pi(zi, 0;)dXi(x;)
it is clear that G; is the Fisher information matrix for p;(x;,8;), ¢ = 1,2.
However, G is not a Fisher information matrix for p(w,6,,60;).

Assume that Gy, is a suitable fixed matrix and w; = (&11,212), w2 =
(x21,x22) are two observations transformed to z; = (211, 212), 22 = (221, 222)
by means of (11), i.e.,

i}
Zi; = 5&-]-10g pj(zij,oj).

We define the square distance between w; and w;

62(w1,w2) = (Z] - 22)' G“1 (21 - 22) (15)
This distance can be used when w is a mixed random vector, for example,
z; is the continuous type and z, is the discrete type.

When both z; and z; have absolutely continuous distributions with
respect to the Lebesgue measure, the pdf p(w,8,,8;) exists.

Theorem 2

Suppose that (11) gives a transformation from @; to z4, which is one-
to—one and satisfies the condition of the change of variables for multiple
integrals. For every fixed (6,,02) and a given matrix G,z (satisfying
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some restrictive conditions) there exists a pdf p(w,#;,602) with marginals
p(2i,6:), i = 1,2, such that Gi2 = E(Z, - Z,).

This result can be obtained as a consequence of the problem of construc-
ting probability distributions with given multivariate marginals and a given
intercorrelation matrix. However, this construction is quite complicated. A
solution is given by Cuadras (1990).

Although the density p(w,8,,0;) exists, the true function is unknown
in practice. Nevertheless, distance (15) can be computed. Consequently, a
DB classification rule is available for mixed variables, if only the marginal
distributions are known. This, again, is the main idea of this paper.

3.2 Parameter estimation with given marginals

Parameters 6; and 6, are unknown in applications. Suppose that
w; = (i1,&i2), t = 1,---, N, is a random sample from a population with
pdf p(w,6,,6;). However, only the marginals pdfs p;(z,6;),i = 1,2, are
known.

Let 6 = (él,ég) be the ML estimation obtained considering the product
pdf pl(zlval) : p2(221 02)a ie.,

N 2 ‘
22 Uj(=i;,8;) =0
i=1 3=1

where

0
Uj(-,8;) = 55]710%1’1'(-,91)-

The true value 8 is characterized by (Kent, 1982, Royall, 1986)

2
E {Zvj(xj,oj)} =0

i=1
where the expectation is taken with respect to p(w,6,,86,).

Since

E{Uy(X1,61)} = //Ul(zl’01)1’(‘”1122791’02)‘131dm2

12



= /U1(31,91)Pl(21,91)d2!1 =0

and similarly for Uz(=2,8;), 0 is a consistent estimate of 8. (See also
Huster et al., 1989). Finally, a consistent estimation of Gy; is given by

ékj = 1—17- iUk (zik,ék) UJ'- (:r;j,éj) .
i=1

3.3 Some properties of the classification rule

The discriminant function (9) and the decision rule (10) satisfy certain
properties.

1)

2)

3)

H; is the diversity coefficient of 7; and H;o is the average difference
between mp and w;, where 1o = {zo}. Since Ho =0 we find that

1
fi(zo) = Hio — 3 (Hi + Ho)
is the Jensen difference between 7; and 7g.

Suppose that «; and x; are independent random vectors and the
distances 6%(.,.),62(.,.) are defined by using z;,z2 respectively.
According to Oller (1989), let us define the square distance between
(211,212) and (221,222) by

63 (z11,Z12; 2. T22) = 63 (=11, 2n1) + 63 (220, Z22),

and let (xo3,z02) be an observation to be allocated. Then, using an
obvious notation, it is verified that

flzor,@o2) = fu(zor) + fia(za2). (16)
If X is N(u;,X) and the Mahalanobis distance is adopted, then
fi(=o) = (zo— ;) T71 (zo — py)

and rule (10) leads to a minimum-distance rule. This result is even
valid for nonnormal data, see theorem 3.
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4) If X has the multinomial distribution [] pi¥, when X come from =,
and if we use distance (13), then

fi(zo) = (1 - pir)/pix (17)

if x¢ falls in the cell k. Thus, the classification rule is:

allocate g to 7; if pix = min{p1k,par }

Let us now suppose that given x;,x; € 7, there exists ¢ : n; —
R, t) = ¢(z1),t2 = @(x2), such that

63 (z1,@2) = (ty — t2) (81 —t2) 11,1, € RY

i.e., 8(.,.) is a g-dimensional Euclidean distance. One way to define t; =
p(xi) is
t; = G_%Z.‘

where Z; is obtained from (11) and G is the Fisher information matrix.
Generally, if «,,---,zny are given and é(.,.) is a Euclidean distance,
ty,--+,tn can be obtained by metric scaling.

Assume further that
u; = Ex, [(p(:l:)]

exists and
En, (it — mil)* < o0

where E,, means expectation with respect to p;(x).

Theorem 3

Let o be an observation to be allocated, to = ¢(xo) and fi(x¢) given
by (9). Then

filzo) = |ito — ,lI? (18)

14



Proof. Let z,,---,xzxN beiid random vectors from 7; andlet t; = o(&;), ¢ =
1,---,N. Then
63(z,,2,) = (t, — t,) (¢, — t,)

and, after some algebra, we find

1 1 - -
-2-]—\7—2- 262(2,,23) = .]V Z(t, - t)'(t,- e t)

where £ = (3, t,)/N. From the law of large numbers it follows that as
N — oo the above expression tends to

SEa{#(2.9)} = En{llt - i)
Similarly
¥ L (e0m) = o~ U+ 5 (b (6 =D
and, as N — oo this expression tends to
Er {6%(zo,2)} = |Ito = ll* + Ex,{lIt — I}

and (18) follows. O

For distance (15) an alternative proof of Theorem 3 is given. Using a
suitable notation:

63 (xo.x) = (20—2)G (20~ 2),
E(2'G7'z) = E(traG™'z2') = tra(G™'G) = n.
Hence, because E(z) =0,
E [62(20,:::)] =2'0G 1zo + n.

62(393/) = (27— zy),G-l(zr - zy),

E(z';G7'z,) + E(2/,G'2z,) - 2E(z',G"'2,)
= 2n.

E [#*(z,v)]

15



We conclude that the discriminant function is given by
f(zo) = 2’06_120,

the square distance between z¢ = 3% log p(0,6) and E(z) = 0.

4. THE BAYESIAN APPROACH

The Bayes discriminant rule (BR) allocates &g to the population for
which ¢; pi(x) is greatest, where ¢; and ¢; are the prior probabilities of
drawing an observation from 7, and m, respectively. BR leads to ML when
@ =q2=1/2.

If =; is N(u,;,,X2), 1 =1,2, ML is equivalent to the minimum distance
rule provided that the Mahalanobis distance is adopted. For mixed data and
using the location model LM, Krzanowski (1986) using a distance based on
Matusita affinity, proves that LM is also equivalent to a minimum distance
rule. However, neither the LM approach nor the Matusita approach takes
the prior probabilities into account. In contrast, this is possible in the DB
method.

4.1 Incorporating prior probabilities

Suppose that wp is known to belong to m; with probability ¢;,? =1,2.
Let us consider discriminant . function (9) with distance (13). Given w € m
we find

(wo,w) = 0 if wo€m,

= qi'l-}-q;l if wo € 7.

Hence
Hio=q -0+ g+ ) =q"
Moreover H; = 0, so we obtain the function f;(wg) = q,’1 . Similarly
f2(wo) = g3'. However, rule (10) remains invariant if we add the same
constant to f; and f;. Therefore, in order to construct a function that is
a square distance, let us introduce the prior discriminant function

filwo)=¢ ' -1 i=12

16



Note that f;(wp) is consistent with the discriminant function (17).

Thus rule (10) allocates wg to the population for which the prior pro-
bability is greater.

Suppose now that a vector observation X is known with density p;(x).
Taking into account property (16), let us introduce the posterior discrimi-
nant functions

f};(mo)zlfgo—%ﬂ,--{-q;l—l 1=1,2. (19)

where Hjo, H; are defined in (9).

A decision rule for allocating o is:

allocate zq to 7; if fB(xo) = min{fEB(z0), fE(z0)} (20)
Discriminant function (19) is constructed by using distance (15), but it
also applies for any other distance é(.,.).

However, note that rule (10) is invariant after multiplying (., .) by a
positive constant, but the decision taken from rule (20) could be affected.
In order to avoid this arbitrariness, it is necessary to impose a standardizing
condition similar to (14) to the quadratic form related to (., .).

4.2 Multivariate normal

The DB rule based on (18) and the BR are closely related. Suppose that
7 is N(p;, %), 1= 1,2. Then ML is based on the LDF

1 -
V(z) = (1 — up) I 5(#1 -u)xz ! (11 + 12),

BR is based on
B(z) = V() + log(6/1 - ),

and DB is based on

D(z)=V(@)+(0-3) /060 -6),

17



where 6 and 1 — @ are the prior probabilities of drawing an observation
from 7, and 7 respectively.

For # = 1 we obtain V(z) = B(z) = D(z), otherwise functions B(x)
and D(z) are different. However, the difference between log(8/1 — 8) and
(6 — 1)/[6(1 - 8)] is not too marked in the interval (0.2, 0.8). See Fig. 1.

. — (0-1/2)/[6(1 - 6)]

-&—a—a- ln(l—f-;) 0<f<1

-2 T T T T v T T d
01 02 03 04 05 06 07 0B 0OF 100

Figure 1. Graphical comparison between distance based rule (continuous curve)
and Bayes rule (discrete curve), for the multivariate normal distribu-
tion. 8 and 1 — @ are the prior probabilities.

4.3 Multinomial distribution

Suppose that a random event A has the conditional probabilities P(A/7;) =
pi,t = 1,2. If wy € A, the Bayes decision rule is allocate wg to =; if
P16 > p2(1 — ), otherwise to 7. Therefore BR is based on

b = log p1 — log p2 + log(6/1 — )
and DB is based on

d= (7" - p")/2+ (8- 3) /161 - )

18



For 6 = %, b and d are equivalent, otherwise the decision could be
different. To study this difference, let us consider the Borel set K ¢C (0,1)3

K = {(plap?wa)lb'd > 0}

We take the same decision as long as (p;,p2,9) € K. After some tedious
computations, the Lebesgue measure of K is

p(K) = 0971
which is very close to 1, the Lebesgue measure of (0,1)3.

Thereby, the decision taken after using either BR or DB, is almost the same.
This is quite interesting, because although the two decision rules are based
on different criteria, their results coincide in practice.

5. CLASSIFICATION INTO SEVERAL POPULATIONS

Suppose that we have k mutually exclusive populations 7;,---,7x. The
theory developed is easily extended to k¥ > 2. Let C; be a sample from
x; and D; a distance matrix. If wp is an individual to be allocated and
6;(1) is the distance from wp to j € C;, the discriminant function f;(w) is
defined as in (1), and the decision rule for allocating w is

allocate w to 7; if fi(w) = min{fi(w),---, fi(w)}. (21)

It is obvious that theorem 1 also applies here, so (20) is a minimum-
distance discriminant rule. In addition, the error rate computations are
easily obtained.

When the distributions are known (up to parameters), extensions of (9)
and (10), as well as therorem 3, do not present further difficulties.

Finally, if prior probabilities ¢;,--,qr are known, we may use the pos-
terior discriminant functions

fBxo) = filmo) + g7 =1 i=1,--+,k,

where g is the observation to be allocated.

19



6. SOME EXAMPLES

Three real data examples are used to compare the DB approach with
LDF, QDF, EDF and LM approachs.

Data set 1 is the “avanced breast cancer data” used by Krzanowski
(1975, 1986, 1987) to illustrate the LM. In this data set, of 186 cases of
ablative surgery for advanced breast cancer, 99 were classified as “successful
or intermediate” (m;) and 87 as “failure” (m;). Gower’s distance (section
2.3) is used on the basis of 6 continuous variables and 3 binary variables for
the DB method, but we take ranks on the continuous variables instead of
numerical values, as the range of most variables was too large.

Data set 2 is the well-known Fisher’s Iris data (Fisher, 1936), which
consider n; = ny = nz = 50 observations on three species of iris, I se-
tosa (m), I versicolor (m;) and I virginica (m3) and the discrimination
problem on the basis of 4 continuous variables. The DB method uses the
Euclidean distance (which yields the EDF) and distance (8).

Data set 3, taken from Mardia et al. (1979, p. 328), is concerned with
the problem of discriminating between the species Chaetocnema concinna
(m1) and Ch. heikertingeri (m3) on the basis of 2 continuous variables and
samples of sizes n; = ny, = 18. Gower’s distance (version for continuous
variables) is also used.

The leaving—one-out method was used, as described in section 2.2, for
computing the error rates. Table 1 summarizes the results obtained.

Table 1

Numbers of misclassifications obtained with the leaving-one—out method.

1. Cancer data . 3. Chaetocnema data
2. Iris data
M Wy T ow T m Ty
LM 34 27}61 LDF 0‘ 22 13 3 LDF 0 1| 1
LDF 41 31|72 EDF 1 5 7|13 QDF 1 1 2
EDF 45 43|88 DB 0 2 3| s EDF 2 3 5
DB 33 3265 DB 0 O 0
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7. SUMMARY AND CONCLUSIONS

A distance based approach (DB), which uses a statistical distance be-
tween observations, is described and theoretical properties are presented.
This method reduces to linear discrimination (LDF), or even quadratic dis-
crimination (QDF) when the sample Mahalanobis distance is used. More-
over the DB approach yields a general discriminant function which reduces
to the Euclidean discriminant function (EDF) when the Euclidean sample
distance is used.

This method offers a rather simple algebraic way to consider the dis-
crimination problem with mixed variables as well as the missing values case,
provided that a suitable distance is adopted. No restriction seems to be
necessary on the numbers of binary variables, so the DB method may be an
alternative to discrimination based on the location model (LM).

The leaving—one—out method for computing the probability of misclassi-
fication can be applied following an elementary matrix computation in this
approach.

Finally, unlike other methods based on distances, the prior probabilities
can be taken into account in the DB method, with results quite similar to
those given by the Bayes decision rule.
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REMARK
A computer program for PC to perform a distance based

discriminant analysis with mixed variables, is available.
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