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ABSTRACT

A general distance based method for allocating an observation
to one of several known populations, on the basis of both con-
tinuous and discrete explanatory variables, is proposed and stu-
died. This method depends on a given statistical distance be-
tween observations, and leads to some classic discriminant rules
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1. INTRODUCTION

The problem of allocating an individual to one of two populations was
proposed by Fisher (1936), who obtained the linear discriminant function
(LDF). Optimality of LDF under the assumption of multivariate normality,
with a common covariance matrix, is a well-known property. LDF gives
a good performance even when the above assumptions are violated and
several studies have been carried out on LDF as well as alternative methods

(Krzanowski, 1977, Seber, 1984, Raveh, 1989). The discrimination pro¬
blem leads to a quadratic discriminant function (QDF) when the covariance
matrices are not equal.

LDF is essentially based on continuous variables (Wald, 1944, Ander-
son, 1958). However, most problems in applied statistics fall in the mixed
case, i.e., the variables are both continuous and discrete. An interesting
approach, based in the location model (LM), has been given by Krzanowski
(1975,1986, 1987). LM is applicable when the data contain both continuous
and binary variables. This method computes an LDF for each pattern of the
binary variables, is óptima! under the assumption of conditional normality
and can be extended to the multistate case for discrete variables (Lachen-
bruch and Goldstein, 1979). However, the LM approach needs a conside¬
rable computational effort and has not been implemented in the standard
packages (Knoke, 1982). Moreover LM cannot be used when there are not
enough data for many locations (Vlachonikolis and Marriott, 1982).

Logistic regression (LR) is another interesting approach, which ineludes
quite a wide class of models and also allows discrimination with mixed va¬
riables (Anderson, 1972). LR also requires a large amount of computing.

LDF, QDF, LM and LR are all based on the ratio of probability density
functions, the máximum likelihood rule (ML). The ML rule is a particular
case of the Bayes discriminant rule (BR), the rule obtained after supposing
that the populations have prior probabilities. BR provides a general ap¬
proach to discriminant analysis which has certain óptima! properties from a
theoretica! point of view.

Another general approach, first studied by Matusita (1956) is based on
the concept of distance. Let d(w, 7r,) be a distance between w to 7ri =

1,2, where u is an individual to be allocated. The allocation rule is: allocate
uj to the nearest population tt, .
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LDF is closely related to the Mahalanobis distance and both approaches,
ML and distance, are equivalent for multivariate normal data (Mardia et al,
1979). If we substitute the covariance matrix by the identity matrix, we
obtain the Euclidean distance classiñer (EDF), which is an alternative to
LDF (Marco et al, 1987), and has advantages when the number of variables
is large relative to the training sample size. EDF is a distance rule based on
Euclidean distance. The distance rule is also equivalent to BR (including
ML rule), for the LM model, as is proved by Krzanowski (1986, 1987).

A distance-based approach (DB) for regression and classification with
mixed variables was proposed by Cuadras (1989) and Cuadras and Arenas
(1990). Although considerable research has been done on discrimination,
and the State of the Art of allocation has reached such a high level that it
seems difficult to furnish original ideas, this paper has the aim of examining
further aspects and applications of discrimination by the above mentioned
DB approach.

Given every couple of individuáis the DB method uses a distance
d(u>,u}') to compute discriminant functions. The assumption underlying this
method is the following: in some circumnstances (mixed data, for example),
it is easier to obtain a distance d(., .) than a probability density function
!>(•)•

2. A DISTANCE-BASED CLASSIFICATION RULE IN TWO
POPULATIONS OBTAINED FROM SAMPLE DATA

Let 7ri, 7T2 be two populations and suppose that u is an individual to be
allocated. Suppose that a distance function ¿(., .) is defined on the basis
of several (mixed) variables. The distance-based rule (1), or DB rule, is
introduced and some of its properties are studied by Cuadras (1989).

2.1 Training sets

Suppose that samples C\ and C2 of sizes ni and «2 are availables from
tti and 7T2, respectively. Suppose that an ni x ni intradistance matrix
D\ = (¿¿¿(I)) can be computed on C\ by using the distance 6(., .), as
well as the distance ¿,(1), i — !,•••, ni, from u to each of the set C\.
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D2 = (¿»'i(2)), and ¿¿(2), i = l,---,n2 are analogously ¡ntroduced.
Let us define the discriminant functions as follows:

am = * = 1-2 (>)
nk ¿ £nk ..

A decisión rule for allocation of u> is:

allocate u to ;r, if /,(u>) = min {/j(w), /2(w)} (2)

This rule leads to a minimum-distance classification rule, as a consequence
of theorem 1.

Let us denote C = {1,2, • • • ,n}. D = (6¿¿) is an n x n distance matrix,
(n + 1) is a new individual, ¿i, - • • ,Sn are the distances from (n + 1) to
each of C and f(n +1) is defined according to (1). Then (n +1) and C can
be represented by the points P, Pi , • • •, Pn 6 RT X gRa, where g = y/^J
and r + s = n — 1. The coordinates are given by

P =

Pi = (x'i, gy'¡, 0) i = 1,• • • ,n

and it is satisfied that

¿ij = d2(Pi,Pj) = ll*¿ - *jl|2 - l|s/¿ “ V¿||2
where || • || means the Euclidean norm. An explicit construction of P, Pj, • • •,

P„ is given in the following:

Theorem 1

Set P = (*,y,0), where x - (E,Xi)/n, y = (Ey¿)/n-
Then

f(, :W) = d2(p,p)
In particular, if D is a Euclidean distance matrix and n+1, C are repre¬
sented by *,*!,•••,*„€ RPi then
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f(u) = d2(x,x) = ||* - x||2

Proof. Let B = (6tJ) = HAH, where JET is the centring matrix and
A = (a,j) = -f(¿,2). If B > O, i.e. D is a Euclidean distance matrix,
let Ax be the diagonal matrix of positive eigenvalues and X the matrix
of corresponding eigenvectors. The rows of X, x\, •••,*'„, verify <5,2 =

II®, — Xj||2 and constitute the classical solution of MDS (Mardia et al.,
1979).

In general (D need not be Euclidean), we must also consider a diago¬
nal matrix Ay of negative eigenvalues of B, whose corresponding eigen¬
vectors are the columns of the matrix Y, and y'are the rows
of Y (Lingoes, 1971). Each element i (say) of C can be represented by
P¡ = (*',,y'¿,0) and (n + 1) by (x',y',z). Note that, as 1 is an eigenvec-
tor of B of eigenvalue 0, then X'l = 0 and Y'1 = 0, so * = (J2xi)/n =

0, 17= (£3/,■)/« = 0.

Gower (1968) proves that if B > 0, the coordinates of (n +1) are given
by

z

X

,2

where

If i? is a non-Euclidean distance matrix, it is easily proved that

where v is the same vector but z must be obtained from
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On the other hand

henee

Y. 6¡j = 2n tra B

/(n + 1) = z2 + (x'x - y'y)
Since x = 0 and y = 0, all coordinates of P are nuil. Henee the distance
between P and P = (x',gy',z) is /(n + l). □

Now it is clear that decisión rule (2) is equivalent to

allocate w to tt, if d2(P,P) < d?(Q,Q)
otherwise to where P,P,Q and Q are suitably constructed. Note that
this construction is not needed to obtain and /2(w).

Decisión rule (2) leads to standard discriminant functions for continuous
data and usual distances. Let *¿ti, • • • fc = 1,2, be the training
samples and * the observation to be allocated. Then (2) is based on the
LDF

L(x) = x--(xi + x2) S 1 (xx - *2),

where S is the pooled sample covariance matrix, provided that the square
distance is the Mahalanobis distance

{xki - xkj)' S 1 (xki - xkj). (3)

If the covariance matrices need not be equal and we replace S for Sk in
(3), then rule (2) is based on a QDF.

Finally, if we choose the Euclidean distance, this decisión rule is based
on the EDF

1
_ _ 1' _ _

E(x) = X --(*!+*2) (X1-X2).

2.2 Error rates

The leaving-one-out method to estímate the probability of misclassi-
fication (Lachenbruch, 1975) can be applied with simple additionai com¬

putaron. Let us denote A = (a,j), B = (6tJ) and C = (cij), where
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aij = ¿5(1), bij = ¿5(2) and c,¿ = ¿2(t,j), where i G C\ and j G Cj.
A,B and C are ni X ni,n2 X n2 and ni x n2 matrices respectively.

If

ni na

O = ^ ®ij, ®¡r, = ) , Cir,
i<j t=1 r=J

and £>,&_, and c.j are similarly defined, to allocate i G C\ we use the
discriminant function

/i(0 = (ni - 1) 1 a, - (ni - 1) 2 (a - a,)

and

/2(i) = nj 1c¿. — nj2&.

Henee

mi = freql€C) [/i(i) - /2(i) > 0] (4)

is the frequeney of individuáis misclassiñed in C\. The frequeney m2 of
misclassification in C2 is analogously obtained as a function of b,bj and
c.j . If the n = ni + n2 observations are random samples from iri U tt2, the
error rate is estimated by

mi + m2

ni + n2
(5)

Thus é is directly computed from A, B and C.

Now suppose that C\ and C2 are nonoverlapping classes, that is,

d2 < d2 (xly) Vi G Cx (6)

and
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d2 (Vj,y-j) < d2 (y¿,*,) Vj 6 C2 (7)
where x,-,x* are the Euclidean representation of t as a member of Ci,C2,
respectively, and x_, is the mean on Ci after leaving out individual i.
Similarly we have y3, y* and y_3.

It is easily proved that

Mi) = d2(xi,x-i),
M*) = d2(x*,y).

Thus, if both (6) and (7) apply, mi = m2 = 0 and aperfect classification
for nonoverlappling classes is obtained.

2.3 Distance between samples

Suppose that the observable variables are both quantitative and qualita-
tive (nominal, ordinal, dichotomous) and that the distribution of the varia¬
bles is unknown. Then we may use any distance function chosen among the
wide repertory available. One candidate is the square distance d? = 1 —

where stJ is the aJl-purpose measure of similarity proposed by Gower (1971)
and well described by Seber (1984). This distance provides a Euclidean
distance matrix and gives good results in regression with mixed data, see
Cuadras and Arenas (1990). When some valúes are missing, can also be
obtained but it could be a non-Euclidean distance. However, rule (2) also
applies. Therefore, this DB method can be used for handling missing valúes
in discriminant analysis.

For continuous variables, letting (x,i, • • •, x,p), (xjj, • • •, Xjp) be two ob-
servations for individuáis i and j, we also use the square distance

d2j = |x¿i - xji | + • • • + |x,p - Xjp| (8)

which will be confronted with the Mahalanobis and Euclidean distances in
the examples given in section 6.
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3. CLASSIFICATION WHEN THE DISTRIBUTIONS ARE
KNOWN

Suppose that the observable variables are related to a random vector
with a probability density p,(x) with respect to a suitable measure A, if *
comes from tt,-, i = 1,2.

Let *o be an observation to be allocated and S(., .) a distance function.
The discriminant function which generalizes (1) is given by

/»(*o) = J 62 (x0,x)pi(x)d\(x) - ^ J 62(x,y)pi(x)pi(y)dX(x)dX(y)
= Hí0-\h{. (9)

Hío is the expectation of the random variable S2 (xo, x) on . We assume

x,y to be independent to obtain the expectation of ¿2(x,y) on 7r, X7r, .

The decisión rule for allocating xq is

allocate *0 to 7r¿ if /,(*o) = niiní/^xo), /2(*o)} (10)

Before presenting some properties of the DB rule (10), we introduce
a distance between individuáis based on the so-called Rao distance (Rao,
1945) and studied later by Burbea and Rao (1982), Oller and Cuadras (1985)
and others.

3.1 A distance between individuáis

Suppose that the random vector X is related to a statistical model 5 =

{p(x;0}, where# is an n-dimensional vector parameter and p{x,0) is a
probability density. Assume the usual regularity conditions and consider
the efficient score

Ze = — logp(X;0) (11)

Then E(Z$) = 0 and G = E(ZeZ¿) is the Fisher information matrix,
where Z$ is interpreted as a column vector.
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Transform two observations Xi,x2 to z\,z2 by using (11). The square
distance between *i,*2 with respect to the statistical model S = {p(*,0)}
is given by

62(xux2) = (Zi ~ ZiYG-1 {Zx - Z2) (12)

This distance was introduced by Cuadras (1988, 1989) and especially 011er
(1989), who provides further theoretical justification.

If p(x,0) is the N(p,£) distribution (S being fixed), then Z^ =

U~l(X — n), G = 27-1 and (12) reduces to the familiar Mahalanobis dis¬
tance.

If X = (ii,-*-,xm) has the multinomial distribution flpj;*, where
a:* € {0,1}, k = 1, • • •, m, Xi falls in the cell r and X2 falls in the cell s, we
obtain the square distance

62(x1,x2) = (1 +P, *) (13)

where 6rs is the Kronecker delta.

In general, distance (12) is related to the quadratic form Z'eGZg, where
Zg is given by (11), which satisfies (011er, 1989)

E (Z'gG~xZg) = E (tra G^Z'gZ'g) = tra (g^g) = n. (14)
Suppose next that the random variables are related to a random vector

W — (X\,X2), where X, is a random vector with density p,(x¿, 0¿) with
respect to a measure A,-, i = 1,2. Suppose that there is a density p(w,0\,02)
with respect to a suitable measure p, with margináis p,(x,-,#,), t = 1,2.

Letting

Ze, = QQ-\ogp,(xt,dt)
let us define

G,j = E(Zgi Z'6j) i,j = 1,2
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and the symmetric matrix

£*12 ^
G22 ) ’

the expectation taken with respect to p(te,0i,02)-

Since

Gu = J J ZgtZ'8'P(xi,X2,61,02)d\i(xi)d\2(x2)
= J Zg{Z6> pi(xi,Oi)dXi(xi)

it is clear that is the Fisher information matrix for p,(x¿,0,), i = 1,2.
However, G is not a Fisher information matrix for p(w,0i,$2).

Assume that G12 is a suitable fixed matrix and wi = (xn,xi2), w2 =

(*21,*22) aretwoobservations transformed to z\ = (zn,zi2)> *2 = (*2i>*22)
by means of (11), i.e.,

zij = —logp^Oj).

We define the square distance between Wi and W2

S2(wi,w2) = (z\ - z2)' G~* (zi - z2) (15)

This distance can be used when w is a mixed random vector, for example,
x\ is the continuous type and 2^ is the discrete type.

When both X\ and X2 have absolutely continuous distributions with
respect to the Lebesgue measure, the pdf p(w, 61,62) exists.

Theorem 2

Suppose that (11) gives a transformation from to zgt which is one-
to-one and satisfies the condition of the change of variables for múltiple
integráis. For every fixed (61,62) and a given matrix G12 (satisfying
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some restrictive conditions) there exists a pdf p(w,0i,02) with margináis
p(*,,0,), i = 1,2, such that G\2 = £(Z$, • Z'e3)-

This result can be obtained as a consequence of the problem of construc-
ting probability distributions with given multivariate margináis and a given
intercorrelation matrix. However, this construction is quite complicated. A
solution is given by Cuadras (1990).

Although the density p(w,0\,02) exists, the true function is unknown
in practice. Nevertheless, distance (15) can be computed. Consequently, a
DB classification rule is available for mixed variables, if only the marginal
distributions are known. This, again, is the main idea of this paper.

3.2 Parameter estimation with given margináis

Parameters 0\ and 62 are unknown in applications. Suppose that
W{ = (x,i,2¿2), i = I,---,N , is a random sample from a population with
pdf p(w,0\,02) • However, only the margináis pdfs p,(2,,0,),t = 1,2, are
known.

Let 0 = (0i,02) be the ML estimation obtained considering the product
pdf pi(xi,0i) -^2(^21 ^2)1 i-e-,

N 2

EE»¡(«s.t) = «

where

The true valué 0q is characterized by (Kent, 1982, Royall, 1986)

where the expectation is taken with respect to p(w,01,^2)-
Since

E{Ui(Xj,ei)} = J j Ul(xu0\)p(xi,x2,0i,02)dxi dx2
12
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= J Ui{x-l,Oi)p-i{xi,Ol)dxi = O
and similarly for O is & consistent estímate of $q. (See also
Huster et al, 1989). Finally, a consistent estimation of Gkj is given by

Gkj 4E"‘ V'i (z¡¡,i¡) .
t=l

3.3 Some properties of the classification rule

The discriminant function (9) and the decisión rule (10) satisfy certain
properties.

1) Hi is the diversity coefficient of tt, and Híq is the average difference
between fio and 7r,, where tto = {*o} • Since Ho = 0 we find that

ft(xo) = H,o ~ \ (Hl + H0)
is the Jensen difference between ir¿ and tto .

2) Suppose that x\ and *2 are independent random vectors and the
distances £?(., .),¿2(-» •) 3X6 defined by using 3:1,12 respectively.
According to Oller (1989), let us define the square distance between
(*11, *12) and (*21, *22) by

^2(*ll,*i2;*21i*22) = ¿l(*lli*2l) + ^(*21, *22),

and let (xoi,*o2) be an observation to be allocated. Then, using an
obvious notation, it is verified that

/t(*01, *02) = /.l(*0l) + /.2(*02). (16)3)If X is and the Mahalanobis distance is adopted, then

/.'(*0) = (*o - Mi)' (*o - Mi)

and rule (10) leads to a minimum-distance rule. This result is even
valid for nonnormal data, see theorem 3.
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4) If X has the multinomial distribution n p*¡¡, when X come from w,,
and if we use distance (13), then

/.(so) = (1 ~Pik)/Pik (17)

if *o falls in the cell k. Thus, the classification rule is:

allocate xq to ir,- if pu¡ = min{pi/t,p2fc}-

Let us now suppose that given Xi,xi € 7r,, there exists <p : ir,- —►

Rq,ti = ip(xi),t2 = <p(x2)1 such that

S2(xi,x2) = (ti - t2)'(ti - Í2) ti,<2 € Rq

i.e., £(., .) is a g-dimensional Euclidean distance. One way to define t¿ =

<p(x¡) is
ti = G~iZ{

where Z, is obtained from (11) and G is the Fisher information matrix.
Generally, if are given and ¿>(.,.) is a Euclidean distance,
£1, • • •, ín can be obtained by metric scaling.

Assume further that

Mi = [<¿>(*)]
exists and

E*i (II*-Mili)2 < o®

where Emeans expectation with respect to pi{x).

Theorem 3

Let *0 be an observation to be allocated, t0 = <p(*o) and fi(xQ) given
by (9). Then

/i(*o) = ||to — M.||2 (18)
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Proof. Let xi, • • • ,xn be iid random vectors from x, and let ti = <¿>(x,), i =

1, • • •, N. Then
S2(xr,xa) = (tr - t,)'(tr - t3)

and, after some algebra, we find

2 ¿L¿2(a5r’**)= ]v

where t = (]>3r tr)/TV. From the law of large numbers it follows that as
N —► oc the above expression tends to

^E^{S2(x,y)} = E„t{\\t - /x,||2}.
Similarly

4 £ <2(xo, *,) = iit„ - i\\2 + - *)'(*' -')
■*

r 1 r

and, as N —► oo this expression tends to

E„,{S2(x0,x)} = ||to-/*¿||2+ ^ir,-{||t-Mili2}
and (18) follows. □

For distance (15) an alternative proof of Theorem 3 is given. Using a
suitable notation:

¿2(xo,®) = (z0-z)'G 1 (z0-z),

E(z,G~1z) = EÍXtslG-'zz') = tra (G_1G) = n.

Henee, because E(z) = 0,

¿2(x0,x)j = z'oG ^o + n.

6 (x,y) = (zx-zy)G (zx-zy),

E E(z'xG~'zx) + E(z,yG~1zy) - 2E{z'xG~'zy)
2n.

15



We condude that the discriminant function is given by

/(*o) = z'oG-'zo,
the square distance between zo = 33 logp(*o,0) and E(z) = 0.

4. THE BAYESIAN APPROACH

The Bayes discriminant rule (BR) allocates xo to the population for
which qip¡(x) is greatest, where q\ and <72 are the prior probabilities of
drawing an observation from 7Ti and ^2 respectively. BR leads to ML when
qi = 92 = 1/2.

If Ti is i = 1,2, ML is equivalent to the mínimum distance
rule provided that the Mahalanobis distance is adopted. For mixed data and
using the location model LM, Krzanowski (1986) using a distance based on
Matusita affinity, proves that LM is also equivalent to a mínimum distance
rule. However, neither the LM approach ñor the Matusita approach takes
the prior probabilities into account. In contrast, this is possible in the DB
method.

4.1 Incorporating prior probabilities

Suppose that uq is known to belong to 7r,- with probability g,, i = 1,2.
Let us consider discriminant function (9) with distance (13). Given u € T\
we find

¿2(u>o,u>) = 0 if u>o€jti,
= 9i-1 + 9Í1 if wo € tt2.

Henee

#io = q\ ■ 0 + 92(1 + 9Í1) = ?i-1
Moreover #1 = 0, so we obtain the function /i(u>o) = 1. Similarly
h{uo) = gj1- However, rule (10) remains invariant if we add the same
constant to f\ and /2 . Therefore, in order to construct a function that is
a square distance, let us introduce the prior discriminant function

fiM = g,'1 - 1 1 = 1,2.

16



Note that /¿(wo) is consistent with the discriminant function (17).
Thus rule (10) allocates w0 to the population for which the prior pro-

bability is greater.

Suppose now that a vector observation X is known with density p,(x).
Taking into account property (16), let us introduce the posterior discrimi¬
nant functions

f?3(xo) = + -l ¿=1,2. (19)

where Hío,Hí are defined in (9).

A decisión rule for allocating xo is:

allocate x0 to 7r, if ff{x0) = min{/f(a:o), ff (*o)} (20)

Discriminant function (19) is constructed by using distance (15), but it
also applies for any other distance ¿(., .).

However, note that rule (10) is invariant after multiplying ¿(., .) by a
positive constant, but the decisión taken from rule (20) could be affected.
In order to avoid this arbitrariness, it is necessary to impose a standardizing
condition similar to (14) to the quadratic form related to S(., .).

4.2 Multivariate normal

The DB rule based on (18) and the BR are closely related. Suppose that
7T, is JV(/i¿,¿7), i = 1,2. Then ML is based on the LDF

V(x) = - n2)' x - ^(mi - M2y ^_1 (Mi + M2X
BR is based on

B(x) = V(x) + log(0/l-6),
and DB is based on

D(x) = V(x)+(e- I)/[0(1-0)],
17



where 0 and 1 — 0 are the prior probabilities of drawing an observation
from 7ri and *2 respectively.

For 0 = | we obtain V(x) = B(x) = D(x), otherwise functions B{x)
and D(x) are different. However, the difference between log(0/l — 0) and
(0 — ^)/[0(l — 0)] is not too marked in the interval (0.2, 0.8). See Fig. 1.

(0-l/2)/[0(l-0)]

« B ln (lé?) 0 < 0 < 1

Figure 1. Graphical comparison between distance based rule (continuous curve)
and Bayes rule (discrete curve), for the multivariate normal distribu-
tion. 6 and 1—0 are the prior probabilities.

4.3 Multinomial distribution

Suppose that a random event A has the conditional probabilities P(j4/7t,)
Pi, i = 1,2. If u>o € A, the Bayes decisión rule is allocate uq to 7r, if
P\0 > P2(l — 0), otherwise to tt2 . Therefore BR is based on

b = log p\ - logp2 + log(0/l - 0)

and DB is based on

¿=(pí‘-pr')/2+(«-5)
18



For 6 = |, b and d are equivalent, otherwise the decisión could be
different. To study this difference, let us consider the Borel set K C (0, l)3

K = {(puP2,0)\b-d>0}
We take the same decisión as long as (pi,p2,0) € K. After some tedious
computations, the Lebesgue measure of K ¡s

ft(K) = 0.971

which is very cióse to 1, the Lebesgue measure of (0, l)3.

Thereby, the decisión taken after using either BR or DB, is almost the same.
This is quite interesting, because although the two decisión rules are based
on different criteria, their results coincide in practice.

5. CLASSIFICATION INTO SEVERAL POPULATIONS

Suppose that we have k mutually exclusive populations 7Ti, • • •, jt* . The
theory developed is easily extended to k > 2. Let C,- be a sample from
7r, and Di a distance matrix. If u>o is an individual to be allocated and
Sj(i) is the distance from uo to j € C,, the discriminant function /,-(w) is
defined as in (1), and the decisión rule for allocating u is

allocate u to tt, if /,(w) = min{/i(o;),-• • ,/jt(w)}. (21)

It is obvious that theorem 1 also applies here, so (20) is a minimum-
distance discriminant rule. In addition, the error rate computations are

easily obtained.

When the distributions are known (up to parameters), extensions of (9)
and (10), as well as therorem 3, do not present further difficulties.

Finally, if prior probabilities q\, - ■ ■ ,qk are known, we may use the pos¬
terior discriminant functions

/f(*o) = fi(xo) + q-1 - 1 i = 1, • • •, k,

where xq is the observation to be allocated.
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6. SOME EXAMPLES

Three real data examples are used to compare the DB approach with
LDF, QDF, EDF and LM approachs.

Data set 1 is the “avanced breast cáncer data” used by Krzanowski
(1975, 1986, 1987) to ¡Ilústrate the LM. In this data set, of 186 cases of
ablative surgery for advanced breast cáncer, 99 were classified as “successful
or intermedíate” (7Ti) and 87 as “failure” (ir2). Gower’s distance (section
2.3) is used on the basis of 6 continuous variables and 3 binary variables for
the DB method, but we take ranks on the continuous variables instead of
numérica! valúes, as the range of most variables was too large.

Data set 2 is the well-known Fisher’s Iris data (Fisher, 1936), which
consider ni = n2 = 713 = 50 observations on three species of iris, I. se-
tosa (ttj), I. versicolor (7t2) and /. virginica (^3) and the discrimination
problem on the basis of 4 continuous variables. The DB method uses the
Euclidean distance (which yields the EDF) and distance (8).

Data set 3, taken from Mardia et al. (1979, p. 328), is concerned with
the problem of discriminating between the species Chaetocnema concinna
(jti) and Ch. heikeriingeri (tt2) on the basis of 2 continuous variables and
samples of sizes m = n2 = 18. Gower’s distance (versión for continuous
variables) is also used.

The leaving-one-out method was used, as described in section 2.2, for
computing the error rates. Table 1 summarizes the results obtained.

Table 1

Numbers of misclassifications obtained with the leaving-one-out method.

1. Cáncer data

*1 ít2

LM 34 27 61

LDF 41 31 72

EDF 45 43 88

DB 33 32 65

2. Iris data

JTi 7T2 *3

LDF 0 2 1

EDF 1 5 7

DB 0 2 3

3

13

5

3. Chaetocnema data

7Ti 7T2

LDF 0 1

QDF 1 1
EDF 2 3

DB 0 0

1

2

5

0
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7. SUMMARY AND CONCLUSIONS

A distance based approach (DB), which uses a statistical distance be-
tween observations, is described and theoretical properties are presented.
This method reduces to linear discrimination (LDF), or even quadratic dis-
crimination (QDF) when the sample Mahalanobis distance is used. More-
over the DB approach yields a general discriminant function which reduces
to the Euclidean discriminant function (EDF) when the Euclidean sample
distance is used.

This method offers a rather simple algebraic way to consider the dis¬
crimination problem with mixed variables as well as the missing valúes case,
provided that a suitable distance is adopted. No restriction seems to be
necessary on the numbers of binary variables, so the DB method may be an
alternative to discrimination based on the location model (LM).

The leaving-one-out method for computing the probability of misclassi-
fication can be applied following an elementary matrix computation in this
approach.

Finally, unlike other methods based on distances, the prior probabilities
can be taken into account in the DB method, with results quite similar to
those given by the Bayes decisión rule.
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REMARK

A Computer program for PC to perform a distance based

discriminant analysis with mixed variables, is available.
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