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Abstract 

A general way of constructing classes of goodness-of-fit tests for 
multivariate samples is presented. These tests are based on a random 
signed measure that plays the same role as the empirical process in the 
construction of the classical Kolmogorov-Smirnov tests. The resulting 
tests are consistent against any fixed alternative, and, for each sequence 
of contiguous alternatives, a test in each class can be chosen so as to 
optimize the discrimination of those alternatives. 

Résumé 

Processus empiriques transformés et tests de Kol­
mogorov-Smirnov modifiés, pour des distributions 
multivariantes. 

On considere ici une méthode générale pour construire certaines 
classes de tests d'ajustement pour des échantillons multivariantes. Ces 
tests sont basés sur des mesures aléatories signées qui jouent le meme 
role que le proces empirique pour la construction du test de Kolmogorov­
Smirnov classique. Les tests resultants sont efficients et consistents 
sous toute alternative, et, pour chaque suite d'alternatives contigües, 
on peut choisir dans chaque classe un test que maximise la discrimina­
tion de ces alternatives. 
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1 Introduction. 

The empirical process associated to the sample { X} of size 1 with respect 
to the probability distribution Fo on & = Rd, d 2'. 1, is the signed measure 
bx: A t---t bx(A) = l{xEA} - Fo(A), evaluated on the random point x = X. 

It is well known that when X has distribution Fo, bx satisfies the prop­
erties 

Ebx(A) = O for every measurable set A, and 
Ebx(A)bx(B) = F0 (A n B) - Fo(A)Fo(B) for every measurable A, B, 

which mean that bx has the same first- and second-order moments as an 
F0-Brownian bridge. 

As n goes to infinity, the empirical process 

1 n 

bn = r:;: L bxi 
yn i=l 

(1) 

of the sample {X1, ... , Xn} of i.i.d. variables with distribution F converges 
in distribution to an F0-Brownian bridge bF0 when F = Fo. When F f:­
Fo instead, bn behaves asymptotically as the sum of an F-bridge bF and 
the detenninistic term ./ñ(F - Fo) that tends to infinity in the supremum 
norm as n - oo. This gives a well known justification for the classical 
Kolmogorov-Smirnov test of 'H.0 : F = Fo (see [51). 

Let us introduce a family of altematives F(r) ( T in a neighbourhood of 
O) contiguous to F(o) = Fo, with density ¡(r) with respect to Fo, and such 
that there exists an L2(&, dF0 ) function k satisfying 

When (2) holds, the function k necessarily satisfies 

j k(x)dFo(x) = O, 

and can be obtained as the L1(&, dF0)-limit of (f(r) - 1)/r as T - O. 

(2) 

(3) 

We shall assume that we are especially interested in detecting the se­
quence of alternatives 'Hn : F = F(n) = F(6/,/ñ'), where n is the sample size, 
and 6 is a fixed parameter introduced for further convenience of notation. 

Under 'Hn, bn(A) converges in distribution to the sum of bF0 plus the 
deterministic drift 

. 8Ebxr(A) 1 1 lim ./ñ Ebx61 r.:-(A) = 6 
0 

= 6 k(x)dFo(x) 
n-oo vn T T=O A 
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(c.f. [13]). That drift measures the sensitivity of the test based on bn with 
respect to 'Hn. 

The aim of this paper is the construction of goodness-of-fit tests based 
on signed measures Wx ( x E &) such that 

• when x is replaced by a random variable X, the resulting measure 
wx(A) evaluated on any measurable set A is a random variable, 

• the measure Wn = n-1!2 Li=l wxi associated to the sample has sorne 
normalized limit distribution under 'Ho, and also 

• the asymptotic distributions of Wn under 'Ho and under 'Hn differ as 
much as possible. 

These random measures will play, in the construction of our tests, the 
same role as the empirical processes, in classical Kolmogorov-Smirnov tests. 
Each of them will be called a Transformed Empirical Proces (in short: TEP). 

For technical convenience, we shall impose that the second-order mo­
ments of wx coincide with those of a Wiener process, normalized by the 
requirement that its total variance be one. Thus, under a Central Limit 
property to be established, the limit distribution of Wn = n- 112 Li=l wxi 
will be a normalized Gaussian process with independent increments. 

As a consequence, we pose ourselves the problem of finding signed mea­
sures Wx verifying 

(i) Ewx(A) = O, for all measurable sets A and the random variable X 
distributed as Fo, 

(ii) Ewx(A)wx(B) = V(AnB), for all measurable sets A, B, the random 
variable X distributed as Fo, and sorne probability V on E, and 

(iii) oEwx,.(E) 1 2: oEw~,.(E) for any w~ satisfying the analogue 
0T T=O O'T T=O 

of (i) and (ii), and the random variable Xr distributed as F(r). 

Conditions (i) and (ii) do not require further explanation. As for Con­
dition (iii), notice that it imposes the drift of our TEP to be as large as 
possible on the set E of maximum variance. The adecuacy of such heuristic 
requirement will be verified a posteriori, from the properties of the resulting 
tests. 
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Let us point out that the problem of finding processes wx satisfying (i), 
(ii), (iii), is implicitely solved in [1], [2], where goodness-of-fit tests asymp­
totically efficient are obtained for univariate samples. In this article, we 
solve it explicitely, extend the solution to a multivariate context, and, for 
each family of alternatives as in (2), provide multivariate consistent tests, 
efficient for that family. 

In the sequel, E is always set equal to Rd, and the examples in §8 are 
developed for d = 1 and d = 2, but most results apply to more general 
spaces, particularly the extension of isometries described in §7. 

2 A formal L 2 construction of the TEP. 

2.1 Isometries and associated TEPs. 

Let us assume for simplicity that the probability V appearing in (ii) is 
absolutely continuous with respect to Fo, and call a2 its density, that is: 

V(A) = L a2(x)dFo(x), j a2(x)dF0 (x) = l. 

We shall assume further that a is Fo-a.e. different from zero, that is, Fo and 
V are absolutely continuous with respect to each other. 

We shall denote (., .) and (., •)v the inner products in L2 (E, dFo) and 
L2 (E, dV) respectively. Ftom an orthonormal basis '1t =('!/Jo= 1, 'I/J1, 'I/J2, ... ) 
of L2(E, dF0 ), we may construct the new sequence of functions 

wv = ('I/J¡)i=o,1, ... , '1/)¡ (x) = 'I/Ji(x)/a(x), 

which is an orthonormal basis for L2(E, dV). 
Conditions (i) and (ii) can be replaced by the requirement that the Fou­

rier coefficients 
Ci(x) = J 'I/JY (y)dwx(y) 

of dwx/ dV with respect to wv satisfy 

ECi(X) = (Ci, 1) =E/ '1/)¡ (x)dwx(x) = o 

and 

ECi(X)cj(X) = (Ci, ci) = E j 'I/J¡ (y)dwx(y) j 'I/JJ (z)dwx(z) 
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= J v;r (y)i/Jj (y)dV(y) = (v;Y' VJj)v = bi,j· 

Consequently, C = (Ci)i=0,1, ... is required to be an orthonormal system 
in L2(&, dF0 ) with all its elements orthogonal to the constant 1, in order 
that (i) and (ii) hold. 

Expand now wx,.(&) = ¿iCi(Xr)(i/Jr, 1), and compute 

8Ewx,.(&) 1 = lim ¿ E(Ci(Xr) - Ci(X)) (v;r, l)v = 
OT T=O r-o i T 

I;, j ci(x)k(x)dFo(x)(i/Ji, a) = I;, (ci, k) (VJi, a) = I;, kf ai, ( 4) 
i i i 

where kf, ai are the i-th Fourier coefficients of k anda with respect to the 
orthonormal systems C and w, respectively. 

Let us introduce now the isometry T that maps w onto C, that is, 

T: L 2(&, dFo)-+ L2(&, dFo), Vli f-+ Ti/Ji = Ci, i = 1, 2,.... (5) 

The last term in (4) equals (k, Ta), and therefore Condition (iii) holds 
when C and a are chosen to minimize the angle between Ta and k. This is 
accomplished by selecting Ta= k/llkll, provided the span of C contains k. 
This will be ensured by imposing that the span of C, that is, the range of 
T, be the orthogonal complement 1.1 of 1 in L2 (&,dF0 ). 

The conclusions obtained so far can be summarized in the following 
statement: 

Proposition 1 The measure Wx with formal Fourier expansion 

00 

Wx( A) = L Ci (x) (alA, VJ¡) (6) 
i=O 

satísfies (i), {ií), (iii), when w = ('1/Ji)i=l,2, ... ís an orthonormal basis of 
L2(&,dF0 ), T ís an isometry on L2(&,dFo) with range 1.1, C = (Ci)i=1,2, ... 
is the image of w by T and the function a has the property Ta= k/llkll-

In that case, the objective of our optimization has the value 

aEwx,.(&) j = (k, Ta) = llkll. 
OT T=O 

(7) 

Remark 1.1 The preceding proposition gives a formal solution to our prob­
lem for each orthonormal basis of L2(&, dF0 ) and each isometry T with range 
1 .1_ 
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Remark 1.2 By replacing e¡(x) by T'I/Ji(x) in (6), and using the linearity 
of T we obtain 

00 

w.(A) = T¿(alA, '1/Ji)'I/Ji = T(alA), (8) 
i=O 

and this implies in particular that Wx depends only on the isometry T, but 
not on the orthonormal basis \JI. 

Let us finally introduce the notation 

(9) 

for the measure associated to the isometry T and the score Junction a E 

L2 (&, dFo). 
After Remark 1.2, me may reformulate our previous statement: 

Proposition 2 The measure (9) satisfies (i), (ii), (iii) and (7), when T is 
an isometry on L2(&, dFo) with range l l., and the score Junction is chosen 
as a = r- 1k/llkll-

2.2 . Constructing the TEP as a stochastic integral with re­
spect to the empirical process. 

From equation (9) and the orthogonality of the range of T with respect to 
1, the expression 

wt•T)(A) = T(alA)(X) = J T(alA)dl{.::;x} 

= j T(alA)d(l.::;x - Fo)= j T(alA)dbx 

follows. 
From (10) we derive an expression for 

w(a,T) = _1_ ~ w(a,T) 
n 'n !--,; X¡ 

V 1
~ i=l 

in terms of bn, namely: 
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2.3 Transformed empirical process in [ = Rd. 

We adopt the expressions (10) and (12) as the definition of the transformed 
empirical proces: 

Definition 1 The transformed empirical process of the sample {Xi, X2, 
... , X n} of & -valued random variables, associated to the probability dístri­
bution Fo on &, the isometry T on L2 = L2(&, dFo) with range equal to the 
orthogonal complement 1.L of the constant Junction 1, and the L2-function 
a with llall = 1, is 

(13) 

No attention has been paid to the convergence of the Fourier expansions 
involved in the arguments that motivated Definition 1, but straightforward 
computation of moments shows that properties §1 (i), (ii) hold when w is 
replaced by w~,T) or w~a,T). Moreover 

= J k(x)(Ta)(x)dF0 (x), 
T=O 

so that (iii) holds with wt·T) substituted for wx, where a= 7-1k/llkll, 
We show in section §3 that, under suitable assumptions on T, a, a Central 

Limit Theorem holds for the TEP so defined. 

3 Asymptotic properties of the TEP. 

Let us consider the TEPs (w~a,T))n=i,2, ... with respect to Fo constructed over 
triangular arrays of i.i.d. variables Xn,l, Xn,2, ... , Xn,n with distribution 
function F(n). We describe separately the limit properties of the TEPs for 
n-+ oo in two cases, when F(n) = F =/:. Fo is the same fixed distribution for 
all samples, and when p(n) is a sequence contiguous to F0 • 

3.1 Unboundedness under flxed alternatives. 

The expectation of w~·7 \A) when X has distribution F is 

J T(alA)(x)d(F(x) - Fo(x)) = J T(alA)(x)dF(x) = (T(alA), dF/dF0 ). 

Let us call g the projection of dF/dF0 on the range of T. Then Ew~·7 \A) 
= (alA,9) = ÍA agdFo. From this expression we are lead to the following. 
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Theorem 1 lf ÍA agdFo -/= O for sorne A in a family of sets :J, then 

lim sup lwn(A)I = +ooa.s. 
n-+oo AE.:T 

{14) 

Corollary 1.1 When :J = {(a, b] : a, b E Rd} or :J = {(-oo, b] : b E Rd}, 
then (14) holds. 

The conclusion follows from the assumptions that T has range 1..1. and 
a is a.e. nonvanishing. 

3.2 Gaussian limit under the null hypothesis and contiguous 
alternatives. 

Replacing the empirical process bn in {13) by the Fo-Brownian bridge b, 
one obtains a Wiener process w(a,T)(A) = f T(alA)db, indexed on A (A in a 
given family of sets :J). Following Ossiander {[14]), the convergence in dis­
tribution of the transformed empirical process w~a,T) to w(a,T) is guaranteed, 
under the null hypothesis río, by the assumptions 

T(alA) ~ G for sorne GE L2(&, dFo) and all A E :J, {15) 

of uniform boundedness of the family 

Q = {T(alA) : A E :J}, {16) 

and 
/1 (2) 

Jo log N11 {é, Q, Fo)dé < oo {17) 

about the boundedness of the L2(Fo)-metric entropy with bracketing Ni'f), 
which is defined by: 

Ni'f){é, Q, Fo) = min{K: there exist sets U and C with cardinal K of L2(F0 )­

functions such that for each f E g there exist u E U and l E C, 

such that l < f < u and llu -111 2 ~ é 2}. {18) 

As for the asymptotic distribution of w~a,T) (A) under rín, it follows from 
Le Cam Third Lemma and the assumption (2) (see [ll],[13]) that it is the 
same as under río plus the bias 6 ÍA k(Ta)dFo. 

The following statement summarizes the asymptotic behaviour indicated 
above. The assumptions i~ (i) must be verified for each particular isometry, 
as will be done below for the examples in §8. 
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Theorem 2 Let {X1, ... , Xn} be a sample of E-valued i.i.d. random vari­

ables with distribution F and w~a,T) (A) the transformed empirical process of 
that sample associated to the probability distributíon Fo on E, the isometry 
T on L2 = L2(E, dFo) with range orthogonal to the constant function l, and 
the L2-function a ~lall = 1), as introduced in Definition l. 

(i) When the assumptions (15) and (17) hold, { w~a,T) (A) : A E .J} con­
verges in distribution to the Wiener process {w<ª•7 >(A): A E .J} with 
covariance Junction 

under the null hypothesis 'Ho : "F = Fo". 

{ii) When, in addition, the family of probabilities F(r) on E with density 

¡<r) with respect to Fo satisfies (2), then {w~a,T)(A) : A E .J} con­
verges in distribution to {w(a,T)(A) + b fA k(Ta)dFo: A E .J}, under 

the sequence of alternatives 'Hn : "F = F(é/..fñ) ". 

These results justify the test procedure described in next section. 

4 The goodness-of-fit tests. 

We propose to test 'H.o : "F = Fo" by means of the critical region 

sup j w~ª•7 >(A) I> c(a) 
AE..7 

with Ta= k/llkll and c(a) such that 

P{sup I w(aT)(A) I> c(a)}:::; a, 
AE..7 

where a is an upper bound of the asymptotic level desired for the test. 
The family .J of measurable subsets of E is chosen rich enough to genera te 

the u-field of mea.sur a ble sets in E, but not so large that sup AE..7 1 w( aT) (A) 1 

be unbounded. I t is assumed that .J contains E. Moreover, the compromise 
in choosing .J is that a CLT 

lim sup lwn(A) - wv (A)I = o 
n--+oo AE..7 

(19) 
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holds for copies Wn of w~a,T) and a V-Wiener process w v, and also 

for F -::J Fo, there is A E :T such that F(A) -::J F0 (A). (20) 

We shall choose for :T either the farnily of all generalized intervals 

:T1={xf=1(Pi,Qi]: -oo-5,pi<Qi-5,oo, i=l,2, ... ,d} 

or the farnily of translations of the negative orthant 

:To = { xf=1 (-oo, Qi] : Qi -5, oo, i = 1, 2, ... , d}. 

Since E E :T, the asymptotic power of the test for 'Hn is greater than 

P{w(a,T)(E) + 8llkll > c(a)} = ~(-c(a) + 8llkll). 

An argumentas the one used in [2] or [4] shows that when the level a and the 
probability /3 of type II error are sufficiently small, the asymptotic relative 
efficiency of our test with respect to the Maximum Likelihood Ratio Test 
can be chosen as close to one as desired. In this sense, the test has optimum 
efficiency. 

For other values of a and /3 there is a reduction in the efficiency, due to 
the use as the test variable of the supremum of w~a,T) over a farnily of sets 
instead of the value of the same process on E. This is the price to be paid 
for the consistency against all alternatives. 

5 On the construction of isometries and their as­
sociated transformed empirical processes. 

Let us notice that any isometry Ton L2(E, dF0 ) with range contained in 11. 
= {! E L2 (E, dF0 ) : (!, 1) = O} induces an orthonormal system \Jt(T) = (1, 

2 . Tl, T 1, ... , T'l, ... ). 
Conversely, given any orthonormal system \JI= (1, 1/J1, 1/J2, ... ), the linear 

transformation T(w) on L2(E, dF0 ) that maps each 1/J¡ onto 1Pi+l, i = O, 1, 
... , is an isometry with range in 11.. In addition, when \JI is a basis, the 
range is 11. and therefore it contains any function k with the property (3). 

These observations imply that the isometries needed for the construction 
of TEPs may possibly be obtained from known orthonormal systems in 
L2(E,dFo). 

In subsection §5.1 we indicate the analytical form of the shift T L in­
duced by the Laguerre Polynomials on L2(R+,e-xdx). A simple analytical 

9 



property of T L reflected. in equation (23) gives an alternative way to obtain 
. this isometry. 

For a given orthonormal system '11, it is not easy in general to find the 
explicit analytical expression of the shift operator that maps each 1/Jn onto 
'I/Jn+1· We describe it for a particular example in §5.2: the orthonormal 
system of Tchebyshev Polynomials on L} = L2([-l, l], dx/(1rJ1 - x2)). 

The normalized Hermite polynomials hn(x) = Hn(x)/Jni., n = O, 1, ... , 
where éx-t

2 
/

2 = E~=O Hn(x)S, ([17]), constitute an orthonormal basis of 
L'j¡ = L2 (R,e-x

2
12dx/,12;). An explicit writing of the shift that maps hn 

onto hn+l in terms of integrals of the Poisson kernel (see [12] for the form of 
the inverse shift), leads to cumbersome computations so that the alternative 
approach, namely, the generalization of equation (23), is adopted. in §5.3 to 
construct an isometry T H on that space. 

By means of changes of variables, the isometries in §5.1 §5.2 and §5.3in­
duce others on different L2 spaces on R, as described in §6, and the latter 
ones can be used. in the construction of new isometries on L2 spaces on Rd 
as shown in §7. 

The Laguerre shift (29) has been used. many times in probability theory 
and statistical inference: for instance, let us mention that Brownian bridge 
is constructed. from Wiener process by means of its inverse in [9], that Efron 
and Johnstone [6] and Ritov and Wellner [16] use (29) and its inverse in 
connection with hazard rates (Sorne properties of both isometries are de­
scribed. in [7]), and that E.V.Khmaladze ([10]) introduced (29) in statistical 
inference, specially emphasizing sorne associated martingale properties. We 
use it as our main example because of its very simple analytical expression, 
but do not apply any martingale approach. 

5.1 The Laguerre shift. 

The well known Laguerre polynomials {Ln : n = O, 1, ... } are an orthonor­
mal basis of L2(R,dF0), with F0(x) = F0 ([0,x)) = 1 - e-x, and they are 
obtained by means of the iterated. application of the mapping 

h(x) = T L9(x) = g(x) - fax g(t)dt 

to the first element of the basis, the polynomial of degree zero Lo = 1: 

Ln(x) = (-ltT''lLo(x) 

(see, for instance, [17], as a general reference). 
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This implies that T Lis an isometry and, for each g E L2(R, dF0 ), T L9 
is orthogonal to the constant 1. 

Both properties of T L follow immediately after plain calculations, and, 
conversely, imply (22). The clue to show that T L is an isometry is the 
equation 

T L9(x)T Lh(x)fo(x) = g(x)h(x)fo(x) - d~ (!o(x) !ax g(t)dt !ax h(t)dt) 

(23) 
and the fact that limx-oo fo(x) fax g(t)dt J; h(t)dt = O. 

5.2 The Tchebychev shift. 

The Tchebyshev Polynomials T0 (x) = 1, Tn(x) =v'2cos(narccosx), n = 1, 
2, ... are an orthonormal basis of L} = L2([-1, 1], dx/(1rJ1 - x2)). The 
isometry Tr that maps each Tn onto Tn+l can be described as follows: 

Given u(x) EL}, let us assume first that (u, 1) = J2 1 u(x)dx/(1rJ,-1 ___ x..,,.2 ) 

= O. Perform the change of variable fi(ltl) = u(cos t), -1r < t ::; 1r, obtain 
an analytic function h(u) on D = {( = reit : 1(1 < 1} such that fir(t) = 
~ h(u)(reit) converges in L2((-1r, 1r], dt)-norm to fi(I t 1) as r - 1 and take 
the L2 ((-1r, 1r], dt)-limit 

v(cos t) = lim ~ (h(ul((). 
r=l(l-1 

This limit is the image v = Tru of u. 
The function h(u) is determined up to an imaginary additive constant, 

and the one satisfying ~h(u)(o) = O is obtained by integrating the Poisson 
kernel: 

h(ul(() = ~ f u(~ z) z + ( dz 
21ri le z - ( z 

1 J,r (1-r2 +2irsin(s-t)) = -
2 

u(coss) 
1 2 

( ) 2 ds = u(cost) 
1r -,r - r cos s - t + r 

1 J,r (1- r 2 + 2irsin(s - t)) +-
2 

(u(cos s) - u(cos t)) 
1 2 

( ) 2 ds. 
1r -,r - r cos s - t + r 

Taking the limit in 

~ (h(u)(() = reos t u(cos t) 

1 r ( ( ) ( )) (r(l - r 2
) cos t -2r2 sin(s - t) sin t) d 

+ 21r }_,r u coss - u cost 1 - 2rcos(s - t) + r2 s, 
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one obtains 

1 ¡1r (- sin(s - t) sin t) +-
2 

(u(coss)-u(cost)) ( ) ds 
1r -1T 1 - cos s - t 

_ ( ) _ sin(t) ¡1r u(coss) - u(cost)d 
- cos t u cos t 2 (( )/2) s. 

1r -1r tan s - t 

Any u(x) E L} can be written as the sum of the constant (u, 1) and 
the function u(x) - (u, 1), orthogonal to l. The image of (u, 1) by Tr is 
./2(u, l)x, and the image of u(x) - (u, 1) is obtained as indicated above. 

It may be noticed, in particular, that the images by Tr of functions such 
as the product a(•)lx(·) of a continuous nonvanishing function a times the 
indicator function of a half line are not bounded. This makes this isometry 
useless for our present purposes. 

5.3 An isometry associated to normal distribution. 

Let <p(x) = e-x2
/
2/,.fi; denote the normal density. The analogue to (23) 

Sg(x)S((x)<p(x) 

= g(x)h(x)<p(x)- d~ ( /¡;j fax {iti g(t)dt/¡;j fax {iti h(t)dt<p(x)) , (24) 

where 
S : /(x) f--+ /(x) - sgnx/¡;j fax {iti J(t)dt (25) 

and 
}!.~ /¡;j fax {iti g(t)dt/¡;j fax {iti h(t)dt<p(x) =O. 

imply that (25) defines an isometry Son L2(R, <p(x)dx). 
S maps even functions onto even functions orthogonal to Jíxf, and odd 

functions onto odd functions orthogonal to sgn(x)Jfxf. As a consequence, 
the range of Sis orthogonal to sgn(x)Jfxf and Jfxf, but not to the constant 
1 as reqtúred. The new isometry T H given by 

T H/ = { /, 1 / odd ( ) 
S/+i-cos,_,(S/,l)(u-1), /even, 

26 

where u(x) = Jfxf/11Jl711 = ~Jíxf, cos, = (1,u) = {ITTi f(3/4), 
has range orthogonal to l. 
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Since any function f is the sum of an odd part f º(x) = (J(x)- J(-x))/2 
and an even part f e(x) = (J(x) + J(-x))/2, (26) completely defines T H, 

w hich can also be wri tten as 

THJ(x) = J(x)-j¡;¡ ¡lxl v'sJ e(s)ds+ 
1 

1 
(Sf e,l}(u(x)-1). (27) lo - cos, 

The inverse of S is given by 

(S- 1h)(x) = h(x) - ~ ¡00 

sgnt[itlh(t)<P(t)dt 

and hence 

(T1/h)(x) = h º(x) + s-1 (he -
1 

(he, u)(u -1)) 
1 - cos, 

1 
= h( x) - l ( h e, u)( u - 1) 

-cos, 

- víxf( X) r'° vt [h e(t) - l l (h, u)(u(t) - 1)] <P(t)dt. (28) 
<P X J¡x¡ - COS¡ 

In particular, (28) reduces to h when h is odd. 

6 Construction of isometries on L2(R, dF0 ) for an 
arbitrary probability Fo, by means of a change 
of variables. 

Let us assume that we are given an isometry Tp on L2(&,dF) and wish to 
construct a new isometry Tp0 on L2(&, dFo). The next lemma gives a simple 
and general procedure for such construction: 

Lemma 1 IfTp is an isometry on L2(&, dF), then the mapping 9o i--+ Tp0 90 
defined by 

(Tp0 go)(x) = (Tpgo o F0-
1 o F)(F-1(Fo(x))) 

is an isometry on L2(&, dF0). 

Proof Let us assume Xo ~ Fo, and Eg5(Xo), Eh5(Xo) < oo. 
The change of variables X = F-1(F0 (X0 )) maps Xo onto X ~ F, 

and hence Eg5(Xo) < oo, Eh5(Xo) < oo are equivalent to Eg2 (X) < oo, 
Eh2(X) < oo, respectively, for g = go o F01 o F, and h = ho o F0-

1 o F. 
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We may then compute 

j Tp0 goTp0 hodFo = ETp0go(Xo)Tp0 ho(Xo) 

= E(Tpgo o F0-
1 o F)(F- 1(Fo(Xo)))(TFho o F01 o F)(F- 1(Fo(Xo))) 

= E(Tpg)(X)(Tph)(X). 

Since Tp is an isometry on L2 (&, dF), the right-hand term equals 

Eg(X)h(X) = Ego(Xo)ho(Xo) = j gohodFo, 

and this proves the Lemma. 

6.1 Example l. L-isometries. 

From Lemma 1 applied to the ísometry in §5.1, we get, for each Fo, a new 
isometry rx g(t) 

(T L,Fo9)(x) = g(x) - }_
00 1 _ Fo(t) dFo(t), (29) 

on L2(R, dF0 ). Its inverse 

1 rx 
(Ti~0 h)(x) = h(x) + 1 _ Fo(x) }_

00 
h(t)dFo(t) (30) 

is obtained by solving (29) for g. In what follows, any ísometry in the class 
defined by (29) will be called an L-isometry. Under suitable assumptions, 
T L,Fo satisfies (15) and (17), and hence Theorem 2 applies: 

Lemma 2 When lal/(1 - Fo)ª belongs to L2(R, dFo) for sorne positive a, 
then T L,Fo satisfies {15) and (17) with j = {(-oo, x] : x E R}. 

Proof The function !TL,F0 (al(-oo,yJ)I is bounded by 

G = 'ª' + r la(s)I dFo(s) 1-oo 1 - Fo(s) 

uniformly in y. Let us assume with no loss of generality that a < 1/2. The 
inequalities 

roo ( r la(s)I )2 
1-oo 1-oo 1- Fo(s) dFo(s) dFo(x) 
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$ ¡_: (/_~ (l _ªl:{:))2adFo(s) /_x
00 

(l -1(~~~2-2a) dFo(x) 

$ 11 (1 ~ª1,o)ª f 1 -
1
2a ¡_: ( (1 - Fo~x))l-2o - 1) dFo(x) 

11 
'ª' 112 1 $ (1 - Fo)ª 2a(l - 2a) 

and the assumptions on a imply that Gis in L2(R, dF0 ), so that (15) holds. 
Given a positive €, let us construct a (finite) partition (x0 = -oo, x 1 , 

x2, ... , x 11 = oo) of R such that for each i = 1, 2, ... , 11, 

1~~
1 

a2(s)dFo(s) $ €
2 /8 (31) 

and also 

1x. a2(s) a(l - 2a)e2 

. (1 - F, (s))2ª dFo(s) $ 4 ' x,-1 O 

so that 

¡Xi ( r 'ª' dFo) 2 dFo(x) $ a(l - 2a)é2 1 = €2 /8. (32) 
x;_ 1 lx;_1 1 - Fo 4 2a(l - 2a) 

Notice that a partition satisfying (31) can be constructed with 11 $ 1 +8/€2 

intervals, and another one satisfying (32) requires at most 1 + 411:~i~-;~)~;112
• 

The partition obtained by joining the points in both ones satisfies our re­
quirements, and can therefore be achieved with 11 $ C / € 2 , where C may 
depend on a ( and a) but not on €. 

For all y E [Xi-t,Xil, 'T(al(-oo,y]) is bounded from above by 

¡Xi-1A· a 1x;A· lal 
Ui = al(-oo,x¡_ 1 ) + lall[x¡_ 1 ,x;] - 1 _ F, dFo + _ F, dFo 

-oo O Xi-lÁ' 1 0 

and from below by 

¡Xi-lÁ• a 1X¡t\• 'ª' 
li = al(-oo,x;-i) - lall[xi-i,x;] - F, dFo - F, dFo. 

-00 1 - Ü X¡-1/\· 1 - 0 

These bounds satisfy 

( ¡X¡t\• 'ª' ) 2 llui - lill 2 $ 2 lall[x;-i,x;) + 
1 

_ F, dFo $ €
2 

X¡_¡t\· 0 

as a consequence of (31) and (32), hence N8) $ C/€2, and the condition 
(17) holds. This ends the proof of Lemma 2. 
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6.2 Example 2. N-isometries. 

When Fo is a symmetric probability distribution function (F0(x) + Fo(-x) = 
1), then (g o F0-

1 o <1>) e =ge o F0-
1 o <I> and (g o F0-

1 o <1>) 0 = g O o F0-
1 o <1>, 

and hence, from the isometry in §5.3, we get the new isometry 

- J -1 rlxl Jl<J>-l(Fo(s))ig e(s) 
(T H,Fo9)(x) - g(x) - l<I> (Fo(x))l lo cp(<J>-l(Fo(s))) dFo(s) 

+ 1 / S(g e o p0-
1 o <I> )(z)cp(z)dz (u( <l>-1(F0 (x))) - 1) (33) 

1 - cos 1 
on L2(R, dF0 ). A general version of (33) for nonsymmetric Fo is equally 
easy to obtain, but its expression is even more complicated. The mappings 
given by (33) are called N-isometries in the following. 

Lemma 3 When lal e¡(cp(<J>- 1(Fo(·)))ª be,longs to L2 (R, dFo) for sorne pos­
itive o:, then T H,Fo satisfies (15} and (11} with :J = {(-oo, x] : x E R}. 

Proof Proceed as in the proof of Lemma 2: Now IT H,F0 (al(-oo,y])I is 
uniformly bounded by 

G = lal + J¡<1>-l(Fo(x))I rlxl Jl<J>-l(Fo(s))ilal e(s) dFo(s) 
lo cp(<J>- 1(Fo(s))) 

+ 
1 

1 
llall (1 V u(<l>-1(Fo(s)))). 

- COS¡ 

The first and last term in G are square integrable, beca use la(•) 1 and 
u(<l>-1(Fo(·))) are in L2(R,dF0 ). In order to verify that the middle term 
has the same property, we assume again o:< 1/2 and derive the inequalities 

roo ¡<1>-l(Fo(x))I ( rx ✓l<J>-l(Fo(s))llal e(s) dFo(s)) 2 dFo(x) :S 
1-oo lo cp(<1>- 1(Fo(s))) 

r00 ¡<1>-l(F, (x))I rx ¡<1>- 1(Fo(s))ldFo(s) r (lal e(s))
2
dFo(s) dF'i (x) 

1-oo O lo cp2-2a(<J>- 1(Fo(s))) lo ¡p2a(<J>- 1(Fo(s))) 0 

roo I rz tcp(t)dt 1 
:S Ma 1-oo izl lo ¡p2-2a(t) cp(z)dz 

M 0 r00 
( 1 1 ) 

= 1 - 2o: 1-oo lzlcp(z) ¡pl-2a(z) - ¡pl-2a(o) dz < oo, 

thus providing (15). 
The estimation of the L2(F0)-metric entropy with bracketing is made as 

in the proof of the previous Lemma, and it leads to conclude that condition 
(17) also holds. 
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7 Constructing isometries on L2(E, dF0 ), E space 
of dimension greater than one. 

When E is the cartesian product E = R x E1 the measure Fo is written 
in terms of the marginal measure Fo(J) = Fo(J x &1) and the conditional 
measures dF8(Y, .) defined on E1 by Fo(J x B) = JyEJ dFo(y) ÍzEB dF8(Y, z). 

In other words, if X = (Y, Z) ~ Fo, then Y ~ Fo and the conditional 
distribution of Z given Y= y is P{Z E B I Y= y}= ÍB dF8(Y, .). 

For each g in L2 (E, dFo), we denote 

g(y) = E(g(Y, Z) 1 Y= y). (34) 

This new function is in L2(R, dFo) and the mapping g 1-+ g preserves the 
norm. 

Lemma 4 lf g E L2(E, dFo) and T is an isometry on (R, dFo), then 

g 1-+ Tg(y, z) = g(y, z) - g(y) + Tg(y) 

is an isometry on L2(E, dFo). 

(35) 

Proof Given g, h E L2(E, dFo), let us compute (Tg, Th) = E(g(Y, Z) 
-g(Y) + Tg(Y))(h(Y, Z) - h(Y) + Th(Y)). The equalities Eg(Y, Z)h(Y) 
= Ek(Y)E(g(Y, Z) I Y) = Eg(Y)k(Y), E(g(Y, Z) - g(Y))Th(Y) = O, and 
similar ones obtained by interchanging g and h lead us to write (T g, Th) = 
Eg(Y, Z)h(Y, Z)-Eg(Y)h(Y) +ETg(Y)Th(Y) = (g, h) -([¡, h) +(Tg, Th) 
= (g, h), and this ends the proof of the Lemma. 

8 One application: Consistent goodness-of-fit to 
the standard normal distribution. 

As an illustration of the general procedure for the design of consistent and 
efficient tests contained in the preceding sections, we describe the tests as­
sociated to the isometries in §5.1 and §5.3 for goodness-of-fit to standard 
normal distribution in R and R 2 . Two cases are considered: In Case 1, the 
tests are designed to have optimum sensibility against shifts of the mean, 
while in Case 2, the alternative to be detected is a change of dispersion. 
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8.1 Case 1. Tests designed for detection of shifts in the 
mean. 

8.1.1 The one-dimensional test 

Let E = R, Fo(x) = <I>(x) = J~
00 

'f?(t)dt, 'f?(t) = $c-t
2

/
2

, and FT(x) = 

<I>(x - T). The ratio of the densities is 1;:~~)) = 1 + XT + o(T), so that 

k(x) = x, llkll2 = f~oo X
2'f?(x)dx = l. 

Example 8.1.1.1 TEP associated to the L-isometry. 

The score function is a(x) = Tr,~,t,(x) = x + 1_¡(x) J~00 t'f?(t)dt = x- 1.'.:'~~) 

(see (30)), and hence the TEP for the sample {X} of size one is 

A rx a(t)l{t<x}'P(t)dt 
wx(x) = wx((-oo,x]) = a(X)l{x::;x} - l-oo 1 --<I>(t) 

( 
'f?(X) ) [X/\x ( 'f?(t) ) 

= X - 1 - <I>(X) l{x::;x} + 1-oo d 1 - <I>(t) 

'f?(X) 
= Xl{x::;x} + 1 _ <I>(x) l{x<X}· 

In order to describe the general shape of the TEPs and their response to 
changes in the position or in the dispersion of the samples, we introduce the 
fictitious sample of size 9: (<I>- 1(i/10))i=l,2, ... ,9 , that will be referred as the 
special sample in the following. Then we compute the TEPs associated to 
the optimum score function a for the special sample, and for the shifted and 
dispersed special samples (<I>- 1(i/10) + l)i=l,2, ... ,9 and (2<1>- 1(i/10)\=1,2, ... ,9 . 

The corresponding three diagrams are presented in the left-hand side of 
Figure l. 

Example 8.1.1.2 TEP associated to the N-isometry. 

Since k is odd, then a(x) = TÑ1,t,k(x) = k(x) = x, and 
' 

wx(x) = wx((-oo,x]) = T N,it>(·l(-oo,x](·))(X) 

rv; /IXI (-s) 
= Xl{x::;x} - V JA I lo VS 2 l{lxl:5s}ds 

u(X) - 1 / (-s ¡;-:; [lsl ¡; (-t) ) + 1 _ cos, 2 1{1xl:5lsl} - y !si lo vt 2 l{lxl<t}dt 'f?(s)ds 

18 



L-TEPs N-TEPs 

Figure 1: Responses to normal ( - ) , shifted ( - ) and dispersed ( - ) 
samples, of the TEPs associated to L-isometry (L-TEPs) and to N-isometry 
(N-TEPs), optimized to detect changes in position. 

/IXf ( 5/2 5/2) + = Xl{x:sx} + -
5

- IXI - lxl 

+ u(X) - 1 [-cp(lxl) + ~ ('° cp(s)./s(s5/2 - lxl5/2)ds] . 
1 - cos, 5 l1x1 

The right-hand side of Figure 1 shows the shapes of the new TEPs. 

8.1.2 The test for d = 2. 

Let F(r) be the normal distribution with mean (o) and variance matrix 

equal to the identity, and let Fo = F(o). The density under 1-lo is fo(y, z) = 
cp(y)cp(z), and under the alternative, ¡(r)(y, z) = cp(y-r)cp(z). The densities 
ratio is ¡(r)(y, z)/ fo(Y, z) = cp(y - r)/cp(y) = 1 + xr + o(r), and hence the 
drift is k(y, z) = y. 

We choose now the direction of the shift, namely, the y axis, to project 
the plane measure on it, and obtain the corresponding marginal distribution 
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Fo=~- Lemma 4 is now applied to construct two isometries on L2 (R2
, dFo), 

by substituting T L,Fo and T H,Fo for T in (35): 

T L,F0 9(Y, z) = g(y, z) - Eg(y, Z) + T L,~Eg(·, Z)(y), 

T H,F09(Y, z) = g(y, z) - Eg(y, Z) + T H,~Eg( ·, Z)(y), 

Z standard normal. 
When g(y, z) = g(y) <loes not depend on z, Tg = Tg. In particular, 

since the drift k depends only on y this implies that the score functions 
corresponding to T L,Fo and T L,Fo also depend only on y and each one is 
given by the formula obtained for d = 1, respectively 

A cp(y) 
a L(y,z) = x - l -~(y) and a H(y,z) = y. 

Consequently, the TEP for a single observation is, in the former case: 

wlz(A) = wfi•ª\A) = a L(Y, Z)l{(Y,Z)EA} - /La L(Y, z)cp(y)cp(z)dydz 

Jrr aL(y,z) 
+ }Al_ ~(y) (l{Y$y} - ~(y))cp(y)cp(z)dydz, 

and, for A= (-oo, y] x (-oo, z], it reduces to 

L ( cp(Y) ) cp(Y I\ y) 
Wy,z(Y, z) = Y - l _ ~(Y) l{Y$y,Z$z} + ~(z) l _ ~(Y I\ y)· 

As for the latter case: 

w/z(Y, z) = wfz8•ª) ( ( -oo, y] x ( -oo, z]) 

- Yl + v1YT~(z) (1Yl 512 - IYl 512)+ - {Y$;y,Z$z} S 

u(Y)- l~(z) [cp(y)-2 roo cp(s)vss5/2 ~IYl5/2ds]. 
1-cos, }¡y¡ 

The goodness-of-fit is tested using the critica! region 

max lwn(Y, z)I > c(a) 
y,zeR 

with Wn(Y, z) = 7n Ef=1 wl,z/Y, z) or Wn(Y, z) = 7n Ef=1 Wy~z/Y, z), re­
spectively. 
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A conservative region of size a is obtained with c(a) = -4>- 1(a/8), 
because of the well known estimate 

P{ max wv ((-oo, y], (-oo, zl) ~e}~ 44>(-c) 
y,zER 

that holds for a V-Wiener process w associated to any probability measure 
v. 

The general shape of the TEPs, and how they are affected by changes 
in the samples, is sketched in Figure 2, for the TEPs associated to the L­
isometry. 

The upper part of Figure 2 shows the graph (y, z, w(y, z)), -3 < y, z < 3 
of the TEP for the special sample {(4>-1(i/6), 4>- 1(j/6)h,j=l, ... ,s, corre­
sponding to the L-isometry. As in the one-dimensional pictures, we have 
introduced an arbitrary special (two-dimensional) sample with an empirical 
distribution abnormally close to its theoretical distribution, assumed to be 
the standard Gaussian. 

The other two graphs in the same figure show the TEPs for the shifted 
sample {(4>- 1(i/6) + 1, 4>- 1(j/6) + l)h,j=l, ... ,5 and the dispersed sample 
{(24>- 1(i/6), 24>- 1(j /6)) h,j=l, ... ,5 , in the same domain. 

The small diagrams in the left-hand side, show the same graphs, with 
the direction of vision changed to horizontal, in arder to show the position 
of maxima and minima. The critica! planes at c(5%) and -c(5%) are also 
shown. 

A graph with points over c(5%) or under -c(5%) leads to reject the null 
hypothesis of goodness of fit, at a level smaller than 5%. 

8.2 Design of a test specially sensitive to changes in disper­
sion. 

We choose now F'T'(x) = 4>((1 - r)x), and so 

JT(x) = (1 - r) r.p(x - rx) = (1 - r)(l + rx2 + o(r)), 
fo(x) r.p(x) 

and k(x) = x2 
- 1, llkll2 = 2. 

Example 8.2.0.1 TEP associated to the L-isometry. 

The score function is 

a(x) = ~ [x2 -1 + l - ~(x) /_x
00 

(t
2 

- l)r.p(t)dt] 
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Original special sample: 

2, -----------~ 

Shifted sample: 

Dispersed sample: 

Figure 2: Graph of the TEPs for the two-dimensional special sample, cor­
responding to the L-Isometry, and for the same sample after changes in 
position or dispersion. . 
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1 [ 2 xr.p(x) ] 
= J2 X - l - 1 - <P(x) ' 

( see again ( 30)) and the TEP for the sarnple { X} of size one is, consequently, 

1 [( 2 Xr.p(X) ) ¡X/\x t
2 

- 1 - 1~.i(h ] 
J2 X - 1 - 1 _ <P(x) l{x~x} - }_

00 1 _ <P(t) r.p(t)dt 

1 [ 2 xr.p(x) ] = vÍ2 (X - l)l{x~x} + 1 _ <P(x) l{x < X} . 

The shape of the TEPs for the sarne special sarnples used in previous 
one-dirnensional diagrarns is shown in Figure 3. 

Example 8.2.0.2 TEP assocíated to the N-:ísometry. 

Frorn (28) and k(x) = (x2 
- 1)/J2°, we evaluate the score function a 

nurnerically, and that evaluation is then used to compute the TEP wx(x) = 
T H(al{-~x})(X) by nurnerical integration in (27). 

The shape of the TEPs for the special sarnples is shown in the right-hand 
part of Figure 3. 

The extension to d = 2 is similar to the one in §8.1.2. 
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L-TEPs N-TEPs 

Figure 3: Responses to normal ( - ) , shifted ( - ) and dispersed ( - ) 
samples, of the TEPs associated to L-isometry (L-TEPs) and to N-isometry 
(N-TEPs), optimized to detect changes in dispersion. 
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