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Abstract

In this work, we will study the theory holomorphic and univalent functions in
proper simply connected domains of C; in particular on the case where the domain
is the unit disk. We will expose the most important results of the theory, and focus
especially on one of its major problems: the Bierberbach conjecture (BC), stated
in 1916 by Ludwig Bieberbach, and proved in 1984 by Louis de Branges, which
claims:

Bieberbach’s Conjecture. The coefficients of each analytic and univalent function f (z) =
z + ∑∞

n=2 anzn in the unit disk, with f (0) = 0 and f ′(0) = 1 satisfy:

|an| ≤ n, for n = 2, 3, · · ·

Strict inequality holds for every n unless f is a rotation of the Koebe function.
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Chapter 1

Introduction

Given an open subset U ⊂ C, an univalent function f : U → C is an holomor-
phic function that is also injective. The property of univalence, much stronger in
the complex case than in the real, led to the development of a theory of univa-
lent functions, born around the turn of the past century, and still active field of
research.

In this work, we will study the theory of holomorphic and univalent functions,
mostly in the unit disk. We will show its most relevant results, and analyze one of
the main problems of the theory: the Bieberbach conjecture (BC).

But let’s start at the beginning. The first question we can ask ourselves is why
considering the unit disk is sufficient to generalize many of the results to simply
connected domains.

Consider the function f : D→ C. We see that f is a conformal mapping from
the unit disk onto its image f (D). Thus, in particular, we have that the image is
also a simply connected domain, and not all C, since otherwise, by the Liouville
theorem, we would have that the inverse function f−1 would be constant.

Now, the Riemann mapping theorem in its inverse version tells us that, for
every proper simply connected domain U ⊂ C, there exists a univalent function
that maps conformally D to U. In addition, this mapping becomes unique if we
impose the conditions: f (ζ) = 0 and f ′(ζ) > 0, for any ζ ∈ D.

Thus, we observe that the theorem provides a one-to-one correspondence be-
tween open simply connected proper subsets of the complex plane and univalent
functions f : D→ C, with the previous conditions.

In our case, we will focus on the following normalization: f (0) = 0 and
f ′(0) = 1. Observe that, with these conditions, we can simplify the functions
by eliminating irrelevant constants, so it is easier to work with them. These ana-
lytic and univalent functions that fulfill with the standardization, form what we
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2 Introduction

call the class S:

S = { f : D→ C analytic and univalent, with f (0) = 0; f ′(0) = 1}.

This class has a key property: it is compact, that is, closed and locally bounded.
Proof of this are the theorems of distortion and growth, which control, as their
name indicate, the distortion of any function of the class S and its derivative, by
sharp bounds.

It must be said that any univalent function in D can be transformed so that it
belongs to class S, and vice versa. For example, if g is a univalent function in D,
then f (z) = g(z)−g(0)

g′(0) ∈ S.
Thus, it is for this, and for the good properties of the class S that we have

been citing, that many of the results related to the univalent functions theory, are
proven for this particular class.

The most classic example of a function of the class S is the so-called Koebe
function:

k(z) =
z

(1− z)2 =
1
4

[(
1 + z
1− z

)2

− 1
]
=

∞

∑
n=1

nzn.

If we look at its second expression, we see that it is the Cayley transform z 7→
1+z
1−z squared, and normalized so that it belongs to S. It maps D to C \ (∞, 1

4 ].
This function has a very important role since it is extremal in many results about
univalent functions.

Among all of the results that we will expose, we will focus on one of the main
problems of the theory of univalent functions: Bierberbach’s conjecture, which is
at heart, an assertion about extremality of the Koebe function. The BC claims:

Bieberbach’s Conjecture. The coefficients of each function f (z) = z + ∑∞
n=2 anzn ∈ S,

satisfy:
|an| ≤ n, for n = 2, 3, · · ·

Strict inequality holds for every n unless f is a rotation of the Koebe function.

This was formulated by Ludwig Bieberbach in 1916, after proving that |a2| ≤ 2,
with equality if only if the function f was the Koebe function or one of its rotations.

The Bieberbach conjecture, although it’s easy to state, has stood as a challenge
to many mathematicians for decades, who tried to solve it, unsuccessfully, but
who developed different methods that became part of the subject. It wasn’t until
1984, 68 years after it was enunciated, that the mathematician Louis de Branges
came up with a lengthy, complicated but correct proof of the conjecture.

De Branges’ contribution was celebrated at an international symposium held
at Purdue in March 1985, where many new problems and directions for research
were proposed.
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1.1 Structure of the work

In order to introduce progressively the most important concepts until arriving
at the BC, I have structured the work in the following way:

The Chapter 2, Preliminars, is a compilation of basic results of complex anal-
ysis. We start by defining holomorphic function, and its relation with real differ-
entiability. We also introduce the concept of conformal mapping, laying emphasis
in Möbius transformations: we see that these transformations from the disk onto
itself are exactly the authomorphisms of the disk. Finally, we state two theorems
that will be very useful for the following results: the Green theorem, and the most
important, the Riemann Mapping theorem, basic piece in the theory of univalent
functions.

After this, in Chapter 3, we go on to expose some classic results on univalent
functions. After defining the class S, we see some of its most used properties,
such as the rotation or the square root transformation property. From the class S,
we define the class Σ, of analytic and univalent functions g in ∆ = {z : |z| > 1},
with g(∞) = ∞. Once this is shown, we go on to the first result: the Area theorem,
proved by Gronwall in 1914. This result led to the proof of the Bieberbach theorem
(1916), a fundamental result, considered the starting point from which the BC
arises. The theorem claims that if f ∈ S, then |a2| ≤ 2, with equality if and only if
f is a rotation of the Koebe function. The proof of it illustrates standard ideas and
techniques of univalent function theory, and shows how the Koebe function arise
as extrema.

However, its importance lies not only in being the start of the BC, but also in the
applications and consequences that have resulted from it. As a first application,
we highlight the Koebe One-Quarter theorem, which affirms that the range of
each function f ∈ S contains the disk D(0, 1

4 ). Other relevant consequences are
the Distortion theorem and the Growth theorem, that give and upper and lower
bound of | f ′(z)| and | f (z)| respectively, for f ∈ S.

Once seen with detail all these results, in Chapter 4 we focus on the main
problem of the matter: The Bieberbach conjecture and its proof. As an evidence of
its difficulty, we first show that with the basic tools of analysis we cannot attain a

better bound that |an| ≤
n2e2

4
, which doesn’t even get the order of growth of the

coefficients right.
Although the general proof didn’t come until 1984, since its formulation, many

mathematicians have tried to prove particular cases of the theorem. We can gen-
erally group these cases in three types: proof for a particular n, proof of results of
the form |an| ≤ Cn, for some constant C, and proof of the BC for some subclasses
of S.



4 Introduction

Results of the first type came slowly, and they has been proved only up to
n = 6. Among them, we emphasize the case n = 3, proved in 1923 by K.Loewner,
since some of the tools used in the general proof, as the Loewner differential
equation, that we will explain later, came from this demonstration.

With regard to the results of the second type, we highlight the Littlewood
theorem, stated in 1925, that affirms that the coefficients of a function f ∈ S satisfy
|an| ≤ en, for n ≤ 2. It was the first result proved for all n ≥ 1 that show that
the Bierberbach conjecture had the correct order of magnitude. From this, sharper
bounds were found, at the sacrifice of simplicity.

Finally, we show the proof of the BC for two subclasses of S: for the subclass
of starlike functions, proved by R. Nevalinna in 1920, and for the subclass of
functions with real coefficients, proved by J. Dieudonné and W. Rogosinki in 1931.
Stronger results have been obtained after by more powerful methods. For example,
Schiffer used a variational method to show that <{an} ≤ n for all functions f ∈ S,
whose coefficients a2, · · · , an−1 are real. However, we will not dwell on this, as it
is a very broad subject, and we want to focus on proof the BC itself.

To close the work, in Chapter 5 we try to give a general idea of the proof of
the Bieberbach conjecture done by L. de Branges in 1984. We don’t go into it in
depth, because as we have mentioned before, it is quite complicated, and some of
the details are beyond my scope.

As a first remark, we shall say that De Branges did not directly prove the con-
jecture, but a result that implied it. The main point of the proof was to consider the
functions f ∈ S as the initial point of a family of analytic and univalent functions
{ ft}t≥0 that satisfy the Loewner differential equation:

∂t ft(z) = z f ′t (z)pt(z), (1.1)

where pt(z) is a certain holomorphic function from D onto the right half of the
plane, with pt(0) = 1. This family of functions is called a Loewner chain and has
the form:

ft(z) = f (z, t) = etz +
∞

∑
n=2

an(t)zn, 0 ≤ t < +∞.

Thus, using this Loewner chain, and with the help of the Loewner equation, de
Branges proved the Milin conjecture, an inequality related to the logarithmic co-
efficients of a function f ∈ S. It was proved that this result implied the Robertson
conjecture, an inequality related to the coefficients of the odd functions in S. And
this one, in turn, implied the Bieberbach conjecture.



Chapter 2

Preliminaries

In this section we will recall some basic results of complex analysis, which will
be used in further chapters.

2.1 Holomorphic functions and conformal mappings

Definition 2.1. A holomorphic function f is a complex-valued function of complex
variable that is complex differentiable (or analytic) in a neighbourdhood of every point of
its domain.

Recall that f is complex differentiable if for every z0 ∈ C, the function f has a derivative
at z0 defined by:

f ′(z0) = lim
z→z0

f (z)− f (z0)

z− z0
.

The relation between differentiability in the real sense and in the complex can
be expressed by this result:

Proposition 2.2. Let Ω be a subset of C, f : Ω→ C a function, and z0 = x0 + ıy0 ∈ C.
Then, the following statements are equivalent:

a) f is differentiable in R2 at (x0, y0), with D f (x0, y0) =

(
α β

−β α

)
.

b) f is holomorphic at z0 with f ′(z0) = α + ıβ = µ 6= 0.

Moreover, if any of these is fulfilled , then the function complies with the Cauchy
Riemann equations: {

ux = vy

uy = −vx,
(2.1)

5



6 Preliminaries

where f = u + ıv, and u = < f , v = = f .

A complex function w = f (z) may be viewed geometrically as a mapping
from the z-plane to a region in the w-plane, defining z = x + iy, and w = u(x, y) +
iv(x, y).

One remarkable property mappings can have is conformality, which means
locally preservation of orientation and angles.

Definition 2.3. Let Ω be an open subset of C. A function f : Ω→ C is called conformal
at a point z0 ∈ Ω if it preserves angles between curves through z0, as well as preserving
orientation.

In other words: Let γ1, γ2 be differentiable curves in Ω with γ1(0) = γ2(0) = z0

and consider the image curves by f , Γ1(t) = f (γ1(t)), and Γ2(t) = f (γ2(t)). Then
f is conformal at z0 if the angle between γ′1(0) and γ′2(0) is the same as the angle
between Γ′1(0) and Γ′2(0).

The conformal property may be described, as well, in terms of the Jacobian
derivative matrix of a coordinate transformation. If the Jacobian matrix of the
transformation is everywhere a scalar times an orientation-preserving rotation ma-
trix, then the transformation is conformal.

Thus, for a function to be conformal, it must fulfil these conditions.

Proposition 2.4. Let Ω be a open subset of C, and let z0 ∈ Ω. A function f : Ω→ C is
conformal at z0 if and only if f is holomorphic at z0 and f ′(z0) 6= 0.

Proof. The first implication can be proved by using Proposition 2.2, and the fact
that the Cauchy-Riemann equations are satisfied if D f : C → C is C-lineal. On
the other hand, the converse comes directly from the definition of conformality,
considering two arbitrary differentiable curves, and their images.

2.2 Möbius tranformations. Authomorphisms of D

A well-known example of conformal mappings are the Möbius transforma-
tions, that is, the linear fractional transformations:

f (z) =
az + b
cz + d

, ad− bc 6= 0

where a, b, c, d ∈ C.
These functions provide a conformal mapping from the extended plane Ĉ =

C∪ {∞} onto itself. Ĉ is also called the Riemann sphere, as it can be identified, by
sthereographic projection, with the surface of a sphere.
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Figure 2.1: Riemann sphere

We should pay special attention to the Möbius transformations from the unit
disk onto itself, as they will appear constantly during the work.

We will see next that this subgroup of Möbius transformations coincides with
the automorphisms of the disk D.

Definition 2.5. A function ϕ : D → D is an automorphism of D if it is holomorphic
and bijective. We denote by Aut(D) the group of such automorphisms.

Before that, we recall a basic result on holomorphic functions from the disk
onto itself.

Lemma 2.6. (Schwarz’s Lemma) Let f : D→ D be holomorphic, with f(0) = 0. Then,

(1) | f (z)| ≤ |z|, for all z ∈ D.

(2) | f ′(0)| ≤ 1.

Moreover, if | f (z0)| = |z0| for some non-zero z0 ∈ D or | f ′(0)| = 1, then f (z) = λz,
with |λ| = 1.

Proof. Define the function:

g(z) =


f (z)

z
if z 6= 0

f ′(0) if z = 0.

Observe that g is continuous in D. As it is holomorphic at D \ {0}, by Morera’s
theorem, we deduce that g is holomorphic in D.

Consider now the closed disk D(0, r), with radius r < 1. By the maximum
modulus principle for z ∈ D(0, r),

|g(z)| ≤ max
|z|=r
|g(z)| =

max
|z|=r
| f (z)|

r
≤ 1

r
.
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Letting r → 1, we obtain |g(z)| ≤ 1, that is, | f (z)| ≤ |z|, for all z ∈ D.
Moreover, from the definition of g(z), it follows that |g(0)| = | f ′(0)| ≤ 1.

Now, suppose equality occurs for either (1) or (2). Then, |g(z0)| = 1 for some
z0 ∈ D. By the maximum modulus principle, g(z) = λ, λ ∈ C, |λ| = 1, which
means that f (z) = λz, |λ| = 1.

Thus, once having seen this lemma, we state the following result:

Proposition 2.7.

Aut(D) =

{
a− z

1− āz
eıθ , θ ∈ [0, 2π), a ∈ D

}
.

Proof. Let ϕa(z) =
a− z

1− āz
eıθ . Notice that it is a Möbius transformation. Let’s see

that it goes from D onto itself and that it is bijective.
It can be verified by direct computation that

1−
∣∣∣∣ a− z
1− āz

∣∣∣∣2 =
(1− |z|2)(1− |a|2)

|1− āz|2
, (2.2)

for any a, z ∈ C, āz 6= 1.
Thus, observe that if |z| = 1, then the right part of (2.2) is zero, and |ϕa(z)| = 1,

which means that ϕa(z) preserves the unit circle. On the other hand, if |z| < 1,
then we get that |ϕa(z)| < 1, i.e, ϕa(z) maps D onto itself.

We clearly see that this function is holomorphic. Moreover, the injectivity is
direct, by being a Möbius transformation. Therefore, we conclude that ϕa is an
automorphism of D.

Now, let φ : D → D be an authomorphism, and let a ∈ D be such that
φ(a) = 0. Consider, as well, the Möbius transformation:

ϕa(z) =
a− z

1− āz
, which exchanges a and 0,

and the composition
h = φ ◦ ϕa : D→ D.

We observe that h is holomorphic in D, and h(0) = (φ ◦ ϕa)(0) = φ(ϕa(0)) =
φ(a) = 0. So, by the Scharwz lemma:

|h(z)| ≤ |z|, z ∈ D.

The same argument applied to h−1 yields:

|h−1(w)| ≤ |w|, w ∈ D.
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For w = h(z), this is:
|z| ≤ |h(z)|, z ∈ D.

All combined, we have |z| ≤ |h(z)| ≤ |z|, of what we extract that |h(z)| = |z| and,
by the maximum modulus principle, h(z) = (φ ◦ ϕa)(z) = λz, λ = eıθ , θ ∈ [0, 2π).

Writing u = ϕa(z), we obtain:

φ(u) = eıθ ϕ−1
a (u)

which is a Möbius tranformation.
It remains to be seen that all the Möbius transformations ϕ from D to D are of

the form
ϕa(z) =

a− z
1− āz

eıθ , for some a ∈ D.

We know that if ϕ : D→ D is a Möbius transformation, there exists a point a ∈ D

such that ϕ(a) = 0. Then, the symmetric point of a with respect to the unit disk
goes to the symmetric point of 0, which is ∞. Considering this, we see that ϕ has
the form:

ϕ(z) = c
z− a
z− 1

ā

= c
a− z

1− āz
, for some constant c ∈ C.

Finally, since for |z| = 1, we have that |ϕ(z)| = 1, we deduce that |c| = 1, so
c = eıθ .

Now, we show some relevant results, which will be necessary for the next
proofs.

We start with Green’s theorem, in its complex version.

Theorem 2.8. (Complex version of Green’s Theorem). Let γ be a positively oriented,
piecewise smooth, simple closed curve in C, and let R be the region bounded by γ. If P and
Q are C1-functions of (z, z̄) defined in an open region containing R, then:∫

γ

(
Pdz + Qdz̄

)
=
∫∫

R

(
∂Q
∂z
− ∂P

∂z̄

)
dz dz̄.

Proof. Let: z = x + iy , z̄ = x− iy, so that dz = dx + idy , dz̄ = dx− idy.
Then:∫
γ

(
Pdz + Qdz̄

)
=
∫

γ
P(dx + ıdy) + Q(dx− ıdy) =

∫
γ
(P + Q)dx + ı(P−Q)dy.

By Green’s theorem,

∫
γ
(P + Q)dx + ı(P−Q)dy =

∫∫
R

(
∂ı(P−Q)

∂x
− ∂(P + Q)

∂y

)
dx dy
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=
∫∫

R

((
ı
∂P
∂x
− ∂P

∂y

)
+

(
− ı

∂Q
∂x
− ∂Q

∂y

))
dx dy.

On the other hand, by calculation, we get that:

dxdy = d
( z + z̄

2
)
d
( z− z̄

2ı
)
=

1
4ı
(
− dzdz̄ + dz̄dz

)
=

1
2ı

dz̄dz =
ı
2

dzdz̄.

Moreover, we can rewrite the expressions inside the integral as:

ı
∂P
∂x
− ∂P

∂y
= ı
(

∂P
∂x

+ ı
∂P
∂y

)
= 2ı

∂P
∂z̄

−ı
∂Q
∂x
− ∂Q

∂y
= −ı

(
∂Q
∂x
− ı

∂Q
∂y

)
= −2ı

∂Q
∂z

Thus, we finally obtain:

∫
γ

(
Pdz + Qdz̄

)
=
∫∫

R

((
ı
∂P
∂x
− ∂P

∂y

)
+

(
− ı

∂Q
∂x
− ∂Q

∂y

))
dx dy

=
∫∫

R

(
2ı

∂P
∂z̄
− 2ı

∂Q
∂z

)
ı
2

dz dz̄ =
∫∫

R

(
∂Q
∂z
− ∂P

∂z̄

)
dz dz̄.

To end this chapter, we state the Riemann Mapping Theorem (1851), a very
important result from which from we will depart to develop the univalent function
theory.

Theorem 2.9. (Riemann Mapping Theorem). Let D be a simply connected domain
which is a proper subset of the complex plane. Let ζ be a given point in D. Then, there is
a unique function f which maps D conformally onto the unit disk and has the properties
f (ζ) = 0 and f ′(ζ) > 0.



Chapter 3

Univalent functions theory

In this chapter, we will introduce the univalent functions, the type of func-
tions to which the Bieberbach Conjecture applies, and show some relevant related
results.

Definition 3.1. An holomorphic function f is called univalent in a domain D ⊂ C if it
is injective.

The function f is locally univalent at a point z0 ∈ D if it is univalent in some neigh-
bourhood of z0.

For analytic functions, the local univalence is equivalent to the condition f ′(z0) 6=
0, as a univalent mapping is a conformal homeomorphism.

3.1 The class S

By the Riemman Mapping theorem (Theorem 2.9), we know that to study the
univalent functions in simply connected domains, it is enough to look at this
functions at the unit disk. Moreover, they are unique if they satisfy f (ζ) = 0 and
f ′(ζ) > 0, for any ζ ∈ D.

We shall pay special attention to the class S of univalent and analytic functions
f : D → C, normalized by the conditions f (0) = 0 and f ′(0) = 1. A function
f ∈ S has a Taylor series expansion of the form:

f (z) = z + a2z2 + a3z3 + ..., |z| < 1

This normalization is made to simplify the functions in S by eliminating ir-
relevant constants. If f is any univalent analytic function on D, then g(z) =
f (z)− f (0)

f ′(0)
is in S.

Geometrically speaking, studying g rather than f corresponds to first translating

11



12 Univalent functions theory

the image domain by the vector f (0), dilating by the factor | f ′(0)|, and rotating
through the angle arg( f ′(0)), which is reversible.

The class S is preserved under a number of elementary transformations, as:

1. Conjugation: If f ∈ S, and g(z) = f (z̄) = z + ā2z2 + ā3z3 + ..., then g ∈ S.

2. Rotation: If f ∈ S, and g(z) = e−ıθ f (eıθz), then g ∈ S.

3. Disk automorphism: If f : D→ D is univalent, and

g(z) =
f
(

z + a
1 + āz

)
− f (a)

(1− |a|2) f ′(a)
, |a| < 1

then g ∈ S.

4. Square-root transformation: If f ∈ S, and g(z) =
√

f (z2), then g ∈ S.

As this one cannot be checked so directly, let’s prove it:

Let f (z2) = z2(1 + a2z2 + a3z4 + · · · ).
First, we observe that, since f (z2) = 0 is and only if z = 0, we can define a
single-valued branch of the square root, so that:

g(z) =
√

f (z2)

This is equivalent to write: g(z)2 = f (z2). Notice that as f (z2) doesn’t have
coefficients of odd degree, g(z) cannot have coefficients with even degree.
Therefore, g is an odd function, so g(z) = −g(z).
Let’s check the univalence: if g(z1) = g(z2), then f (z2

1) = f (z2
2). As f is

univalent, z2
1 = z2

2 and z1 = ±z2. But, if z1 = −z2, we would have that
g(z1) = g(z2) = −g(z1), which implies that g(z1) = 0, and z1 = 0. In either
case, we obtain that z1 = z2 , so g is univalent. Finally, we see that g(0) = 0
and g′(0) = 1, so g ∈ S.

The leading example of a function of class S is the Koebe function:

k(z) =
z

(1− z)2 = z + 2z2 + 3z3 + ...

This function will play a significant role in the theory of univalent functions,
as k(z) is the extremal function for multiple properties and results for functions in
S. It can be written this way as well:

k(z) =
1
4

(
1 + z
1− z

)2

− 1
4

which helps us to describe in more detail the mapping. We see that k(z) is a
composition of the following mappings:
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Figure 3.1: The image of the unit disk under the Koebe function

• t(z) =
1 + z
1− z

, which maps D to the positive half plane {<w > 0}.

• s(z) = t(z)2, which maps {<w > 0} to the entire plane, minus the nonposi-
tive real axis C \ (−∞, 0].

• w(z) =
1
4
[s(z)− 1], which is a translation of factor 1 to the left, and then, a

dilation with factor 1
4 .

Thus, the Koebe function maps D onto C \ (−∞,− 1
4 ] .

A little more generally, for any θ ∈ [0, 2π) we can consider the rotations of the
Koebe function:

kθ(z) =
z

(1− eıθz)2 ,

that maps D to the complex numbers with the half-line {−reiıθ : r ≥ 1
4} removed.

Thus, we see that they also play the role of extremal functions.
Ludwig Bieberbach conjectured that k(z) was at the other extreme from the

identity function, that is, among all functions in S, the Koebe function had the
largest possible coefficients.

The fact that we can affirm there exists a bound for each coefficient of a function
f in S , and that it exists a function whose coefficients attain that bound, is due to
the fact that the class S is a compact subspace of the space of all analytic functions
of D.

Let’s explain the compactness of S in a little more depth.
The property that S is closed is consequence of the Hurwitz theorem.
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Proposition 3.2. Let { fn}, fn : D→ C be a sequence of functions in S. If { fn} converges
uniformly on compact subsets of D to a holomorphic function f , then f ∈ S.

Proof. First of all, we see that if { fn} ∈ S, then f also fulfills the normalization, as
limn→∞ fn(0) = 0 = f (0) and limn→∞ f ′n(0) = 1 = f ′(0). So, it remains to be seen
that f is univalent.

Let z0 ∈ D be an arbitrary point. Let’s see that f (z) 6= f (z0) for any other
z ∈ D, z 6= z0. Let’s consider the domain: D \ {z0} We define the functions:

gn(z) = fn(z)− fn(z0)

Notice that, in this domain, gn have no zeros. Moreover, gn(z) converges to g(z) =
f (z) − f (z0). We know, by another consequence of the Hurwitz’s theorem, that
either g(z) 6= 0 for any z ∈ D\{z0}, which means that f (z) 6= f (z0), for all z ∈ D,
z 6= z0; or g ≡ 0, which implies that f is constant, impossible since f ′(0) = 1.
Therefore, we conclude that f is univalent, so f ∈ S.

Finally, it remains to be seen that S is bounded. This is a consequence of the
Growth theorem, a result followed from Bieberbach’s theorem (see page 23).

Closely related to S is the class Σ of functions:

g(z) = z + b0 + b1z−1 + b2z−2 + ...

analytic and univalent in ∆ = {z : |z| > 1}, except for a simple pole at infinity
g(∞) = ∞, with residue 1.

Let E = C \ g(∆) denote the complement of the image domain of a function
g ∈ Σ. Then, g maps ∆ onto the complement of the compact connected set E.

Sometimes, it is convenient to distinguish some subclasses of Σ, as:

• Σ′ = {g ∈ Σ : g(z) 6= 0 in ∆}. There is a one-to-one correspondence between
S and Σ′: for each function f ∈ S, f ( 1

z )
−1 ∈ Σ′. This transformation is called

inversion.

• Σ0 = {g ∈ Σ : b0 = 0}.

• Σ̃ = {g ∈ Σ : |E| = 0}. This functions are called full-mappings.

3.2 The Bieberbach theorem. Consequences

A significant theorem of univalent function theory is the Bierberbach theorem,
first proposed in 1916 by the German mathematician Ludwig Bierberbach. In it,
he estimates the second coefficient a2 of a function f of class S. This theorem is
the one that gave rise to Bieberbach’s conjecture, result that caused a considerable
development in this area, due in many occasions, to the attempts to reach it.
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Theorem 3.3. (Bieberbach’s Theorem). If f ∈ S, then |a2| ≤ 2, with equality if and
only if f is a rotation of the Koebe function.

To prove the theorem, we need first another fundamental theorem, the Area
theorem, discovered by Gronwall in 1914.

Theorem 3.4. (Area Theorem) If g(z) = z + b0 + ∑∞
n=1 bnz−n ∈ Σ, then

∞

∑
n=1

n|bn|2 ≤ 1.

with equality if and only if g ∈ Σ̃.

Proof. Let E = C \ g(∆), and let Cr be the image under f of the circle |z| = r.
We want to compute the area of E in terms of the coefficients. As E can be quite
irregular, let’s approximate it from outside by domains Er = C \ {g(z); |z| > r}.
Since g is univalent, Cr is a smooth simple closed curve which encloses a domain
Er. Taking w = x + iy, we have:

A(Er) =
∫∫

Er

dx dy =
1
2ı

∫∫
Er

dw̄ dw,

where dxdy = 1
2ı dw̄dw.

Now, using Green’s theorem (Theorem 2.8), taking P = w̄ and Q = 0, we obtain:

A(Er) =
1
2i

∫
Cr

w̄ dw =
1
2i

∫
|z|=r

g(z)g′(z) dz =
1
2

∫ 2π

0
reıθ g′(reıθ)g(reıθ) dθ.

Writing g and g′ as their Taylor series, we get:

A(Er) =
1
2

∫ 2π

0

(
reıθ −

∞

∑
n=1

nbnr−ne−ınθ

)(
re−ıθ +

∞

∑
m=0

mbmr−meımθ

)
dθ

= πr2 +
1
2

∫ 2π

0

( ∞

∑
m=0

mbmr−(m−1)eı(m+1)θ
)

dθ − 1
2

∫ 2π

0

( ∞

∑
n=1

nbnr−(n−1)e−ı(n+1)θ
)

dθ

− 1
2

∫ 2π

0

( ∞

∑
n=1

nbnr−ne−ınθ
∞

∑
m=0

mbmr−meımθ

)
dθ

= πr2 +
1
2

∞

∑
m=0

mbmr−(m−1)
∫ 2π

0
eı(m+1)θ dθ − 1

2

∞

∑
n=1

nbnr−(n−1)
∫ 2π

0
e−ı(n+1)θ dθ

− 1
2

∞

∑
n=1

∞

∑
m=0

nbnmbm

∫ 2π

0
eı(m−n)θ dθ.

Since ∫ 2π

0
eıkθdθ =

{
2π if k = 0

0 if k 6= 0,
(3.1)
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we obtain that:

A(Er) = πr2 + 0 + 0− π
∞

∑
n=1

n|bn|2r2n = π

(
r2 −

∞

∑
n=1

n|bn|2r2n
)

.

As A(Er) ≥ 0, we deduce that, for every m ≥ 1:

m

∑
n=1

n|bn|2r2n ≤ r2.

Finally, letting r → 1 and m→ ∞ , we obtain:

∞

∑
n=1

n|bn|2 ≤ 1.

This theorem gives us an immediate corollary, useful to prove the Bieberbach
theorem:

Corollary 3.5. If g ∈ Σ, then |b1| ≤ 1, with equality if and only if g has the form:

g(z) = z + b0 +
b1

z
, |b1| = 1.

Proof. If g ∈ Σ, by the Area Theorem, we have:

∞

∑
n=1

n|bn|2 ≤ 1.

It follows that, for every n ≥ 1, n|bn|2 ≤ 1. In particular, for n = 1, |b1|2 ≤ 1, so
|b1| ≤ 1.

On the other hand, if |b1| = 1, then necessarily bn = 0 for all n > 1. Therefore,
g has the form:

g(z) = z + b0 +
b1

z
, with |b1| = 1.

The converse is direct by definition of g.

Shown this results, let’s prove the Bieberbach Theorem.

Proof. Given f (z) = z + ∑∞
n=2 anzn, we construct the following auxiliary functions:

g(z) =
√

f (z2)

h(z) =
1

g( 1
z )

.
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The first function g(z) is a square root transformation of f . It has been proved that
g ∈ S (Property 4). Let’s write its coefficients in terms of the coefficients of f :

Let g(z) = z + b3z3 + b5z5 + · · · . We know that g(z)2 = f (z2). Grouping the
coefficients by the power of z, we obtain:

n = 4 : a2 = 2b3 → b3 =
a3

2

n = 6 : a3 = 2b5 + b2
3 → b5 =

1
2

(
a3 −

a2
2

4

)
· · ·

Thus, we re-write g(z) as:

g(z) = z +
a3

2
z3 +

1
2

(
a3 −

a2
2

4

)
z5 + · · ·

Now, let’s see when is h(z) univalent and how is its Laurent series.

We compute: g
(

1
z

)
=

1
z
+

b3

z3 +
b5

z5 + · · · . Observe that, as g ∈ S, g( 1
z ) is

analytic and univalent for |z| > 1. Consequently, h(z) = 1
g( 1

z )
is univalent and

analytic in ∆ and, moreover, h(∞) = ∞. Therefore, h ∈ Σ, and has the form:

h(z) = z + c0 +
c1

z
+

c2

z2 + · · ·

Let’s compute the coefficients in terms of the an.
Since h(z) = 1

g( 1
z )

, we have g( 1
z )h(z) = 1. Writing Taylor’s development of the

functions,

1 =

(
1
z
+

b3

z3 +
b5

z5 + · · ·
)(

z + c0 +
c1

z
+

c2

z2 + · · ·
)

.

Now, multiplying and grouping the coefficients by the power of z, and equating
to zero, we get:

n = −1 : c0 = 0

n = −2 : c1 + b3 = 0→ c1 = −b3 = − a2

2
n = −3 : c2 + b3c0 = 0→ c2 = 0

· · ·

Finally, we obtain:

h(z) = z− a2

2z
+ · · ·
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As h ∈ Σ, by Corollary 3.5, we have that | a2

2
| ≤ 1, that is |a2| ≤ 2, with equality

if and only if

h(z) = z +
b
z

, |b| = 1.

It only remains to be seen that this is equivalent to f being a rotation of the Koebe
function.
Notice that :

h(z) =
1

g(
1
z
)

is equivalent to g(z) =
1

h(
1
z
)

, z ∈ D.

So, we have:

h(z) = z +
b
z

if and only if h(
1
z
) =

1
z
+ bz.

Thus,

g(z) =
1

1
z + bz

, that is g(z) =
z

1 + bz2 .

As g(z) =
√

f (z2), then:

g(z)2 =
z2

(1 + bz2)2 = f (z2).

With the change of variable t = z2, we obtain:

f (t) =
t

(1 + bt)2 , |b| = 1, t ∈ D

which is a rotation of the Koebe function.

3.2.1 The Koebe One-Quarter theorem

As a first application of Bieberbach’s theorem, we have the Koebe One-Quarter
Theorem, which afirms that the range of each function f ∈ S contains some disk
|z| < r centered at the origin. Already in 1907, Koebe conjectured that r ≤ 1

4 , with
the maximum attained by the Koebe function. Later in 1916, Bieberbach proved
the theorem, showing that this constant cannot be improved.

Theorem 3.6. (Koebe’s One-Quarter Theorem). The range of every function f of
class S contains the disk D(0, 1

4 ).

Proof. Let w ∈ C a point, let f ∈ S be a function that omits the value w, and
consider the function:

g(z) =
w f (z)

w− f (z)
.
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Let’s see that g is analytic and univalent in D. We can write:

g(z) = (h ◦ f )(z), where h(z) =
wz

w− z
.

So, as f is univalent and analytic in D, it only needs to be checked the univalence
of h. Suppose h(z1) = h(z2). Then,

wz1

w− z1
=

wz2

w− z2
.

This implies

wz1 − z1z2 = z2w− z1z2 hence, z1 = z2.

On the other hand, h is analytic for every z 6= w. Therefore, g is analytic and
univalent in D, for being composition of analyitic and univalent functions in D.
We now compute the derivatives of g, in order to write its development at the
origin:

g(z) =
w f (z)

w− f (z)
→ g(0) = 0

g′(z) =
w2 f ′(z)

(w− f (z))2 → g′(0) = 1

g′′(z) =
w2( f ′′(z)(w− f (z)) + 2 f ′(z)2)

(w− f (z))3 → g′′(0) = f ′′(0) +
2
w

Then, we obtain:

g(z) = z +
(

a2 +
1
w

)
z2 + · · ·

Observe that g(0) = 0 and g′(0) = 1, so g ∈ S. By the Bierberbach theorem,∣∣∣∣a2 +
1
w

∣∣∣∣ ≤ 2.

Finally, using the triangle inequality:∣∣∣∣ 1
w

∣∣∣∣ ≤ ∣∣∣∣ 1
w

+ a2

∣∣∣∣+ |a2| ≤ 2 + 2 = 4, and therefore |w| ≥ 1
4

.

The equality |w| = 1
4 holds if and only if equality holds when applying Bieber-

bach’s theorem, and it happens if and only if g is a rotation of the Koebe function.
Hence, by definition of g, if and only if f is a rotation of the Koebe function.
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3.2.2 Theorems of distortion and growth

Now, we shall study the most relevant consequences that result from Bieber-
bach’s inequality.

This theorem has further implications in the geometric theory of conformal
mapping. One important consequence is the Koebe distortion theorem, which
provides sharp upper and lower bounds for | f ′(z)| as f ranges over the class S.
But, before we enunciate it, let’s state a theorem which gives us a estimate that
will be used in the distortion theorem and other related results.

Theorem 3.7. For each f ∈ S,∣∣∣∣ z f ′′(z)
f ′(z)

− 2r2

1− r2

∣∣∣∣ ≤ 4r
1− r2 , |z| = r < 1. (3.2)

Proof. Let z0 ∈ D, and consider the authomorphism of D:

ϕz0(w) =
w + z0

1 + wz̄0
, ϕz0(0) = z0.

Since ϕz0(w) is univalent, the composition ( f ◦ ϕz0)(w), which first transfers the
origin to z0 ∈ D, and then to f (z0), is also univalent. Let’s normalize it so that it
belongs to S. First, we compute the first two coefficients of the Taylor development
of ( f ◦ ϕz0):
First, ( f ◦ ϕz0)(0) = f (z0).

Second, since ( f ◦ ϕz0)
′(w) = f ′(ϕz0(w))ϕ′z0

(w) = f ′(ϕz0(w))
1− |z0|2
(1 + wz̄0)2 , we get

( f ◦ ϕz0)
′(0) = f ′(z0)(1− |z0|2).

Therefore,
( f ◦ ϕz0)(w) = f (z0) + f ′(z0)(1− |z0|2)w + · · · .

From this, we can see that the function h:

h(w) =
f (ϕz0(w))− f (z0)

f ′(z0)(1− |z0|2)
(3.3)

fulfills the normalization, so it belongs to S (proof of Property 3, page 13). Now,
we compute the next term of Taylor’s development of h at the origin. We see that:

h′′(w) =
f ′′(ϕz0(w))ϕ′z0

(w)2 + f ′(ϕz0(w))ϕ′′z0
(w)

f ′(z0)(1− |z0|2)
, and so

h′′(0) =
f ′′(ϕz0(0)ϕ′z0

(0)2 + f ′(ϕz0(0))ϕ′′z0
(0)

f ′(z0)(1− |z0|2)
= (1− |z0|2)

f ′′(z0)

f ′(z0)
− 2z̄0.

Therefore,

h(w) = z +
1
2

[
(1− |z0|2)

f ′′(z0)

f ′(z0)
− 2z̄0

]
z2 + · · · .
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Since h ∈ S, by Bieberbach’s theorem,∣∣∣∣12
[
(1− |z0|2)

f ′′(z0)

f ′(z0)
− 2z̄0

]∣∣∣∣ ≤ 2.

Replacing z0 by z, multiplying by 2 and dividing by (1− |z|2), we get:∣∣∣∣ f ′′(z)
f ′(z)

− 2z̄
(1− |z|2)

∣∣∣∣ ≤ 4
(1− |z|2) .

Finally, multiplying by |z|, we obtain the inequality we are looking for:∣∣∣∣z f ′′(z)
f ′(z)

− 2|z|2
(1− |z|2)

∣∣∣∣ ≤ 4|z|
(1− |z|2) .

Once we’ve introduced this inequality, let’s state the distortion theorem:

Theorem 3.8. (Distortion Theorem). For each f ∈ S,

1− r
(1 + r)3 ≤

∣∣ f ′(z)∣∣ ≤ 1 + r
(1− r)3 , |z| = r < 1.

For any z ∈ D, z 6= 0, equality occurs if and only if f is a suitable rotation of the Koebe
function.

Proof. With the change of variable z = reıθ in the inequality of Theorem 3.4, we
have: ∣∣∣∣eıθ f ′′(reıθ)

f ′(reıθ)
− 2r

(1− r2)

∣∣∣∣ ≤ 4
(1− r2)

.

On the other hand, observe that:∣∣∣∣eıθ f ′′(reıθ)

f ′(reıθ)
− 2r

(1− r2)

∣∣∣∣ = ∣∣∣∣ ∂

∂r
log[(1− r2) f ′(reıθ)]

∣∣∣∣ .

We prove it:

∂

∂r
log[(1− r2) f ′(reıθ)] =

−2r f ′(reıθ) + (1− r2) f ′′(reıθ)eıθ

(1− r2) f ′(reıθ)
=
−2r

1− r2 +
f ′′(reıθ)eıθ

f ′(reıθ)
.

Since f ′(0) = 1, we can integrate along the ray from 0 to z, and get:∣∣∣log[(1− r2) f ′(reıθ)]
∣∣∣ = ∣∣∣∣∫ r

0

∂

∂ρ
log[(1− ρ2) f ′(ρeıθ)]dρ

∣∣∣∣
≤
∫ r

0

∣∣∣∣ ∂

∂ρ
log[(1− ρ2) f ′(ρeıθ)]

∣∣∣∣ dρ

=
∫ r

0

∣∣∣∣eıθ f ′′(ρeıθ)

f ′(ρeıθ)
− 2ρ

(1− ρ2)

∣∣∣∣
≤
∫ r

0

4
1− ρ2 dρ = 2 log

(
1 + r
1− r

)
.
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using the inequality (2) in the last step.
From this, it follows that:

−2 log
(

1 + |z|
1− |z|

)
≤ log[(1− |z|2)| f ′(z)|] ≤ 2 log

(
1 + |z|
1− |z|

)
.

Exponentiating: (
1− |z|
1 + |z|

)2

≤ (1− |z|2)| f ′(z)| ≤
(

1 + |z|
1− |z|

)2

.

Finally, diving by (1− |z|2), we obtain:

1− |z|
(1 + |z|)3 ≤ | f

′(z)| ≤ 1 + |z|
(1− |z|)3 .

Using the distortion theorem, it is possible to find, as well, sharp lower and
upper bounds for | f (z)|. This result is called the Growth theorem, and it is nec-
essary, among other things, to prove the compactness of the class S, as mentioned
before.

Theorem 3.9. (Growth Theorem). For each f ∈ S,

r
(1 + r)2 ≤ | f (z)| ≤

r
(1− r)2 , |z| = r < 1.

For each z ∈ D, z 6= 0, equality occurs if and only if f is a suitable rotation of the
Koebe function.

Proof. Let’s start with the upper bound. Let f ∈ S, and consider z = reıθ , with
0 < r < 1. By the fundamental theorem of calculus:

f (z) =
∫ z

0
f ′(z)dz =

∫ r

0
f ′(ρeıθ)eıθdρ.

Then, applying the distortion theorem, we obtain:

| f (z)| =
∣∣∣∣∫ r

0
f ′(ρeıθ)eıθdρ

∣∣∣∣ ≤ ∫ r

0
| f ′(ρeıθ)||eıθ |dρ ≤

∫ r

0

1 + ρ

(1− ρ)3 dρ =
r

(1− r)2 .

Now, we need to prove the lower estimate.

Observe that, if | f (z)| ≥ 1
4

, the bound holds trivially, since
r

(1 + r)2 <
1
4

for

0 < r < 1.
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Now, if | f (z)| ≤ 1
4

, the Koebe One-quarter theorem implies that the radial

segment from 0 to f (z) lies entirely in the range of f .
We parametrize this segment as:

γ : [0, 1]→ C, γ(t) = t f (z).

Let C be the preimage of γ:

C : [0, 1]→ D, C(t) = f−1(γ(t)).

Since C is a simple arc from 0 to z, we can write:

f (z) =
∫

C
f ′(ζ)dζ

If we do the change of variable ζ = C(t), we see that:

f ′(ζ)dζ = f ′(C(t))C′(t)dt.

Then,

C′(t) = ( f−1)′(γ(t))γ′(t) =
1

f ′(C(t))
f (z).

Therefore, we obtain:∫
C

f ′(ζ)dζ =
∫ 1

0
f ′(C(t))

1
f ′(C(t))

f (z)dt =
∫ 1

0
f (z)dt = f (z).

This means that f ′(ζ)dζ has constant sign along C. Therefore, the distortion theo-
rem gives:

| f (z)| =
∫

C
| f ′(ζ)||dζ| ≥

∫ r

0

1− ρ

(1 + ρ)3 dρ =
r

(1 + r)2 .

Finally, let’s discuss the equality. Notice that equality in either of the bounds
implies equality when applying the distortion theorem in both cases. And as
we’ve proved before, equality holds in the distortion theorem if and only if f is a
suitable rotation of the Koebe function.

To end this section, let’s show a theorem that mixes up both distortion and
growth theorems. It can be seen as well as a Growth theorem for the logarithm’s
derivative.

Theorem 3.10. For each f ∈ S,

1− r
1 + r

≤
∣∣∣∣ z f ′(z)

f (z)

∣∣∣∣ ≤ 1 + r
1− r

, |z| = r < 1.

For each z ∈ D, z 6= 0, equality occurs if and only if f is a suitable rotation of the Koebe
function.
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Proof. Although the inequality mixes both theorems, it cannot be established by
a direct combination of them. So, consider the function h ∈ S, the disk automor-
phism of f given in (3.3). By the growth theorem:

|w|
(1 + |w|)2 ≤ |h(w)| ≤ |w|

(1− |w|)2 , w ∈ D.

In partircular, taking w = −z0,

|z0|
(1 + |z0|)2 ≤ |h(−z0)| ≤

|z0|
(1− |z0|)2 .

As

h(−z0) =
f (ϕz0(−z0))− f (z0)

(1− |z0|2) f ′(z0)
=

− f (z0)

(1− |z0|2) f ′(z0)
,

we have

|h(−z0)| =
| f (z0)|

(1− |z0|2)| f ′(z0)|
.

Hence:
(1− |z0|2)|z0|
(1 + |z0|)2 ≤

∣∣∣∣ f (z0)

f ′(z0)

∣∣∣∣ ≤ (1− |z0|2)|z0|
(1− |z0|)2 .

Finally, simplifying and dividing by |z0|, we obtain:

1− |z0|
1 + |z0|

≤
∣∣∣∣ f (z0)

z0 f ′(z0)

∣∣∣∣ ≤ 1 + |z0|
1− |z0|

.

Since z0 is arbitrary, the inequality is proved.
Now, let’s see the case of equality:

Observe that if f (z) = k(z) =
z

(1− z)2 the Koebe function, then:

zk′(z)
k(z)

=

z
1 + z

(1− z)3

z
(1− z)2

=
1 + z
1− z

.

Thus, k(z) offers cases of equality. Now, it remains to be seen that rotations of the
Koebe function provide the only cases of equality.

Suppose first that the lower bound is attained for some f ∈ S at some point
ζ ∈ D. Then, the function h = f ◦ ϕζ satisfies:

|h(−ζ)| = |ζ|
(1− |ζ|)2 ,
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and, by the growth theorem, we infer that

h(z) =
z(

1 +
ζ̄

|ζ| z
)2 .

Now, consider:

z = ϕζ(w) =
w− ζ

1− ζ̄w
, or w = ϕ−1

ζ (z) =
z + ζ

1 + ζ̄z
,

and let’s define:

G(w) = h
(

w− ζ

1− ζ̄w

)
.

In order to see the relation between G and f , we compute:

G(w)− G(0) = h
(

w− ζ

1− ζ̄w

)
− h(−ζ) =

f
(

ϕζ

(
w− ζ

1− ζ̄w

))
− f (ζ)

(1− |ζ|2) f ′(ζ)
− − f (ζ)

(1− |ζ|2) f ′(ζ)

=

f
(

ϕζ

(
w− ζ

1− ζ̄w

))
(1− |ζ|2) f ′(ζ)

=
f (w)

(1− |ζ|2) f ′(ζ)
.

We notice that f (w) is a constant multiple of G(w) − G(0). Moreover, we have
that:

G(w) =

w− ζ

1− ζ̄w(
1 +

ζ̄

|ζ|
w− ζ

1− ζ̄w

)2 =
(w− ζ)(1− ζw)(

1− ζ̄w +
ζ̄w
|ζ| − |ζ|

)2

=
w− ζ − ζ̄w2 + |ζ|2w

(1− |ζ|)2

(
1 +

ζ̄

|ζ|w
)2 .

G(0) =
−ζ

(1− |ζ|)2 .

Therefore,

G(w)− G(0) =
1

(1− |ζ|)2

(
w− ζ − ζ̄w2 + |ζ|2w(

1 +
ζ̄

|ζ|w
)2

+ ζ

)

=
w(1 + |ζ|2 − 2|ζ|)

(1− |ζ|)2

(
1 +

ζ̄

|ζ|w
)2 =

(1 + |ζ|)2

(1− |ζ|)2
w(

1 +
ζ̄

|ζ|w
)2 .
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As the lower bound of the inequality was attained for f , then:

(1− |ζ|)
(1 + |ζ|) =

ζ f ′(ζ)
f (ζ)

eıθ , θ ∈ [0, 2π).

Suppose, without loss of generality, that eıθ = 1. Then,

G(w)− G(0) =
f (ζ)(1 + |ζ|)

ζ f ′(ζ)(1− |ζ|)
w(

1 +
ζ̄

|ζ|w
)2 .

Equating both expressions, we have:

f (w)

(1− |ζ|2) f ′(ζ)
=

f (ζ)(1 + |ζ|)
ζ f ′(ζ)(1− |ζ|)

w(
1 +

ζ̄

|ζ|w
)2 .

Hence,

f (w) =
f (ζ)(1 + |ζ|)2

ζ

w(
1 +

ζ̄

|ζ|w
)2 = Cζ

w(
1 +

ζ̄

|ζ|w
)2 .

Thus, f is a rotation of the Koebe function. With the same argument for the upper
bound, we conclude that equality in both bounds occurs if and only if f is a
rotation of the Koebe function.



Chapter 4

The Bieberbach conjecture

In 1916, after proving the inequality |a2| ≤ 2 for f ∈ S, and observing that the
Koebe function played a special role in multiple results related to the class S as
being the extremal function, Bieberbach though that k(z) could maximize as well
|an|, for every n. Thus, he came up with the well-known Bieberbach conjecture:

Theorem 4.1. (Bieberbach’s Conjecture). The coefficients of each function f ∈ S
satisfy:

|an| ≤ n, for n = 2, 3...

Strict inequality holds for every n unless f is a rotation of the Koebe function.

This problem, however, is more difficult to solve than it may seem. To give a
first hint that this is so, let’s try to find a bound for the coefficients using basic
knowledge of complex analysis.

Assume the f ∈ S. By Cauchy’s inequalities,

|an| =
∣∣∣∣ f n(0)

n!

∣∣∣∣ ≤ max
|z|=r
| f (z)|

rn .

Now, using the Growth theorem, we have:

max
|z|=r
| f (z)| = r

(1− r)2 .

Therefore,

|an| ≤

r
(1− r)2

rn =
1

rn−1(1− r)2 .

In order to optimize this bound for r < 1, let’s maximize its denominator.
Let:

g(r) = rn−1(1− r)2.

27
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Then,

g′(r) = (n− 1)rn−2(1− r)2 − rn−12(1− r) = (1− r)rn−2((n− 1)(1− r)− 2r).

So,

g′(r) = 0 if and only if r = 0, r = 1, or r =
n− 1
n + 1

.

Observe that g(0) = g(1) = 0, so the maximum is at r =
n− 1
n + 1

. Therefore;

|an| ≤
1

rn−1(1− r)2 =
1(

n− 1
n + 1

)n−1(
1− n− 1

n + 1

)2 =
1
4
(n + 1)n+1

(n− 1)n−1

=
1
4
(n + 1)2

(
n + 1
n− 1

)n−1

=
1
4
(n + 1)2

(
1 +

2
n− 1

)n−1

.

Let us see now that:

(n + 1)2
(

1 +
2

n− 1

)n−1

< n2e2,

or equivalently, (
n + 1

n

)2(
1 +

2
n− 1

)n−1

< e2.

Consider h(t) =

(
1 +

1
t

)2(
1 +

2
t− 1

)n−1

. Since limt→∞ h(t) = e2, to prove the

inequality, it is enough to see that h(t) is an increasing function.
If we apply the logarithm to h, and make the change of variable x = t− 1, we

obtain the function:

f (x) = 2 log
(

1 +
1

x + 1

)
+ x log

(
1 +

2
x

)
.

Its derivative is:

f ′(x) =
2(

1 +
1

x + 1

)(− 1
(x + 1)2

)
+ log

(
1 +

2
x

)
+ x

− 2
x2(

1 +
2
x

)
=

−2
(x + 2)(x + 1)

+ log
(

1 +
2
x

)
− 2

x + 2
.

As log(1 + t) ≥ t for t ∈ (0, 1
2 ),

f ′(x) ≥ −2
(x + 2)(x + 1)

+
2
x
− 2

x + 2
=

2
x
− 2

x + 1
> 0.
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Therefore, we deduce that the function f is a increasing function, which implies
that h(n) is, too.

With all this, we come to the conclusion that:

|an| ≤
n2e2

4
.

This is quite far from the estimate we are looking for.

4.1 Partial results

Many attempts have been made to prove this conjecture, in different directions.
It has been proved for some specific n: In 1923, the mattematician Karl Loewner

proved that |a3| ≤ 3. It was considered one of the most important steps towards
the proof of the BC, as the way to prove the general case, through differential
equations, came from this demonstration. More than 30 years passed without
progress, until in 1955, P.Garabedian and M.Schiffer came up with the proof that
|a4| ≤ 4. The sixth and fifth coefficient theorems followed in 1968 by Pederson
and Ozawa, and in 1972 by Pederson and Schiffer, respectively.

4.1.1 The Littlewood theorem

On the other hand, in 1925 the mathematician John E. Littlewood proved the
first result for all n ≥ 2 that showed that the order of magnitude of the coefficients
was the one stipulated by the conjecture.

Theorem 4.2. (Littlewood’s Theorem). The coefficients of a function f ∈ S satisfy

|an| ≤ en, for n ≥ 2.

Before we prove it, we shall introduce a lemma, stated by Littlewood, which
we will use in the proof:

Lemma 4.3. (Littlewood’s integral inequality) For each function f ∈ S,

1
2π

∫ 2π

0
| f (reıθ)|dθ ≤ r

1− r
, 0 ≤ r < 1.

Proof. Given f ∈ S, we consider its square root transformation:

h(z) =
√

f (z2) =
∞

∑
n=1

cnzn.

Applying the growth theorem to f , we have:

| f (z)| ≤ r
(1− r)2 , |z| = r < 1.
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Since h(z)2 = f (z2), for |z| = r < 1:

|h(z)|2 = | f (z2)| ≤ r2

(1− r2)2 , hence |h(z)| ≤ r
(1− r2)

.

This means that h maps the disk |z| < r conformally onto a domain Dr, which lies

in the disk |w| < r
(1− r2)

. Let Ar be the area of Dr. Then, we see that Ar is no

greater than the area of the disk:

Ar ≤ π
r2

(1− r2)2 .

Let’s calculate Ar more precisely. Let w = h(z). Then,

Ar =
∫∫

Dr

dm(w) =
∫∫

Dr

|h′(z)|2dm(z),

where

dm(w) =
ı
2
(dw ∧ dw̄) =

ı
2
(h′(z)dz ∧ h′(z)dz̄) = |h′(z)|2dm(z).

Now, letting z = reıθ , we have:

Ar =
∫ 2π

0

∫ r

0

∣∣∣∣∣ ∞

∑
n=1

ncnρn−1e(n−1)ıθ

∣∣∣∣∣
2

ρdρdθ =
∫ 2π

0

∫ r

0

∞

∑
n=1

n2|cn|2ρ2n−1dρdθ

=
1
2

∞

∑
n=1

n|cn|2r2n−1
∫ 2π

0
dθ = π

∞

∑
n=1

n|cn|2r2n−1.

Therefore,
∞

∑
n=1

n|cn|2r2n ≤ r2

(1− r2)2 , 0 ≤ r < 1.

If we integrate both parts of the inequality from 0 to r, we have:

∫ r

0

∞

∑
n=1

n|cn|2ρ2n−1dρ =
∞

∑
n=1

n|cn|2
∫ r

0
ρ2n−1dρ =

∞

∑
n=1
|cn|2

r2n

2

∫ r

0

ρ2

(1− ρ2)2 dρ =
∫ 1−r2

1
− 1

2u2 du =
1
2

r2

1− r2 , where u = 1− ρ2,

from which we infer:

∞

∑
n=1

n|cn|2
r2n

2n
≤ 1

2
r2

1− r2 , hence
∞

∑
n=1
|cn|2r2n ≤ r2

1− r2 .
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Finally, using the definition of h(z):

∞

∑
n=1
|cn|2r2n = |h(reıθ)|2 = | f (r2e2ıθ)| = 1

2π

∫ 2π

0
| f (r2e2ıθ)|dθ ≤ r2

1− r2 ,

where the last inequality is equivalent to:

1
2π

∫ 2π

0
| f (reıθ)|dθ ≤ r

1− r
.

After this, we prove Littlewood’s theorem:

Proof. We know, by the Cauchy theorem, that:

an =
1

2πı

∫
|z|=r

f (z)
zn+1 dz, r < 1.

In absolute value, and changing z = reıθ , we have:

|an| =
1

2π

∣∣∣∣∫ 2π

0

f (reıθ)

rnenıθ dθ

∣∣∣∣ ≤ 1
2πrn

∫ 2π

0
| f (reıθ)|dθ.

Now, using the previous estimation, we obtain:

|an| ≤
1

2πrn

∫ 2π

0
| f (reıθ)|dθ =

1
rn M1(r, f ) ≤ 1

rn
r

1− r
=

1
(1− r)rn−1 .

To find the minimum value of the bound, we maximize the denominator.
Let:

g(r) = rn−1(1− r), r ∈ [0, 1].

Then,

g′(r) = (n− 1)rn−2(1− r)− rn−1 = rn−2((n− 1)(1− r)− r)

So, the maximum is attained at r = 1− 1
n

. Thus, if we substitute in g, we obtain:

|an| ≤
1

(1− r)rn−1 =
1(

1− 1
n

)n−1 1
n

= n
(

n
n− 1

)n−1

= n
(

1 +
1

n− 1

)n−1

< en.
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This bound was improved over the years. In 1974, A. Baernstein improved
Littlewood’s integral inequality by showing that k had the largest possible integral
mean of every order, i.e, for each f ∈ S and each real number p:

∫ 2π

0
| f (reıθ)|pdθ ≤

∫ 2π

0
|k(reıθ)|pdθ.

Therefore, if we study the case p = 1, we have:

1
2π

∫ 2π

0
| f (reıθ)|dθ ≤ 1

2π

∫ 2π

0

∣∣∣∣ reıθ

(1− reıθ)2

∣∣∣∣ dθ =
1

2π

∫ 2π

0

r
|1− reıθ |2 dθ

=
r

2π

∫ 2π

0

1
(1− reıθ)(1− re−ıθ)

dθ.

Changing ζ = eıθ , and applying the Residue Theorem, we obtain:

1
2π

∫ 2π

0
| f (reıθ)|dθ ≤ r

2πi

∫
|ζ|=1

1
(1− rζ)(ζ − r)

dζ =
r

1− r2 .

4.1.2 The BC for some subclasses of S

The conjecture has been proved, as well, for certain subclasses of S. We will
focus on these two: the subclass of starlike functions, and the subclass of functions
with real coefficients.

Definition 4.4. A set E ⊂ C is said to be starlike with respect to a point w0 ∈ E if the
linear segment joining w0 to every other point w ∈ E lies entirely in E.

A starlike function is a conformal mapping of the unit disk onto a domain starlike with
respect to the origin.

Let S∗ denote the subclass of starlike functions. Before we prove the conjecture
for f ∈ S∗, we shall introduce two useful results:

Lemma 4.5. (Carathéodory’s Lemma). Suppose that ϕ is a holomorphic function in
D, ϕ(0) = 1, <{ϕ(z)} > 0 in D, and

ϕ(z) = 1 +
∞

∑
n=1

cnzn.

Then,

|cn| ≤ 2, for n ≥ 1, and |ϕ(z)| ≤ 1 + r
1− r

, for |z| = r < 1.
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Proof. By Cauchy’s Integral formula, we have:

cn =
1

2πı

∫
|z|=r

ϕ(z)
zn+1 dz =

1
2π

∫ 2π

0

ϕ(reıθ)

rnenıθ dθ.

Hence,

cnrn =
1

2π

∫ 2π

0

ϕ(reıθ)

enıθ dθ, n ≥ 0. (4.1)

On the other hand, as ϕ(z) is holomorphic in D, ϕ(z)zn−1 is too for all n ≥ 1, and
by the Cauchy theorem: ∫

|z|=r
ϕ(z)zn−1dz = 0, n ≥ 1.

Writing z = reıθ , we have:∫ 2π

0
ϕ(reıθ)rn−1e(n−1)ıθıreıθdθ = ırn

∫ 2π

0
ϕ(reıθ)enıθıdθ = 0.

In particular:
1

2π

∫ 2π

0
ϕ(reıθ)enıθdθ = 0, n ≥ 1. (4.2)

Now, in (4.1), we replace the integrand by its complex conjugate and add the result
to (4.2). Since ϕ + ϕ = 2U, U = <{ϕ}, we get:

cnrn =
1
π

∫ 2π

0
U(reıθ)e−nıθdθ =

1
π

∫ π

−π
U(reıθ)e−nıθdθ,

whence

|cn|rn ≤ 1
π

∫ π

−π
|U(reıθ)e−nıθ |dθ =

1
π

∫ π

−π
U(reıθ)dθ

=
1
π

∫ π

−π

ϕ(reıθ) + ϕ(reıθ)

2
dθ =

1
2π

∫ π

−π
ϕ(reıθ)dθ +

1
2π

∫ π

−π
ϕ(reıθ)dθ

= ϕ(0) + ϕ(0) = c0 + c̄0 = 2.

using the Cauchy inequalities.
Finally, letting r → 1, we have:

|cn| ≤ 2, for every n ≥ 1.

The other equality follows:

|ϕ(z)| =
∣∣∣∣∣ ∞

∑
n=0

cnzn

∣∣∣∣∣ =
∣∣∣∣∣1 + ∞

∑
n=1

cnzn

∣∣∣∣∣ ≤ 1 +
∞

∑
n=1
|cn||zn| ≤ 1 + 2

∞

∑
n=1

rn

= 1 + 2
r

1− r
=

1 + r
1− r

, |z| = r < 1.
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Observe that both inequalities are sharp, since:

If ϕ(z) =
1 + r
1− r

= 1 + 2
∞

∑
n=1

rn, then cn = 2, n ≥ 1.

Lemma 4.6. Let f ∈ S. Then, f (D) is starlike with respect to the origin if and only if

<
[

z
f ′(z)
f (z)

]
> 0.

Proof. Suppose first that f is starlike with respect to the origin. Then, let’s see
that f maps each subdisk |z| < ρ < 1 onto a starlike domain, i.e, g(z) = f (ρz) is
starlike in D. To prove it, we must show that for each fixed t ∈ (0, 1) and for each
z ∈ D, the point tg(z) is in the range of g.

Let wt : D→ D be an analytic function in D, such that:

t f (z) = f (wt(z)), for all z ∈ D.

Observe that |wt(z)| ≤ 1 and for z = 0, 0 = t f (0) = f (wt(0)), so wt(0) = 0.
Therefore, by the Schwarz lemma,

|wt(z)| ≤ |z|, z ∈ D.

Now, we have:

tg(z) = t f (ρz) = f (wt(ρz)) = f (ρ
1
ρ

wt(ρz)) = g(w∗t,ρ(z)),

where w∗t,ρ(z) = wt(ρz)
ρ , with |w∗t,ρ(z)| =

∣∣∣wt(ρz)
ρ

∣∣∣ ≤ ∣∣∣ ρz
ρ

∣∣∣ = |z|. Thus, f maps each
circle |z| = ρ < 1 onto a curve Cρ that bounds a starlike domain.

Knowing this, we can affirm that arg( f (z)) increases as z moves around the
circle |z| = ρ. In other words,

∂

∂θ
{arg( f (ρeıθ)} ≥ 0. (4.3)

Recall that:

∂

∂z
(=[g(z)]) = ∂

∂z

(
g(z)− g(z)

2ı

)
=

g′(z)− g′(z)
2ı

= =
[

∂

∂z
g(z)

]
.

Using this, and that log( f (ρeıθ)) = | f (ρeıθ)|+ ı arg( f (ρeıθ)), we obtain:

∂

∂θ
{arg( f (ρeıθ)} = ∂

∂θ
{=[log( f (ρeıθ))]} = =

[
∂

∂z
log( f (ρeıθ))

]
.
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Computing the derivative, we see:

∂

∂z
log( f (ρeıθ)) =

f ′(ρeıθ)ıρeıθ

f (ρeıθ)
=

f ′(z)ız
f (z)

, z = ρeıθ .

Hence,

=
[

∂

∂z
log( f (ρeıθ))

]
= =

[
f ′(z)ız

f (z)

]
= <

[
f ′(z)z
f (z)

]
.

Notice that if we see that (4.3) is strict, we will have shown this implication.
Let’s define the function:

u(z) = −<
[

f ′(z)z
f (z)

]
.

Observe that u(z) is an harmonic function, and u(z) ≤ 0. Then, by the maximum
principle for harmonic functions,

max
z∈D

u(z) = max
z∈∂D

u(z) ≤ 0.

Since u is not constant, this implies that, for any point z with |z| < 1, u(z) < 0.
Therefore, by definition of u,

<
[

f ′(z)z
f (z)

]
> 0, for |z| < 1.

Now, let’s prove the converse.

Suppose that <
[

f ′(z)z
f (z)

]
> 0. Since f ∈ S, we know that f (D) is simply

connected, so we can define the function:

arg( f (z)) = φ(r, θ), where z = reıθ ,

uniquely by analytic continuation, with the initial condition φ(0, θ) = θ. As φ(r, θ)

is differentiable and f (z) 6= 0 for z 6= 0, we can define a single branch of the
logarithm so that:

∂

∂θ
φ(r, θ) =

∂

∂θ
=[log( f (z))] = =

[
∂

∂θ
log( f (z))

]
= =

[
f ′(z)
f (z)

∂z
∂θ

]
= =

[
f ′(z)
f (z)

ız
]
= <

[
z

f ′(z)
f (z)

]
> 0, by hypothesis.

We obtain that φ(r, θ) is an increasing function of θ for each fixed value of r. Hence,
when z describes the circle |z| = r once in a positive sense, f (z) traces a curve Cr

once in a positive sense. We can parametrize Cr by the angle:

R = F(φ)
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where F(φ) is a real analytic function of period 2π. In conclusion, we clearly see
that every point of this curve is visible from the origin, which implies that the set
of all points that lie on the curves Cs, 0 ≤ s ≤ r < 1 is starlike with respect to the
origin, so it is f (D).

After these two results, let’s prove the Bieberbach conjecture for starlike do-
mains. This was proved by Rolf Nevanlinna in 1920.

Theorem 4.7. The coefficients of a function f ∈ S∗ satisfy

|an| ≤ n, for n = 2, 3, ...

Strict inequality holds for all n unless f is a rotation of the Koebe function.

Proof. Given f ∈ S∗, define the function:

ϕ(z) =
z f ′(z)

f (z)
= 1 +

∞

∑
n=1

cnzn.

By Lemma 4.6, we have that <
[

z
f ′(z)
f (z)

]
> 0, so <[ϕ(z)] > 0. Thus, using

Carathéodory’s lemma (Lemma 4.5), we obtain that |cn| ≤ 2 for all n ≥ 2.
Now, if we multiply both sides of the equality by f (z), we get:

z f ′(z) = ϕ(z) f (z)

Expressing ϕ(z) and f (z) by their power series, and equating the coefficients ac-
cording to the degree of z, we have:

z
(

1 +
∞

∑
n=2

nanzn−1
)
=

(
1 +

∞

∑
n=1

cnzn
)(

z +
∞

∑
n=2

anzn
)

.

n = 2 : 2a2 = a2 + c1

n = 3 : 3a3 = a3 + c2 + c1a2

n = 4 : 4a4 = a4 + c3 + c1a3 + c2a2

...

So, in general,

nan = an +
n−1

∑
k=1

cn−kak. (4.4)

Using this, let’s show by induction the inequality |an| ≤ n, for n ≥ 2.
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• Initial case: For n = 2, we have: 2a2 = a2 + c1, so a2 = c1. Then by the
Carathéodory lemma, |a2| = |c1| ≤ 2.

• Inductive case: Suppose that we’ve proved |ak| ≤ k, for k = 2, ..., n− 1. We
want to see that |an| ≤ n. Then, from (4.4) follows,

(n− 1)|an| =
∣∣∣∣∣n−1

∑
k=1

cn−kak

∣∣∣∣∣ ≤ n−1

∑
k=1
|cn−k||ak|.

As we know that |cn| ≤ 2 for n ≥ 2, and |ak| ≤ k, for k = 2, ..., n− 1:

(n− 1)|an| ≤
n−1

∑
k=1
|cn−k||ak| ≤

n−1

∑
k=1

2k = 2
n−1

∑
k=1

k = 2
n(n− 1)

2
= n(n− 1),

from which we obtain |an| ≤ n.

We still need to prove that strict inequality holds for all n unless f is a rotation of
the Koebe function.

The Bieberbach theorem claims that if f is not a rotation of the Koebe function,
then |a2| < 2. Then, we deduce, by looking at the previous induction, that if f is
not a rotation of the Koebe function, |an| < n for all n ≥ 2.

Finally, let’s show the conjecture for the case of functions with real coefficients.
This result was proved by Jean Dieudonné and Werner W. Rogosinski in 1931,
though using quite different methods.

Denote by Sr the subclass of functions f in S with real Taylor coefficients. Then,

Theorem 4.8. Let f (z) = z + a2z2 + a3z3 + ... be in Sr. Then,

|an| ≤ n, for n ≥ 2.

Proof. A first observation is that, since the coefficients an are real, an = ān, and:

f (z̄) = z̄ + ∑
n≥2

an z̄n = z̄ + ∑
n≥2

anzn = f (z), for all z ∈ D.

Therefore, the image domain f (D) is symmetric with respect to the real axis. In
particular, we see that, since f is univalent in D, and f (z) = f (z̄), it implies that
that f (z) is real if and only if z is real.

Moreover, as f ′(0) = 1, f maps the upper half of D to the upper half of f (D).
The same happens with the lower part of D.
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Now, if we write f as a power series, using polar coordinates and with a1 = 1,
we have:

f (z) = f (reıθ) =
∞

∑
n=1

anrnenıθ =
∞

∑
n=1

anrn(cos nθ + ı sin nθ)

=
∞

∑
n=1

anrn cos nθ + ı
∞

∑
n=1

anrn sin nθ = u(z) + ıv(z),

u and v real-valued functions of z.
Let’s compute the integral:∫ π

−π
sin nθ v(reıθ)dθ =

∫ π

−π
sin nθ

(
∑
k≥1

akrk sin kθ

)
dθ = ∑

k≥1
akrk

∫ π

−π
sin kθ sin nθdθ.

Writing the sinus in its exponential form,∫ π

−π
sin kθ sin nθdθ =

1
4

∫ π

−π
(−e(n+k)ıθ + e(k−n)ıθ + e−(k−n)ıθ − e−(k+n)ıθ)dθ.

Then, using (3.1) (see Section 3.2) we have:

∫ π

−π
sin nθ v(reıθ)dθ =

{
πanrn if k = n

0 if k 6= n.

Thus, for each r < 1, we obtain the equality:

|anrn| = 1
π

∣∣∣∣∫ π

−π
sin nθ v(reıθ)dθ

∣∣∣∣ .

Since the integrand is an even function of θ, for being product of two odd func-
tions, and f maps the upper half of D to the upper half of f (D), so v(reıθ) ≥ 0
when θ ∈ [0, π], we can write:

|anrn| = 2
π

∣∣∣∣∫ π

0
sin nθ v(reıθ)dθ

∣∣∣∣ ≤ 2
π

∫ π

0
| sin nθ||v(reıθ)|dθ

=
2
π

∫ π

0
| sin nθ|v(reıθ)dθ.

To finish the proof, we need a result from real analysis, that is:

| sin nθ| ≤ n sin θ, 0 ≤ θ ≤ π, n = 1, 2, · · · .

We prove it by induction:

1. Initial case: For n = 1, it is clear that | sin θ| ≤ sin θ.
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2. Inductive case: Suppose that | sin nθ| ≤ n sin θ. Let’s show it for n + 1.
By trigonometric inequalities, we have:

| sin (n + 1)θ| = | sin nθ cos θ + cos nθ sin θ|
≤ | sin nθ|| cos θ|+ | cos nθ|| sin θ| ≤ | sin nθ|| sin θ|,

as | cos nθ| ≤ 1 for all n and θ. Now, by inductive hypotesis,

| sin (n + 1)θ| ≤ | sin nθ|| sin θ| ≤ n sin θ + sin θ = (n + 1) sin θ.

Given this, we obtain:

|anrn| ≤ 2
π

n
∫ π

0
sin θv(reıθ)dθ =

1
π

n
∫ 2π

0
sin θv(reıθ)dθ = na1 = n.

As r < 1 is arbitrary, letting r tend to 1, we prove the theorem.
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Chapter 5

The general proof

The general proof of Bieberbach’s conjecture was given by Louis De Branges
in 1984. Following Loewner’s idea, he considered the functions f ∈ S as the initial
condition of a parametric family of analytic and univalent functions that satisfied
the Loewner differential equation. Let’s explain this in more detail.

Consider a function f ∈ S, and let φ be a conformal map from C∞ \D to
C∞ \ f (D), such that φ(∞) = ∞.

Consider the curve ∂D(0, et), t ≥ 0, and let Ut be the domain enveloped by
φ(∂D(0, et)) and containing 0. Then, we see that (Ut)t≥0 is a family of increasing
simply connected domains, where Us ⊂ Ut, for s < t.

By the Riemman Mapping Theorem, for each t ≥ 0, there exists a unique con-
formal mapping ft : D→ Ut such that ft(0) = 0, and f ′t (0) > 0. By reparametriza-
tion of t, we can assume that f ′t (0) = et. Therefore, they have the form:

ft(z) = f (z, t) = etz +
∞

∑
n=2

an(t)zn, an(t) ∈ C, 0 ≤ t < +∞. (5.1)

These families { ft}t≥0 of univalent maps ft : D → C satisfying ft(0) = 0, and
f ′t (0) = et, and such that fs(D) ⊂ ft(D), for 0 ≤ s < t ≤ ∞ are called Loewner
chains. A key example of a Loewner chain, is the family:

ft(z) = et z
(1− z)2 , (5.2)

of dilated Koebe functions. Notice that the image ft(D) of each ft is the domain
C \ (−∞,− et

4 ], which is clearly monotone increasing in t.
Now, let’s verify that the family of function (5.1) satisfies the Loewner differ-

ential equation:
∂t ft(z) = z f ′t (z)pt(z) (5.3)

with initial condition ft(z)|t=0 = f0(z) = f , and where pt(z) is a suitable family of
holomorphic functions in D, with <[pt(z)] > 0, and pt(0) = 1, 0 ≤ t < +∞.
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Form the relation fs(D) ⊂ ft(D), we can define the univalent function:

ϕt,s = f−1
t ◦ fs : D→ D, (5.4)

called transition function. We observe that |ϕs,t(z)| ≤ 1, and ϕs,t(0) = 0, so by the
Scharwz’s lemma,

|ϕs,t(z)| ≤ |z|, z ∈ D.

With this, we know that the transformation
z− ϕs,t(z)
z + ϕs,t(z)

has positive real part. Nor-

malizing the function so that its value in z = 0 is 1, we obtain the functions:

ps,t(z) =
1 + es−t

1− es−t
z− ϕs,t(z)
z + ϕs,t(z)

, ps,t(z) : D→H = {<[z] > 0}, ps,t(0) = 1.

These holomorphic functions p : D → H are called Herglotz functions (see
Carathéodory’s lemma (Lemma 4.5) for some properties of these functions).

On the other hand, it can be verified that ft is Lipschitz with respect to t, i.e,
for each z, there exists a constant C(z) > 0 such that:

| ft(z)− fs(z)| ≤ C(z)|t− s|.

This constant C(z) can be taken uniformly for each compact K ⊂ D. Hence, by
this and the Growth theorem, we can deduce that ft is differentiable a.e t ≥ 0 for
all z ∈ D. So, as s approaches t we have:

fs(z) = ft(z) + ∂t ft(z)(s− t) + o(|s− t|).

Now, from the equality (5.4) and using Taylor again, we get:

ϕs,t(z) = f−1
t [ ft(z) + ∂t ft(z)(s− t) + o(|s− t|)]

= z + ( f−1
t )′( ft(z))(s− t)∂t ft(z) + o(|s− t|)

= z +
1

f ′t (z)
(s− t)∂t ft(z) + o(|s− t|).

Thus, for s ∼ t:

ps,t(z) =
1 + es−t

1− es−t
z− ϕs,t(z)
z + ϕs,t(z)

=
2

t− s

1
f ′t (z)

(t− s)∂t ft(z)

2z
(1 + o(1))

=
1
z

∂t ft(z)
f ′t (z)

(1 + o(1)).

Finally, computing the limit, we obtain the equation (5.3):

pt(z) = lim
s→t−

ps,t(z) =
1
z

∂t ft(z)
f ′t (z)

,
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where pt is a Herglotz function with pt(0) = 1.
Observe, for example, that the Loewner chain (5.2) solves the Loewner equa-

tion with the Herglotz function: pt(z) = 1−z
1+z . We see it:

∂tkt(z) = et z
(1− z)2

k′t(z) = et
(
(1− z)2 + 2z(1− z)

(1− z)4

)
= et

(
(1− z) + 2z
(1− z)3

)
Hence,

zk′t(z)Pt(z) = z et
(
(1− z) + 2z
(1− z)3

)
1− z
1 + z

= et z
(1− z)2 = ∂tkt(z).

From the differential equation (5.3), we can extract some information about
the coefficients. This is the approach started by Loewner and explotated by de
Branges.

Let ft(z) = etz+ a2(t)z2 + a3(t)z3 + · · · . As ft is differenciable in almost every t
for each z, and is locally uniformly continuous in z, we see from Cauchy’s formula

an(t) =
1

2πı

∫
|ζ|=r

ft(ζ)

ζn+1 dζ,

that the an(t) are differenciable a.e t. So, denoting

pt(z) = c0(t) + c1(t)z + c2(t)z2 + · · · , c0(t) = 1.

we can rewrite Loewner’s differential equation (5.3) as:

∂t ft(z) = ∂ta1(t)z + ∂ta2(t)z2 + ∂ta3(t)z3 + · · ·
z f ′t (t)p′t(z) = z(a1(t) + 2a2(t)z + 3a3(t)z2 + · · · )(c0(t) + c1(t)z + c2(t)z2 + · · · )

= (a1(t)z + 2a2(t)z2 + 3a3(t)z3 + · · · )(c0(t) + c1(t)z + c2(t)z2 + · · · )

Equating the coefficients with respect to the degree of z, we obtain:

n = 2 : ∂ta2(t) = a1(t)c1(t) + 2a2(t) = 2a2(t) + c1(t)et

n = 3 : ∂ta3(t) = etc2(t) + 2a2(t)c1(t) + 3a3(t)

· · ·

In general,

∂tan(t) =
n

∑
j=1

jaj(t)cn−j(t), n ≥ 2.
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For instance, for the Loewner chain (5.2) it is immediate that an(t) = net, and it
can be verified that cn(t) = 2(−1)n for n ≥ 1, solve these equations. Writing

1− z
1 + z

=
∞

∑
n=0

(−z)n +
∞

∑
n=1

(−z)n = 1 +
∞

∑
n=1

2(−1)nzn,

we see that cn = 2(−1)n, and by Carathéodory’s lemma (Lemma 4.5), the function
is extremal.

Moreover, these equalities allow us to deduce, with not at all immediate meth-
ods, some cases of the Bieberbach conjecture.

Let’s see it for n = 2: The equality above for n = 2 is equivalent to:

∂

∂t
[e−2ta2(t)] = e−tc1(t).

If we apply the distortion theorem to et ft ∈ S, we obtain:

|a2(t)| =
∣∣∣∣ f ′′t (0)

2

∣∣∣∣ = O(et).

Using this, ∫ ∞

0
e−tc1(t)dt = [e−2ta2(t)]t=∞

t=0 = 0− a2(0) = −a2(0).

The Carathéodory lemma (Lemma 4.5) implies that |c1(t)| ≤ 2. Therefore,

|a2| = |a2(0)| ≤
∫ ∞

0
e−t|c1(t)|dt = 2

∫ ∞

0
e−tdt = 2.

Once we’ve exposed the starting point of de Branges’ proof, let’s illustrate the
line of argument he followed to get to the BC. For that, we must introduce two
conjectures: the Robertson conjecture (1936) and the Milin conjecture (1971).

Let S2 denote the subclass of square root transformations (property 4, Chapter
3):

f2(z) =
√

f (z2) =
∞

∑
n=1

b2n−1z2n−1, f (z) ∈ S, b1 = 1 (5.5)

of the class S.

Theorem 5.1. (Robertson’s Conjecture). If a function f2 ∈ S2, then:

n

∑
k=1
|b2k−1|2 ≤ n, for n = 1, 2, · · · .

Equality holds if and only if f2 is a rotation of the Koebe function.
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It is not difficult to see that the Robertson conjecture implies the Bieberbach
conjecture. If we write the coefficients of a function f ∈ S in terms of the coeffi-
cients of a function f2 ∈ S2, using that f (z2) = f2(z)2, we get:

an =
n

∑
k=1

b2k−1b2(n+1−k), n = 1, 2, · · · , b1 = 1.

Now, using the Cauchy inequality, we see:

|an| ≤
n

∑
k=1
|b2k−1|2, n = 2, 3, · · · , b1 = 1,

which implies the BC.
Now, let’s denote the logarithmic coefficients of a function f ∈ S, generated by

the Taylor expansion as:

log
(

f (z)
z

)
=

∞

∑
n=1

dnzn, log(1) = 0. (5.6)

Theorem 5.2. (Milin’s Conjecture) If f ∈ S,

n

∑
k=1

(k|dn|2 −
4
k
)(n− k + 1) ≤ 0, n = 1, 2, · · · .

Equality holds if and only if f is a rotation of the Koebe function.

It has been shown, as well, that the Milin conjecture implies the Robertson
conjecture. We see it:

The mathematicians Lebedev and Milin found the inequality:

n+1

∑
k=1
|b2k−1|2 ≤ (n + 1) exp

(
1

4(n + 1)

n

∑
k=1

(k|dk|2 −
4
k
)(n− k + 1)

)
, n = 1, 2, · · · ,

that relates the coefficients of functions (5.5) in S2, and functions (5.6), with f ∈ S.
From Milin’s conjecture, we have:

n

∑
k=1

(k|dk|2 −
4
k
)(n− k + 1) ≤ 0, n = 1, 2, · · · .

Thus, for a big value of n, we observe that the exponent of e tends to 0, so the
exponential tends to 1, and we obtain:

n+1

∑
k=1
|b2k−1|2 ≤ (n + 1), n = 1, 2, · · · .
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which implies the Robertson conjecture.
De Branges realized that the coefficients of (5.6) obeyed more tractable equa-

tions. Hence, what de Branges did was prove the Milin conjecture for all n ≥ 1,
and from this, Robertson’s and Bieberbach’s conjectures were followed. He did
the following:

He considered the Loewner chain (5.1) explained above, and denoted its loga-
rithmic coefficients by the Taylor expansion as:

log
(

ft(z)
etz

)
=

∞

∑
n=1

dn(t)zn, |z| < 1, 0 ≤ t < +∞,

where d0(t) = log(1) = 0 and d1(t) = e−ta2(t), a2(0) = a2.
Then, with the help of the Loewner equation, de Branges proved the general

inequality:
n

∑
k=1

(
k|dk(t)|2 −

4
k

)
σk(t) ≤ 0, 0 ≤ t < +∞, (5.7)

for any integer n ≥ 1, and where σk(t) are the de Branges functions:

σk(t) = k
n−k

∑
ν=0

(−1)ν (2k + ν + 1)ν(2k + 2ν + 2)n−k−ν

(k + ν)ν!(n− k− ν)!
e−νt−kt,

for 0 ≤ t < +∞, k = 1, · · · , n, and

(a)ν = a(a + 1) · · · (a + ν− 1), (a)0 = 1, ν = 1, 2, · · · ,

for any arbitrary number a.
These functions were the unique solution of the system of differential equa-

tions:

σk(t)− σk(t) = −
σ′k(t)

k
−

σ′k+1(t)
k + 1

, 0 ≤ t < +∞, k = 1, · · · , n, σn+1(t) = 0,

with initial condition σk(0) = n− k + 1, for k = 1, · · · , n.
Thus, for t = 0, he deduced from this initial condition and the inequality (5.7)

that the Milin conjecture held, where dk = dk(0) were the coefficients in (5.6) for
the function f (z, 0) = f (z).



Chapter 6

Conclusion

In this work, we have studied the holomorphic and univalent functions in
proper simply connected domains of C. More specifically, we have developed
the theory of functions belonging to the class S, since due to Riemann’s theorem,
we have seen that the results related to this class can be extrapolated to arbitrary
simply connected domains. Thus, we have explained in detail some of the most
important results, such as the Area theorem, the Bieberbach theorem, the Koebe
one-quarter theorem, or the distortion and growth theorems. Finally, we have
faced one of the main problems of the theory of univalent functions, the Bieber-
bach conjecture, first showing some of its partial results, and ending with the
explanation of the main idea of de Branges’ general proof.

After carrying out this work, we have been able to notice how an apparently
simple property, such as univalence, can give rise to a multitude of important
results, for various reasons.

On the one hand, results such as Riemann’s theorem, or the BC, have served to
relate two areas of mathematics: geometry and complex analysis, in the so-called
geometric theory of functions, and from which it has been possible to see how
analytic and geometric properties of functions reflect each other.

On the other hand, others such as the Bieberbach theorem, or, again, the BC,
have led to the development of resolution methods, like the Loewner method,
used in the proof for the 3rd coefficient estimate, and later in de Branges’ general
proof, or others such as the variational methods.

However, this subject is not closed but is still, at present, source of study. At
the same time that previous problems are being resolved, new ones, as new esti-
mates of coefficients for specific functions, or possible applications of the methods
commented above, are appearing. Challenges that, for sure, spur my interest in
continuing to investigate this rich matter, and to which I hope to be able, someday,
to do my bit.
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Annex: Biography

Figure 6.1: Ludwig Bieberbach

Ludwig Bieberbach (4 December 1886 - 1
September 1982) was a German mathematician
born in Goddelau, into a well-off family.

Ludwig was taught by private tutors up to
the age of eleven. In 1905, he entered the Hu-
manistic Gymnasium in Bensheim, where he
became interested in mathematics, inspired by
an excellent mathematics teacher.

After his military service, he decided to go
to the University of Göttingen, where its en-
thusiastic atmosphere for research had a great
influence on Bieberbach. He attended the alge-
bra course by Minkowski which had brought
him there, but he was influenced even more
strongly by Felix Klein and his lectures on elliptic functions. Another strong in-
fluence on the direction of Bieberbach’s mathematical interests came from Paul
Koebe, who was only four years older than Bieberbach. Koebe, an expert on
complex function theory, became a dozent at Göttingen in 1907 and also encour-
aged Bieberbach towards analysis. It was under Klein’s direction that Bieberbach
researched into automorphic functions for his doctorate, which was awarded in
1910 for his thesis "Zur Theorie der automorphen Funktionen".

He began working as a Privatdozent at Königsberg in 1910. There, he worked
out the details of his solution to the first part of Hilbert’s eighteenth problem,
which gave the young Bieberbach an international reputation. A few years after,
in 1913, Bieberbach was appointed professor of mathematics in Basel, Switzer-
land. In the following year, he married Johanna (Hannah) Friederike Stoermer
(1882-1955); with whom he had four sons, and moved to Frankfurt. It was while
Bieberbach was at Frankfurt that he produced the Bieberbach Conjecture for which
he is best known today. In 1921, he accepted the Berlin professorship. He contin-
ued to increase his influence in German mathematics, becoming secretary of the
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Deutschen Mathematiker-Vereinigung (German Mathematical Society).
On 30 January 1933, Hitler came to power, and soon after this Bieberbach

was converted to the views of the Nazis and energetically persecuted his Jewish
colleagues, including Edmund Landau and his former coauthor Schur, dismiss-
ing them from their posts. That year, he joined the Sturmabteilung, and in 1937,
the NSDAP. Bieberbach was heavily influenced by Theodore Vahlen, another Ger-
man mathematician and anti-Semite, who along with him founded the "Deutsche
Mathematik" ("German mathematics") movement and journal of the same name.
The purpose of the movement was to encourage and promote a "German" (in this
case meaning intuitionistic) style in mathematics. Bieberbach’s and Vahlen’s idea
of having German mathematics was only part of a wider trend in the scientific
community in Nazi Germany towards giving the sciences racial character.

Figure 6.2: "Deutsche Mathematik"
journal

After the end of World War II in 1945, Bieber-
bach lost all his positions because of his political in-
volvement, being dismissed and arrested. Despite
this, in 1949, Alexander Ostrowski invited him to
lecture at Basel University, as he considered Bieber-
bach’s political views irrelevant to his contributions
to the field of mathematics.

In 1951, Bieberbach and Friedrich Wilhelm Levi
were on a list to fill the second chair in Berlin. Both
were in their 60s but had very different wartime
experiences: Levi having been dismissed from the
University of Leipzig in 1935 because he was Jew-
ish, and Bieberbach having been the leading Nazi

mathematician. Finally, Friedrich Levi was appointed.
After this, he continued to produce excellent books such as: "Theorie der ge-

ometrischen Konstruktionen" ("Theory of geometric constructions") in 1952, "The-
orie der gewöhnlichen Differentialgleichungen auf funktionentheoretischer Grund-
lage dargestellt" (Theory of ordinary differential equations presented on a function-
theoretical basis) in 1953, "Einführung in die Theorie der Differentialgleichungen
im reellen Gebiet" (Introduction to the theory of differential equations in the real
domain) in 1956, or "Einführung in die analytische Geometrie" (Introduction to
analytical geometry) in 1962.

Finally, Ludwig Bieberbach died in 1982.
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