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Abstract: Septoria leaf blotch (SLB) is considered one of the most devastating diseases affecting global
wheat production. Biostimulant application is among the modern approaches in plant protection to
overcome the impact of SLB’s fungicide resistance. In this manner, the effect of coating seeds with
thyme essential oil or Paraburkholderia phytofirmans PsJN strain on SLB severity and yield components
(spikes/m2, straw yield (SY), grain yield (GY) and thousand kernel weight (TKW)) were assessed
under field conditions for 3 years. The effect on physiological traits and nitrogen and carbon isotope
composition (δ15Ngrain, δ13Cgrain) and nitrogen and carbon content (Ngrain, Cgrain) of grains was
assessed in one year of study. The increasing SLB severity decreased all yield components, increased
δ15Ngrain and Cgrain content and slightly decreased δ13Cgrain as the resulting effect of Zymoseptoria
tritici inducing stomatal opening and leaf necrosis. Across the years, both treatments alleviated the
SLB adverse impact by reducing SLB severity, increasing spikes/m2, SY, GY and TKW. Both treatments
ameliorated grain quality by increasing Cgrain content and decreasing δ13Cgrain and δ15Ngrain. The
difference between the performance of thyme oil or PsJN strain in terms of intensity and stability is
discussed and considered to be linked to the different triggered systemic resistance and the associated
amount of costs deriving from resource allocation towards defense processes.
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1. Introduction

Globally, wheat leads all crops in terms of cultivated area and continues to be the most important
food grain source for humans [1]. The high consumption of hard (or durum) wheat in some countries is
associated with a decrease in wheat production resulting from ongoing climate change causing a rise of
drought stress and the emergence of more aggressive pathogens [2], which leads to above-average imports
to meet needs for consumption. Septoria leaf blotch (SLB), caused by the hemibiotroph Zymoseptoria
tritici, constitutes one of the major constraints affecting durum wheat global production resulting in yield
losses [3] and shriveled grains, which is undesirable for industries as they result in low flour extraction
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rates in milling and provide poor quality for feeding livestock [4]. Since the introduction of fungicides in
the 1980s, chemical control is currently one of the main approaches used to manage SLB [3,4]. However,
fungicide resistance and its associated environmental impact is now a widespread problem [5].

Biostimulants are considered as products modifying biochemical and physiological processes in
plants, neutralizing the adverse impact of weather conditions and reducing the occurrence of diseases
by stimulating plant growth, strengthening plant defenses and improving nutrition efficiency leading
to sustainable crop yield [6]. In this context, this study’s interest focused towards assessing the effect
of the biostimulants thyme oil and Paraburkholderia phytofirmans PsJN strain against SLB severity via
the seed coating technique. Our previous experiments revealed that seed coating with both agents
induced seed priming associated with increased germination, the emergence of seedlings, shoot and
root development, and a decreased root to shoot ratio [7]. Moreover, coating seeds with either thyme oil
or P. phytofirmans revealed great potential in controlling SLB under controlled conditions [8]. Thyme oil
and PsJN strain differed in their mode of action. Thyme oil induced systemic programmed cell death
(PCD) with higher frequency of formed papillae, high peroxidases activity and H2O2 amount, and low
catalase and phenolic compounds, indicating systemic acquired resistance (SAR), and the necrotic area
was reduced to 30% with reduced pycnidial density to 1.8%. While PsJN strain encountered hyphae
and condensate for biofilm formation, the induced local PCD with less frequency of formed papillae,
low peroxidases activity and H2O2 amount, and low catalase and phenolic compounds, indicated
induced systemic resistance (ISR), and the necrotic area was reduced to 10% with reduced pycnidial
density to 9.4%. Despite the potential of biostimulants in achieving disease control under controlled
conditions, their performance under field conditions could be less imposing. Hence, the effect of thyme
essential oil and PsJN strain under field conditions on SLB severity, yield components and carbon and
nitrogen stable isotope composition in durum wheat grains are examined.

2. Materials and Methods

2.1. Plant Material

A Tunisian variety of durum wheat (Triticum turgidum L. subsp. Durum (Desf) Husn.); ‘Karim’,
known for its sensitivity to SLB, was used.

2.2. Seed Coating Treatment

Just before sowing, the seeds were coated with either thyme essential oil or Paraburkholderia
phytofirmans PsJN strain. Thyme essential oil was extracted by hydro distillation from dried aerial
parts of Thymbra capitata (L.) Cav. (chemotype carvacrol, voucher specimen D 1186-3), and harvested
during the flowering stage from the plain of Kef (Tunisia, 36◦23′ N, 8◦79′ E). The obtained essential
oil was distributed into 1 mL-amber-glass vials and stored at 4 ◦C for subsequent use. The chemical
composition of the oil was investigated and carvacrol was identified as the major compound according
to Ben Jabeur et al. [9]. The concentration of thyme oil was adjusted to 5 ppm before use with adding
0.5% of dimethyl sulfoxide (DMSO) as a solubilizing agent to assure the homogenous application
of the essential oil. The bacterial inoculum of P.phytofirmans PsJN strain (provided by Pr. Ait Barka,
University of Reims, France) was produced by transferring one colony to 20 mL of King’s B liquid
medium, incubated at 27 ◦C at 150 rpm for 48 h. The bacteria were collected by centrifugation at
8000 rpm for 5 min and washed and the concentration was adjusted to 108 CFU.mL−1 before use with
phosphate-buffered saline (PBS) (10 mM, pH 6.5). The coating product Agicote Rouge T17 (AEGILOPS
Applications, Val de Reuil, France), specific for cereal seeds, containing propane-1,2-diol (5–10%),
polyethylene glycol mono(tristyrylphenyl)ether (5–10%), and 1,2-benzisothiasol3(2H)-one (0.0357%),
was used [10]. The coating technique consists of preparing the appropriate volume of the coating
solution mixture based on the quantity of seeds required for each experimental plot. Each 10 g of
wheat seeds required 40 µL of the coating product Agicote Rouge T17 and 400 µL of either thyme oil
(5 ppm) or PsJN inoculum (108 CFU.mL−1), (400 µL of water was used as a control). Then, the coating
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mixture was applied progressively to wheat seeds in a continuous rotation, using a portable rotating
drum apparatus (SUNCOO, Atlanta, GA, USA) with a speed of 2800 rpm, at an ambient temperature
(20 ± 2 ◦C) until complete adhesion and absorption, to assure the homogeneous distribution of the
coating mixture among the seeds. The final concentration of products per seed was 10−5 µL of coated
thyme oil/seed and 2104 CFU of coated PsJN strain/seed. Prior to the evaluation of the effect of coating
seeds with thyme oil, the effect of the coating product was evaluated in the laboratory. The positive or
negative effects of the coating product on seed germination and seedling growth were not detected
and its inertness was assured.

2.3. Experimental Design for Field Trials

The experiments were conducted at the experimental station in Oued-Beja (CRGC), located in the
sub-humid bioclimatic zone of Tunisia, for three years; 2015–2016 and 2017 under rainfed conditions
(Table 1). The soil type of the experimental area is mostly clay loam with pH 7.2 (Table 2). A complete
random block design with three replicates was used. The plots size was 1 × 3 m spaced by 1.5 m. Each plot
consisted of 6 rows; with a row spacing of 0.15 m. The sowing was carried out in the first week of December
at a sowing density of 350 seeds /m2. The plants were inoculated with 107 spores/ml of Z. tritici twice. After
full emergence of the third leaf and at stem elongation, a CO2-pressurized knapsack sprayer was used.
Nitrogen (ammonium nitrate) was applied at 25 kg N/ha at sowing and at the stem elongation stage.

Table 1. The climatic conditions (temperature, precipitation, humidity) of the three years in the
experimental station of Oued Beja.

Climatic Factors Precipitation (mm) T Min (◦C) T Max (◦C) Humidity (%)

year 2015 2016 2017 2015 2016 2017 2015 2016 2017 2015 2016 2017

October 59.2 77.5 32.0 15.03 17.5 14.76 28.92 27.10 28.85 73.5 75.4 76.5
November 39.2 108.8 60.0 10.6 14.06 9.58 24.0 20.14 21.56 72.9 86.6 84.8
December 105.6 21.4 40.8 6.89 11.44 8.04 16.28 17.83 17.16 86.2 90.0 92.8

January 136.2 65 119.2 5.18 5.12 3.46 15.81 17.06 13.31 83.5 88.7 81.1
February 189.0 39.2 96.4 5.20 6.35 4.78 13.69 17.78 17.80 87.1 86.2 76.9

March 77.3 115.6 25.6 7.48 6.52 6.37 17.75 18.63 20.72 83.4 86.1 71.7
April 5.2 23.4 42.4 4.58 6.15 7.52 23.68 24.57 22.71 72.0 78.4 69.4
May 25.0 40.4 23.4 12.9 9.57 11.44 29.07 27.86 29.71 65.9 70.7 56.3

Sum/Average * 636.7 491.3 439.8 8.48 9.58 8.24 21.15 21.37 21.47 78.06 82.76 76.18

* Sums for precipitation; average values for the rest.

Table 2. Soil’s physicochemical characteristics of Oued Beja station.

pH 7.2

Soil type Vertosol (texture: Clay loam)

Composition of Soil

Depth Clay (%) Loam (%) Sand (%) Mineral N (ppm) Total N (%)

0–20 67.5 22.5 10 859 0.17

20–40 65 23.7 11.3 934.7 0.16

2.4. Effect of Seed Coating with PsJN Strain and Thyme Oil on Plant Physiology, Disease Control and
Yield Components

At anthesis, five leaves within each plot were selected for nondestructive measurements of leaf
chlorophyll content, using a portable meter (SPAD 502 plus, Minolta, UK), and stomatal conductance
of the flag leaf with a leaf porometer (Decagon, Pullman, Washington, USA). In addition, the following
measurements were performed for each plot at the canopy level: The canopy normalized difference
vegetation index (NDVI), with a spectroradiometer (GreenSeeker@Trimble, Westminster, Colorado,
USA), canopy temperature using an infrared thermometer (Fluke, Everett, Washington, USA). For
disease scoring, 15 plants were sampled from each plot, all leaves were taken for assessing the vertical
disease progress and estimated for severity according to Eyal et al. [11]. Since the difference in vertical
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disease progress upon the samples was not observed, the diseases assessment was conducted at the leaf
numbered flag leaf-3, the highest leaf showing symptoms. The leaves were scanned, and the images
were analyzed using ImageJ software (the National Institute of Mental Health, Bethesda, MD, USA).
The extent of the necrotic area was determined, according to Stewart and McDonald [12]. Briefly, the
background was removed from each image and the total leaf area and green leaf area in the pixel was
calculated using color thresholding in the red-green-blue (RGB) color space as formulated: Septoria
severity (%) = (total leaf area-green leaf area)/total leaf area × 100. At harvest, 1 m2 of each plot was
hand harvested, and then straw yield (SY, Mg ha−1), number of spikes/m2, thousand kernels weight
(TKW, g) and grain yield (GY, Mg ha−1) were measured.

2.5. Effect of Seed Coating with PsJN Strain and Thyme Oil on Total Nitrogen and Carbon Content and Stable
Carbon and Nitrogen Isotope Composition

The total N and C content and the stable nitrogen isotope signature in the dry matter of the mature
grains sampled from each plot of the third field trial (2017) were analyzed at the Scientific Facilities of
the University of Barcelona. Approximately 1mg of each sample and reference materials were weighed
into tin capsules and measured with an elemental analyzer (Flash1112EA; Thermo Finnigan, Bremen,
Germany) coupled with an isotope ratio mass spectrometer (Delta CIRMS, Thermo Finnigan, Bremen,
Germany) operating in continuous flow mode in order to determine the total C and N content and
the stable carbon (13C/12C) and nitrogen (15N/14N) isotopes’ ratios. The ratios were expressed in δ

notation [13], as δ13C = (13C/12C) sample/ (13C/12C) standard −1, where sample refers to the plant
material and standard to Pee Dee Belemnite (PDB) calcium carbonate, and as δ15N = (15N/14N) sample/

(15N/14N) standard −1, where sample refers to plant material and standard refers to N2 in air.

2.6. Statistical Analysis

The effects of the treatments and years and their interaction on SLB severity and yield components
were determined through a two-factor (treatment × year) analysis of variance (ANOVA) with RStudio
1.1.463 (R Foundation for Statistical Computing, Vienna, Austria). The effects of the treatments on
physiological traits, yield components and grain stable isotopic compositions were determined through
a one-factor ANOVA (treatment). The least significant difference (LSD) test was used to assess the
differences between the treatment means. The clustered Pearson correlation matrices were generated
in the RStudio environment using the mean values of all traits to study the relationships between all
parameters analyzed within each treatment. The data of the non-inoculated control and inoculated
control were correlated (Figure 1, IC) assessing for relationship between traits in wheat-Z. tritici
interaction. The data of the inoculated control and plants treated with PsJN strain were correlated
(Figure 1, CB), and the data of the inoculated control and plants treated with thyme oil were correlated
(Figure 1, CT) for extracting the potential mode of action of each treatment in conferring disease
resistance and yield improvement.
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Figure 1. A correlation matrix for physiological traits, yield components and grain stable isotope
composition (2017 year of study). Treatments; IC: inoculated control, CB: coated with PsJN strain,
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CT: coated with thyme oil. Traits; 13 C: δ13Cgrain, 15N: δ15Ngrain, C: Cgrain, N: Ngrain, GY: Grain yield,
SY: Straw yield, TKW: Thousand kernel weight, CT: Canopy temperature, SLB: SLB severity. The
darker, bigger blue squares indicate a stronger positive correlation. The darker, bigger brown squares
indicate stronger negative correlation.

3. Results

3.1. Climatic Features and Sources of Variances of 3 Years of Study

The data in Table 1 show that the experimental season 2016 is the season most favoring SLB
compared to the other seasons tested. It was characterized by a higher amount of annual precipitations,
lower maximal temperatures and high humidity. By contrast, the experimental season 2017, was
characterized by drier weather due to a lower amount of precipitation, a higher maximal temperature
and lower humidity. In fact, the analysis of variance revealed a highly significant (p < 0.001) effect for
SLB severity (%), straw yield (SY) and grain yield (GY), and thousand kernel weight (TKW) was also
significantly (p < 0.01) affected between the years. The effect of treatment (T) and the interaction year x
treatment (Y × T) was highly significant (p < 0.001) for all four traits (Table 3).

3.2. Effect of SLB Severity on Wheat Yield Components in Control Plants

SLB was spotted in the non-inoculated control. Nevertheless, SLB severity was less compared
to the inoculated control (Table 3). Therefore, a comparison between the inoculated control and
non-inoculated control revealed that field artificial inoculation of wheat with Z.tritici increased SLB
severity over naturally occurring levels, facilitating the study of the effect of treatment on wheat yield
under infested conditions. Furthermore, SLB severity varied according to the variability in climatic
conditions between the years. The highest severity occurred at the driest season 2017. SLB decreased
significantly all yield components of the cultivar ‘Karim’ specifically and compared with the control.
The grain yield reduced by 0.2, 0.3, and 0.5 Mg ha−1 in 2015, 2016, and 2017 respectively.

3.3. Effect of Seed Coating Treatment on SLB Severity and Yield Components

Both treatments showed a great potential in controlling SLB under field conditions (Table 3). The
plants coated with thyme oil reduced SLB severity by 22%, 25.5%, and 53.2% in 2015, 2016, and 2017
respectively compared to the inoculated control. The plants coated with PsJN strain reduced SLB
severity by 30%, 24%, and 48.3% in 2015, 2016, and 2017 respectively compared to the inoculated
control. In season 2015, when water availability was high, PsJN strain was more efficient than thyme
oil in reducing SLB severity. In seasons 2016 and 2017, when water availability decreased, thyme oil
was more efficient than PsJN strain in reducing Septoria severity. In fact, a significant treatment by
year interaction was observed for SLB.

The treatment with PsJN strain increased all yield components in the 3 seasons, not only with
regard to the inoculated control but also compared with the non-inoculate control (Table 3), and the
increased intensity varied among the years, most likely due to environmental factors. Contrastingly,
thyme oil increased TKW compared to the inoculated control and decreased it compared to the
non-inoculated control in all seasons. Furthermore, thyme oil had different effects on GY and SY
among the 3 years. In 2015, in which the rainfall was more abundant in the vegetative growth stage
(December–February) than the grain filling stage (April), thyme oil increased SY and decreased GY. In
2016, in which rainfall was limited in the vegetative growth stage (December-February) and abundant
at the heading and anthesis (March), thyme oil decreased SY and increased GY. In 2017, in which
rainfall was abundant in both vegetative growth stage (December–February) and grain filling stage
(April), thyme oil increased both SY and GY.
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Table 3. Effect of treatments on SLB severity and yield components of durum wheat evaluated in three-year-study.

SLB Severity (%) SY (Mg ha−1) GY (Mg ha−1) TKW (g)

Treatment NIC IC CB CT NIC IC CB CT NIC IC CB CT NIC IC CB CT

Year
2015 36.0cd 50.0ab 20.0ef 28.0de 8.7c 6.0ef 13.3a 13.9a 1.8ef 1.6fg 2.0de 1.6g 49.8cd 37.4f 59.1a 48.7d

2016 15.0fg 34.5cd 10.6fg 9.0fg 8.1cd 7.1de 11.4b 6.6ef 2.4c 2.1d 3.0a 2.5bc 51.3cd 48.7d 57.8a 50.2cd

2017 43.5bc 59.1a 10.8fg 5.9g 4.5gh 3.7h 5.7fg 6.1ef 1.7fg 1.2h 2.4c 2.7ab 53.0bc 44.4e 55.6ab 53.2bc

LSD
2015 16.46 18.85 10.54 11.35 1.47 0.60 0.90 0.98 0.06 0.07 0.02 0.05 6.50 2.46 1.64 2.10
2016 6.66 18.62 2.83 2.10 0.09 0.44 1.21 0.55 0.04 0.02 0.26 0.11 0.20 0.25 3.01 0.19
2017 10.04 25.83 6.80 2.95 0.30 0.20 0.95 0.08 0.12 0.14 0.15 0.31 0.40 2.66 0.66 1.40

ANOVA
Treatment (T) 45.348 *** 58.35 *** 55.38 *** 43.929 ***

Year (Y) 16.629 *** 146.48 *** 80.97 *** 5.766 **
Interaction (T × Y) 4.879 *** 20.60 *** 18.47 *** 6.371 ***

The F values are shown, and the symbols indicate statistical significance (**, p < 0.01; ***, p < 0.001), values with different superscript letters are significantly different classes according
to the LSD test (p ≤ 0.05).LSD: least significant difference; SLB: Septoria leaf blotch; SY: Straw yield; GY: Grain yield; TKW: Thousand Kernels weigh; NIC: non-inoculated control; IC:
inoculated control; CB: coated with PsJN strain; CT: coated with thyme oil.
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3.4. Effect of Seed CoatingTreatment and SLB Severity on Physiological Traits, Yield Components and Grain
Isotopic Composition

3.4.1. Effect of SLB in Control Plants

On the control plants inoculated with Z.tritici, during vegetative growth, the green leaf area
was reduced compared with the other treatments (Figure 2), as shown by the reduction in the
canopy vegetation index NDVI, and the decrease in leaf chlorophyll content (SPAD), while stomatal
conductance increased and the carbon isotope composition (δ13C) of the grains slightly decreased.
At harvest, SLB severity caused a reduction in GY and biomass as well as in the yield components
spikes/m2 and TKW and altered the grain composition by increasing Cgrain content and δ15Ngrain

(Table 4). SLB had no effect on Ngrain content. The behavior of Z.tritici, the effect of SLB on the wheat
physiological state, and the impact on yield components and grain composition was confirmed by
the negative correlation between traits in cluster 1: SPAD, NDVI, spikes/m2, GY, SY, TKW, canopy
temperature, δ13Cgrain and the traits in cluster 2: SLB severity, stomatal conductance, Cgrain content,
δ15Ngrain (Figure 1, IC).

3.4.2. Effect of Seed Coating with PsJN Strain

Disease resistance was observed and characterized by a higher green leaf area (Figure 2) and SPAD
values, and lower SLB severity and stomatal conductance compared to the inoculated control (Table 4).
The plant growth promoting effect of coating seeds with PsJN strain was remarkably observed from (i)
an increase in SPAD, and NDVI in the vegetative growth phase and increase in SY, GY, TKW at harvest
(Table 4), and (ii) the positive correlation among SY, GY, SPAD, spikes/m2, TKW, NDVI (Figure 1, CB,
cluster 1). Concerning grain composition, the coating with PsJN strain and Cgrain content was positively
correlated to SY, GY, SPAD, spikes/m2, TKW, NDVI (Figure 1, CB, cluster 1), and decreased δ15Ngrain

and δ13Cgrain, which is most likely related to a lower canopy temperature, stomatal conductance, and
SLB severity compared to the inoculated control (Figure 1, CB, cluster 2). No effect was observed on
Ngrain content.

3.4.3. Effect of Seed Coating with Thyme Oil

Disease resistance was observed and characterized by a higher green leaf area (Figure 2) and
SPAD values, lower SLB severity, and a lower stomatal conductance, resulting in a higher canopy
temperature compared to the inoculated control. Coating seeds with thyme oil increased GY, SY,
spikes/m2 and TKW compared to the inoculated control (Table 4). Concerning grain composition,
thyme oil increased Cgrain content which was positively correlated to GY, SY, spikes/m2, TKW, canopy
temperature and SPAD. The effect of thyme oil on decreasing δ13Cgrain and δ15Ngrain content is most
likely related to an increase in stomatal conductance mediated by a lower SLB severity (Figure 1, CT,
cluster 2) and NDVI was the less correlated trait. No effect was observed on Ngrain content.
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Table 4. Effect of treatments on physiological traits, yield components and grain stable isotope composition in the 2017 year.

2017
SLB

Severity
(%)

SPAD NDVI
Canopy

Temperature
(◦C)

Stomatal
Conductance

(mmol.m−2
·s−1)

Spikes.m−2

Straw
Yield
(Mg.
ha−1)

Grain
Yield
(Mg.
ha−1)

Thousand
Kernel
Weigh

(g)

Ngrain
(%, g
DW)

Isotopic
Composition
δ15Ngrain

(%�)

Cgrain
(%, g
DW)

Isotopic
Composition
δ13Cgrain

(%�)

NIC 43.56b 49.46b 0.78a 19.70a 157.50d 176.33bc 4.50b 1.75b 53.06a 1.79b 0.77b 35.87b −24.62a

IC 59.19a 43.20c 0.75b 18.00b 282.36a 154.00c 3.78b 1.21c 44.44b 1.71b 1.34a 40.81a
−24.75b

CB 10.82c 53.20a 0.76b 16.99c 234.53b 232.00a 5.77a 2.48a 55.69a 1.97a 0.05c 44.22a
−25.31d

CT 5.94d 48.63b 0.74b 19.43a 204.80c 193.66b 6.18a 2.77a 53.20a 1.96a 0.62b 42.49a
−24.99c

LSD
NIC 1.20 0.37 0.05 0.36 12.82 14.57 0.30 0.12 1.40 0.04 0.15 4.81 0.05
IC 0.46 0.36 0.00 0.17 10.26 10.14 0.20 0.14 2.66 0.03 0.14 0.77 0.03
CB 0.58 1.99 0.01 0.15 3.29 24.97 0.95 0.15 0.66 0.07 0.01 1.40 0.02
CT 0.22 0.30 0.01 0.15 4.55 9.81 0.08 0.31 0.40 0.06 0.05 0.27 0.09

ANOVA
Treatment

3872.00
***

46.89
***

10.03
** 95.03 *** 109.30 *** 12.58 ** 14.07 ** 37.08 *** 30.10 *** 16.11 *** 69.74 *** 6.039 * 79.45 ***

The F values are shown, and the symbols indicate statistical significance (*, p < 0.05; **, p < 0.01; ***, p < 0.001), values with different superscript letters are significantly different classes
according to the LSD test (p ≤ 0.05). LSD: Least significant difference; NIC: non-inoculated control; IC: inoculated control; CB: coated with PsJN strain; CT: coated with thyme oil.
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4. Discussion

4.1. Effect of Climate on Variability of SLB Severity, Yield Components among the 3 Years

Despite the less favoring conditions for disease development in the dry season 2017, SLB severity
was the highest. In fact, one of the fundamental concepts in plant pathology illustrates that plant
disease occurrence requires a three-way interaction of a susceptible host, a virulent pathogen and an
environment suitable for disease development, which is referred to as the disease triangle [14].The
drought and temperature stresses, associated with climatic change as well as anthropogenic air
pollutants as is the case of elevated O3 levels, have the potential to: (i) Accelerate tissue necrosis
favoring infection by necrotrophic pathogens, drawing nutrients from dead host tissues; (ii) reduce the
major plant defense processes against pathogens due to reduced photosynthate production and the
activation of the ABA-responsive signaling pathway [15,16]. SLB significantly decreased straw yield,
grain yield and the yield components of the cultivar ‘Karim’ specifically and compared with the control
in the three years of study, which agrees with the sensitive attitude of this cultivar reported [17].

4.2. Effect of SLB on PhysiologicalTraits, Yield Components, and Stable Isotopic Composition

SLB was spotted in the non-inoculated control due to the natural aerial epidemics in the
experimental station zone considered as a hot spot for SLB [17]. In season 2017, the green status of
plants (SPAD and NDVI) decreased with the increasing SLB severity as expected since symptoms of
SLB involve chlorotic and necrotic lesions in leaves, thus reducing the green leaf area. Furthermore,
SLB caused a decrease in canopy temperature (CT) and an increase in stomatal conductance (SC).
This constitutes a part of Z.tritici hemibiotrophic behavior causing early malfunction of stomatal
regulation through the stimulation of a stomatal opening leading to an increase in the transpiration rate
and energy dissipation, and the subsequent decline of canopy temperature [18]. All these metabolic
modifications provoked by SLB are thought to contribute to the decreasing grain yield, straw yield,
number of spikes/m2, and the decreasing grain quality through the modification of TKW, δ15Ngrain,
C grain and δ13C grain.

Carbon content in grains is derived from photosynthetic fixation occurring during grain filling,
from diffusion of CO2 from the air into the leaves (and the non-laminar parts) through stomata and
carboxylation by Rubisco, and from earlier-assimilated carbon remobilized from vegetative organs [19].
Through these enzymatic and physical processes, C3 plants discriminate against 13C in favor of 12C
leading to lower δ13C/δ12C ratio [20]. The values of the δ13C/δ12C ratio in C3 plants have been shown to
vary depending on the balance between CO2 diffusive supply (stomatal conductance) and the enzymatic
demand for CO2 (net photosynthetic assimilation), which defines the intercellular versus atmospheric
ratio of CO2 (Ci/Ca) in the photosynthetic organ [19–21]. In this context, multiple mechanisms could
be involved in the alteration of carbon metabolism by SLB, decreasing δ13Cgrain content and increasing
Cgrain content: (i) The induced stomatal opening by SLB results in an increase of CO2 supply to
carboxylation sites; (ii) during the long latent biotrophic period, and referred as the symptomless
growth phase, the pathogen suppresses the plant defense response which consumes the carbon
skeleton components resulting in an increase in the carbon reserve [22]; (iii) during the necrotrophic
phase, the pathogen releases the early suppressed plant defense resulting in the accumulation of ABA
responsible for increasing the carbohydrate content in leaves and for enhancing their remobilization to
grains [22,23]; (iv) in the necrotrophic phase, the pathogen causes a decrease in the photosynthetic
capacity associated with less chlorophyll resulting in an increase in the Ci/Ca ratio, therefore decreasing
the δ13C [24]. On the other hand, the nitrogen content in grains is derived from direct nitrogen
assimilation from roots during grain filling and from remobilization of earlier-assimilated nitrogen
from vegetative organs to developing grains [25]. The natural variation of the stable nitrogen isotopes
15N/14N assessed through the nitrogen isotope composition (δ15N) is linked to nitrogen sources used
by the plant (NH4

+ uptake will induce 15N enrichment compared to NO3
−), to the activity of enzymes

involved in the assimilation of ammonium (glutamine synthetase, GS) or nitrate (nitrate reductase, NR),
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to the nature of compounds resulting from nitrogen fractionation. Proteins are generally 15N enriched
compared to chlorophyll, lipids, amino sugars and alkaloids [26], and to volatilization, translocation, or
nitrogen recycling in the plant [25]. SLB, decreasing δ15Ngrain (15N/14N) and not influencing total Ngrain

content at the same time, suggests that SLB both increased the isotopic fraction 15N and decreased
the isotopic fraction 14N. In this context, multiple mechanisms could be involved in the decrease of
the isotopic fraction 14N by SLB: (i) During the long latent biotrophic period, pathogens successfully
acquire primary and secondary nitrogen sources available in the living tissues by enzymatic digestion
of host cell walls, by invading neighboring cells, or by inducing nutrient leakage from the surrounding
tissues [27] resulting in decreased 14N leaf storage in the vegetative growth stage; (ii) at the metabolic
level, Z.tritici causes a decrease in N assimilation and remobilization via reducing the activity of the
enzymes NR, GS and GDH starting from the first phase of infection leading to decreased 14N leaf and a
resulting decrease in 14Ngrain [28]; (iii) SLB causing chlorotic and necrotic lesions induce N retention in
the diseased plant parts, thus decreasing N remobilization to grain resulting in decreased 14Ngrain [29];
(iv) stomatal-opening induced by Z.tritici can cause an increase in N compounds volatilization resulting
in decreased 14N leaf storage, thus a decrease in later 14Ngrain content [26]. Moreover, the mechanism
involved in the increase of the isotopic fraction 15Ngrain tends to be the effect of SLB on increasing grain
protein (15N enriched) content as a consequence of the loss of photosynthetic leaf area and, therefore,
of carbohydrate availability to the developing grain [26,30].

4.3. Effect of PsJN Strain

Coating seeds with PsJN strain showed a great potential for controlling SLB under field conditions
in the three years of study and tends to be the most stable treatment by increasing all yield components
(GY, SY, spikes/m2and TKW) despite the different climatic conditions. Disease resistance was associated
to the alleviation of the plant damage induced by Z.tritici behavior characterized by less stomata
openings and enhanced chlorophyll pigmentation observed in the 2017 year of study. This could
be referred to the bacterial direct effect in altering the fungal development, and the indirect effect in
triggering induced systemic resistance (ISR) within the plant tissues and promoting shoot and root
growth [8]. The increase in photosynthesis (SPAD) and yield components is thought to be related to
the effect of PsJN strain on: (i) Inducing seed priming resulting in metabolic changes that involve
phenolic compound accumulation and growth promotion of root and shoot parts starting from the
seedling emergence stage [7]; (ii) decreasing the plant ethylene level by decreasing ACC levels in
plants via the bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity resulting in a
delay of senescence and prolonged photosynthetic activity of green tissue [31]; (iii) producing the
growth regulator indole 3-acetic acid (IAA) that stimulates the development of the root system, thereby
increasing nutrient absorption [32].

More specifically, in a way to understand the effect of the interaction PsJN strain-Z.tritici on
carbon and nitrogen metabolism, the total carbon content (Cgrain) and fractionation (δ13C, δ15N) were
analyzed in the grains. The effect of PsJN strain on decreasing δ13Cgrain and increasing Cgrain content
compared with the inoculated and the non-inoculate controls suggests that this effect is mostly related
to its potential in improving the plant water status due to the enhanced root development conferring a
higher amount of captured water [7,24]. The effect of PsJN strain on decreasing δ15Ngrain compared
to the inoculated control and simultaneously not influencing total Ngrain content suggests that PsJN
strain both increases the isotopic fraction 14Ngrain and decrease the isotopic fraction 15Ngrain and
could be interpreted as: (i) The enhanced N uptake and assimilation during vegetative growth and
remobilization during grain filling leading to increased 14Ngrain [25]; (ii) the enhanced photosynthesis
and water status leading to nitrogen fractionation into chlorophyll, lipids, amino sugars rather than
proteins in the vegetative growth resulting in decreased δ15Ngrain [25]; (iii) and/or as the consequence
of the alleviation of SLB’s adverse effects.
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4.4. Effect of Thyme Oil

Coating seeds with thyme oil showed a great potential in controlling SLB under field conditions
in the three years of study and seems to be more efficient in controlling SLB compared to PsJN strain
according to SLB severity values. The thyme oil effect on yield components tends to be dependent
on climatic conditions since the latter had different effects on GY and SY among the 3 years. In 2015,
in which rainfall was more abundant in the vegetative growth stage (December–February) than the
grain filling stage (April), thyme oil increased SY and decreased GY. In 2016, in which rainfall was
limited in the vegetative growth stage (December-February) and abundant at the heading and anthesis
(March), thyme oil decreased SY and increased GY. In 2017, in which rainfall was abundant in both
vegetative growth stage (December–February) and grain filling stage (April), thyme oil increased both
SY and GY. This suggests that thyme oil increases the growth rate of the assimilatory organ dependent
on water availability. Thyme oil seems to be ineffective in promoting grain yield when there is an
interaction disease x water deficit at the grain filling stage. This is thought to be the side effect of the
activation of the systemic acquired resistance SAR [8], which induces the energy allocation towards
defense related mechanisms and limits energy availability towards drought-tolerance mechanisms
when water deficit occurs at the grain filling stage. According to the 2017 one year of study, disease
resistance was branded by the absence of the plant damage induced by Z.tritici behavior, resistance
was characterized by less stomata opening and the absence of chlorophyll deterioration which is most
likely due to thyme oil’s direct effect via hampering the fungal development and indirect effect via
inducing SAR within plant tissues [8].The thyme oil effect behind enhanced GY, SY, spikes/m2 and
TKW of wheat is thought to be related to both: (i) The elicitor effect inducing seed priming resulting in
the metabolic changes that involve peroxidase, phenolic compounds accumulation and the growth
promotion of root and shoot parts starting from seedling emergence stage [7]; (ii) the alleviation of
SLB’s adverse effect. Concerning grain composition, the effect of thyme oil on increasing Cgrain content
and decreasing δ13Cgrain suggests that this effect is mostly related to thyme oil’s potential in improving
the plant water status due to the enhanced root elongation conferring a higher water uptake [7,24]. The
thyme oil effect on decreasing δ15Ngrain compared to the inoculated control and simultaneously, not
influencing the total Ngrain content suggests that thyme oil both increases the isotopic fraction 14Ngrain

and decreases the isotopic fraction 15Ngrain and could be explained by: (i) The enhanced N uptake
during vegetative growth as a consequence of the thyme oil priming effect on inducing intracellular
acidification of plant cells [7] was found to increase N uptake [33], leading to increased 14N [25]; (ii)the
enhanced water status leading to nitrogen fractionation into lipids, amino sugars rather than proteins
in the vegetative growth resulting in decreased δ15Ngrain [20]; (iii) and/or as the consequence of the
alleviation of SLB’s adverse effect.

4.5. Comparison between Treatments and Insight to Cost/Gain Balance

The effect of PsJN strain and thyme oil differed among the three years of study. Concerning their
effect on crop protection against SLB, in season 2015, when water availability was high, PsJN strain was
more efficient than thyme oil in reducing SLB severity. Contrastingly, in seasons 2016 and 2017, when
water availability decreased, thyme oil was more efficient than PsJN strain in reducing SLB severity. It
is suggested that this difference is most likely due to their different induced type of resistance. Thyme
oil triggers systemic acquired resistance causing the systemic stomatal closure [8], thus preserving
water content and, by the way, decreasing the drought side effects. However, PsJN strain triggers
induced systemic resistance (ISR) causing local stomatal closure only in the presence of a pathogen [8],
thus maintaining the normal water dissipation rate. By this way, the energy needed for SLB resistance
is expected to decrease due to energy allocation towards drought-tolerance mechanisms when a water
deficit occurs, as in the years 2016 and 2017.

The better impact of PsJN strain on yield components and grain composition compared to
thyme oil is suggested to be related also to the distinct defence mechanisms and can be explained
by the selective cost–benefit scenario of inducible defences [22]. Thyme oil is considered to trigger
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constitutive defence and PsJN strain is considered to trigger induced defence [8]. The plant defence
is a costly business, requiring energy and resources that would otherwise be used for growth and
development [22,34]. In this context, the constitutive resistance triggered by thyme oil, where the
activation occurs before the onset of the disease, is considered to be a costly advantage causing higher
allocation of resources. While, the induced resistance triggered by PsJN strain, where defences are
only activated following pathogen attack and only at the site of infection, is considered a less pricey
advantage compared to constitutive resistance [22,34].

5. Conclusions

This study revealed that economic losses in durum wheat due to increased SLB severity can result
from losses in straw yield, grain yield and grain quality. Coating seeds with either thyme oil or PsJN
strain showed potential in counteracting the deleterious effects of SLB and the promotion of straw
yield, and grain yield and quality. The data showed that the impact of thyme oil and PsJN differed in
terms of intensity and stability. Further, it is considered to be linked to the different growth promoting
effects and the different triggered systemic resistance and associated amount of costs deriving from
resource allocation towards defense processes. This cost-benefit of induced resistance in the variety
‘Karim’ of durum wheat gives insight into the worth of studying the effects of PsJN strain or thyme
oil in other varieties of wheat in order to seek better interaction which minimizes the costly effect
of biostimulants.
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