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Introduction 

Let me begin with sorne personal reminiscences. For me, writing a paper on the 
contributions of HELENA RASIOWA (1917-1994) to Mathematical Logic might 
be the result of several unexpected coincidences1 . 

My relationship with RASIOWA is academic rather than personal. Her book 
An algebraic approach to non-classical logics [41] is one the main sources that 
might be found guilty of my professional dedication to research in Algebraic 
Logic, if sorne <lay I am taken to court for such an extravagant behaviour. 
Personally, I first met RASIOWA only in 1988, at the 18th ISMVL, held in 
Palma de Mallorca (Spain). There I contributed a paper [15] on an abstract 
characterization of BELNAP's four-valued logic which used a mathematical tool 
inspired by sorne work done by 8IALINICKI-8IRULA and RASIOWA in the fifties 
[3]. More precisely, I used a mathematical tool abstracted from the works of 
MoNTEIRO on DE MoRGAN algebras [26, 27], and these works, in turn, were 
based on that early work of BIALINICKI-BIRULA and RASIOWA. Two years 
later, that is, in 1990, I attended the 20th ISMVL, held in Charlotte (North
Carolina, U.S.A.). It happened that this meeting included a session in memory 
of MoNTEIRO. 

ANTONIO MONTEIRO (1907-1980) was a Portuguese mathematician who fi
nally settled in Bahía Blanca (Argentina), after having spent sorne years of his 
exile in Río de Janeiro (Brazil) and in San Juan (also in Argentina). At all 

• Research partly supported by Spanish DGICYT grant PB94-0920 and Generalitat de 
Catalunya grant 1995SGR-00045. 

1This paper is an edited version ofthe talk delivered by the author in the Plenary Session in 
the Memory of HELENA RASIOWA at the 26th ISMVL held in Santiago de Compostela (Spain) 
on May 29-31, 1996. Sorne comments in this Introduction might be better read by keepi~ER 
this origin in mind. ~t\,\ 81,;,, 
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these places he promoted or initiated teaching and research in severa! areas of 
mathematics. His strong personality managed to attract the interest of a group 
of young mathematicians, thus creating what one would describe as a school. In 
Bahía Blanca, MoNTEIRO started a Mathematics Department in a newly foun
ded university, and in the year 1958 he invited ROMAN SIKORSKI and HELENA 
RASIOWA to lecture there, in order to give new life to his group. The influence 
of RASIOWA and SIKORSKI, together with MoNTEIRO's own interests, had as a 
consequence the birth of a group of researchers in Algebraic Logic, which has 
made very important contributions to the field and has developed a character
istic style. The works of this school together with the book of RASIOWA, have, 
in turn, greatly influenced that of severa! people in Barcelona around the late 
seventies, and are partly responsible for the creation of a group of algebraic 
logicians in this city, to which I belong. 

To the Charlotte symposium I contributed a paper [14] that combined sorne 
of the latest MONTEIRO's ideas with RASIOWA 's general methods, along with 
other influences. When I got there, I found that the person that spoke in the 
memory of MONTEIRO was precisely RASIOWA! It is thus not surprising that I 
find myself writing an essay about her work in pure Mathematical Logic2 • 

Giving a short account of ali her research work in this area is not an easy 
task; and it is even more difficult to make a selection of her most important 
achievements. Unlike other well-known logicians, her contribution to Logic has 
not been the discovery of a single outstanding theorem, but rather the detailed 
study of several non-classical logics, along with classical logic, by using certain 
typical mathematical tools, algebraic in nature, which she developed and whose 
strength and limits in applications she explored in more than 30 papers and 2 
books published over more than 40 years (between 1947 and, say, 1989, for the 

, topic I am concerned with). 

I can only try to convery to the reader a general picture of the significance 
of RASIOWA's work; so I will start by giving a quick overoiew of the main topics 
she treated in her work, and then I will look with sorne detail into a few points 
of this work that seem the most significant to me. Readers wanting more details 
are strongly advised to go directly to [41]. 

1 Overview 

The research work done by HELENA RASIOWA in the area of pure Mathematical 
Logic can be classified, save for a few marginal papers, in the subfield of Algeb
raic Logic; even more, her work has been one of the mainstreams in this small 
area, to such an extent that one of the possible ways of defining Algebraic Logic 
during a quarter of a century was to say "Algebraic Logic is what RASIOWA 
does". 

2 At the memorial session mentioned in footnote ( 1 ) as the origin of this paper, the issue 
of RASIOWA's contributions to Applied Mathematical Logic was dealt with by Professor TON 
SALES of Polytechnic University of Catalonia (Spain). 
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The core of her work consista in the development of a mther general method 
to construct an algebmic semantics for certain logical systems. This means, 
given a propositional or first-order logic S, to find a class oí algebras Alg* S, all 
having an algebraic constant 1, such that every formula a can be interpreted in 
every algebra A E Alg* S as a mapping aA that associates with every interpret
ation a oí the language into A an element aA(a) E A. This is the truth-value 
oí the formula a; so wee see that RASIOWA's work is many-valued in spirit from 
its central idea. Of course the method fully succeeds when the following Strong 
Completeness Theorem holds: 

E 1-s a ~ EA(a) = 1 implies aA(a) = 1 , for every (1) 

A E Alg* S and every interpretation a in A . 

(Here E 1-s a means "The formula a follows in the logic S from the assumptions 
in the set oí formulas E".) The prooí is done by extending and generalizing 
the construction of LINDENBAUM-TARSKI quotients, a method that in classical 
sentential logic was already known to produce the class oí Boolean algebras. The 
success depends on a wise definition oí the class Alg* S, and with the help oí 
suitable representation-like theorems, in sorne cases the class oí algebras Alg* S 
can be substituted by a smaller class oí algebras oí sets or oí sorne special kind 
of subsets of topological spaces or, in sorne particularly well-behaved cases, by 
a single algebra. Also, a great <leal of RASIOWA's early work was to apply these 
constructions in order to prove sorne metalogical results either for classical logic 
or for sorne non-classical logics. 

During a first period, say from 1950 to 1964, these logics were among the 
best-known and best-behaved ones, like intuitionistic logic, LEWIS' modal sys
tem S4, and positive and minimal logics. These are the logics treated in the 
famous book The mathematics of the metamathematics [51], published in 1963, 
written jointly with ROMAN SIKORSKI, with whom she also published around 
10 joint papers. In these cases, specially in that of classical logic, she obtains as 
applications of this algebraic semantics purely semantical proofs of a number of 
well-known metalogical properties of the logics, beginning with the Complete
ness Theorem [44, 31], Compactness [32], SKOLEM-LOWENHEIM [45], HILBERT's 
e--theorems about SKOLEM expansions [35J, HERBRAND's theorem [24], and even 
GENTZEN's Cut-Elimination Theorem for Sequent calculus [50]. In the intuition
istic case, she obtains the Existential property and the Disjunction Property, 
and, for modal logic, their analogues [47, 33, 48, 34]. 

Starting from 1957 she studied several classes oí algebras that correspond 
to less-known logics, namely DE MORGAN algebras [3] and NELSON algebras 
[4, 37], related to severa! logics with different kinds of negation, and, more im
portantly, POST algebras [38, 39, 42]. As the reader may know, PosT algebras 
are the algebraic models of severa! many-valued Jogics whose set of truth-values 
is a finite linearly ordered set, and each PosT algebra mirrors this structure 
by containing a set of constants inside it corresponding to the truth values. 
These logics fell under the scope of RASIOWA's methods after the work done in 
the sixties by RoussEAU [53, 54], who succeeded in axiomatizing them with an 
intuitionistic reduct. After finding the appropriate technical, algebraic results 
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needed to apply her methodology to the many-valued predicate calculi associ
ated with these logics, RASIOWA soon realized how to extend it to <leal with 
more general many-valued logics, namely with logics whose truth-values farm 
a denumerable chain of values with order-type w + 1 [40, 43], or, finally, an 
arbitrary partially ordered set with top [7, 8, 9]. These generalizations were the 
direct responsible far her involvement in Algorithmic Logic, Fuzzy Logic, and 
other applications of Logic to Computer Science. 

Most of these non-classical cases were incorporated in the even more famous 
book An algebraic approach to non-classical logics [41], published in 1974 by 
North-Holland in its series Studies in Logic and the Foundations of Mathematics. 
There is no doubt that the publication of the book in such a well-known and 
prestigious series, present in virtually every mathematical library, was one of 
the reasons that explain its enormous influence. But another reason is the leve! 
of maturity that the subject had reached in its exposition in that book. The 
development of a general method began early in the fifties, in collaboration with 
SIKORSKI, as severa! papers [46, 49, 36] and sorne chapters of their joint book 
[51] show, but its presentation in this book is superior. 

In [41] RASIOWA singled out a wide class of sentential logics to which her 
methods and constructions apply; these logics she called standard systems of im
plicative extensional propositional calculi, and are defined by sorne very natural 
conditions on an implication connective "-" (1 will give more details in Section 
4.4). The scope of this book is wider than the previous one, and as a contrast 
(maybe reflecting a slight difference of interests between she and SIKORSKI, or 
the change of such interests over the years) she gives less space to first-order 
logics. The differences between the logics she studies líes mainly in their pro
positional part, and in a Supplement she shows, in outline, a common procedure 
to associate a first-order logic with each of the propositional Jogics she studies; 
nonetheless, this treatment has had an important influence on the recent work 
[29, 30] by DON PIGOZZI and others on the common algebraic treatment of 
severa! variable-binding formalisms, Jike first-order logic and lambda calculus. 

RASIOWA's general method was designed very tightly, to account far the 
algebraization of a distinct group of logics she had already dealt with, and 
reflects sorne features these logics have in common. Although this might seem 
of a rather narrow application, the number of new logics that have been studied 
by other people with this methodology is very big, because the requirements are 
extremely natural. 

Actually, the class of logics she defined is, roughly speaking, the class of ali 
logics to which her methods apply with almost no changes (see Section 2.3). 
Therefare, it is not strange that severa! generalizations have appeared that 
widen the scope of applications oí the method by weakening sorne of the con
ditions in her definitions. Let me quote here the theory of equivalential logics 
developed by JANUSZ CZELAKOWSKI [lOJ, and the theory of algebraizable lo
gics, developed by WIM BLOK and DON PIGOZZI [5], which is more restricted 
than CZELAKOWSKI's, but still more general than RASIOWA's. These new de
velopments have the interest of connecting RASIOWA's approach with the more 
general theory of logical matrices developed also in Poland by other logicians 

4 



like Los, WÓJCICKI, WRONSKI, ZYGMUNT, etc.; good accounts of this theory 
and of its diverse ramifications are [6, 11, 13, 58]. 

2 A philosophy of Mathematical Logic 

RASIOWA's work presents us with a particular mew, or philosophy, of Mathem
atical Logic. But !et me first say that, in arder to apreciate the impact and 
influence of RASI0WA's work and view one has to adopt a historical perspect
ive: sorne aspects of this view are now smoothly incorporated into our logical 
heritage, even if we do not work in this line, but this was certainly not the case 
in the late forties and the fifties, as we shall see. 

One of the main elements of this philosophy is the absence of any Philo
sophy in her work on Mathematical Logic. This is very beautifully explained and 
strongly defended in the preface of 1963' The Mathematics of the Metamathemat
ics (51]. The title of the book is itself a declaration of principies: No Philosophy, 
only Mathematics. RASI0WA and SIK0RSKI advocate the use of infinitistic 
methods in metamathematical investigations, and by this they mean actually 
using any needed mathematical tool, specially ali the tools from abstract al
gebra, lattice theory, set theory, and topology, for instance the operations of 
forming the supremum or infimum of an infinite subset. They explicitly de
clare to deviate from the proof-theoretical approach of the formalist trend in 
metamathematics, which they judge as an unnecessary limitation and complic
ation that obscures the understanding of the deep, true nature of metamathem
atical notions. lt is best to recall their own words: 

The title of the book is inexact since not all mathematical methods 
used in metamatemathics are exposed in it. [ ... ] The exact title of 
the book should be: Algebraic, lattice-theoretical, set-theoretical and 
topological methods in metamathematics. [ . . . ] 

The finitistic aproach of Hilbert's school is completely abandoned 
in this book. On the contrary, the infinitistic methods, making use 
of the more profound ideas of mathematics, are distinctly Javoured. 
This brings out clearly the mathematical structure of metamathem
atics. lt also premits a greater simplicity and clarity in the proofs of 
the basic metamathematical theorems and emphasizes the mathem
atical contents o/ these theorems. [ . . . ] 

The theorem on the completeness o/ the propositional calculus is 
seen to be exactly the same as Stone 's theorem on the representa
tion o/ Boolean algebras. [ . . . ] lt is surprising that the Godel 
completeness theorem [ o/ the predicate calculus] can be obtained, for 
example, as a result o/ the Baire theorem on sets o/ the first category 
in topological spaces, etc. [51, pp. 5-6] 

We can imagine that this might be a controversia! issue in sorne academic con
texts; and in fact this approach was criticized by sorne reviewers like KREISEL 

5 



[23] or BETH [2j; in contrast, FEFERMAN [12] and ROBINSON [52] highlight the 
simplicity oí the prooís obtained using such methods. Moreover, notice that 
RASIOWA and SIKORSKI's 1950 prooí oí the Completeness Theorem far first
order logics over languages oí arbitrary cardinality [44] is almost contemporary 
oí LEON HENKIN's famous 1949 prooí [18], where infinitistic methods could not 
be avoided either, as FEFERMAN points out in his review: 

In the opinion of the reviewer, this paper represents a distinct 
advance over all preceding proofs; for on the one hand, much less 
formal development from the axioms is required than in the proofs 
similar to Godel's, and on the other hand, the doubly infinite pas
sage to Sw appearing in Henkin's proof is completely avoided here. 
Moreover, the present derivation [ ... j has the special advantage of 
bringing out the essentially algebraic character to the method first 
used by Henkin. [12] 

3 The mathematical context 

RASIOWA's attitude towards logic is also shaped by three technical points that 
she takes from her masters and that automatically place her and her work into a 
specific mathematical framework. Moreover, I see in these points sorne messages 
far today's researchers in Logic, either pure or applied. 

First, she adopts LINDENBAUM's idea oí treating the set of formulas of a 
formal language as an abstmct algebra, namely the absolutely free algebra Fm 
generated by sorne set Var oí variables or atomic formulas and where the oper
ations correspond to the so-called logical connectives ( either sentential or quan
tifiers); see [41, § VIII.2j. Historically, this was an important achievement in 
the way to the mathematization oí formal logic; by this idea, formal languages 
can be treated by the usual tools oí algebra, substitutions and interpretations 
become just homomorphisms, and the subject is liberated from sorne degree oí 
obscurantism or imprecision that pervaded its early history. 

It is interesting to confront this with PAUL HALMOS' explanations about 
how did he become involved in Algebraic Logic; his difficulties show us that 
the modern "polish approach" to logic was not widespread in western academic 
circles even in the fifties: 

An exposition of what logicians call the propositional calculus can 
annoy and mystify mathematicians. lt looks like a lot of fuss about 
the use of parentheses, it puts much emphasis on the alphabet, and 
it gives detailed consideration to "variables" (which do not in any 
sense vary). [ ... ] it is hard to see what genuine content the subject 
has. [ . . . j Does it really have any mathematical value? 

Yes, it does. lf you keep rooting around in the library [ . . . j bit 
by bit the light dawned. Question: what is the propositional calculus? 
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Answer: the theory of free Boolean algebms with a countably infinite 
set of genemtors. [ ... j 

"Tru.th-tables", for instance, are nothing but the clumsiest ima
ginable way of describing homomorphisms into the two-element Bool
ean algebm. [ ... j The algebmic analogue of the logical concept of 
"semantic completeness" is semisimplicity. [17, pp. 206,207] 

Second, she follows her supervisor ANDRZEJ MosTOWSKI [28j in the way quan
tifiers are interpreted in the models, namely as the generalized lattice-theoretic 
operations of join (for the existential quantifier) and meet (for the universal 
one) relative to the ordering relation existing in the models, which is defined 
by implication (see in Section 4.2. This choice, also taken independently by 
HENKIN in [191, constitutes the main distinctive character of her approach to 
the algebraization of first-order logic. The two other best-known approaches, 
that of TARSKI's school [22, 20, 21j with cylindric algebras, and that of HALMOS 
[16] with polyadic algebras, both choose to represent quantifiers as independent 
primitive operations in the models (roughly speaking, one for each free vari
able in the first cáse, and one for each subset of the set of free variables in the 
second). 

And third, she takes from TARSKI (56j the idea of defining a logic as a finitary 
closure operator over the algebm of formulas; see [41, §§VIll.4,5j. Although 
she assumes this operator is defined through the standard notion of proof in a 
formal system given by sorne axioms and inference rules, she almost never makes 
any assumptions about the formal system itself, but only about the resulting 
closure operator. In this way, she emphasizes the deductive charocter of logic; 
this means that a logic is not just a collection of axioms and of the associated 
theorems, as it is often understood, but a relation of consequence, or, in other 
words, that logic is about inference mther than about truth. 

If Fm is the formula algebra, with underlying set of formulas Fm, and 1-s 
represents the notion of proof from assumptions in the logic S, then what she 
considers and studies is actually the closure operator Cs : P(Fm) -+ P(Fm) 
defined by 

The properties postulated for this operator are the following : 

(CI) E~ Cs(E). 

(C2) If E ~ ~ then Cs(E) ~ Cs(~). 

(C3) Cs(Cs(E)) = Cs(E). 

(2) 

(C4) lf a E Cs(E) then there exists a finite subset E0 of E such that 
a E Cs(Eo). 

This is very close to the definition of sentential logic used in today's works in 
Algebraic Logic, cf. (58], save that she <loes not mention as a general assumption 
the property of structurality: 
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(C5) If a E Cs(E) then h(a) E Cs(h[E]) for any homomorphism h of Fm 
into itself, 

that is, that the relation of consequence should be invariant under substitutions; 
but the only requirement she puts on the formal system is precisely that axioms 
and rules of inference have to be invariant under substitutions, thus obtaining 
(C5) for the operator defined by (2). 

We can observe here an important element that conforms RASIOWA's view 
about Mathematical Logic, and which is also present, and even prominent, in 
RASIOWA's contributions to applications of Logic. For RASIOWA, a logic is a 
mathematical object that is essentially algebraic in nature, as I have just pointed 
out. However, she establishes a sharp distinction between logics and algebras. 
For her, a logic is a consequence operator on the algebra of formulas, not just 
a particular algebra. Algebras can be used as models of logics, they can be 
used even to define logics, as in many-valued logic, but algebras are not logics 
themselves. By studying the relationships between logics and algebras while 
keeping each object in its own conceptual status she was able to uncover the 
usually implicit assumptions about logics, which eventually led her to succeed. 

4 The main technical tools 

In thís section I will analyse the technical details of what I think are the more 
central points in RASIOWA's work in the area I am concemed with. Except for 
sections 4.2 and 4.6, I will refer only to the sentential case; this is because, on 
the one hand, details are much longer and clumsier when a first-order language 
enters into the picture, and, on the other hand, RASIOWA's treatment of first
order logics is actually an extension of her treatment of propositional logics, 
as is clear from the "Supplement" to [41] (pp. 347-379): While she selects the 
class of propositional logics to be studied, and for each logic S in the class the 
corresponding class Alg* S of algebras is defined, what she <loes in the first order 
case is to associate a class of first-order logics ( one for each first-order language) 
to each of these propositional logics, and to algebraize them through the study 
of the same class Alg* S. 

4.1 Interpretation of formulas as mappings 

The first technical tool I want to highlight is that of interpreting formulas a as 
mappings aA on every algebra A of the same similarity type (signature) as the 
formal language; see [41, §VIIl.3]. This idea is a generalization of LUKASIEWICZ 
and PosT's method of truth-tables ( where one usually deals with a single, con
crete algebra), and was extended to intuitionistic predicate logic (where one 
deals with the whole class of so-called HEYTING algebras) by MosTOWSKI. 

In the sentential case, an interpretation a is obtaíned by just an assignment 
of values in A to the variables Var, that is, it is any mapping a: Var - A; since 
Fm is the absolutely free algebra generated by Var, one can define aA(a) = 
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a.(a), the value of a under the homomorphism (denoted also as ii) from Fm to 
A that uniquely extends a in the usual way; for instance, if the language has 
just negation -, and implication - then the recursive clauses would be: 

• If p E Var then a(p) is determined by the original mapping a. 

• If a= -,13 then a(a) = -,A(a(,B)). 

• If a= /3 - 'Y then a(a) = a(/3) -A a('Y). 

We have denoted by -,A and -A the interpretations of the logical connectives 
as operations in the algebra A, in order to emphasize the interplay between lan
guage and algebras; but usually one denotes the operations in arbitrary algebras 
by the same symbols as those of the language. 

4.2 Algebraic intrepretation of quantifiers 

In the first-order case, an interpretation a requires the specification of: 

• A domain of individuals D(a). 

• Values in D(a) for the constant symbols and the free variables of the 
language 

• A function with arguments and values in D(a) for each functional symbol 
of the language. 

• An A-valued function with arguments in D(a) for each of the predicate 
or relational symbols of the language. 

Then the value aA(ii) is obtained from the atomic cases (where it is gíven 
directly by the latter A-valued functions) by using the algebraic structure of A 
for the propositional connectives as above, and by interpreting the quantifiers 
as the infinite lattice-theoretic operations as follows: Let a(x) be a formula 
with the free variable x, and let e be a bound variable not occurring in a(x) 
(RASIOWA takes free and bound variables as disjoint sets, which makes several 
technical points easier); denote by a(e) the substitution instance of a(x) with 
X replaced by e. Then: 

(3ea(e))A(ii) = V (a(x))A(a[x/i]) (3) 
iED(ii) 

('v'ea(e))A(ii) = /\ (a(x))A(a[x/i]) ( 4) 
iED(ii) 

where ii[x/i] is the interpretation that is exactly like a in every respect except 
that it gives the variable x the value i. Actually, definitions (3) and ( 4) are used 
when the involved join and/or meet exists, otherwise one leaves the truth-value 
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of 3e a(e) or 'v'( a(e) undefined. Because of this, simpler expositions of the se
mantics, like that in [51], use only complete lattices; but in other of RASIOWA's 
papers several technical results about existence of bounds of certain families of 
elements, about completion of algebras of the relevant class, and about map
pings preserving sorne infinite meets and joins, are proved; indeed, this purely 
algebraic, technical work is among the most difficult tasks undertaken by RA
SIOWA. 

We see here that the seed of many-valv.edness is already present even in 
her treatment of classical logic: In classical model theory of first-order logic 
predicate symbols are represented by ordinary relations (of suitable arity) over 
the domain of individuals, that is, by 2-valued functions; here, when we speak 
of "interpretation in an algebra A", what we mean is that this algebra is playing 
the role of the set of truth-values, and the interpretation of every formula is a 
value in A. 

4.3 Lindenbaum-Tarski quotients 

The specific technical construction that establishes a link between the logic S 
and the class of algebras Alg* S (see its definition in Section 4.5) and that en
ables to prove the hard half ( <=) of the Strong Completeness Theorem ( 1) is 
the factorization of the formula algebra by an equivalence relation associated 
with every theory of the logic, a construction that has to be credited to TARSKI, 
although in the first years after World War II, and particularly by Polish logi
cians, it was initially credited to LINDENBAUM, which explains the now usual 
denomination of LINDENBAUM-TARSKI algebras. As wittnessed by footnote 1 
on pages 245-246 of [51j, such attribution to Lindenbaum had a "patriotic" 
component, but was specially supported and widely spread, in my oppinion, by 
the misinterpretation of a remark appearing in McKINSEY's 1941 paper [25j. 
On page 122, Unes 12-15 of [25j we read: 

Proof- I first show, by means of an v.npv.blished method of Linden
bav.m, 7 that there is a matríx VJ?1 = (K1, D1, -1, *1, X 1) which is S2-
characteristic, thov.gh not normal. Later I shall show how a normal 
S2-characteristic matrix can be constrv.cted from ro?1. 

Footnote 7 on the same page reads: 

7 This method is very general, and applies to any sentential calcv.lv.s 
which has a rule of sv.bstitv.tion for sentential variables. The method 
was explained to me by Professor Tarski, to whom I am also indebted 
for many other sv.ggestions in connection with the present paper. 

The subsequent proof begins by constructing a matrix whose underlying algebra 
is the formula algebra, in accordance with LINDENBAUM's idea explained in 
Section 3, and after that a normal matrix is constructed by factorizing the 
first one; the word "Later" on Une 14 suggests that McKINSEY himself was 
aware that this second step had not been invented by LINDENBAUM. In their 
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completeness paper [44] RASI0WA and SIK0RSKI name the factorized algebra 
after LINDENBAUM, but FEFERMAN, in his review [12] of this paper, points 
out that the usage of such construction seems to appear for the first time in 
TARKSI's 1935 paper [57j; later on TARSKI himself claimed itas his own, see for 
instance footnote 4 on page 85 of [22j. 

The construction is as follows: For every theory E of the logic S, the relation 
=E is defined as: 

c.p =E 1/; {=:} E 1-s c.p -1/; and E 1-s 1/; - c.p 

Then one has to check the following key facts: 

(LI) The relation (5) is a congruence of the formula algebra Fm. 

(L2) The quotient algebra Fm/=r: E Alg* S. 

(5) 

(L3) The projection 1rr; : Fm - Fm/=r: given by 1rr;(p) = p/=r: is an 
interpretation into an algebra of the class Alg* S, such that for every 
formula c.p E Fm, c.pFm/=E(rrr;) = c.p/=E• 

(L4) In this quotient the theory E collapses exactly to the unit, that is, 
for every formula cp E Fm, cp/=r: = 1 if and only if E 1-s cp. 

Given these facts, the proof of part ( {:::) of (1) is easy, by contrapnsition: If E lf s 
cp then there is an algebra A E Alg* S, namely Fm/=r:, and an interpretation 
a into it, namely 1rr;, such that EA(a) = 1 while cpA(a) i- l. As wittnessed 
by Feferman's quotation from [12] reproduced in Section 2, this completeness 
proofis not far in spirit from HENKIN's [18], although the method of construction 
of the model is very different: actually, in both cases, the models are obtained 
from the linguistic objects, the formulas. lt is interesting to notice that HENKIN 
himself, independently of RASI0WA and SIK0RSKI, found essentially the same 
proof by following directly MosT0WSKI's suggestions, and was quickly aware 
of the possibilities of generalizing such method; apparently, he was the first to 
notice that only implication was required for the whole process to work, and his 
paper [19] appeared in the same (1950) volume of Fundamenta Mathematicae 
as RASI0WA and SIK0RSKI's [44]. 

4.4 Selection of the class of logics 

The success of the proof in the preceding section determines the class of logics 
that can be treated with this method. One is tempted to think that the class 
identified in [41, §VIll.5] as standard systems of implicative extensional proposi
tional calculi, is the class of logics S such that for every theory E of S properties 
(Ll) to (L4) hold. Actually, this is not strictly true: in the preceding section I 
stated. the steps just needed for the proof to work; but in order to obtain exactly 
the same class of logics explicitly considered by RASI0WA one should consider 
the binary relation 

cp 5'r: 1/J {=:} E 1-s cp - 1/J , 

and assume the following slightly stronger conditions: 

11 

(6) 



(Ll') The relation SE is a quasi-ordering (i.e., it is reflexive and transitive). 

(Ll") The relation =E (the symmetrization of SE) is compatible with ali 
the operations of the formula algebra Fm corresponding to the sen
tential connectives. 

(L2) The quotient algebra Fm/=E E Alg* S. 

(L3) The projection 7l"E : Fm-+ Fm/=E given by rrE(p) = p/=E is an 
interpretation into an algebra of the class Alg* S, such that for every 
formula t.p E Fm, t.pFm/=E(rrE) = t.p/=E· 

(L4') If E f-s i.p then '1/; SE i.p for every '1/;. 

(L4") If E f-s i.p and i.p SE '1/; then E f-s '1/;. 

lt is straightforward that these conditions imply (Ll) to (L4). As the reader 
may easily check, (Ll) to (14) as I have put them are enough for the argument 
to work; undoubtedly this was clear to any one working in the field at that time. 
That RASIOWA preferred to take the more restrictive version (Ll ') to (14") is 
probably because it is more natural, since then we have conditions more typical 
of the implication connective -+, while (Ll) to (L4) are, in fact, conditions 
on the equivalence conective +-+; if there is not a conjunction in the language, 
then the set of two formulas { i.p -+ '1/; , 'ljJ -+ i.p} can be taken collectively to act 
as an equivalence connective. In this way, however, RASIOWA leaves out few 
examples, the most well-known being the equivalential fragments of classical 
or intuitionistic logic. The first generalizations of RASIOWA's treatment were 
undertaken by CZELAKOWSKI in [10] precisely by adopting this approach, and 
gave rise to what he named equivalential logics with an algebraic semantics 
( which later on turned out to be a special case of the algebraizable logics of 
BLOK and PIGOZZI) and to the much more general class of equivalential logics, 
which drop (14) or similar conditions. 

4. 5 The algebraic counterpart of a logic 

The class of algebras Alg* S is determined by the requirement that the easy 
half (:::}) of the Completenes.s Theorem ( 1), that is, the part sorne times called 
Soundness Theorem, holds. According to [41, §VIIl.6], an algebra A belongs to 
Alg* S, and is called an S-algebra, if and only if there is an algebraic constant 
1 E A such that: 

(Al) For every axiom o of S and every interpretation a into A, oA(a) = l. 
(A2) For any inference rule 01, ... , On f- {3 of S and any interpretation a 

into A, if ot{a) = 1 for i = 1, ... , n, then also [JA(a) = l. 
(A3) For any a, b E A, if a-+ b = 1 and b-+ a= 1 then a= b. 

Actually (Al) and (A2) together are equivalent to part (:::}) of (1), and amount 
to saying that the pair (A, { 1}) is what in standard terms is called an S-matrix. 
The additional condition (A3) tells us that the algebras in the class are reduced, 
in sorne precise, technical sense, whích roughly speaking means that we want to 
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select among the models for S, those algebras which turn logical equivalences 
into identities. 

This definition o/ the class Alg* S is historically the first general definition 
o/ what shoud be considered as the algebraic cou.nterpart o/ a logic S. From 
any finite presentation of the logic S by axioms and rules the above conditions 
give a finite presentation of the class Alg* S by means of equations (Al) and 
quasi-equations (A2) and (A3); thus this class is always a quasi-variety. In [10], 
CZELAKOWSKI proved that for the logics treated by RASIOWA the class Alg* S 
defined by her coincides with the class of the algebraic reducts of the reduced 
$-matrices, which is the class of algebras canonically associated with each logic 
S in the general theory of matrices. 

The organization of material in [41] is remar ka.ble in that, while conceptually 
its main topic is to study logics, its first half is devoted to a systematic study of 
the algebraic and order-theoretic properties of severa! classes of algebras, and 
only in its second half a general theory of sentential logics and its algebraization 
is presented; after the general theory, the treatment of severa! particular logics 
uses the properties of the corresponding class of algebras contained in the first 
part of the book. The widest class of algebras she studies is that of implicative 
algebras; but the weakest logic she considers is HILBERT and BERNAYS' logic o/ 
positive impication, whose algebraic counterpart is a smaller class; only in an 
Exercise (p. 208) she asks the reader to construct a calculus whose associated 
class of algebras is exactly the class of implicative algebras. 

4.6 Representation Theorems and the "Rasiowa-Sikorski 
Lemma" 

A widespread critique to the use of algebraic semantics like Alg* S and to the 
significance of Completeness Proofs using LINDENBAUM-TARSKI quotients is 
that such a semantics is not very different from syntax. Thus, it is particularly 
important to obtain Completeness Theorems for classes K of algebras more 
restricted than Alg* S. The class K is usually the class of algebras whose universe 
is contained in a power set or in the family of open or closed sets of sorne 
topological space, or even, in the most extreme case, K is constituted by a 
single algebra, for instance by the two-element Boolean algebra in the case of 
classical first-order logic. 

If the class K is contained in Alg* S then part ( =>) of ( 1) holds also for 
K. To prove the converse by contraposition as in Section 4.3, one first obtains 
Fm/=E and 7rE, and then applies sorne kind of representation-like theorem 
which maps the algebra Fm/=E toan algebra A E K in such a way that the 
"separation" of E and <.p through 7l"E is preserved. The composition of 7l"E with 
the representation mapping becomes an interpretation into A which validates E 
but not <.p, as desired. This kind of restricted completeness rests on the algebraic 
properties of the class of algebras Alg* S. In the propositional case, this is all 
that is needed, and this explains why sorne of the purely algebraic works of 
RASIOWA like [3, 37] are devoted to representation issues. 
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The last, but not least, of the points in RASIOWA's work that I want to 
highlight is a purely algebraic result known in the literature as the RASIOWA
SIKORSKI Lemma. It is a result in the representation theory of Boolean algebras 
as fields of sets, and becomes relevant to the topic of algebraization of first
order classical logic precisely through the application of the above procedure. 
In the case of first-order logics, however, we need something more. Representa
tion theorems establish algebraic homomorphisms, which in general may not be 
complete in the lattice-theoretical sense, that is, they may not preserve the join 
or meet of an infinite family (while they preserve the finite ones). In order for 
the above mentioned composition to be an interpretation, such representations 
should at least preserve the infinite joins (3) and meets (4) needed to interpret 
the quantifiers. 

In the case of classical first-order logic, we have Boolean algebras, and that's 
what is strictly called "the RASIOWA-SIKORSKI Lemma"; it has been called 
also "TARSKI's Lemma" (see for instance [1], pp. 21,31) because RASIOWA and 
SIKORSKI's original proof was rather indirect and complicated, using STONE's 
representation of Boolean algebras and sorne topological properties, and TARSKI, 
as stated in [12], suggested a more natural proof, which has been much repro
duced. The precise statement is: 

LEMMA. Let A be a Boolean algebra anda E A, and assume that for 
every n E w we have two subsets Xn, Yn ~ A such that an = V Xn 
and bn = /\. Yn exist. Then there is a Boolean homomorphism h 
from A onto the two-element Boolean algebra 2 such that h( a) = 1 
and for every n E w, h( an) = V h[Xn] and h(bn) = /\. h[Yn]. 

Since the epimorphisms from an arbitrary Boolean algebra onto 2 are determ
ined by its ultrafilters, the Lemma is often formulated as stating the existence 
of an ultrafilter containing the given element a and preserving the two given 
denumerable families of joins and meets; but even in this case, the condition of 
preservation is formulated by using the homomorphism. 

According to [55, p. 102], the result was originally found by SIKORSKI, but 
it was first published in the joint paper [44], and RASIOWA's name has also 
remained tied to it, together with SIKORSKI's; I think this is right, since in 
addition she generalized the Lemma to other classes of algebras whose rep
resentation theory she studied, in order to obtain strengthened completeness 
theorems for the corresponding predica te logics, [38, 42, 43]. Moreover, if few 
mathematicians deserve the honour of having their name permanently attached 
to sorne mathematical result, RASIOWA is undoubtedly one of them. 
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