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Abstract

The parametric statistical models with suitable regularity conditions have a na-
tural Riemannian manifold structure, given by the information metric. Since the
parameters are merely labels for the probability measures, an inferential statement
should be formulated through intrinsic objects, invariant under reparametrizations.
In this context the estimators will be random objects valued on the manifold cor-
responding to the statistical model. In spite of these considerations, classical im-
portant measures of an estimator’s performance, like the bias and the mean square
error, are clearly dependent of the statistical model parametrizations.

In this paper the concept of moment of a random variable is extended to ran-
dom fields on an n-dimensional C* real manifold, and the notion of mean value is
extended to random objects which take values on a Hausdorff and connected man-
ifold, equipped with an affine connection. In particular, the Riemannian manifold
case is considered. This extension is applied to the bias and the mean square error
study in statistical point estimation theory.

Under this aproach several basic results are obtained: local and global lower
bounds for the mean square of the Rao distance, the invariant measure analogous
to the mean square error, which depend on the intrinsic bias and the curvature of
the statistical model. Also the behaviour of the mean square of the Rao distance
of an estimator when conditioning respect to a sufficient statistic is considered,
obtaining intrinsic versions of the Rao-Blackwell and Lehmann~Scheffée theorems.
Asymptotic properties complete the study.
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Keywords and phrases: Bias, mean square Rao distance, mean value, Rieman-
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1 Introduction

Estimation can be defined as the theory that concerns making inductions from the data
and inferences about inductions. In parametric statistical estimation theory we make
inductions, from the data set, by proposing probability measures that belongs to a
parametric family, the parameters being only a name and playing no role in the induc-
tion process. The inferences are usually in the form of point and intervales estimates
and no matter what specific inferences may eventually be needed. In this approach
estimators supply different methods of induction.

On the other hand, as it is well known, the bias and the mean square error are
the most commonly used measures of performance of an estimator. These concepts are
clearly dependent on the coordinate system or model parametrization. No difficulty
arises from this as long as closely related properties, like unbiasedness or uniformly
minimum variance estimation are preserved under coordinate system transformations.
Unfortunately, this is not the case, essentially due to the non tensorial character of the

bias and the mean square error.

Example 1.1 Let a statistical model be defined through the 'parametric family of
densities 2ot mcm ]

p(z;a,3) = %——Wew{-ﬂx} z,8 € R,

where o > 0 is a known constant. Taking into account that, for a sample size k,

is a sufficient statistic for the model, the estimator, say estimator W, which is unbiased
and UMYV for 3, with ka > 1, is given by

3(W) = kas— 1

But parametrizing the same statistical model as

a-1

: = exp(-Z +
p('r‘a’A)— Aal-\(a) exp{ A} szER [}

where a > 0 is again a known constant, the above estimator W would give the estima-
tion for A
S

W=
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which is biased. The corresponding estimator, say { which is now unbiased and UMV
for A is given by

S
A = —
) =
However, if we used this estimator to give an estimation of 3 we would obtain
ka
3(U) = —
3w =

which is biased.

Furthermore, if we compute the mean square error of these estimators, W and U,
under both parametrizations, the following table, assuming ka > 2, summarizes the
above discussion:

. Estimators
Parameters [ W U ]
Bias(3(W)) = 0 Bias(3(U)) = a‘i :
2 ¢ 2
3 | MSE(BW)= s < MSE(S(U))= 2t 20

(ka - 1)(ka - 2)

2

(Not attaining Cramér-Rao lower bound: f—a

Estimator W is preferable to Estimator U/

A

Bias(A(W)) = =

Bias(A()) = 0

2 2
A MSE( W)= SsE @)=
2

(Attaining Cramér-Rao lower bound: I;\—a

Estimator U is preferable to Estimator W

This example show some problems, paradoxes or inconsistencies of classical unbiased
minimun variance estimation, essentially due to the dependence on the coordinate
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system or model parametrization of this statistical criterion. Therefore seems desirable .
to modify these classical notions in an intrinsic or invariant way.

In this situation a natural question arises: could analogous notions to the bias
and the mean square error be formulated depending only on the estimation procedure
employed? There are several ways to attempt to achieve this purpose. First, we may try
to choose a privileged coordinate system, but it would be difficult to justify the choice.
Second, we may define a loss function, extrinsic to the statistical model, invariant under
reparametrizations, and proceed as in Lehmann, see [24]. This may be a reasonable
procedure from a decision theoretical point of view, but for statistical inference purposes
it might be better to work exclusively with concepts intrinsic to statistical model.

The aim of that we shall refer to as Intrinsic Analysis of the statistical estimation,
is to develop a statistical estimation theory analogous to the classical one, based on
geometrical structures of the statistical models. Then one goal of the Intrinsic Anal-
ysis is to supply invariant tools in order to analyse the performance of an estimator,
and another is to obtain results that are analogous to classical ones and to establish
relationships between the classical non invariant measures and the invariant herein
obtained.

In this paper, taking into account the Riemannian structure of the regular paramet-
ric statistical models, an intrinsic bias measure is obtained by considering the mean
value of random manifold-valued maps. The mean square of the Riemannian, or Rao,
distance is the invariant analogous to the mean square error.

The first part of the paper is concerned with the moments of a random field on an
n-dimensional C* real manifold, and also the mean value concept of a random object
which takes values on a (Hausdorff and connected) manifold equipped with an affine
connection, through the exponential map. We emphasize the analogies and differences
between moments and mean values, and we consider, in particular, the Riemannian
case. . k
The second part is the application of these results to the study of some invariant
measures analogous to the bias and mean square error corresponding to a statistical
estimator. The third and fourth parts are devoted to the development of intrinsic
versions of the local and global Cramér-Rao lower bounds. In the fifth part we study
the behaviour of the mean square Rao distance of an estimator when it is conditioned
by a sufficient statistic, in order to obtain intrinsic versions of the Rao-Blackwell and
Lehmann-Scheffée theorems. Finally some asymptotic properties, specially related with
the maximum-likelihood estimator, are studied.
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2 Moments and mean values

Let (X, Q. P) be a probability space, where X is the sample space, @ is a o-algebra of
subsets of X and P is a probability measure on @. Let (VM,2) be an n-dimensional
C™ real manifold, where ? is the atlas for M.

Let f be a measurable map, f: X — M, also called a random object on M, that is,
a map such that for all open sets W C M, f~!(W) € @. We will now introduce the
notion of mean value and moments of f, assuming the fewest necessary asumptions and
maintaining the intuitive notion of centrality measure, in a closely related idea of center
of mass as we shall see later (see Karcher [19], Kobayashi and Nomizu (22}, Kendall
[21] and Hendriks [13]).

If there exists a global chart (M, ) we may try to define the mean value of f as:

E(f) =™ ( / (62 /) (@) Plda) ),

but this naive approach it is not satisfactory since E'(f) would be dependent, in general,
on the coordinate system. Only linear transformations would preserve E(f).

In order to solve this problem, let us first introduce some concepts. Let A be a set
of M, and .F‘q(‘p“” the set of all C* tensor fields in any open subset of 4, of order p+ g,
p times contravariant and q times covariant. If we fix m € 4, any map X from X to
F‘_ﬁ”"” induces a map X, such that X : X = TP (M) with X (z) = (X(z))m, where
T?(My) denotes the space of (p, g)-tensors on the tangent space at m, VW, having a
natural topological vector space structure. Considering the Borel o-algebra on F f )
induced by the Borel o-algebras of the M,,, a simple definition follows,

Definition 2.1 A C™ random (p, g)-tensor field on A, X, is a measurable map from
X to F X’ 9,

It follows from the definition that ¥m € A, the induced map X,, is a measurable
map on (X, a).
Moreover, any random tensor field may be characterized by its n(?*% components
with respect to any coordinate system, 9!,...,6",
X;:Maq (z;6%,...,0™) apy...,qp, Br,...,8;,=1,....n,

.....

which are clearly fixed z, C* functions of 8%,...,0", and, fixed 8, real valued measur-
able functions on (X, @).

Let ® stand for the tensor field product. In the present context it is natural to
define:
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Definition 2.2 The k-order moment of the random tensor field X is an ordinary
(kp. kq)-tensor field on A defined by

k
ME(X) =/X(1:)'®...:§X(3:) P(dz), k€N,

provided the ezistence of the above integral.

Notice that .M*(.X) may be computed explicitly through its components in any
coordinate system. The components of .M*(X), with respect to a coordinate system
8, ....6™, will be given by

1 k 1 1 k k
aj.aap _ ayendp, . R ap, .
M3t e) = /X (X3t @) XS @) ) Pld).

This is in fact the simplest and also the most natural extension of the k-order
moment to a random tensor field. In particular, the l-order moment is the expectation
Of 1Y.

We can also write

k
o,

MF(X)=E(X®...@X),
where the tensor product of random tensor fields is naturally defined from the tensor
product of ordinary tensor fields.
In a similar way we could define the central moments, which exhibit classical prop-
erties, for instance:

MYX)=E(X-EX)® (X -EX))=E(X® X) - E(X)® E(X).

In the case that X is a vector field, the components of this temsor, with respect to a
coordinate system, may be written in matrix notation, obtaining the covariance matrix,
AW

- X

Tx = E(XX) - E(X)E(X),

identifying, in the previous equation, the vectors with their components and X being
a column vector and X' the corresponding row vector.

In order to consider the mean value of a random object, measurable map, which
takes values on a C'™ real manifold, we have to introduce an additional structure on
the manifold: we shall assume that it is equipped with an affine connection. Typical
examples of manifolds with an affine connection are Riemannian manifolds.

Associated with an affine connection there is a map, called the exponential map
exp, : W[, = M It is defined for all v in an open star-shaped neighbourhood of 0, € M,.
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Additionally it is also well known that this map, in general, has no inverse, although
there are important particular cases where one exists. Nevertheless, we can always
restrict the map in an open neighbourhood of 0, € M,, such that the inverse is well
defined, the exponential map being a local diffeomorphism. Further information can
be found in 9.1 of the Appendix.

Let us precise the kind of neighbourhoods that we consider suitable to define the
mean value of a random object.

Definition 2.3 A neighbourhood W(p) of p € M is said to be normal if W(p) is the
diffeomorphic image, by the exponential map, of an open star-shaped neighbourhood of
0, € V.

Notice that a normal neighbourhood W(p) of p has the property that every ¢ € W(p)
can be joined to p by a unique geodesic in W (p).

In the vector space M, we will consider star-shaped neighbourhoods, V'(p), such
that V(p) = —V(p), in the case we have only an affine connection, and balls in the
Riemannian case. They shall be referred to as balls with center 0,, even in the affin
case.

Definition 2.4 The image, W(p), by the ezponential map, of a open ball V(p) with
center Op, is said to be a normal ball with center p if W(p) is a normal neighbourhood

of p.

Notice that, in the Riemannian case, the shortest geodesic that joins p with any
q € W(p), W(p) being a normal ball with center p, is unique in M and lies in W {(p).
However we can consider more general neighbourhoods with this property.

Definition 2.5 An open set W(p) is said to be a regular normal neighbourhood of p if
and only if its intersection with any normal ball with center p remains normal.

In the Riemannian case we can assure the existence of these kind of neighbourhoods.
Since every point p has a neighbourhood where the exponential map is a diffeomorphism
we can obtain a normal neighbourhood of 0, € M,. Let V(p) be the corresponding
star-shaped neigbourhood in M,. Then, consider some ball with center 0, € M, where
the exponential map is injective. If we restrict the map to the intersection with V' (p) we
obtain a regular normal neighbourhood of p. It is easy to see that in the Riemannian
case a neighbourhood W(p) of p is regular normal if and only if the shortest geodesic
that joins p with any other point in W (p) is unique and lies in W(p), then the regular
normal neighbourhoods are a generalization of neighbourhoods with these property to
the affin case. '
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Denote by &, = {§ € M, : |||l = 1}, and for each & € &, we define

Cp(€) =sup{s > 0 : p(p,ve(s)) = s},

where p is the Riemannian distance and +¢ is a geodesic defined in an open interval
containing zero, such that 4¢(0) = p and with tangent vector equal to £ at the origin.

Then if we set
D,={s6eM,:0<s<C((8); £€ Gy}

and
DP = expp(gp)y

it is known that exp, maps D, diffeomorphically onto D,, see 9.1. of the Appendix. In
fact D,, is the maximal regular neighbourhood of m in the sense that any other regular
neighbourhood of m is included in it.

Then, given a random variable f taking values on a (Hausdorff and connected) ma-
nifold. equipped with an affine connection (which may be the Levi-Civita connection
corresponding to a Riemannian manifold), there is a natural way to define a random
vector, fixed p € M, given by epr;l (f(z)). This vector is not necessarily defined for
all z € X, but if it is defined almost surely, we can introduce the following mean value
concept,

Definition 2.8 A point on the manifold p € M is a mean value of the random variable
f and we shall write p = M (f), if and only if there is a reqular normal neighbourhood
of p where f takes values almost surely [P], and we have

| ezt (7(2) Plde) =0y,

Let us remark that this is an intrinsic mean value definition, independent of the
coordinate system.

Moreover, in the case where M is a complete Riemannian manifold, if Py is the
probability measure induced by the measurable map in M, and Py is dominated by the
Riemmannian measure, for any p € M we will have a regular normal neighbourhood
of p, with probability [P] equal to one, where exp;! (f(z)) will be defined. This is an
immediate consequence of the image measure theorem and that the cut locus of p in
M is a Riemannian measure zero set.

In the following we will use the notation exp;l(-) to indicate the inverse of the
exponential in some regular normal neighbourhood of p.

We shall consider now several examples.
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Example 2.7 Let M be R". [dentifying the points with their coordinates correspond-
ing to the trivial chart, and considering the usual Euclidean affine connection, we have,
for =.m € R", that exp;! (z) = (z~ m)m. [n order to find the mean value of a random
variable f we have to solve the following equation

[ (5(2) = m)m Pldz) =0,
but this equation has the unique, trivial solution
m = [ fiz) P(dz),
provided the existence of the latter integral. Therefore we recover the classical definition

M(f) = E(f) = /x f(z) P(dz).

Moreover, the second order central moment of exp;;! (f(z)) can be written, in matrix
notation and omitting the subindex m, as :

£, = Miexps (f(2) = E((f(z) - m)(f(z) - m)")
E(ff) - E(f)E(f),

which is the usual covariance matrix.

Example 2.8 Another interesting example is given by considering the mean values
of the Von Mises distribution. In this case the manifold is the unit n-dimensional
Euclidean sphere, with the connection induced by the natural embedding into the
Euclidean space R". The probability measure induced in the manifold is absolutely
continuous with respect to the surface measure on the sphere and the corresponding
density function (Radon-Nikodym derivative) is given by

p(z;€,A) = an(A) exp{A\€'z} z,6€S,={zeR":7z2=1}, AeR",

where an(A) = A¥/2=1/(2m)*/21, /,_\(}) is a normalization constant, [/, being the
modified Bessel function of the first kind and order k/2 — 1. In this case it is clear the
existence of two mean values, given by § and -§. Compare this result with the mean
direction defined in Mardia et al. {23, 424-451]. See also Jupp and Mardia [18], for a
comprehensive exposition.

Example 2.9 Consider a random variable uniformly distributed on a circle, with the
connection induced by the natural embedding into the Euclidean manifold R?. Then,
all points on the circle are mean values.
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We would supply, in the Riemannian case, a scalar dispersion measure with respect
to a mean value m: the ordinary expected value of the Riemannian distance square
between f(r) and m, which may be regarded as an invariant version, independent of
the coordinate svstem, of the variance of a real random variable. It is also possible to
define a dispersion measure with respect to an arbitrary reference point of a Riemannian
manifold, as the mean value of the square of the Riemannian distance between f(z)
and the selected reference point.

We may also observe that, with this extension of the concept of mean value, we
maintain the intuitive and appealing meaning of centrality measure, even though we
do not have the linear properties of the expectation. However, this is natural since
we cannot identify, in general, M with its tangent spaces. Similarly we will have
a dissociation between the mean value and the concept of first order moment. The
moments of a random map f, which takes values on M, should be defined as

Definition 2.10 The k-order moment of the random map f is an ordinary (k,0)-
tensor field on A defined by

k .
ME(f)m = / expol (f(2) B Bexpsl (f(z)) Pdz), ¥me d, keN
X

provided the eristence of the above integral.

There is a relationship between the defined mean value and the classical center of
mass, €,

¢ = arg min Hy(m),
meM

where Hy(m) = / p*(m, f(z)) P(dz). First of all we have the following propositions:
X

Proposxtlon 2.11 If exists some mg € M such that H(mg) is deﬁned then the func-
tion Hy(m) is defined for all m € M.

Proof:
By the triangular inequality

Hyp(m) < 2H s (mo) + 2p%(m, mo),

and proposition follows. ]

Suppose it exists a point mq such that H(mg) < oo, then:
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Proposition 2.12 The fuction Hy(m) is differentiable and

XaHp ==2(Xm, | expr! (f(2)) P(dz)).
X

whenever exp;‘(-) is well defined for all p € M almost surely-P.

Proof:
For all X,, € M, since, fixing ¢ € M, p*(-,q) is a C* function, we can write

Xnp (@) = XmllexpT (@l = 2(Vxn expl g exp5! (@)
= —‘2<Xm,exp;‘ (g),

where the last equality can be easily checked considering a geodesic spherical coordinate
system with origin g. Then, we have

| Xm 2(, )| £ 2| Xmflo(m, q),
thus, if Un, is a neighbourhood of m with diameter D, by the triangular inequality
1Xms (@)1 < 21 Xmli(p(m, @) + D) Vm' € Un X € M. (1)

Let X be a C* vector field such that X(m) = X, and consider, in a neighbourhood
of m included in U, the integral curve of X, ¥(t), such that v(0) = m and the tangent
vector in m is X, by the mean value theorem

XMy = tim [ X, f(2)) Pldz),
m/—»m X
where X, = X(m') and m' is on v, then by the dominated converge theorem
Xy = =2 [ (X, exp3! (£(2))) P(da).
X

Finally, the continuity of X, H  follows from the inequality 1 and, again, by the the
dominated converge theorem. [ ]

Now we can established the conection between mean values and center of mass
above-mentioned.
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Proposition 2.13 Let (X, Q. P) be a probability space, (M, A) be a complete Rieman-
nian manifold and f : X — M a measurable map, such that P; is dominated by the
Riemannian measure Vg, Py << VR. Let the function H; be defined as

Hy(m) = / p¥(m, f(z)) P(dz)

defined for all m € M. Then H; has a critical point at m € M if and only if m =
M(f).

Proof:

H has a critical point at m if and only if XmHf =0 VX, € My, then, since
the cut locus of any p € M is a Riemmanian measure zero set, see Spivak [31], by the
previous proposition,

0= XmHy = ~2Xnm, / expzl (f(2)P(dz) VX € M,
- X

which is satisfied if and only if
[ ewpit (£(2)) Pldz) =0,
X

and then the proposition follows. .

From last proposition we show that the defined mean value concept it is weaker
than the center of mass concept. Notice also that for defining the first we only need an
affine connection, while the second requires a Riemannian structure.

At this point it is natural to ask in which conditions we will have a mean value. We
can give sufficient conditions to assure we have a mean value.

Definition 2.14 Let M be a complete manifold, a set A is said to be a regular convex
set if and only if for any p, ¢ € A the shortest geodesic from p to q is unique in M and
lies in 4.

Notice that an open regular convex set is a regular normal neighbourhood of all its
points.

Proposition 2.15 Let A be regular convez set in a complete manifold M. Then, any
minimal geodesic that joins a point p € 0A and q € 4 cannot be tangent to 8A. Where
04 is the boundary of A.
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Proof:

L{et p € 04 be the point of tangency of one geodesic tangent to dA, suppose there
exists g a point in A, the interior of A, close to p, joined by this geodesic. We can
always suppose g so close to p as we need, since we can take p as the point where the
geodesic line ~leaves” the boundary of 4. Let B,(q) be an open ball, with center ¢ and
radius ¢, since expz;'l is a diffeomorphism in some neighbourhood of p that contains
B.(q), for s = 1 there will exist a 4 > 0 such that for all v € B;(0,)

§ = exp,(s(exp;'(q) +v))

will be in B,(g) C A. However, for s small, there will be points of the shortest geodesic
line joining p and § outside A, contradicting that A is a regular convex set. This is
due to the fact that if the geodesic line is tangential to A, we could find geodesic lines
with origin p and points outside A with tangent vector as close to exp;!(g) as we want,
so the difference between the tangent vectors would be in Bs(0,). ]

Proposition 2.18 Let (X, @, P) be a probability space, (M, 1) bea complete manifold
and f: X = M a measurable map, let A a regular convez set such that P{f € A} = 1.

Suppose
Hy(m) = [ pH(m, f(2) P(dz) < o0,
Then f has a mean value TN (f) € A.

Proof:
Note first that there will be a compact set C C A, where A = A|JdA, such that

[nf Hy(m) = min Hy(m).

Otherwise, let K C A be a compact set such that P(K) > 0. There will be a sequence
{Pn}neN, Pn € A such that limpoe0 p(Pny K) = o0 and

. — . . 2 oA Y
Jféf,s Hy(m) = lim H(pa) 2 lim p*(pa, K) P(K) = o0,

contradicting that H;(m) exists. Now, by the above proposition, if p belongs to the
boundary of 4

grad Hy(p) = = [ exp; (f(2) Plde)

is an average over outward pointing vectors, therefore p will not be a minimum. Then
the minimum will be in the interior and the proposition follows. ]
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3 The intrinsic bias and the mean square Rao distance

We now apply the concepts mentioned previously to develop intrinsic measures analo-
gous to the bias and the mean square error of an estimator.

Let {X.Q, P;; 6 € O} be a parametric statistical model. where ©, the parameter
space, is an n—dimensional C* real manifold. Usually © is an open set of R" and in
this case it is customary to use the same symbol, 8, to denote points and coordinates.

We shall suppose a one-to-one map 6 — p(-;8) and we shall consider the set of
all probability measures in the statiscal model, M, with the n-dimensionai C'* real
manifold structure induced by this map. Let us denote this manifold by (M, ), being
A the atlas induced by the parametrizations, that is the coordinates in the parameter
space.

In the dominated case, which we shall assumed hereafter, the probability measures
can be represented by density functions. Then let us assume, for a fixed o-finite ref-
erence measure u, that Py << u, V8 € O and denote by p(-;8) a density function
with respect to u, i.e., a certain version of the Radon-Nikodym derivative dPy/du.
Now, through the identification Py — p(-;8), the points in M can be considered ei-
ther densities or probability measures. Additionally, we shall assume certain regularity
conditions:

1. (M,2), is a connected Hausdorff manifold.
2. When z is fixed, the real function on M & — p(z;€) is a C* function.

3. For every local chart (W, 8), the functions in z, dlog p(z;0)/08* i = 1....,n, are
linearly independent, and belong to L(p(-;8) du) for an suitable o > 0.

4. The partial derivatives of the required orders

0/06, 0%/06'06°, 8%/06'06°86%, ... i, jk=1,... n,
and the integration with respect to du of p(z;#) can always be interchanged.

When all these conditions are satisfied, for a version of the density function , we
shall say that the parametric statistical model is regular, and in this case the manifold
(M,?) has a natural Riemannian structure, given by its information metric. Then,
there is an affine connection defined on the manifold, the Levi-Civita connection, natu-
rally associated with the statistical model. For further details, see Amari [2], Atkinson
and Mitchell [3], Barndorff-Nielsen [4], Barndorff-Nielsen and Blaesild 6], Burbea [8],
Burbea and Rao [10], Castillo [11] and Oller [28], among many others.
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Therefore, a regular parametric statistical model can be viewed as a Riemmanijan .
manifold. In this context, an estimator U for the true density function (or probability
measure) po = p(+; 80) € M of the statistical model is a family of measurable maps

U= {Ue:XF— M, keN)}

such that the true probability measure on X* is (Py)x(dz) = p(z1;80) . . -p(z; Oo) pi(dz).

Observe that, corresponding to an estimator, there is a sequence of random objects
taking values on a convenient representation manifold of the statistical model and the
converse.

Moreover, if & is fixed, corresponding to an estimator I/ of the true density func-
tion po = p(-;8p), we can associate a natural C> vector (first—order contravariant
tensor) field induced on the manifold through the inverse, provided its existence, of
the Riemannian connection exponential map A,(z) = exp;*! (Uk(z)) , see the previous
section.

Assuming that po = p(-; o), is the true density function, we are now able to intro-
duce the following definition

Definition 3.1 An estimator U is intrinsically unbiased, if and only if, pg is a mean
value of U, Yk € N and whatever pg € M is the true density function, i.e., M, (Ux) =
Do, where 9N ,, stands for the mean value of Ur computed with respect to the true
probability measure (Pp)k.

Notice that the definition of unbiased estimator, unlike the classical one, is invariant
with respect to any coordinate change or reparametrization.

We may try to compute the moment tensor fields corresponding to an estima-
tor vector field, provided their existence, and to obtain, for the first order moment,
the ezpectation tensor field of the estimator. Let pg = p(z;6p) be the true, but un-
known, density function corresponding to the true probability measure Py, then we
have & = Epy(A4p) = Ep, (exp;‘(u,,)). In components notation, with respect to the

parametrization given by %, ...,8", if we let p.,,(z;8o) be the corresponding ux-density
function for a k-size independent random sample, we have

E2(0)= [ A%(z;8) pw(z;00) pe(dz) a=1,...,n,
xk

where Al(z;8),..., 4™(z;6) are the components of A,(z) = exp; ! (Uk(z)), and the
dependence on k is omitted in the notation. Notice that, for all 8, the integral is always
computed with respect the same reference measure ug.

[t is convenient, in order to measure the bias, to introduce the following
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Definition 3.2 The bias tensor field is defined as B, = E), (exp;l(uk)), or in com-
ponents notation,

B*(9) =/¢ 47(210) py (£:0) die(z) @ =1,....n,

provided their existence.

Notice that || B||? would supply a scalar measure of the intrinsic unbiasedness. Also

observe that
80(90)=€a(90) Ct'—‘l,...,?’é,

Clearly we have the following:

Proposition 3.3 An estimator U is intrinsically unbiased if and only if its bias tensor
field is null, that is
B*(8) =0 a=1,...,n V0€O.

We are going to establish some relationships between the classical definition of
unbiasedness and the new one.

Theorem 3.4 Let us consider a regular statistical model such that the density func-
tion manifold is simply-connected and complete, and assume additionally that all the
sectional curvatures are zero. Then there ezists a global coordinate system 8', ..., 6"
such that the corresponding metric tensor field components are constant and, under this
coordinate system, an estimator U is unbiased if and only if it is intrinsically unbiased.

Proof:

The existence of a global coordinate system 8?,..., 6" such that the corresponding
metric tensor field components are constant is a well known result, see for instance
Kobayashi and Nomizu (22, pag 105, vol. [I]. Then the conclusion follows, since the
geodesics are straight lines, and the manifold is essentially like R".

(]

The Riemannian distance that we obtain from the information metric is known
as the Rao distance. The mean of the squared Rao distance, which we shall call the
mean square Rao distance, is the natural intrinsic version of the mean square error.
If we consider loss functions that depend on the statistical model and not on external
considerations, the Rao distance appears in a natural way and with desirable properties,
as can be apreciated in Oller [28]. This is the reason by which it plays a fundamental
role in our approach.
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3.1 Some examples

We present here some examples, in which we calculate the bias of several estimators.

Example 3.5 The univariate Ezponential distribution.
Let us consider the exponential density function parametrized as

=L _I +
p(r.A)_Aexp{ '\} r,Ae R™.

The metric tensor component is given by g;,(A) = 1/A%. Clearly, if we let § = log A,
the new tensor components will become §,,(8) = 1. Let us now consider the maximum-
likelihood estimator for the parameter A computed from a sample of size k& given by
X«. the ordinary sample mean. The corresponding maximum-likelihood estimator for
8 is given by log Xs. Since the metric tensor is constant under the coordinate system
given by 8, the bias tensor, if we let § = kX, is given by

B'(9) =E (log (-‘Z) - a) = /R+ <log (%) - 0) ﬂ%%ﬁexp{-f;} ds,

and with the change u = s/¢€?, this yields

1 __1__/ k=lg=u do _ —-E.I(ﬂ_ = -
B(O)—F(k) R+log(u)u e %du logk—r(k) logk = ¥(k) - logk,

where W(k) = ['(k)/T(k), [ being the usual gamma function. Therefore it is a biased
estimator. However, we can easily correct the bias, obtaining in this case a strictly
intrinsically unbiased estimator. With respect to the parametrization given by 4, :he
corrected estimator will be

9 =log Xy — W(k) + logk,
and with respect to the original parametrization it is

kX

A:;E(—k—)-.

Example 3.8 The univariate Poisson distribution.
Let us consider the Poisson density function parametrized as

4
p(z;A) = e % AeRY zeN.
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The metric tensor component is given by g1;(A) = 1/A. [t is clear that if we let § = 2V/X,
the new tensor components will become §;;(8) = 1. Let us now consider the maximum-
likelihood estimator for the parameter A obtained from a sample of size k given by Xk,
the ordinary sample mean. The corresponding maximum-likelihood estimator for 8 is

given by 21/ X .. Since the metric tensor is constant under the coordinate system given
bv 8. the bias tensor, if we let S = kX, is given by

e ; 2 kﬁ J
Bl(g):E(Z\/T—Z'—o) ZQ(Z %e‘k%‘ (—j'—l—) - 8,
j=1 :

which is clearly biased. Moreover, since the equation

Zf o=k kj/\) = 2/x

equivalent to
20
(kA) [Ee* .
) —— = —=Vkle
Z ]- \/‘
where f is an arbitrary function, has no solution because /ze? it is not an analytic

function, we conclude that for univariate Poisson distribution there does not exist an
intrinsically unbiased estimator based on the sufficient statistic S.

Example 3.7 Consider the muitivariate elliptic probability distributions, with fixed
dispersion matrix £ = Ty, that is the parametric family with density functions, in R"
with respect the Lebesgue measure, given by

p(aim) = "B |52 F (2 - 5t e - ).

where ¥ is a fixed n x n strictly positive-definite matrix, u = (yy,...,un) is a param-
eter vector, ['(n/2) is the usual gamma function, and F is a non-negative function on

R4 = [0, o) satisfying:
o0
|7 Py dr = 1
0

The vector u and the matrix £y may be expressed in terms of E(X) and cov (X),
provided the latter exists. In fact, let be t = (¢y,...,t,)"; the characteristic func-
tion ¢r(t) = E (exp{it’X}) of the above introduced parametric family of probability
distributions, which may be expressed as

oF(t) = exp{it'u} Ap(t'Sot),
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where o
Ar(s) = F(n/2)/ PIAVE(R) Kpjpy(rs)dr s €R,
0

with

S A B S
Ky,(s) = ﬂ“ §O4mm!r(m+u+1)’

and where J, is the ordinary Bessel function of order v.
Formally, therefore

(%1-'( )
ot

and E(XX) = - LOE®)

E(X)= — = Star

t=0

This gives E(X) = u and E(XX') = py’ + cr Lo, where
1 [o =}
e = ~205(0) = - / 2 F(r) dr,
0

and hence Cov(X) = cr Sq. In particular, E(X) exists if and only if [° r*/2-V2 F(r) dr <
20; additionally Cou(X) exists if and only if we have [§° r™/2 F(r)dr < 2o in which
case ) < ¢ < 2.

A non-degenerate multivariate normal distribution N,(g,Zp) is an example of a
multivariate elliptic distribution with

F(s) = —s—=———-exp{-s/2}, Ar(s) =exp{-s/2}, cr=1.

2"/21"( /2)
Other basic properties of elliptic probability distributions have been obtained by
Kelker [20) and are sumarized in Muirhead (26, pp. 32-40]. We have to assume, in

addition, that
4 o0
a=2 [ 2 (LF)(e) F(t)dt < oo,
0

n

where LF = F'/F, in order to ensure the existence of the Fisher information matrix,

which is given by
E(c’)logp Blogp) g o=
ou ou o
see Mitchell and Krzanowski [25] and Burbea and Oller [9] for more details.

Therefore, the information metric for this parametric family of probability distri-
butions is given by

ds? = a dy’ £5'du.
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Since the metric tensor field given by the information matrix is constant, the man-
ifold is Euclidean, and the geodesics are straight lines. Identifying the manifold points
with their coordinates, the geodesic which starts at po when ¢t = 0 and reaches p; when
t =1 is given by

u(t) = (1 = po) t + o teR,

and if we let pg = p(-: po), and py = p(-; 41), we have
expt(p1) = (41 = #0)po»

where, in the last equation, we have identified the tangent vectors at pg with their
components corresponding to the canonical basis induced by the coordinate system.
Considering the estimator for u given by

Therefore X is intrinsically unbiased.

The following simple example shows how different the squared-error loss and the
square of the Rao distance can work for a fixed parametrization.

Example 3.8 Let a statistical model be defined by the Pascal family of densities
p(z;8) = (1-6)°9, zeNuU{0}, 8¢ (0,1).

Let 4 be an unbiased estimator in this parametrization, for a sample of size £k = 1.
Then

E(6) = 3 8(z)(1-6)"0=20
r=0

implies that

8(0)=1, 6(z)=0, vz >O0.

This is the UMV unbiased estimator for , but, up to this important property, it not
seems a reasonable estimator. On the other hand, the MLE estimator is

g =

I r € Nu {0},
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that seems better than the first one. However if we compute the mean square errors,
(MSE), in order to compare the precision of these estimators we obtain the following:

MSE(6) = 8(1 - 8),

and
A 2 1 8 X (1-6)"+1
MSE(@) = ( —0) 1-6)"9 =
() ; z+1 ( ) 1—0:§0 (z 4+ 1)2
z:+l 2
+1-—BZ 1:+1 +9
= 175/ ; dt+1_olog0+0.

Using Mathematica, version 1.2, we obtain that MSE() — MSE(4) is a positive function
in (8p, 1) and negative in (0, 8p), where approximately 6, = 0.1606.

In this sense the squared-error loss function does not distingyish clearly between
this two estimators. In fact, it can be shown that § is an admissible estimator with
respect to the squared-loss function. On the contrary if we use the square of the Rao
distance as loss function we obtain, since

1+V1-8-vI-nl-V1-8){1-n)
\/9-1-7- y

p(8,n) = 2log

that

E(p*(6,6)) =

Thus § is, with respect to the mean square Rao distance loss, and inadmissible estima-
tor. Moreover, as the reader can checked easily,

E(p*(6,0)) =

0 /1 - V1 _1__ 2
2{21051+' :+l \/ l \/(1 1 )} (1_9):0
I+l

=0
<o V8>0,

which shows the superiority of the MLE estimator.
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4 Lower bound of mean square Rao distance

In this section. the relationship between the unbiasedness and the mean square of the
Rao distance between the density, or probability measures, estimates and the true one
are studied. obtaining an analogous intrinsic version of Cramér-Rao lower bound, based
on the comparison theorems of Riemannian geometry, see 9.2 of the Appendix. Some
analogous results but in a different approach can be seen in Hendriks [15].

With the same notacion as in the previous sections, we have the following main
result.

Theorem 4.1 (Intrinsic Cramér-Rao lower bound) Let U be an estimator corre-
sponding to a n-dimensional regular parametric family of density functions for a sample
size k. Assume that (P)g (L(,:l(.\'l\Dp)) =0 Vpe M. Let A be the estimator ten-
sor field and let B be the corresponding bias tensor field, B = E(A). Let us assume
that the mean square of the Rao distance between the true density and an estimate,
E (p*(Ux.p)). exists, and the covariant derivative of E,(A,) ezists and can be obtained
by differentiating under the integral sign. Then, -

1. In general we have

{div(B) - E(div(A))}
kn

2
+IBI* < E(|4]) = E (p* (U, p))
where div(-) stands for the divergence operator.

2. If all the sectional curvatures are zero, K = 0, then

. 2
B L 512 < £ (o)

kn
3. If all the sectional curvatures are non-positive, K < K < 0 and —n < div(B),
then
(div(B) +n)* 2 2
1 S} +IIBIP < E (p* U ) ,
where

(n = 1) (V=K || B]| coth (V=K 1Bl) - 1)

Sn = 1 .
+ div(B) +n
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4. If all sectional curvatures are less than or equal to a positive constant K, d(M) <
7/2VK. d(M) being the diameter of the manifold, and ~1 < div(B), then

. 2
@B ) 72482 < E (2t p)

kn
where
o [ Hn = DIBIK
T = _ (n +div(B))n?
< J_‘ (n + div(B) - 4(n ~ 1) L2LE)
l1+\(l+16(n~- 1)K
knn?

In particular, for intrinsically unbiased estimators, we have

4. If all sectional curvatures are non-positive, then
n 2
7 SE(PWp).

4. If all sectional curvatures are less or equal than a positive constant K and
d(M) < 7/2VK, then
4

(1 +VIF16(n - DK/ (k7))

2% <E (pz(ukvp)) .

Proof:
Let A%(z;0), a = 1,...,n, be the components of exp;!(U), B* = E(A®) and
C*(z;8), a = 1,...,n, the components of any first order contravariant random tensor

field. Then, by the Cauchy~-Schwartz inequality,
(4~ B,C) < {lA- BlHIC],

where (, ) and || || stand for the inner product and the norm defined on each tangent
space. Additionally,

E ({4~ B,C)) < E(l4 - BY ICI) < VE (14 - BI?) E(IICI12),

again by the Cauchy-Schwartz inequality, and where the expectations, at each point p,
are computed with respect to the corresponding probability measure p dux.
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Let be C(z:6) = grad(log p, (z;6)), where grad(-) stands for the gradient operator. .
In components notation, and freely using the repeated index summation convention,
we may write

0 log pu,(z:6)

Co(z:0) = 9*(0) 2T

g>J(8) being the components of the contravariant fundamental tensor field and where
p is the joint sample density function. Therefore we have

ai d log py 0 log p,
068 g9

taking expectations, and using matrix notation,

Il =g

E (ICIP*) = E(C'G™C) = E (2r(C'G~'C)) = E (tr(G™'CC")) =
= tr(G'E(CC") = k tr(G™'G) = k tr] = kn.

On the other hand we also have
E((A4,C))|=1E((A-B,C))| < E((A- B,C)])

and
E (|14 - BI?) = E(l4]%) - |1B))%.

Therefore

IE((4,C)] < VE(IAI?) - 1B VEn,

but |JA||? = p?(p,Us), where p is the Riemannian distance, also called in this case the
Rao distance. Then

|E(4,CN)I < \E (p(p.Ue) - | BI? V.

On the other hand
(4,C) = g3 A®C? = gogA®g®" 9 log pu — 4° 9 log py,
’ @ @ 307 ¥ CYCE
thus,

8 log p(k) ap
A, = ¢ — = Ao 22k
E((4,C)) /‘c“ A Y Pue dptk [(" A 3 ga dug.

Notice that 4%9dp,/08° is a function of z which is independent of the coordinate
system: when z is fixed it is a scalar function on the manifold.
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Additionally, since
/ .4ap(k) dﬂk = Ba O = 1,-..,72,
xk

taking the covariant derivative we obtain,

0A® a 4 a p(") 9B a nj
/{09‘” }P(u;d#k-i-/ AnZPl gy = 4T B

where I'?, are the Christoffel symbols of the second kind.
If we carry out an index contraction we shall obtain a scalar equation:

04 a 47 aap(’t) a
/{aea”"’A }p‘*’d“**/xk“‘ Jga 9Kk = B%,

or equivalently, since A%,, =div(4), and B?,, =div(B),

31’('«)

390 dur = div(B),

E(div(A)) +/:. A®
X
which is invariant with respect to coordinate changes. That is, both integrands depend
on z, but are independent of the coordinate system. Therefore ! follows.

Fixing z, we are going to choose a convenient coordinate system. Given p and
Ur(z), we choose a geodesic spherical coordinates system with origin U(z), i.e. a
system (p,u) as discussed in 9.4 of the Appendix, and defined almost surely, since
(P (U (M Dy ())) =0

It is clear that the components of tensor A are (-p,0,0,...,0) when p, the Rie-
mannian distance between p and Uk (z), is the first coordinate. Additionally,

0A® . Glog\/’

= - a4 =~ = -——
58a 1 and TG, A plg, 3 P

where g is the determinant of the metric tensor. Then

P . dlog /7
a.——— —
-/x"A 395 dpk_dnv(B)+/)(k{1+p 3 }p(., dug,

Now we consider several cases.

Case 4.1.1 Sectional curvature equal to zero.
As a corollary of Bishop’s comparison theorem, see Theorem 9.8 of the Appendix,
or by direct calculation, we have
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dlog \/j§ n-1
)

b3

vielding

aal’(k) T
/x" A28 4y, = div(B) +n.

Then, we have

(div(B) + nl < \/E (0*(Us, p) - || BII2 Vi n,
which turns out that

. 2
M%i)— +1IBI? < E (ot p)) -

Case 4.1.2 All sectional curvatures less than zero, K < K < 0 and —n < div(B).
By 10 in Subsection 9.4 of the Appendix, we have

215%\/_5_ > (n - 1)V=K coth(vV=Kp),
yielding
/ Aa%duk >
<« 06~
div(B) + [, {1+ (n = )Vl Al coth (V=RIAI) } prodis
> div(B) + 1+ (n = 1)V=K||B]l coth (V=K||BIl) ,

where the second inequality is due to the fact that the function ucothu is a convex
function, and we can apply the Jensen inequality, and that ||B|| < E||A|l, by the
Cauchy-Schwartz inequality. Therefore if —n < div(B), since 1 < ucothu, Yu > 0,

{div(B) + 1+ (n - )V=K|Bl| coth (v=KBIl) }
kn

Case 4.1.3 All sectional curvatures are positive and less than a fized positive constant
K <K, d(M) < n/2VK, and -1 < div(B).
From 11 in Subsection 9.4 of the Appendix we have

Q%ﬁ > (n - )VE cot(pvE),

+IBI? < E (p* U, p)) -
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vielding
/ A== 0p”" dui > div(B) + /k (l +(n- l)mpcot(p\/z)) Pixy ditk,
X
but |ucotu| > 1 - 4u?/7%, 0 < u < 7/2, and therefore, taking into account that
0 < p < 7/2VK, we have
4KE(p?)

e

/ 408”“" dux > div(B) + n - (n = 1)

1K E(p?)

— =" < -1 < div(B), we have

since (n ~ 1)
' 2
. 1K E(p?)
(dw(B) +r=(n=1)=3~=] < (E(o*@U.p)~B|*)kn,
and finally, solving the inequation, it turns out that

4 (n +div(B) - 4(n - 1)|| B|I*K/7?)?
(m+ \/lcn +16(n - 1k BEAVB) = d(n - l)llBH’/C/wz))

= + || B

w3
<E(p*(Un D).

The cases 5. and 6. follow trivially from cases 2., 3. and 4., with div(B) = 0 and
I|B|| = 0. : L]

Remarks. Notice that all the one—dimensional manifolds corresponding to one-parameter
families of probability distributions are always Euclidean. Moreover, there are some
well-known families of probability distribution which satisfy the hypothesis of last theo-
rem, like multinomial, see Atkinson and Mitchell (3], negative multinomial distribution,
see Oller and Cuadras [29), or extreme value distributions, see Oller [27}, among many
others,

Additionally, it is easy to check that in the multivariate normal case, with known
covariance matrix, the sample mean is an estimator which attains the intrinsic Cramér-
Rao lower bound,
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E (PZ(TI: - #0)) = E ((Yk - 1o)'SH( Xk - #o)) =
= E(tc(ZH (e = o) (X = o)) =

1 n

= £t Xk — - ! = - = -,

= (T E (X ~ 0) (X = ko) ) w(z D =7
Furthermore, observe the effect of the sectional curvature on the precision of the
statistical estimates. Finally, since the mean square Rao distance is bounded from
above by D?, D being the diameter of the manifold, it turns out. from the fact that
Idiv(().4)] > 1, that a necessary condition to have an unbiased estimator is D > 71—,‘

5 Global estimator efficiency

Whichever loss function is considered, it is well known that, in general, there is no
estimator which a risk function that is uniformly smaller than any other. Therefore,
given an estimator, it seems reasonable in order to measure its performance over a
certain region of the statistical model, to compute the integral of the mean square
Rao distance, and then divide this quantity by the Riemannian volume of the region
considered. More precisely, let B C M be a measurable subset, with V(B) # 0, where V
is the Riemannian measure, then we shall denote theRiemannian average of the mean
square Rao distance by

E (0* (U, p)) V (dp)
[ vian)

the performance index obtained is a weighted average of the mean squared distance.
This approach is compatible with a Bayesian point of view, assuming a prior uniform
with respect to the Riemannian volume, see Jeffreys (17]; a similar approach can be
found also in Prakasa Rao (30] and Cencov [12].

In this section we are going to find some lower bounds for the above-mentioned
performance estimator measure. First, we shall start with some general results.

RE, (B) = /"

Proposition 5.1 Let X be a C*™ vector field and f be a C*° almost everywhere pos-
itive real function, with respect to the Riemannian measure, V, defined at least over
a Riemannian ball with center p and radius R > 0, Sp. Assume that div(X) < -a,
where a is a strictly positive real number. Then
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a

< Wl(SR)

[ ] ravars FIXIAV +
0o JS, Sr

1
vol (Sg)

R
s o [ X0 grad(f) avar

vol (

Proof:
Since

div(fX) = fdiv(X) + (X, grad(f)),
and for0 < r < R,

Fdiv(X) dV < —a/ Fav,
Sr Se

we have .
/5 div(£X) dV - /S (X, grad(f)) dV < -a/ fdv.
. . S,
Moreover, as a consequence of Gauss’s divergence theorem,

di(fx)av = /8 L FXo)da,

where v denote the outward unit normal vector field, and dA the Riemannian measure
induced on 8S,, and taking into account, by the Cauchy-Schwartz inequality, that

(X, grad(f))] < 1| X1] llgrad( )],
KX vl < FllX,

it turns out that
o<af favs [ fuxida+ [ X1 lersd(f)lav.
Sr 38, S,

Now, following standard integration rules in spherical coordinates, we have

f( N £1X1d4) dr = /. fixiav,

and thus, varying r from 0 to R, integrating and dividing by vol (Sg) = fsn dv,
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a R 1
_— Vdr < X||ldaV +
<wtsmh 1 < g Js, X
L X lgrad( )] av
5 S [ IX1 lsrad ()l avr.

Theorem 5.2 With the same conditions as in Theorem (4.1) , if we let

1
RY, (SR) = m/sn E (Pz(UkvP)) dv,

we obtain the following lower bound for the Riemannian average of the mean square
Rao distance

a /onol(S,-)dr
R
vol (SR) + vn /vl (SR) /0 Jvol (S,) dr

where a = n if the sectional curvatures are non-positive and a = 1 if the supreme
of the sectional curvatures, K, is positive and the diameter of the manifold satisfies

d(M) < n/2VK.

Proof:

First of all, observe that A,(z) = exp, 1 (Ue(z)) is a C*® random vector field and
P = P(x)(z:8), the likelihood function which defines the statistical model, is a random
C™> function. Then, following the same steps as in theorem (4.1), we can choose a
geodesic spherical coordinate system with origin Ui (z); under this coordinate system,
using the repeated index summation convention, we have

aA°
08«

0< < R, (SR), (2)

- dlo
=-1 and T3, A7 =-p §1=-+;/§P,

where g is the determinant of the metric tensor. Then

div(d) = =1-p Ql-"g‘?@.
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In the Euclidean case
dlog\/§ n-1

dp p

]

and thus div(4) = —n.
When the sectional curvatures are non positive, we obtain

Blog\/§> n-1
dp T p

+

and therefore div(4) < —n.
Finally, when the supreme of the sectional curvatures, K, is positive and the diam-
eter of the manifold satisfies d(M) < 7/2vK , we have

b

Olog /g >0
dp =

and then we obtain div(A4) < -1.

In any case, div(A) < —a with a = n or @ = 1, depending on the sectional curvature
sign. Therefore, we can apply the previously obtained formulas, and integrating with
respect to du, the reference measure, we obtain

<__f___/ /R dVdr | du; < ! / (/ HA([dV)d +

1 R
vol (SR)/X" (/0 /Sr 1Al lgrad(p)) | dVdr> dp

By observing that
fe =1 and lgrad (e = llgrad(log peey)l P

interchanging integrals, it follows that

1
Vol (SR) Jsa

a

R
/ vol (S,) dr <
0

R
—ﬁ L [ E Al jlgradtiog 1) av .

vol

where E is the ordinary expectation operator with respect to the probability measure
P(k) duk. By Cauchy-Schwartz inequality,
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E(|| 4]l llgrad(log pey)ll) < /E(11A112) / E llgrad(pge)) 1),
and additionally
E(||grad(log px))|12) = kn,

we have

R 1
<
/0 wl(S)dr < e [ E(lAD @Y+

vol sR/ (). VEUAR)av) ar

a

< Yol (Sr)

Moreover, by Jensen inequality

E(lAl) < VEIAIP),

and

E(jjAl*)aV,

E(llAl?) av

vol (S,) /s,

r

for any 0 < r < R, and then

< —-a—/R vol (S5;)dr < ! E(lA>)aV +
vol (Sr) Jo ’ - vol (Sr) /s

vkn (R
ol (SR)/O Vvol (5r) \//S E(||A]|?) dV dr.

Taking into account that

r \//S E(J|A|?) dV

is a positive monotonous increasing function of r, since E (]|A}|?) = E (p*(Us, p)) , if we

let
1

RE, (%) = sorrmy Jo, E (0P p)) @V,

32
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then

a

< Yol (SR)

Vin (R o\
S (l + \/;—T_@—_R—)'/(; vol (S,-) dr) Rz{k (SR).

R
/ vol(S,)dr <
0

Remarks. It is interesting to notice that while the local bounds obtained in The-
orem (4.1) could vanish, the global bound, for balls with radius greater than zero, is
always positive. On the other hand the curvature effects are present here through the
volume of a Riemannian ball. Proposition (9.11) in the Appendix implies, in manifolds
with constant sectional curvature, that for small balls, the bound will decrease with the
curvature since the order of the numerator in the inequality (2) will be the order of the
bound. Moreover further investigations using the expressions obtained in subsection
(9.10) for the volume of a Riemannian ball could reveal more precise information on
the curvature effects.

Corollary 5.3 When the parametric statistical model is an Euclidean manifold we have
the following lower bound for the Riemannian average of the mean square Rao distance

0< n(n+2) R
(n+1) (n+2+2vknR

If the Fuclidean manifold, M, is complete and simply connected, we obtain the
following lower bound over all the manifold

2

n (n+2)° 2 = P2
Th(nil? < Rll_{nmnuk (Smr) = Ry, (M).
Proof:
Since
opn/2pn
vol (§,) = m,

we have
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R grn/2 Rrt? 1z
fo Jvol (8,) dr = (n(n+2)zr(n/2)) ,

and
R 27.rn/2Rn+l
/0 vol (S5,)dr = "t D T72)
then
(n+2) R 2
n(n+2 2
0< < Ri (Sr).

{(n+1) (n+2+2vEnR) } *

We derive the second statement taking limit when R — oo. ]

Example 5.4 As an example, consider the n-variate normal distribution with known
covariance matrix £ . (iiven a sample of size k, the Riemannian density of the mean
square Rao distance corresponding to the sample mean X is T\’,Z,k (Sr) = n/k, which
is clearly greater than n(n + 2)%/4k(n + 1)2.

6 Conditional mean values of manifold valued
maps and the Rao—Blackwell theorem

We have already obtained a lower bound for the mean square Rao distance, now we are
going to study how we can decrease the mean square Rao distance for a given estimator.

Classically, this is achieved by taking the conditional mean value respect to a suf-
ficient statistic. We shall follow a similar procedure here, but now our random objects
are valued on a manifold and thus we will have to explain the meaning of a conditional
mean value in this context and then obtain intrinsic versions of the Rao—Blackwell and
Lehmann-Scheffée theorems.

Let (X, Q, P) be a probability space. Let (M,2) be a complete, (Hausdorff and
connected) C°, n—dimensional Riemannian manifold. Then M will be a complete
separable metric space (a Polish space) and we will have a regular version of the con-
ditional probability of any random object, f, valued on M with respect to a o-algebra
D on the sample space, X.
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Moreover if the mean square Rao distance of f exists, we can define
E(p*(m. f)|D)(z) = [ p*(m,0)Pyo(a,db),

where Py p(z, B) is the regular conditional probability of f given D, z € X, B a
Borelian set in M.

If for each z € X there were one and only one extreme p € M of E(p*(m, f)|D)(z),
or equivalently a point p € M such that

/\/[ exp;l(t)Pflp(:z:, dt) = Op,

we would have a map from X to M that would assign a mean value for each z. It
is clear that if the image of this map were countable, the map would be measurable,
but since we have a dense countable set on M it turns out that this map is always
measurable. This justifies the following definition.

Definition 6.1 Let f be a random object on M and D a o-algebra on X; we shall
define the conditional mean value of f with respect to D as a D-measurable map, Z,
such that

E(expz' (f(1))ID) = 0z.

We shall write M (f|D) = Z.

Remarks. From 2.16 a sufficient condition to ensure that the mean value exists
is to have an open regular convex subset N C M such that P{f € N} = 1. Also
we can extend the previous results to the case where M is not complete, since NV is

diffeomorphic to an open set in R" and then there will exist regular versions of the
conditional probability of f given D.

The following propositions are immediate.
Proposition 8.2 If f is a D-measurable map then 9N (f|D) = f a.e.-P
Proposition 8.3 If f is independent of D then M (f|D) = M (f). a.e.-P

Remark. It is necessary to point out that, in general, M (M (f|D)) # M(f), as
Kendall {21] already noticed and as it is easy to see with simple counterexamples.

Let us apply these notions to statistical point estimation. Given a parametric sta-
tistical model {X,Q, P 6 € O}, let M = {p : p = p(-;9),0 € O} be the associated
manifold with the Riemannian metric given by Fisher’s information matrix. We shall
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assume that the model is regular and that there exists an open regular convex subset
N C M such that y(M~N) = 0 (u being the dominating reference measure in the

model).
Let D be a sufficient o-algebra for the statistical model. Given a sample of size k
and an estimator Uy we can now consider the estimator I (U |D). Let

AL (p) = Ep(p*Ur.p)),
Mypp) = By (oM ID).p).

Taking into account that a function h(q), ¢ € M on the manifold is said to be convex
if h(y(t)),t € R is an ordinary convex function for any geodesic line ¥(t), we have the
following theorems.

Theorem 6.4 (Intrinsic Rao—Blackwell) If firzed p € N the square of the Rao dis-
tance p*(p, ) is a convez function then Afllv(p) < A (p).

Proof:
This proof is adapted from Kendall [21]. By convexity, for all positive t

dp*(v(s), p)

P (v(t),p) > Pi(v(0),p) + % -t

3=0

= P(2(0),) + {grad(29)(0), L@} 1

then writing m = v(0) and ¢ = ¥(t), since

dy -
— (0t =exp7!(g),

and
grad(p?)(0) = ~2exp;;}(p),

the above inequality can be written
P*(4,p) 2 p*(m, ) - 2 (exp7! (p), exp; (g) ),

then taking m = 9 (Ux|D) and integrating with respect to Py,ip(z, dg) we obtain

fM p*(4, )Py, ip(z, dg) > p*(IM (Ui |D), p),
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since
/. exp7l (@) Puyo(z. dg) = 0.

Finally taking expectations we obtain

AL (0) = Ep(o*(Unp) = Ey (Ep(0* U, p)lD)
2 E,,( Uk‘D’P) A, (P

Theorem 6.5 If the sectional curvatures in N are at most 0, or K > 0 with d(N) <
7/2VK, then
A%, (p) 2 A%, p(p)

Proof:
From 9.3 in the Appendix, we are in the conditions in which the square of the
Riemannian distance is convex. Thus from the previous theorem the result follows.
]

Remarks. If some curvatures are positive and we do not impose conditions about
the diameter of the regular convex set, N C M, we cannot be sure about the convex-
ity of the Riemannian distance and then it is not necessarily true that the mean of
Riemannian distance between the true density and the estlmated one should decrease
when conditioning to D.

On the other hand we can improve the efficiency of the estimators by conditioning
with respect to a sufficient o-algebra D, obtaining 9 (Uk|D), but the bias is not preser-
ved in general, in contrast to the classical Rao-Blackwell theorem. In other words, if Uy
were intrinsically unbiased, M (U|D) would not, in general, be intrinsically unbiased
since

M (M (Ue| D)) # I Us).

However, the norm of the bias tensor of 9 (Uk|D) would be bounded. If we let
Bopn UlD) be this bias tensor, by the Cauchy-Schwartz inequality,

”Bm (uklp)(p)nz < AZlkID (p) £ AZlk (p)-
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Eventhough the bias tensor is not preserved in general when we condition with re-
spect to a sufficient statistic, a theorem, wich is analogous to the Lehmann-Scheffée one,
can be formulated in the intrinsic context. We need first to redefine the completeness
notion.

Definition 6.8 A sufficient statistic T is said to be complet, for M, iff
M, (A(T)=Mp(g(T)) VpeM
implies that f(T) = g(T) (a.e. p).

Then, with the same conditions as in the previous theorem, we have the following
proposition

Proposition 8.7 (Intrinsic Lehmann-Scheffée) Let be an estimator that is func-
tion of a complete sufficient statistic for M, then, it is the uniformily minimum Rao
distance estimator for a fized bias tensor.

Proof:
The proof is trivial from the previous definition and Theorem. ]

7 Asymptotic properties

First of all notice that, given a sequence of random variables taking values on a n-
dimensional C*° (Hausdorff and connected) manifold with Riemannian structure, the
definition of the different types of stochastic convergences is straightforward: weak,
in probability, almost sure, or in r~th mean convergence, like in any metric space.
Moreover, since the topology induced by the Riemannian metric is the same as the
topology induced by the atlas, if a global chart exists, taking coordinates, we can
reduce the study of these convergences, with the exception of the r-th mean, to the
convergence of random sequences taking values on R".

We have seen that the estimators often are intrinsically biased but we are going to
show that the intrinsic bias tends to zero for large samples in important cases such as
the maximum-Ilikelihood estimators.

Definition 7.1 An estimator U is asymptotically intrinsically unbiased if and only if
it is intrinsically unbiased asymptotically, that is, we can construct a sequence of mean
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values of Uy which converges to po. When the sequence of mean values is uniquely
defined, we may write

lim 9M ,, (Uk) = po = p(-;6o) whatever pg € M.
k=00
and we shall say that U is asymptotically strictly intrinsically unbiased.

In the two following propositions we shall suppose that the estimator i is regular
in the sense that

sup Epo (p2(uk7po)) <X

keN

and the covariant derivative of the vector field £(p) = Ep,(exp, ! (Uk)) exists and can
be obtained differentiating under the integral sign. We shall also assume that the as-
sociated manifold of the regular parametric family of densities has sectional curvatures
K bounded from above and below, i.e.: kK < K < K and the diameter of the mani-
fold d(M) < 7/2VK if K > 0 and co otherwise. Notice that in theorem 4.1 we had
analogous conditions and also that these conditions are sufficient to assure a convex
geometry, see 9.3 in the Appendix, and thus that the mean value is in fact a centre of
mass.

Proposition 7.2 An estimator U is asymptotically intrinsically unbiased if and only
if for the corresponding bias tensor field, Bx(po) = Ep,(exp;,! (Ux)) which depends on
the sample size k, we have

lim Bf(po) =0 a=1,...,n Ypy e M.
k=00

Proof: :
Suppose first that kllm | Bk (po) |l = 0. Let Hi(p) = Ep (p*(Ur, p)) and let v(¢) be a
o0

geodesic line such that ¥(0) = 9M ,, (Ux) and ¥(1) = po. Then

lgrad(He) (Y()IIF DI 2 (grad(Hk)(‘r(l)),*r(l))=%Hk(‘/(t))

1 d2 d
STHA(0) d
since d
o) =0
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because 7(0) = M ,, (Ux) is a local minimum of H(p). Additionally, by the regularity
conditions of Ui we can write

2 1 d2
01 Edt—z‘}{k('y(t))dt ==/0 (Epo (Eﬁf(uk,'y(t)))) dt.

By 8 in Subsection 9.3 of the Appendix,
& P 1 (0) 2 C(K) - P ((0),7(0),
with C(K) > 0. Thus we obtain
lerad () (ADIADI 2 CC6) - 22(2(0),7(1).

Finally, since ||¥(1)}| = p(v(0),7(1)) and
grad(H,)(v(1)) = -2 /x exXppy (U (2))puy (2 5 00) pk(dz) = —2Bx(po),

we have

1B(poll 2 5C(K) - p(M o Ue), ),

then, taking limits, we obtain

Jim P(IM 4o (Ur), o) = 0.

Suppose now that lim M ,, (Ux) = po
k=00

1B(po)ll = lugrad(%k)(v(mn=§ [ lradu o) d
< 2 [ Igeradtu (o)) d

since grad(Hx)(v(0)) = 0, and where the last inequality is due to the fact that for any
C! vector field X, || X]|’ < ||X’]|. Herein we denote the covariant derivative of X, along
a curve determined from the context, by X’. Then, since

3608 (H0) (10)) = = (0x078 0) = B ecl(s,0)] )

s=1
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with c(s,t) = expy, (s exp[,:('y(t)), we obtain, by the regularity conditions on Uy and
with the same notation as in 9.3 of the Appendix,

181l < [ (B (g mpet,l) ) de= [ B G711 .

From 9.3 in the Appendix, we know that

JUM (1) = (V/9s)J"*" (1),

and
(ST 0,TM) = (TN, (1)) 2 0
V tan ner — nor tan —
(asJ (1),J% (1)) = -(asJ (1), (1)) =0.

Also, from Proposition 9.5 of the Appendix, we can bound the covariant derivative
of the normal component of J, and taking into account the geodesic speed, we have

i < ol (max (Lo (e - ) gea.on))
P(IM 4 (U ), 2o)2 - (1 + \/Ill0(Us, o)),

where the second inequality follows by tS.(t)/S«(t) < 1+/lllt, || € R, as the reader
can check easily from its definitions in 4 in Subsection 9.2 of the Appendix.
Finally, since the second order moments of U, are uniformly bounded

IN

| Bk (po)ll £ C - p(M 5, (Ur), Po)

with C = 1 + supgen Ep, (p(Uk, po)), and taking limits the proposition follows. [

Remark. Notice that in fact we need only that the first moment be uniformly
bounded. However we maintain this condition in order to be coherent with the condi-
tions in theorem 4.1. Nevertheless, it seems quite sensible to demand this condition for
any good estimator.

Example 7.3 For the univariate exponential distribution we obtained, see example
3.5, that Bi(p) = ¥(k) —log k, where W(k) = ['(k)/T'(k) , then, since lim_,oo k/e¥¥) =
1, it turns out that the maximum-likelihood estimator is asymptotically unbiased.
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Definition 7.4 An estimator U is an a-consistent estimator if and only if

lim Ep, (p% (Uk, po)) =0 whatever pg € M.
k-0

Theorem 7.5 Let U be an a-consistent estimator for a regular parametric family, with
a > 1. Then U is asymptotically intrinsically unbiased.

Proof:
By hypothesis,
lim Ep, (p*(Uk,po)) =0 with o >1,
k=00

where p is the Riemannian distance. Therefore, by Jensen inequality,
lim Ep, (p (U, po)) =0,
k=00

and taking into account that p (Ui, po) = ||Apllpe, Where A, is the estimator vector
field, it follows that
Jim By, (4,) =0,

obtainihg the required result. s

Now we introduce a definition of normal distribution on a manifold. There are
several ways to built distributions on a manifold, for a comprehensive exposition see
Jupp [18]. First we define a normally distributed random vector on the tangent space .

Definition 7.8 Let Y be a random vector on the tangent space M,, where p is a fired
point in M. We shall say that Y is normally distributed if there erists a vector 7
and a positive definite 2-contravariant tensor ¥ such that for any coordinate system,
(¥*) ~ N ((1%), (£%)). We shall write Y ~ N(n, ).

Remark Notice that this definition is independent of the coordinate system. This
is possible due to the fact that the parameters, 7 and %, in a normal distribution change
as a vector and a 2-contravariant tensor, respectively, when we change the coordinates
of the random vector Y. Now we can define the meanning of a normal distribution on
a complete manifold M.

As usually in the paper we are going to consider only random objects Z that take
values, almost surely, on regular neigbourhoods, see definition 2.5, of any point in
a complete manifold M. For this kind of random objects the random vector field
exp,'(Z), p € M will be almost surely well defined and we shall suppose that exp,'(Z), p€
M is defined in this sense.
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Definition 7.7 Let Z be a random object valued on a complete manifold M. We shall
say that Z is normally distributed with respect p and with parameters (n, L), if there
is a random vector Y ~ N(n,X), on M,, such that Z = exp,(Y). We shall write
Z ~N(n:X),.

Notice that if n = 0 then 9M(Z) = p. We now introduce the concept of asymp-
totically normal distribution in this context. Let {Z;}«en be a sequence of M-valued
random variables, then

Definition 7.8 Let M a complete manifold, a random sequence {Zi}ren is said to
be si-asymptotically normally distributed with mean p € M if and only if there is a
positive definite 2-contravariant tensor in M,, ¥ such that

{Skexp;l(Zk)}keN Sy with Y ~N(0,%),

where L stands for the weak convergence or convergence in law, and {si}ren 15 a
sequence of positive real numbers with limg oo Sk = 00

Remark. Notice that if {Z;}ken is sg-asymptotically normal with mean p then

{eXp,,(s,c exp; (Ze) }, £yZ  with  Z~N(0,5),
but if we have that {Vi}ken £, Z is not necessarily true that exp;'(Vi) converges
in law to a normal distribution. We also say that the estimator U is si-asymptotically

normally distributed if its corresponding random M-valued sequence is asymptotically
normally distributed.

Proposition 7.9 Let U be an si-asymptotically normally distributed estimator, of a
reqular parametric family of probability distributions, with mean pg € M. Also, assume
that

sup Ep, (p”‘(uk,po)) < oo foraneeRY.

keN

Then, U is asymptotically intrinsically unbiased.

Proof:

Since U is sg-asymptotically normal then p(p, Us) £ 0. The sequence of random
variables p(po,Uk) = ||Ak(pe)|| is uniformly integrable because p(po, Ur) = || Ak(po)ll; it
follows that Ep,(||Ak(po)ll) — 0 and since 0 < ||Ep, (Ak(po)) Il < Epo (| Ak(po)ll), the
proposition is derived. -
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Theorem 7.10 Assuming the previous theorem assumptions, mazimum-likelihood es- .
timators are asymptotically intrinsically unbiased.

Proof:

This is an immediate consequence of the previous theorem, assuming sufficient
conditions to ensure the supgey Epy (01 (Uk, po)) < o0, for an € € R, by observing
that the maximum-likelihood estimators are vk-asymptotically normally distributed.
In fact,

\/EGXP;I(UI:) Y (0» (gaﬁ)) )

where (g®f) is the contravariant version of the metric tensor. ]

From the equations of the geodesics it is easy to obtain a power expansion of the
inverse of exponencial map in a point p of the manifold M. The equations of the
geodesics in a coordinate neigbourhood of a point p and with unit tangent vector u are:

d? z© + dz' dz’
dt? Yodt dt
with (z*(0)) = p, (z%(0)) = u. Thus

£%(0) + I'{(0)u'u? = 0.

Then we can obtain all derivates at the point p recursively:

%(0) = -T(0)u's?
7 (0) = -TE(0)u's’ — 2T (0)#'s

= -I%(0)u's + 20% (0)T}, (0)uu w?
= (-0T% +20aT,) ()u'w o/,
and so on.

On the other hand

. 1.
2°(t) = 2°(0) = £°(0)t + ;E(O)F + % 5 () +0(t,
where f(t) = O(t*) if lim;—o(f(t)/t*) = k > 0 and we use the convention that, when
the expression, say, O(t%), is used several times in an argument, different quantities
may be involved on each occasion. Moreover,
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s0, this vields

Az® = A% — %r;;AiAJ' + ( a;ry + 3F° ) AlAr Al + O(tY)

But, in fact, we are interested in expressing A as a power expansion. Then we should
invert the above expression. This can be done iteratively. At first order

A% = Az® + O(t?),
at second order

A% = 82% + T340+ O(F),

at third order
A% = Az® + %rgAx*’AJ (a If +T3T,) AzlAa" Azl +0(),

and so on.

If we generalize the O notation to random variables, writing Yy = Op(Xj) if the
sequence of random variables {Yi/X\} is bounded in probability, we can say the fol-
lowing:

Proposition 7.11 Let (U, 6(-)) a local chart, where 8(p) = 6y, U such that \/I?expp (Us)
converges in distribution to a random vector with mean zero and second order moments.
Then, if we write 0(,,) = O(Uy)

AP = 0 -6 +3 Lre (@, - 8) (6 - 8)
+g(ajrz,+rs;- i) (Bl = 85)(6" = 65)(8l,) — 83) + Op(k™%),

where Af(p) = (ezp;‘(uk))a, and the Christoffel symbols and its derivatives are cal-
culated in p.

Proof:
First of all, since \/Eexpgl(uk) converges in distribution to a random vector with

P \
mean zero and second order moments, iy — p. Then the norm of the remainder term
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in the Taylor expansion at third order is Ry - t*, where Ry £, f(p), t can be chosen as
the arclength, i.e. ¢t = exp;l(uk)“ and f(p) is a function that depends only on p but
not on k.

From the hypothesis and by the Slustky theorem k*t* 4 ||Y||*, such that Y have
a distribution function with mean zero and variance £q. Finally, since k%t* converges
in distribution k%t* = Op(1) and equivalently t* = Op(k~2). Then the proposition
follows. ]

With certain obvious conditions we can say something similar for the moments.

Proposition 7.12 In the above conditions if sup, N E(k2p3+‘(é(k),00)) < oo and the
Christoffel symbols and its derivates are uniformily bounded on the support of {Us}

B"(p) = Bias* () + $T5 {Bias' (du))Bias’ () + Cov (B}, 81 } + O(K~/2).

with B*(p) = E,(A%) and Bias(f)) = Ep(dx — 00).

8 Concluding remarks

The parametrization invariance of an inference procedure has been valued as an im-
portant and desirable property by several authors, see Barndorff-Nielsen (5}, S. Amari
[2] among others. Notice, for instance, that we need this property if we want to use,
in a consistent way, the parametric bootstrap. Basically the parametrization invariance
means that the inference procedure yields the same conclusion in any coordinate or
parameter system. But what does "same conclusion” mean?. We cannot talk about
same conclusions if the tools used to reach a conclusion like the bias, the mean square
error, etc.. depend on the parametrization. It is pointed out that the classical bias and
mean square error measures are not intrinsic quantities and therefore, in this sense,
inconvenient. Therefore, the defined bias measure and the mean square of the Rao
distance allow us to investigate the estimator properties in a more objective way. Un-
fortunately in many common and simple cases intrinsically unbiased estimators do not
exist, although it is possible to correct the bias locally, obtaining a new estimator with
its corresponding bias tensor null at one fixed point, pg, provided that the bias tensor
field is defined at pg. Observe that for a fixed sample of size k, in order to correct the
bias of an estimator Ui (z), at a fixed point py, it is sufficient to define the modified
estimator

~

Ui (z) = exp,, (expy Uk(2)) — B(po))
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where B(p,) is the bias tensor corresponding to Ui(x) at po. This could be used in
testing hypothesis theory, when the null hypothesis is simple, correcting the estimator
bias under the null hypothesis, and allowing the construction of tests which would be
invariant under reparametrizations.

It is also possible to give an average measure of the bias, like the integral of the
square of the norm of the bias tensor, over the manifold, as a scalar bias measure:

B, = [ 1B Valdp)

where Vg is the Riemannian measure over the manifold. Notice that this definition is
independent of the coordinate system, and with possible Bayesian interpretations.

Moreover, it will be interesting to characterize the parametric families which allow
an estimator to attain the intrinsic lower bound for the mean square of the Rao distance.

Rao distance has been used as a tool in different approaches, but now we emphasize
its use as the right distance between estimates, namely the appropriate scale to observe
and compare the estimates and consequently the estimators, even if the samples belong
to the same population. The estimates are in the same manifold where the populations
are. Note that the distance between estimates depends on the statistical model from
wich the sample have been drawn and that if we considered the estimates located in
the tangent space of the true density we would obtain, as distance between estimates,
the Mahalanobis distance. This being a first approximation in our context.

In this work we have established a way to compare different estimators, then the
following step will be to find the best estimators according to these principles.

9 Appendix

In this Appendix we present a set of notions and results that belong to the differential
geometry and which are necessary to prove the statements in the paper. The reader
can find further information in Spivak [31], Kobayashi and Nomizu [22], Hicks [16],
Chavel [13], Cheeger [14], Bishop [7] and Karcher [19] among others.

Let (M,2) be a n-dimensional connected C* real manifold, 2 is the atlas, TM
denotes its tangent bundle with projection map 7 : TM — M, where 7(§) = p if
&€ € M,, the tangent space at p. Assume that there is an affine connection V on the
manifold. Let c: (a,3) = M be a smooth path in M. A vector field X along ¢ is a map
X:(a,8) = TM such that To X =c, i.e.: X(s) € M, for all s € (a,3). The tangent
vector field corresponding to ¢ is given by the map t — ¢ = c.(d/ds|s=:), where c. is
the differential of ¢ and d/ds is the standard derivation operator on the real line. For
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the sake of simplicity we shall often identify the fields along curves or surfaces with
their images. For instance, we shall write ¢’ instead of the map ¢ — ¢'(t).

To define the derivative of X along ¢, (V/ds)X, also called covariant derivative,
let (U, z) € A be a local chart on M such that ¢((a, 3)) N U # @, and let Ff‘j be the
Christoffel symbols corresponding to the affine connection V, with respect the local
chart (U, z), defined through

n
V,9]8;=ZF56;C ,7j=1,....n,
k=1
where 8y, ..., 0, are the basis vector fields corresponding to the local chart. Let X =

"7’ (8j0c), and ¢/ =’ oc, 2/ being the j-coordinate function.
The derivative of X is another vector field along c given by

Yx= {(nk)’+ 3 (Tho0) n‘(a‘)’} (B o),

=1 ty=1

(n¥)" and (c’)’ being the usual derivatives on R. This definition is coordinate indepen-
dent and therefore the vector field (V/ds) X is well-defined, provided the existence of
nk, k=1,...,n derivatives.

Some well known propertys are

v v v
ZS-(X+Y) = ZEX+ EEY
v ) v
d—s(f‘X) - f)( +f E-’Yv

where X and Y are smooth vector fields along ¢ and f is a real valued C! function,
f:(a,3) = R. If the manifold is Riemannian, and V is the Levi-Civita connection, we
also have v v

d

Given an arbitrary connection V on the manifold, the curves whose tangent vector
field remains constant along them, like the straight lines in a Euclidean space, are the

geodesics, defined by (V/ds)d! = 0.
9.1 The exponential map

The exponential map, exp, : M, — M, corresponding to V, is defined through the
corresponding geodesics as follows. Let p be a point of the manifold, p € M, M, be
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the tangent space at p, £ € M,, and let v : [0, 1] = M be a geodesic such that

d ) =6

ds

where d/ds|,_, is the standard derivation operator on the real line, at s = 0. Then, the
exponential map is given by exp,(§) = v(1), defined for all £ in an open star-shaped
neighbourhood of 0, € M,.

Notice that exp, maps the straight lines which start at 0, to geodesics starting at
p, and since M, is also a manifold and any tangent vector n € M, may be identified
as a parallel vector field on M, and therefore as an element of (M,)¢ for arbitrary
¢ € M,, we have (exp,).jo(n) = 7, where (exp,).jo is the restriction of (exp,). to the
tangent space (\M,)o. This shows, from the inverse function theorem, that exp, is a
local diffeomorphism.

Now we are going to focus on Riemannian manifolds with their natural Levi-Civita
connection. Denote by &,(r) C M,

Sp(r) ={§ € M, : [[€ll, =7},
where r > 0, and for each £ € &, = &,(1) we define

v(0)=p and 7’(0)=7.<

Cp(§) = sup{s > 0 : p(p,7¢(s)) = s},

where p is the Riemannian distance and <, is a geodesic defined in an open interval
containing zero, such that v¢(0) = p and with tangent vector equal to £ at the origin.
Then if we set

Dy={s€€M:0<s<Cp(&); £ €6,}

and
D, = exp,(D,),

we have the following proposition:
Proposition 9.1 exp, maps D, diffeomorphically onto D,.

Proof:

It will be sufficient to show that exp, is injective since is obviously surjective and
smoothness follows by the smooth dependency of geodesics with respect the inicial
conditions.

Let 7¢ a geodesic segment connecting p to m, i.e. exp,(s§) = m, with s = p(p, m).
Consider a normal ball of some radius ¢ at m € D,. Suppose there is another curve
v (parametrized by the arclenght) from p to m with lenght s = |y[|. If v(s - ¢€) #
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~ve¢(s — €) the corresponding curves would eventually form a corner with the extension
of v¢ beyond m. By cutting across this corner we would get shorter curves from p to
ve(s + €) than s + ¢, contradicting the minimality of v¢ beyond m. a

Moreover, if the manifold is also complete, the boundary of D,, 0D,, is mapped
by the exponential map onto 8D, called the cut locus of p in M. It is also interesting
to note that the cut locus of m has zero n-dimensional Riemannian measure in W
(essentially due to the Sard theorem), and M is the disjoint union of D, and dD,,.
For more details can be found in Hicks [16] or Spivak [31].

Additionally, let us consider the 1-parameter family of geodesics c(s,t) defined as

c(s,t) = exp,(s¢(t)),
where ((t) is any curve in &, with {(0) = £, defined for s sufficiently small. Denote by

=e(z)  e=e(3)
T "\os/)’ €=\5t)

where §/3s and /8t are the ordinary partial derivation operators on R, Qbserve that
o ,,. v, , V.
83<C’c>—<asc’C)+<c’%C)’

where V/0s and V /0t are the covariant derivatives along the curves ¢(-,t) and c(s, -)

respectively. Then, since, fixing ¢, ¢(-,t) is a geodesic, (V/8s)c’ = 0, the Levi-Civita
a0

connection is torsion free and the Lie bracket [¢/, ¢] = 0, (where [¢/, ¢Jf = (== -

3 8 ds dt
,—d-t-(-a-;)(fo c) for any C? real function f on M ), we have (V/ds)é¢ = (V/8t)c, and
therefore

190
2 ot
since ||c'|| = ||{(¢)|| = 1. Therefore the scalar product (c',é) is independent of s, and
for s = 0, we have c(0,t) = p, and thus ¢(0,¢) = 0, obtaining (c',é) = 0. This result
is known as the Gauss lemma, and if we let 7e(s) = (expy )ujse (€) it could be expressed
as

0 .
g (he) = (dime) = 2 2oy =,

((expp)ajug(n), 7(s) ) = 0,
where 7 € (6p(s))s¢. Therefore the curves obtained fixing s = a, w(t) = c(a,t) =
exp,(a ((t)) are orthogonal to the radial geodesics obtained fixing t = b, v(s) = c(s,b) =

exp,(s¢{(b)) and the map (exp,)a & (Mp)y — | exp,(v)» although it does not preserve
angles, maps orthogonal vectors to orthogonal vectors.
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9.2 Jacobi fields

With the same basic notation as in the previous subsection, let us consider a smooth
l-parameter family of geodesics, c(s,t) on M, such that ¢(s,t) is a geodesic for every
t. Let us denote by ¢’ = ¢.(0/0s) and ¢ = ¢.(8/8t). Then we have, for an arbitrary
vector field X along s — ¢(s,t),

vv vv
(A —_———— ]
R&.0X = g5:X ~ 5m©

where R is the curvature tensor, since the Lie bracket, [¢,¢] = 0.

Therefore, since fixing ¢, ¢(s,t) is a geodesic, we have
v v A o= vV
55 = a5t = asqrc TR
and finally, since (V/0t)c' = (V/0s)¢, the vector field ¢ along the geodesic s — (s, t)
satisfies the second order differential equation

0=

v?
E®) ¢+ R(c,é)d =0,
v? =X \Y% )y_
ds? ~ '0s’'ds’ ) . _
In general. if ¢ = ¢(s) is a geodesic on M, a Jacobi field along ¢, Y is a C'™ vector
field along c satisfying Jacobi's equation:
v2
‘d—2-Y+R(C,Y)C/ =0,
where ¢ = ¢.(d/ds) and V/ds is the covariant derivative along c.
Since this equation is linear in Y, the set of all Jacobi fields along c is a vector space
F; over R of dimension equal to 2n, n being the dimension of M. A Jacobi field Y
along a geodesic is determined by its value, Y, and (V/ds)Y in an arbitrary geodesic
point. Moreover, if X and Y are Jacobi fields,

where —

d {V V Vv?
] = Y 5 Y, X) =
S Zxn - grog = (7 X.Y) = (3 ¥, X) =
= —(R(c, X)d,Y) + (R(c,Y), X) =0
by a well known property of the curvature tensor, therefore the Wronskian

(VX Y)- (VY X) = const.
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and, in particular, if X(so) = Y (so) = 0 we will have

\Y v
(2X,Y) = (Y, X) =0. (3)
Additionally, for any Jacobi field Y there exist two real constants a and b such that
(Y,c') =a+bs,

since ¢’ is also a Jacobi field. If a = b = 0 we obtain all the normal Jacobi fields
(orthogonal to ¢), which form a subspace of F; with dimension 2n — 2.

Therefore we can decompose any Y € Fj along the geodesic ¢(s) into its normal
component and its tangential component: Y = Y™ 4+ Y%7 both components also
being Jacobi fields.

For a tangential Jacobi field, as a consequence of the Jacobi equation, we have,

Y (s) = (a +bs) c'(s).

All the results on Jacobi fields can be formulated in terms of unit speed geodesics,
i.e.: with |||l = 1, since if Y (s) is a Jacobi field along c(s) then J(s) = Y (rs) is a Jacobi
field along the geodesic ¢(rs), with J(0) = Y (0) and (V/3s)J(0) = r (V/3s)Y (0).

In order to study the behaviour of Jacobi fields we can introduce the following
differential equation, as we shall see later. Let x : R — R be a continuous function and
consider the differential equation f” +kf = 0. Let us denote by S« the solution of this
equation with S.(0) = 0 and S’(0) = 1, and by C, the solution satisfying C,(0) = 1
and C/(0) = 0.

It is easy to verify that if x = K, where K is a real constant, then

sin(VKt)

if K >0,
VK ’
Sk(t)=«¢t if K =0, (4)
sinh(v=Kt) .. ..
— if K <0,
k0T
and Cg = Sk.
Given a normal (orthogonal to ¢’) Jacobi field Y, let us define
fe =Y]|(0) Cx + |IY|['(0) S.. (5)

Let us also introduce the sectional Riemannian curvature bounds, along the geodesic
¢, 0(s) < K < A(s) (for arbitrary linearly independent 2-planes), where K is the
sectional Riemannian curvature,

(RIX,Y)X,Y)

(X, XV Y) - (X, Y)*

K(X,Y) =
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Then, we have the following comparison’s theorems

Theorem 9.2 (Rauch comparison theorem) LetY be a normal Jacobi field along
a unit speed geodesic c(s), then it satisfies the following inequalities, as long as it does
not vanish and fo(t) >00< t < s:

1Y h(s)y 1Y1'(s) o fals) .
(Fe) 2% Wimzhee M2 he:
Where the second inequality can be written as
fa() (=¥ (5), Y (5)) 2 A(8) (¥ (s), Y (s)).

ds
Proof: For all t € (0, s)

e [ 1V ' 1 o
Y1) = { gy (YD) O = gr (R

1 V.V \Y 2
I 14T ) = () } (t)
> =AY ()

by Cauchy-Schwartz inequality. Therefore, we have
Y17 (t) + A@IYII(E) >0,
and since fa(t) >0
7
(fa@OIYI'®) - FAHYIIE® ) >0,
since fy + Afa = 0. Then, since |[Y]|(0) = fa(0) and ||Y]|'(0) = f4(0), integrating

from 0 to s the inequalities follow.

Proposition 9.3 Let Y be a normal Jacobi field along the geodesic c(t) and let X a
normal field along ¢ with X(0) = Y (0) = 0 and X(s) = Y(s) then ¥y (s) < ¥x(s),
where

‘ _ [ {,v.,Vv , , }
d)X(S) = ‘/0‘ {(dt.X, dt./Y) (R(C y JY)C y JY> dt.
and equality holds if and only if X=Y.

Proof:
Let Y1,Y,,...,Y,_| be Jacobi fields linearly independent vanishing at t = 0. There-
fore

n~=1 n=-1
X=3 fY, Y= a¥,
=1 =1
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where q; are constants. We have

v,V '
<E?X33?X» = 2:.fy’+‘§:.ﬂ(h)§,§£:f‘y +-§:'B(ﬁ J

=1

ZfYanJ +2<fo»2fjdt

=1

v
"> figg Yo > frg ),
=1 =1

n—1

(R(, X)d, X) = Z fi{R(d, Yi), X),

=1
and

d n—-1 v n-1 n-1 v n-1 v
a‘t“'; figY) = <Z fIYi+ Z figYe Z fig¥i)
X, ijth +Zf~’dt2

= <Z £Y;, Z detY> + <Z f,dty,, Z fi =%

=1

=1

z-'l

Therefore combining the above equations we obtain

n-1 n-1
(% ,th) (c,X)c',X)=(Zfi'Yi,ZfJ"Y})

=1 =1
n-l

= (Zfzynz.fj J>+dt (X, Zf]dt ])

=1

n-ln-

+ZZf’fJ{( Vi)~ (Y}

=1 j=1
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where the last term is zero by 3. Thus
s n—1 n—1 n—-1 V
vx(e) = [(X f% T A¥)d + (XX 7))
i=1 J=1 j=1

similarly

s n—1

n-1 n—1 n-~1
. \% \%
wris) = [(Tave Tyt + . ¥ a2 ¥)(s) = (%, X a,22¥,)()
=1 J=1 1=1 J=1
since a; are constants. Finally, since f;(s) = a;, we have
s n—1 n—1
vx(e) = [(F S T A% de+ v (),
=1 I=1

consequently

vy (s) < ¥x(s),
and the equality holds if and only if ff =0fori=1,...,n—1and hence X =Y. =m

Theorem 9.4 Let Y be a normal Jacobi field along a unit speed geodesic c(s) that
vanishes at s = 0. Assume also that for any normal vector field Z along ¢

(R(d, Z2), Z)

then we have the following inequalities
I¥I/e) ) (1
Yli(s) = fs(s) fs(s)

where the second inequality may be written as

J5(6) (5= (8), Y (5)) < F5(5) (Y (5), Y (3).

) <0 YIS < i),

Proof:
Define
u(s) = (Y,Y)(s), uv(s) = fE(s),
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and

ue) =2 we) = o

Notice that
[ (9 = 55) dt = (5383) (5) = fihs) @) = (fifs) (o)

since fsff +6f# =0 and f5(0) =0. Then

du \%
Pl 2(;9—SY, Y) = 2¢y = 2uu,

And solving the diferential equations we obtain

dv ,
o= 2fsfs = 2vv.

u(s) = u(e) exp{Z/: u(t) dt}, v(s) = v(e) exp{?/;a v(t) dt}.

Using twice the 'Hopital rule

Cu _ YIR0)
e = RoE -

and therefore

2 = el [ () - vie) dt)

Now we are going to see that u(t) < v(t). Let W be a parallel vector field along

c(t) such that W(s) = Y(s). Additionally, we introduce the vector field Z = fsf_vzfs_)'
: 5
Observe that Z(0) = 0 and Z(s) = W(s) = Y (s), then by the above proposition

vy (s) < vz(s)

and taking into account that

oisy= [ Lip W o W p g W W
val(s) —/0 {U‘sfs(S)’f‘sfs(S)) <R(C’f‘sﬁs(S))c"f5f<s(3)>} dt

&V(:)‘;z [ {2 -85} de=wismis)

we have
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and thus u(s)/v(s) is monotonous decreasing, with u(s)/v(s) < 1, and the inequalities
follow. [ ]

Proposition 9.5 LetY be, as above, a normal Jacobi field along c(t) such that Y (0) =
0. Assume that  and A are lower and upper curvatures bounds along c(t). Let k be a
continuous function. Then, as long as Sa > 0 and S, > 0

1Yllee) < { HYH(t).(Z;S%_ _g_i_) O e
1Y/ (0)- S (t) s

6+ A)
6+ A)

(6)

LVE I T

Proof:
Let fc be asin 5, and Z a parallel vector field along ¢(t) such that ||Z]| = 1, then

(fY' = f1Y, Z)(0) = 0.
On the other hand
(fY' = £Y,Z) = f(sY - R(c,Y)<, Z),
and since ((k — R(c/, )"} Y, Z) is a symmetric bilineal form such that
((k = R(,)) YY) < max(A - &, & = §)||Y]?,

we have

(fY' = £Y,2) < famax(A - &,k = §)|[YY],

Then by the two above theorems

-”—}'J@) (A= R)fefa}(®) £r<L(E+A)and
(f'cy’ - f»lcyv Z>’(t) S a fA(t) >0,0<t S s
(5= &) Fefs} () k> 15+ A)
“%;ﬂ(s) (fofa— fofa)' () if k< 3(6+A) and
= fa)>0,0<t<s
Gefi = fi5s) () k> 1(6+4)
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Integrating from 0 to s, choosing Z such that Z(s) = Y'(s)/|[Y’||(s) and taking into
account that, by hypothesis, f. > 0, we have

NAUAY
Yli(s) < { i <2f~ fA>( )

k< 3(64+4)
f5(s) K2

(6+ A)

L Ll L

where we have applied the Cauchy-Schwartz inequality. The last inequality is due to the
fact that ||Y||(s) < fs(s). Finally putting the expressions for f. and fa the proposition
follows. .

9.3 Convex geometry conditions

Now we are ready to analyze the convexity of the square Riemannian distance, p?,
equivalent to the convexity of the real function p?(p,v(t)) for any geodesic ¥ and arbi-
trary p € M.

We have the following important proposition:

Proposition 9.8 Let N be a regular conver set in a Riemannian manifold M. If the
sectional curvatures in N are at most 0, or K > 0 with d(N) < 7/2v/K, then the square
of the Riemannian distance is convexz.

Proof:
Let v be a geodesic on .V and consider the family of geodesics from p € NV to ¥(t)
defined by ¢,(s,t) = exp,(s exp; ! (7(t))). Let us denote

¢ = (cp)—<ga;) ¢p = (%)*(%) .

It is well known that p(p,7(t)) = |[c,(s,t)|| is independent of s and the mapping s —
¢p(s,t) is a family of Jacobi fields, since c,(s,t) is a smooth l-parameter family of
geodesics. Then,

1
527010 = g0 t) = 51 { [ (0,00 (0,0 s =

1 v 1V,
=2/0 <520;”c;’> ds:?/o <5;cp’c;’) ds,
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since ||c,|| is independent of s and (V/0t)e, = (V/ds)é,, where V/ds and V /0Ot are
the covariant derivatives along the curves c,(:,t) and ¢, (s, ) respectively. Taking into
account that (V/Bs)c;, =0, we have

J,. , v.
é;(%v%) = <5;vac;>>v

therefore, by observing ¢,(0,t) = 0, we obtain

ft (2 7(2)) = 2(ép(1,t), ey (1, 1)).

Differentiating again, since (V/0t)é,(1,t) = (V/t)% = 0 it results in

2 (0. 7(0)) = 2oL, B e to(1,1)
8t2p P»'Y - Cp L] 7ascp Y y
denoting the Jacobi field ¢, along s — c,(s,t) by J(s), then J(0) = 0, J(1) = 4(¢t)
is independent of p, and (V/0s)éy(1,¢t) = (V/0s)J(1). We can decompose J into its
normal and tangential component: J = J"°" + J¥". For the tangential component,

since J*"*(0) = 0, we obtain
J*"(s) = bsc,(s,t),

and

V tan _— ’ _V_ ’ — /
8—;.] (s) =bcp(s,t)+bs 53¢ (s,t) =bcy(s,t),

resulting in J'"(1) = (V/8s)J*"(1).
For the normal component, from the Rauch comparison theorem, and taking into
account the geodesic speed, we have

U0 g™ WD) 2

> falllep(L, Ol (J77(1), I (1) ).

Therefore, combining these results we get

( aSJtcm( )’Jtan(l) > = (Jtan(l) Jtan(1)> _>. 0
< athan( )’Jnor(l) ) —_ _( 63Jnor( )than(l) > —_ 0,
and v A
__ qnor nor / nor 2
(557 (0770 2l L0l 2y 07 WIF,
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resulting in

32
LI D) = (I, 5I()
> Lol REEI I W+ )
5

We are going to consider two cases. First, let us assume A(s) = 0. In this case,
since fa(0) =0, fa(s) = bs, obtaining

2
L2 (e (1) 2 (I = 2 ((0), 7(1) > O, (7

and p?(p,~(t)) is a convex function.
Second, let us assume A(s) = K where K > 0, and additionally the manifold has a
diameter d(M) < 7/2v/K. In this case, fo(0) =0, fa(s) = sin (vK s), and therefore

Faliy a0l _ VElie, (L 1) cos (VE licy(1, 1)1} o0
Falllen (@, 0 sin (VK [l (1,£)]) ’

1> [y (1, 8)]]

since |jc,(1,2)]] = p(p,7(t)) < d(M) and 0 < vk llep(1,t)}| < 7/2, obtaining

19, VE [1¢(1,2)] cos (VE licy(1, 1))
92 at2p (p,7(t)) Z sin (\/E HC;,(].,t)”)p “J(l)“2
_ VK1, )] cos (VE lley (1,01 , X
= i (\/k— ”Cé,(l,t)”) P (7(O)v /(1)) >0, (8)
and again, p?(p,y(t)) is a convex function. n

9.4 Geodesic spherical coordinates

In order to describe the notion of spherical coordinates, first we have to introduce the
following property.

Proposition 8.7 LetY be a Jacobi field along v¢(s) = exp,(s€), withpe M, £ € M,
determined by the initial conditions Y(0) =0, (V/ds)Y (0) = n. Then

Y(s) = (expp).jse(sm).
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Proof:
Let us consider the 1-parameter family of geodesics ¢(s,t) defined as

c(s,t) = exp,(s¢(t)),

where ((t) is a path in M, with {(0) = £ and {’(0) = n, identifying, as usual, the
elements of M), as elements of any (M, )., where (M,),¢ is the tangent space at s€. In
this case we know that the vector field

Z(s) = é(s,0) = c.(%Lzo) ,

is a Jacobi field, and

Z(S) = (expp):lsf(s CI(O)) =3 (epr),|3§(77),

therefore Z(0) = 0, and with the same basic notation as in the previous subsection,

v V. v, e
(5:2)0 = (35¢) 0.0 = (5¢) @Oy =0 =7,
concluding that
(exp,).jse(sm) = Y (s).

Given a point p in a Riemannian manifold, we are now able to introduce now geo-
desic spherical coordinates on D,, through exp,|D,, the restriction of exp, on D,. Let
us assume that there is a coordinate system on &p, £ = &(u) where u varies over a
domain in R*™'. A coordinate system on D, is defined through

v(p, u) = expy(p&(u)).

Denote by

ve(p) = v (-8—) and Y,(p,€)=v (.Q_)

/5P—-6p an _taua,
then, for every £ € 6,, Y,, a=1,...,n — 1 are Jacobi fields along v, determined by
the initial conditions

Y,(0,§)=0 and (Bip) Y. (0,§) =€‘<Bi°‘> , a=1,....,n-1,
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va(0/0u®) € Mexp,(pt) being orthogonal to v¢(p), as a consequence of Gauss’s lemma.
Therefore in a neighbourhood of exp,(p&(u)) there exist a coordinate system (p,u),
such that the corresponding basis vector field

O =7(p), 02 = Y1(p,£), ..., 0n = Yn-1(p, §)

satisfies
gll(pa U) = (81! al) = 1» gla(pv u) = gal(P, u) = <81’80> = O? a = 27 sy
where g,5 are the metric tensor components, and 9,, o = 2,...,n are Jacobi fields

along the geodesic y(s) = exp,(p&(u)). Therefore the Riemannian metric may be
expressed as

ds* = dp® + Z gop(p, u)du® du”, (9)
a,3=2

where
gaﬁ(pw u) = (Ya(p1§(u))9yﬁ(pv£(u))>v a’ﬂ =2,.

We have the following important theorem:

Theorem 9.8 (Bishop’s comparison theorem) Let « and K be lower and upper
curvature bounds in a region where det G > 0 then in this region we have

n — fn() fIC()
(=075 23 l°g”d“G> Do)

Proof:
If we let G = (gag)nxn be the fundamental tensor components in matrix form, along
the geodesic v¢(p) we have

0 = _ 2, JdetG 8905

dp log Vdet G = 2 detG <XB: . 09ap “0p

% i YO”Y5> Z g a1 a )
a,d=2 a,3=2

where g*? are the coefficients of G~!. Throught a lineal transformation of the fields
Y, thus without changing the value of the previous expression, we can make Y, to be
orthogonal at a point (p, u). Then, we have

] n
—l Yay_ ’
35 8 VARG = X [y (Vo 52)
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then, since we have the conditions to apply the previous theorems,

) o Ji0)
(=% 2 1°g“de‘G> D)

~ now, since the Jacobi fields vanish at the origin, fi(p) = S« and fx = Sk and the
theorem follows. [ ]

We are now going to consider two cases. First, let us assume K < 0. In this case

fic(p) = Sx(p) = sinh(v/=Kp), and fi-(p) = Cx(p) = V=K cosh(v=Kp) if K < 0,
and thus
a%log VdetG > (n - 1)v'=K coth(v=Kp), (10)

the case K = 0 can be obtained directly or by continuity, resulting in

ilog VdetG > P—:—l-
dp P

Second case, let us assume K(p) = K where £ > 0, and additionally the manifold
has a diameter d(M) < r/2VK. In this case fx(p) = Sk(p) = sin(vKp), and fe(p) =
Cx(p) = VK cos(vKp), and therefore

%log vdetG > (n - 1)\/7C_cot(\/Ep) > 0. (11)

9.5 Comparison theorems and volumes

We can use Bishop’s theorem in order to obtain the volume of a ball of radius r in a
Riemannian manifold whose sectional curvatures are constant and to give bounds of this
volume when the sectional curvatures are bounded. We have the following propositions:

Proposition 9.9 If the sectional curvatures are constant and equal to K, the volume
of a Riemannian ball of radius r and center p € M is given by

nf2 r
vol(B,(r)) = I?TT;/_2)' /0 SEL(t) dt.

Proof:
From the expression 9 in subsection 9.4, and writing G for the metric tensor, we

obtain .
vol(B,(r)) = / / 1(3)\/detG’;cdudp.
0 JE=H(Sn
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Where S, is the unit sphere in M,. On the other hand, by Bishop’s comparison theorem, .
when the sectional curvatures are constant

9 faetCelo. ) = (n — 112K
8—,0 log \/detG(p,u) = (n - 1) S (p),

then, integrating this expression, we have
detGe(p, u) = Sz_l Qx(u).
But, in fact, Qx does not depend on K. Obviously

detG (p,
lim vk c(p, u) =1,
p—=0  pn=1Q(u)
where Q(u) du is the area element of the unit esphere in a Euclidean manifold, and,
since .
Sy

lim =&
p—0 p"‘_1

=1,

we conclude that Q¢ = Q. Thus we may write
vol(B,(r =/ Qu) d /rS“_l dp.
(B = [, . Qwdu [ St (o) do

Finally, it is easy to check that

and the proposition follows. a

Proposition 9.10 When the sectional curvatures are constant and equal to K and
KS%(r) < 1 we have the following ezpression for the volume of a Riemannian ball of
radius r.

2 n/2 F K]SZJ
vol(B(r)) = n_[T%z_/?)— { Z\;‘i:zj ]_f!c(r)}. (12)
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Proof:
From the previous proposition

e/ 2 r
vol(B(r)) = 1“2(;/2) fo SEL(e) dt

Then, taking into account, from the definition of S, that
{Sk(O} +K{Sc()} =1
and doing y = S%(t)/SE(u), we have

/Or Sl (tydt = %sz(r) /01 v (1- /cs,zc(r)y)’* dy

On the other hand we have a relationship between this kind of integrals and the gen-
eralized hypergeometric functions, see Abramowitz [1],

F(a,b;c;z)ziMfi [z] < 1

s (c); J

where (a); = a{a+1)---(a+j~ 1), given by

Fla,bieiz) = F(T?((Cc)_——zﬁ/ol t5=1(1 - )51 (1 — tz)~* dt, Re(c) > Re(b) > 0.

Then this leads to
" oan- 1 I'(% 1 nn+2
/0 S¥ 1(t)dt = E.S'k(r) nzg F (-2-,—2;————2 ;ICS%(r)) =

i[‘ 5+7) ICJS ()
247 J'

=_sn
PO

[=]

J:

and the proposition follows. n

Proposition 9.11 Let vol(B,(r)) be the volume of a ball By(r) with center p and
radius r. Then

vole(Bp(r)) 2 vol(Bp(r)) 2 volk(B;(r)),

where vol(B,(r)) and volx(Bj(r)) are the volumes of balls of radius r and arbitrary
centers p and p respectively, in manifolds with constant sectional curvatures x and K.
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Proof:
If we integrate, from pg to p, the inequalities in Bishop’s comparison theorem we
obtain

si! ( ) , VECH W . SElp)

57 T(po) = VaetGlpo, w) = S¢ (o)
Moreover
v/ > \/det ) > +/detG(po, 3
p{.@ detG(po, u detG(p, u hm etG(po, u S" 1
and, since

lim VOGP0, VAWGP0Y) _ gy
po—=0 ST (po) P00 S (po)

with Q(u) as in the proof of 9.9, we conclude

SEY(p)R(u) > \/detGlp, u) > S () Qw),

and the desired result follows. .
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