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Abstract 

The parametric statistical models with suitable regularity conditions have a na­
tural Riemannian manifold structure, given by the information metric. Since the 
parameters are merely labels for the probability measures, an inferential statement 
should be formulated through intrinsic objects, invariant under reparametrizations. 
In this context the estimators will be random objects valued on the manifold cor­
responding to the statistical model. In spite of these considerations, classical im­
portant measures of an estimator's performance, like the bias and the mean square 
error, are clearly dependent of the statistical model parametrizations. 

In this paper the concept of moment of a random variable is extended to ran­
dom fi.elds on an n-dimensional C00 real manifold, and the notion of mean value is 
extended to random objects which take values on a Hausdorff and connected man­
ifold, equipped with an affine connection. In particular, the Riemannian manifold 
case is considered. This extension is applied to the bias and the mean square error 
study in statistical point estimation theory. 

Under this aproach severa! basic results are obtained: local and global lower 
bounds for the mean square of the Rao distance, the invariant measure analogous 
to the mean square error, which depend on the intrinsic bias and the curvature of 
the statistical model. Also the behaviour of the mean square of the Rao distance 
of an estimator when conditioning respect to a sufficient statistic is considered, 
obtaining intrinsic versions of the Rao-Blackwell and Lehmann-Scheffée theorems. 
Asymptotic properties complete the study. 

AMS 1980 subjects classifications: 62F10, 62B10, 62A99. 
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1 Introduction 

Estimation can be defined as the theory that concerns making inductions from the data 
and inferences about inductions. In parametric statistical estimation theory we make 
inductions, from the data set, by proposing probability measures that belongs to a 
parametric family, the parameters being only a name and playing no role in the induc­
tion process. The inferences are usually in the form of point and intervales estimates 
and no matter what specific inferences may eventually be needed. In this approach 
estimators supply different methods of induction. 

On the other hand, as it is well known, the bias and the mean square error are 
the most commonly used measures of performance of an estimator. These concepts are 
clearly dependent on the coordinate system or model parametrization. No difficulty 
arises from thts as long as closely related properties, like unbiasedness or uniformly 
minimum variance estimation are preserved under coordinate system transformations. 
C nfortunately, this is not the case, essentially due to the non tensorial character of the 
bias and the mean square error. 

Example 1.1 Let a statistical model be defined through the parametric family of 
densities 

¡3ªxcr-l . 
p(x;a,¡3)= r(a) exp{-¡3x} x,í3EIR+, 

where a> O is a known constant. Taking into account that, for a sample size k, 

is a sufficient statistic for the model, the estimator, say estimator W, which is unbiased 
and U11V for í3, with ka > 1, is given by 

¡3(W) _ ka - 1 
- s 

But parametrizing the same statistical model as 

where a > O is again a known constant, the above estimator W would give the estima­
tion for A 

A(W) = k S 
a-1 
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which is biased. The corresponding estimator, say U which is now unbia.sed and UMV 
for .X is given by 

s 
.\(U) = ka: 

However, if we used this estimator to give an estimation of J we would obtain 

which is biased. 

ka 
¡J(U) = -s 

Furthermore, if we compute the mean square error of these estimators, W and U, 
under both parametrizations, the following table, assuming ka > 2, summarizes the 
above discussion: 

Estimators 
Parameters j w u 

Bias(¡3(W)) == O Bia.s(¡3(U)) = _p_ 
a '7 1 

,3 ,32 (ka+ 2)/32 

~1SE(¡3(W))= ka - 2 < MSE(,lJ(U))= (ka - l)(ka - 2) 

(Not attaining Cramér-Rao lower bound: :: ) 

Estimator W is preferable to Estimator U 

Bia.s(,\(W)) = ka A- 1 Bias(,\(U)) = O 

,\ ~lSE(,\(W)) (ka+ l)A
2 

>MSE(,\(U))= ~ 
(ka - 1)2 ka 

(Attaining Cramér-Rao lower bound: :: ) 

Estimator U is preferable to Estimator W 

This example show sorne problems, paradoxes or inconsistencies of cla.ssical unbia.sed 
minimun variance estimation, essentially due to the dependence on the coordinate 
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system or model parametrization of this statisticai criterion. Therefore seems desirabie 
to modify these classical notions in an intrinsic or invariant way. 

In this situation a natural question arises: could analogous notions to the bias 
and the mean square error be formulated depending only on the estimation procedure 
employed? There are severa! ways to attempt to achieve this purpose. First, we may try 
to choose a privileged coordinate system, but it would be difficult to justify the choice. 
Second, we may define a loss function, extrinsic to the statisticai model, invariant under 
reparametrizations, and proceed as in Lehmann, see [24]. This may be a rea.sonable 
proced ure from a decision theoretical point of view, but for statisticai inference purposes 
it might be better to work exciusively with concepts intrinsic to statisticai model. 

The aim of that we shali refer to as Intrinsic .4nalysis of the statistical estimation, 
is to develop a statistical estimation theory analogous to the classicai one, based on 
geometrical structures of the statistical models. Then one goal of the Intrinsic Anal­
ysis is to supply invariant tools in arder to analyse the performance of an estimator, 
and another is to obtain resuits that are analogous to classical ones and to establish 
relationships between the classical non invariant mea.sures and the invariant herein 
obtained. 

In this paper, taking into account the Riemannian structure of the regular paramet­
ric statistical models, an intrinsic bias measure is obtained by considering the mean 
value of random manifold-valued maps. The mean square of the Riemannian, or Rao, 
distance is the invariant analogous to the mean square error. 

The first part of the paper is concerned with the moments of a random field on an 
n-dimensionai C00 real manifold, and also the mean value concept of a random object 
which takes values on a (Hausdorff and connected) manifold equipped with an affine 
connection, through the exponential map. We emphasize the analogies and differences 
between moments and mean values, and we consider, in particular, the Riemannian 
case .. 

The second part is the application of these results to the study of sorne invariant 
mea.sures analogous to the bias and mean square error corresponding to a statistical 
estimator. The third and fourth parts are devoted to the development of intrinsic 
versions of the local and global Cramér-Rao lower bounds. In the fifth part we study 
the behaviour of the mean square Rao distance of an estimator when it is conditioned 
by a sufficient statistic, in order to obtain intrinsic versions of the Rao-Blackwell and 
Lehmann-Scheffée theorems. Finaliy sorne asymptotic properties, specially related with 
the maximum-likelihood estimator, are studied. 
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2 Moments and mean values 

,5 

Let (\,a. P) be a probability space, where X is the sample space, a is a O'-algebra of 
subsets of X and P is a probability measure on a. Let (.\,/, 21) be an n-dimensionaJ 
c-:o real manifold, where 21 is the atlas for Al. 

Let / be a measurable map, / : X • .H, also called a. random object on :'vl, tha.t is, 
a map such that for all open sets W e lvl, ¡- 1 (W) E a. We will now introduce the 
notion of mean vaJue and moments of /, assuming the fewest necessary asumptions and 
maintaining the intuitive notion of centrality measure, in a. closely related idea of center 
of mass as we shall see later (see Ka.rcher [19], Kobayashi a.nd Nomizu [22], Kendall 
[21] and Hendriks [15]). 

If there exists a global chart (Af, 4>) we may try to define the mean va.Jue off as: 

E(!)= ef>- 1 (1 (ef> o f) (x) P(dx)), 
. X 

but this naive approach it is not satisfactory since E(/) would be dependent, in general, 
on the coordina.te system. Only linear transformations would preserve E(!). 

In order to solve this problem, let us first introduce sorne concepts. Let A be a set 
of .W, and ;:jp,q) the set of all C00 tensor fields in any open subset of A, of arder p+q, 
p times contravariant and q times covariant. If we fix m E A, any map X from X to 
F.1p,q) induces a. map Xm, such that Xm: X • Tf(Mm) with Xm(x) = (X(x))m, where 
Tf (Jlm) denotes the space of (p, q)-tensors on the tangent space at m, :i-Im, having a 

natural topological vector space structure. Considering the Borel O'-algebra on J=jp,q) 
induced by the Borel O'-algebras of the A1m, a simple definition follows, 

Oefinition 2.1 A C00 random (p, q)-tensor field on A, X, is a measurable map from 
X to Fjp,q). 

It follows from the definition that 'vm E A, the induced map Xm is a measurable 
map on (X, a). 

11oreover, any random tensor field may be cha.ra.cterized by its n<P+q) components 
with respect to any coordina.te system, 91, ..• , 9n, 

ya1,, .. ,Clp( , 91 9") 
-'¡3¡, .. ,,Jq X, , ••• , 01, .. ,,op, /31, ... ,/Jq = l, ... ,n, 

which are clearly fixed x, C00 functions of 91 , ••. , 9n, and, fixed 9, real valued measur­
able functions on (X, a). 

Let 0 stand for the tensor field product. In the present context it is natural to 
define: 
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Deflnition 2.2 The k-order moment o/ the random tensor field X is an ordinary 
(kp. kq)-tensor field on A defined by 

k 

.\lfk(X) = fx X(x) ~X(x) P(dx), k EN, 

provided the existence o/ the above integral. 

'.':atice that .\lfk(X) may be computed explicitly through its components in any 
coordinate system. The components of ,\;fk(X), with respect to a coordinate system 
(} 1 , ... , (}n, will be given by 

This is in fact the simplest and also the most natural extension of the k-order 
moment to a random tensor field. In particular, the 1-order moment is the expectation 
of X. 

We can also write 
k 

k ....--.... .M (X)= E(X® .. . ®X), 

where the tensor product of random tensor fields is naturally defined from the tensor 
prod uct of ordinary tensor fields. 

In a similar way we could define the central moments, which exhibit classical prop­
erties, for instance: 

,\;f~(X) = E((X - EX) 0 (X - EX))= E(X 0 X) - E(X) 0 E(X). 

In the case that X is a vector field, the components of this teasor, with respect to a 
coordinate system, may be written in matrix notation, obtaining the covariance matrix, 
~X, 

Ex = E(X X~ - E(X)E(X)', 

identifying, in the previous equation, the vectors with their components and X being 
a column vector and X' the corresponding row vector. 

In arder to consider the mean value of a random object, measurable map, which 
takes values on a C 00 real manifold, we have to introduce an additional structure on 
the manifold: we shall assume that it is equipped with an affine connection. Typical 
examples of manifolds with an affine connection are Riemannian manifolds. 

Associated with an affine connection there is a map, called the exponential map 
expP : .\lp • .H lt is defined for ali v in an open star-shaped neighbourhood of Op E .vfp. 
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Additionally it is also well known that this map, in general, has no inverse, although 
there are important particular cases where one exists. '.'Ievertheless, we can always 
restrict the map in an open neighbourhood of Op E ,vlp, such that the inverse is well 
defined, the exponential map being a local diffeomorphism. Further information can 
be found in 9.1 of the Appendix. 

Let us precise the kind of neighbourhoods that we consider suitable to define the 
mean value of a random object. 

Definition 2.3 A. neighbourhood W(p) o/ p E M is said to be normal i/ W(p) is the 
diffeomorphic image, by the exponential map, o/ an open star-shaped neighbourhood o/ 
Op E .'vlp• 

'.'!atice that a normal neighbourhood W(p) of p has the property that every q E W(p} 
can be joined top by a unique geodesic in W(p). 

In the vector space lvlp we will consider star-shaped neighbourhoods, V(p), such 
that V(p) = -V(p), in the case we have only an affine connection, and balls in the 
Riemannian case. They shall be referred to as balls with center 0p, even in the affin 
case. 

Deftnition 2.4 The image, W(p), by the exponential map, o/ a open ball V(p) with 
center Op, is said to be a normal ball with center p if W(p) is a normal neighbourhood 
of p. 

Notice that, in the Riemannian case, the shortest geodesic that joins p with any 
q E W(p), W(p) being a normal ball with center p, is unique in i.\ll and Hes in W(p). 
However we can consider more general neighbourhoods with this property. 

Deftnition 2.5 An open set W(p) is said to be a regular normal neighbourhood o/ p if 
and only if its intersection with any normal ball with center p remains normal. 

In the Riemannian case we can assure the existence of these kind of neighbourhoods. 
Since every point p has a neighbourhood where the exponential map is a diffeomorphism 
we can obtain a normal neighbourhood of Op E M,,. Let V(p) be the corresponding 
star-shaped neigbourhood in A1p, Then, consider sorne ball with center o,, E i.'Jp where 
the exponential map is injective. lf we restrict the map to the intersection with V(p) we 
obtain a regular normal neighbourhood of p. lt is easy to see tha.t in the Riemannian 
case a. neighbourhood W(p) of pis regular normal if and only if the shortest geodesic 
that joins p with any other point in W(p) is unique and lies in W(p), then the regular 
normal neighbourhoods are a generalization of neighbourhoods with these property to 
the affin case. 
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Denote by 6p ={.;E A/p: 11.;IIP = l}, and for each.; E 6p we define 

Cp(.;) = sup{s >O: P(P,ie(s)) = s}, 

8 

where p is the Riemannian distance and 'Ye is a geodesic defined in an open interval 
containing zero, such that ¡e(O) = p and with tangent vector equal to .; at the origin. 
Then if we set 

and 
Dp = expp('.Dp), 

it is known that expP maps '.Dp diffeomorphically onto Dp, see 9.1. of the Appendix. In 
fact Dm is the maximal regular neighbourhood of m in the sense that any other regular 
neighbourhood of m is included in it. 

Then, given a random variable f taking values on a (Hausdorff and connected) ma­
nifold. equipped with an affine connection (which may be the Levi-Civita connection 
corresponding to a Riemannian manifold), there is a natural way to define a random 
vector, fixed p E :'vi, given by exp; 1 (! ( x)). This vector is not necessarily defined for 
all x E '(, but if it is defined almost surely, we can introduce the following mean value 
concept, 

Definition 2.6 .4 point on the manifold p E Jf is a mean value o/ the random variable 
f and we shall write p = 9Jt (!), if and only if there is a regular normal neighbourhood 
of p where f takes values almost surely [P], and we have 

l exp; 1 (J(x)) P(dx) = Op, 

Let us remark that this is an intrinsic mean value definition, independent of the 
coordinate system. 

:\-Ioreover, in the case where M is a complete Riemannian manifold, if P¡ is the 
probability rneasure induced by the measurable map in ivl, and P¡ is dominated by the 
Riernmannian measure, for any p E M we will have a regular normal neighbourhood 
of p, with probability [P] equal to one, where exp; 1 (J(x)) will be defined. This is an 
immediate consequence of the image rneasure theorern and that the cut locus of p in 
.vi is a Riemannian rneasure zero set. 

In the following we will use the notation exp; 1(·) to indicate the inverse of the 
exponential in sorne regular normal neighbourhood of p. 

\Ve shall consider now severa! examples. 
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Example 2. 7 Let .\l be JR71
• Identifying the points with their coordina.tes correspond­

ing to the trivial chart, and considering the usual Euclidea.n affine connection, we have, 
for =- m E R'\ that exp;/ (z) = (z- m)m. In order to find the mean value of a random 
variable J we have to solve the following equation 

l (f(x) - m)m P(dx) = Om, 

but this equation has the unique, trivial solution 

m = f f(x) P(dx), 
X 

provided the e.xistence of the latter integral. Therefore we recover the classical definition 

m (/) = E(/)= l f(x) P(dx). 

).,foreover, the second order central moment of exp;;/ (f(x)) can be written, in matrix 
notation and omitting the subindex m, as 

'f.¡ - .. "1~(exp~1 (/(x))) = E ((f(x) - m)(f(x) - m)') 

- E(!/') - E(f)E(f)', 

which is the usual covariance matrix. 

Example 2.8 Another interesting example is given by considering the mean values 
of the Von ~Iises distribution. In this case the manifold is the unit n-dimensional 
Euclidean sphere, with the connection induced by the natural embedding into the 
Euclidea.n space lR". The probability measure induced in the. manifold is absolutely 
continuous with respect to the surface measure on the sphere and the corresponding 
density function (Radon-Nikodym derivative) is given by 

p(x;e, ..\) = On(..\) exp{..\e'x} x, e E Sn = {z E IR" : z' z = l}, ,\ E JR+' 

where On(..\) = ,\k/2-1/(21r)k/2h;2_i(..\) is a norma.lization consta.nt, hn-i being the 
modified Bessel function of the first kind a.nd order k/2 - l. In this case it is clear the 
existence of two mean values, given by e and -{. Compare this result with the mean 
direction defined in Mardia et al. (23, 424-451]. See also Jupp and ~lardia (18), for a 
comprehensive exposition. 

Example 2.9 Consider a random variable uniformly distributed on a circle, with the 
connection induced by the natural embedding into the Euclidean manifold lR1 . Then, 
all points on the circle are mean values. 
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\Ve would supply, in the Riemannian case, a scalar dispersion measure with respect 
to a mean value m: the ordinary expected value of the Riemannian distance square 
between f(.r) and m, which may be regarded asan invariant version, independent of 
the coordinate system, of the variance of a real random variable. It is also possible to 
define a dispersion measure with respect toan arbitrary reference point of a Riemannian 
manifold, as the mean value of the square of the Riemannian distance between f(x) 
and the selected reference point. 

\Ve may also observe that, with this extension of the concept of mean value, we 
maintain the intuitive and appealing meaning of centrality measure, even though we 
do not have the linear properties of the expectation. However, this is natural since 
we cannot identify, in general, .H with its tangent spaces. Similarly we will have 
a dissociation between the mean value and the concept of first arder moment. The 
moments of a random map /, which takes values on .H, should be defined as 

Definition 2.10 The k-order moment of the random map f is an ordinary (k, 0)­
tensor field on A defined by 

k 

.'v1kU)m = fx exp;;/ (/(x))~exp;/ (/(x)) P(dx), "im E A., k EN 

prórided the existence of the above integral. 

There is a relationship between the defined mean value and the classical center of 
mass, lt. 

lt = arg min 1t¡(m), 
m E J,f 

where .1t¡(m) = l p2(m, f(x)) P(dx). First of all we have the following propositions: 

Proposition 2.11 IJ exists sorne mo E }[ such that 1t¡(mo) is defined, then the func­
tion 1t¡(m) is defined for ali m E JI. 

Proof: 
By the triangular inequality 

1t¡(m) :5 27t¡(mo) + 2p2(m, m0 ), 

and proposition follows. • 
Suppose it exists a point mo such that 7t¡{m0 ) < oo, then: 
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Proposition 2.12 The fuctíon 1-l¡(m) is differentiable and 

Xm1-l¡ = -2(Xm, fx exp;;/ (f(x)) P(dx)). 

1.cheneuer exp; 1 (·) is u:e/1 defined for ali p E J/ almost surely-P. 

Proof: 
For all Xm E .\/m, since, fixing q E J/, p2(·, q) is a C 00 function, we can write 

Xm p2(·, q) - Xmll exp0)1(q)ll 2 = 2(Vx,.. exp¡:,1 q,exp;1 (q)) 

= -2(Xm, exp;1 (q)), 

11 

where the last equality can be easily checked considering a geodesic spherical coordina.te 
system with origin q. Then, we ha.ve 

thus, if Um is a neighbourhood of m with diameter D, by the triangular inequality 

Let X be a C"° vector field such tha.t X(m) = Xm and consider, in a. neighbourhood 
of m included in Um, the integral curve of X, ,(t), such tha.t ,(O)= m and the tangent 
vector in mis Xm, by the mean va.lue theorem 

where Xm' = X(m') and m' is on ,, then by the dominated converge theorem 

Xm 11.¡ = -2 fx (Xm, exp;1 (/(x)))P(dz). 

Fina.lly, the continuity of Xm 1-l¡ follows from the inequa.lity 1 and, again, by the the 
domina.ted converge theorem. • 

Now we can established the conection between mean values and center of mass 
above-mentioned. 
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Proposition 2.13 Let (X, a. P) be a probability space, (JI, 2l) be a complete Rieman­
nian manifold and f : '( • .\/ a measurable map, such that P¡ is dominated by the 
Rit:mannian measure VR, P¡ << VR. Let the function 1-l¡ be defined as 

1-l¡(m) = l p2(m, f(x)) P(dx) 

defined for ali m E .\/. Then 1-l ¡ has a critica/ point at m E .'vi if and only if m = 
íJJt (!). 

Proof: 
1-l¡ has a critica! point at m if and only if Xm 1-l¡ = O "i/Xm E .'vlm, then, since 

the cut locus of any p E }/ is a Riemmanian measure zero set, see Spivak [31), by the 
previous proposition, 

O= Xm1-l¡ = -2(Xm,f exp;;/ (f(x)))P(dx) 
, X 

which is satisfied if and only if 

l exp;;/ (f(x)) P(dx) = O, 

and then the proposition follows. • 
From last proposition we show that the defined mean value concept it is weaker 

than the center of mass concept. '.'rotice also that for defining the first we only need an 
affine connection, while the second requires a Riemannian structure. 

:\.t this point it is natural to ask in which conditions we will have a mean value. We 
can give sufficient conditions to assure we have a mean value. 

Definition 2.14 Let .vi be a complete manifold, a set A is said to be a regular convex 
set if and only if for any p, q E A the shortest geodesic from p to q is unique in ,'v[ and 
lies in :L 

Notice that an open regular convex set is a regular normal neighbourhood of ali its 
points. 

Proposition 2.15 Let A be regular convex set in a complete manifold .'vI. Then, any 
mínima/ geodesic that joins a point p E 8.4 and q E .4 cannot be tangent to 8A. Where 
a:\ is the boundary of A. 
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Proof: 
Let p E 8.4 be the point of tangency of one geodesic tangent to 8A, suppose there 

exists q a point in .4., the interior of A, close to p, joined by this geodesic. We can 
a!ways suppose q so clase to p as we need, since we can take p as the point where the 
geodesic line ··leaves'' the boundary of .4. Let Bt(q) be an open hall, with center q and 
radius t, since exp; 1 is a diffeomorphism in sorne neighbourhood of p that contains 
B! ( q), far s = 1 there will exist a 6 > O such that far all v E Bs (0p) 

q = expp(s(exp; 1 (q) + v)) 

will be in B! ( q) C .t However, far s small, there will be points of the shortest geodesic 
line joining p and q outside A, contradicting that A is a. regular convex set. This is 
dueto the fact _that if the geodesic line is tangential to 8A, we could find geodesic lines 
with origin p and points outside A with tangent vector as close to exp; 1 (q) as we want, 
so the difference between the tangent vectors would be in Bs(Op). • 

Proposition 2.16 Let (X, a, P) be a probability space, (lv[, 2l) be· a complete manifold 
and f: X -+ .H a measurable map, let A. a regular convez set such that P{f E A}= l. 
Sup'f)Ose 

1-l¡(m) = f p2 (m, /(x)) P(dx) < oo. 
X 

Then f has a mean value m (/)EA. 

Proof: 
Note first that there will be a compact set Ce A, where A= A U 8A, such that 

inf_ 1-l¡(m) = min 7-l¡(m). 
mEA mEC 

Otherwise, let K C .4 be a compact set such that P(K) > O. There will be a sequence 
{Pn}neN, Pn E .4 such that limn• oo p(p11, K) = oo and 

inf_ 1-l¡(m) = lim 1-l¡(p") ~ lim p2(p11, K) P(K) = oo, 
mEA n • oo n • oo 

contradicting that 7-l¡(m) exists. Now, by the above proposition, if p belongs to the 
boundary of A 

grad 1-l¡(p) = - l exp;1 (f(x)) P(dx) 

is an average over outward pointing vectors, therefore p will not be a minimum. Then 
the minimum will be in the interior and the proposition follows. • 
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3 The intrinsic bias and the mean square Rao distance 

\\'e now apply the concepts mentioned previously to develop intrinsic measures analo­
gous to the bias and the mean square error of an estimator. 

Let {\. a, Pr;; 8 E 0} be a parametric statistical model. where 0, the parameter 
space, is an n-dimensional C'x;, real manifold. Usually 0 is an open set of JR.n and in 
this case it is customary to use the same symbol, 8, to denote points and coordinates. 

We shall suppose a one-to-one map 8 ~ p( •; 8) and we shall consider the set of 
ali probability measures in the statiscal model, .'vi, with the n-dimensional C?O real 
manifold structure induced by this map. Let us denote this manifold by (.H, 2l), being 
2l the atlas induced by the parametrizations, that is the coordinates in the parameter 
space. 

In the dominated case, which we shall assumed hereafter, the probability measures 
can be represented by density functions. Then let us assume, for a fixed O"-finite ref­
erence meas u re µ, that Pr; << µ, "18 E 0 and denote by p( • ; 8) a density function 
with respect to µ, i.e., a certain version of the Radon-Nikodym derivative dPfJ/ dµ. 
:'-l'ow, through the identification PfJ ~ p( · ; 8), the points in ,H can be considered ei­
t her densities or probability measures . .-\dditionally, we shall assume certain regularity 
conditions: 

l. ( J/, 2l), is a connected Hausdorff manifold. 

2. When x is fixed, the real function on M ~ ~ p(x; ~) is a C?O function. 

3. For every local chart (W, 8), the functions in x, o log p( x; 8) / fJ8i i = 1, ... , n, are 
linearly independent, and belong to Lª (p( ·; 8) dµ) for an suitable a > O. 

"½. '.fhe partial derivatives of the required orders 

and the integration with respect to dµ of p(x; 9) can always be interchanged. 

When all these conditions are satisfied, for a version of the density function , we 
shall say that the parametric statistical model is regular, and in this case the manifold 
(.'vi, 2l) has a natural Riemannian structure, given by its information metric. Then, 
there is an affine connection defined on the manifold, the Levi-Civita connection, natu­
rally associated with the statistical model. For further details, see Arnari [2], Atkinson 
and :\Iitchell [3], Barndorff-Nielsen [•], Barndorff-Nielsen and Blaesild [6], Burbea [8], 
Burbea and Rao [10], Castillo [11] and Oller [28], among many others. 
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Therefore, a regular parametric statistical model can be viewed as a Riemmanian 
manifold. In this context, an estimator U for the true density function (or probability 
measure) p0 = p( ·; Bo) E J/ of the statistical model is a family of measurable maps 

such that the true probability measureon Xk is (Po)k(dx) = p(x1; Bo)· .. . ·p(xk; Bo) µk(dx). 
Observe that, corresponding toan estimator, there is a sequence of random objects 

taking values on a convenient representation manifold of the statistical model and the 
converse. 

:\Ioreover, if k is fixed, corresponding to an estimator U of the true density func­
tion p0 = p( ·; 90 ), we can associate a natural C-x, vector (first-order contravariant 
tensor) field induced on the manifold through the inverse, provided its existence, of 
the Riemannian connection exponential map Ap(x) = exp;1 (Uk(x)) , see the previous 
section. 

Assuming that p0 = p( ·; Bo), is the true density function, we are now able to intro­
duce the following definition 

Definition 3.1 An estimator U is intrinsically unbiased, if and only if, Po is a mean 
rnlue 0JU1c, 'vk E N and whatever Po E M is the true density function, i.e., m Po (U1c) = 
p0 , where m Po stands for the mean value of U1c computed with respect to the true 
probability measure (Po)1c. 

Notice that the definition of unbiased estimator, unlike the classical one, is invariant 
with respect to any coordina.te cha.nge or repara.metrization. 

We may try to compute the moment tensor fields corresponding to an estima.­
ter vector field, provided their existence, a.nd to obtain, for th_e first order moment, 
the expectation tensor .field of the estimator. Let Po = p(x¡ 80) be the true, but un­
known, density function corresponding to the true proba.bility measure P00 , then we 

have Cp = EPo(Ap) = E"PO ( exp;1 (U1c)). In components notation, with respect to the 

parametrization given by 81, ... , 9n, if we let Pc1r) (x; 80 ) be the corresponding µ1c-density 
function for a. k-size independent ra.ndom sample, we have 

a= l, ... ,n, 

where A 1 (x; 8), ... , An(x; 8) are the components of Ap(x} = exp; 1 (U1c(x)), and the 
dependence on k is omitted in the notation. Notice tha.t, for all 8, the integral is always 
computed with respect t_he same reference measure µ1c. 

It is convenient, in order to measure the bias, to introduce the following 
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Definition 3.2 The bias tensor field is defined as Bp = Ep ( exp; 1 (Uk)), or m com­
ponents notation, 

a= l, ... , n, 

prol'ided their existence. 

:--;otice that IIBll 2 would supply a scalar measure of the intrinsic unbiasedness. Also 
observe that 

Bª(8o) = íª(8o) 

Clearly we have the following: 

a= 1, ... , n, 

Propositioil 3.3 An estimator U is intrinsical/y unbiased if and only if its bias tensor 
field is n ull, that is 

Bª(8) = O a = 1, ... , n 'r/9 E 0. 

We are going to establish sorne relationships between the classical definition of 
unbiasedness and the new one. 

Theorem 3.4 Let us consider a regular statistical model such that the density func­
tion manifold is simply-connected and complete, and assume additionally that ali the 
sectional curvatures are zero. Then there exists a global coordinate system 81 , .•. , en 
such that the corresponding metric tensor field components are constant and, under this 
coordinate system, an estimator U is unbiased if and only if it is intrinsically unbiased. 

Proof: 
The existence of a global coordinate system 81 , •.• , en such that the corresponding 

metric tensor field components are constant is a well known result, see for instance 
Kobayashi and Nomizu [22, pag 105, vol. II]. Then the conclusion follows, since the 
geodesics are straight lines, and the manifold is essentially like IR.n. 

• 
The Riemannian distance that we obtain from the information metric is known 

as the Rao distance. The mean of the squared Rao distance, which we shall call the 
mean square Rao distance, is the natural intrinsic version of the mean square error. 
If we consider loss functions that depend on the statistical model and not on external 
considerations, the Rao distance appears in a natural way and with desirable properties, 
as can be apreciated in Oller [28]. This is the reason by which it plays a fundamental 
role in our approach. · 
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3.1 Sorne examples 
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\\'e present here sorne examples, in which we calculate the bias of severa! estimators. 

Example 3.5 The univariate Exponential distribution. 
Let us consider the exponential density function parametrized as 

1 X 
p(x;,\)= ¡exp{-¡} x, ,\ E JR+. 

The metric tensor component is given by g11 (,\) = 1/ ..\ 2• Clearly, if we (et (} = log ..\, 
the new tensor components will become g11 (8) = l. Let us now consider the maximum­
likelihood estimator for the parameter ,\ computed from a sample of size k given by 
X /e, the ordinary sample mean. The corresponding maximum-likelihood estimator for 
f) is given by iog X /e• Since the metric tensor is constant under the coordinate system 
given by 8, the bias tensor, if we let S = kX1c, is given by 

and with the change u = s/ e8 , this yields 

1 [ f'(k) 
8 1 (8) = r(k) lR+ log(u) uk-le-u du - logk = r(k) - logk = 'l'(k) - log k, 

w here 111 ( k) = r' ( k) /f ( k), r being the usual gamma function. Therefore it is a biased 
estimator. However, we can easily correct the bias, obtaining in this case a strictly 
intrinsically unbiased estimator. With respect to the para.metrization given by 8, :he 
corrected estima.tor will be 

iJ = logX1c - 'll(k) + logk, 

and with respect to the original para.metriza.tion it is 

Example 3.6 The univariate Poisson distribution. 
Let us consider the Poisson density function pa.rametrized as 

,\r 
p(x; ,\)=e--\ -

1 x. 
,\ E JR+, X EN. 
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The metric tensor component is given by 911 ( ,\) == 1/ ,\. It is clear that if we !et fJ = 2JX, 
the new tensor components will become g11 (8) = l. Let us now consider the maximum­
likelihood estimator far the parameter ,\ obtained from a sample of size k given by X k, 

the ordinary sample mean. The corresponding maximum-likelihood estimator far 8 is 

given by 2/x:. Since the metric tensor is constant under the coordinate system given 

by 8. the bias tensor, if we let S = kX k, is given by 

which is clearly biased. ~Ioreover, since the equation 

E(f(S)) == f: f(j) e-k,\ (k~)l == 2~ 
1=0 ), 

equivalent to 

~ f( ') (k,\)i = 2_ lfX k>. 
~ J .1 /fV~Ae , 
1=0 )· V~ 

where f is an arbitrary function, has no solution because vzez it is not an analytic 
function, we conclude that far univariate Poisson distribution there <loes not exist an 
in trinsically unbiased estimator based on the sufficient statistic S. 

Example 3. 7 Consider the multivariate elliptic probability distributions, with fixed 
dispersion matrix E = Eo, that is the parametric family with density functions, in !R.n 
with respect the Lebesgue measure, given by 

where E0 is a fixed n x n strictly positive-definite matrix, µ = (µ 1 , ... , µn)' is a param­
eter vector, f(n/2) is the usual gamma function, and F is a non-negative function on 
lR+ = (O,oo) satisfying: 

laoo rn/2-1 F(r) dr = l. 
The vectorµ and the matrix Eo may be expressed in terms of E(X) and cov (X), 

provided the latter exists. In fact, let be t = (t1 , .•• , tn)'; the characteristic func­
tion <:>F(t) = E(exp{it'X}) of the above introduced parametric family of probability 
distributions, which may be expressed as 

óF(t) = exp{it'µ} AF(t'E0t), 
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where 
,\F(s) = f(n/2) fo'X) r 71! 2- 1 F(r) KTl; 2_ 1(rs) dr 

with 
K (s) - 2,,J,,(vs) - ~ (-s)m 

,, - ( vs)" - ~o 4m m! f(m + 11 + l)' 

and where J,, is the ordinary Bessel function of order 11. 

Formally, therefore 

E(X) = -i 8<i>_F(t) 1 

8t t=O 

This gives E(X) = µ and E(XX') = µµ' + CF Ea, where 

CF = -2AF(0) = - rn/7. F(r) dr, 1 looo 
n o 

19 

s E lR, 

and hence Cov(X) = CF E0 • In particular, E(X) exists if and only if f0
00 rn./2- 112 F(r) dr < 

xi: additionally Cov(X) exists if and only if we ha.ve ft r7112 F(r) dr < :o in which 
e ase O < e F < :o. 

A non-degenera.te multiva.riate normal distribution Nn(µ, Eo) is a.n example of a 
multivariate elliptic distribution with 

1 
F(s) = 2n/2f(n/2) exp{-s/2}' AF(s) = exp{-s/2} , CF = l. 

Other basic properties of elliptic probability distributions h_ave been obtained by 
Kelker [20) and are sumarized in Muirhead [26, pp. 32-40). We ha.ve to assume, in 
addition, that 

a= - tnfl (.CF)2(t) F(t) dt < oo, 4 laoo 
n o 

where .CF = F' / F, in arder to ensure the existence of the Fisher information matrix, 
which is given by 

E(ologp fJlogp)- '("'-i 
8 µ f) µ' - a ~o ' 

see Mitchell and Krzanowski (25] and Burbea and Oller [9] for more details. 
Therefore, the information metric for this pararnetric family of probability distri­

butions is given by 
ds2 =adµ' 'E.01dµ. 
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Since the metric tensor field given by the information matrix is constant, the man­
ifold is Euclidean, and the geodesics are straight lines. ldentifying the manifold points 
with their coordinates, the geodesic which starts at µo when t = O and reaches µ¡ when 
t = 1 is given by 

µ(t) = (µ1 - µo) t + µo t E R, 

and if we !et Po =p(·:µo), and P1 =p(·:µ1), we have 

exp;
0

1(p1) = (µ¡ - µo)p0 , 

where, in the last equation, we have identified the tangent vectors at Po with their 
components corresponding to the canonical basis induced by the coordinate system. 
Considering the estimator for µ given by 

and omitting the subindex Po for the tangent vectors at Po, we may write 

Therefor~ X k is intrinsically unbiased. 

The following simple example shows how different the squared-error loss and the 
square of the Rao distance can work for a fixed parametrization. 

Example 3.8 Let a statistical model be defined by the Pascal family of densities 

p(x;9) = (1- 9):r(J, x E Nu {O}, (JE (O, 1). 

Let 9 be an unbiased estimator in this parametrization, for a sample of size k = l. 
Then 

:xl 

E(O) = ¿ B(x)(l - (J)r(J = (J 
x=O 

implies that 

0(0) = 1, O(x) = O, '1x ~ O. 

This is the UMV unbiased estimator for 9, but, up to this important property, it not 
seems a rea.sonable estirnator. On the other hand, the :.ILE estimator is 

. 1 
(J = -- X E N u {O}, X+ 1' 



. . 
1 

In trinsic Estimation . ..\nalysis 21 

that seems better than the first one. However if we compute the mean square errors, 
(:\[SE). in order to compare the precision of these estimators we obtain the following: 

1ISE(8) = 9(1 - 9), 

and 

.\1SE(8) = f: (-1- - 0) (1 - 9)r9 = _.!_ f: (1 - fJ)X+l 
.r:O X+ l 1 - 9 .r=O (x + 1)2 

+ 292 f: (1- 9)r+l + 92 
1 - 9 x:O X+ 1 

9 fo log( 1 - t) d 292 1 a a2 = -
1 

a t t + --a og u+ u . 
- u 1-8 1 - u 

Csing Jlathematica, version 1.2, we obtain that MSE(9)-MSE(8) is a positive function 
in (90 , 1) and negative in (O, 9o), where approximately 90 = 0.1606. 

In this sense the squared-error loss function does not distingqish clearly between 
this two estimators. In fact, it can be shown that 8 is an admissible estima.tor with 
respect to the squared-loss function. On the contrary if we use the square of the Rao 
distance as loss function we obtain, since 

1 + 1~ - vT=,;! - J(l - 9)(1 - 71) 
p(9, 17) = 2 log ,ftq , 

that 

Thus 9 is, with respect to the mean squa.re Rao dista.nce loss, and inadmissible estima.­
tor. 1Ioreover, as the reader can checked easily, 

\Vhich shows the superi~rity of the MLE estimator. 
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4 Lower bound of mean square Rao distance 

In this section. the relationship between the unbiasedness and the mean square of the 
Rao distance between the density, or probability measures, estimates and the true one 
are studied. obtaining an analogous intrinsic version of Cramér-Rao lower bound, based 
on the comparison theorems of Riemannian geometry. see 9.2 of the Appendix. Sorne 
analogous results but in a different approach can be seen in Hendriks [1.5}. 

With the same notacion as in the previous sections, we have the following main 
result. 

Theorem 4.1 (Intrinsic Cramér-Rao lower bound) Let U be an estimator corre­
.sponding to a n~dimensional regular parametric family of density functions Jora sample 

si::e k. Assum·e that (P)k (u; 1(.\l,Dp)) = O 'rfp E}/. Let A. be the estimator ten­

sor field and !et B be the corresponding bias tensor field, B = E(A). Let us assume 
that the mean square of the Rao distance between the true density and an estimate, 
E (p 2(Uk, p)), exists, and the covariant derivative of Ep(Ap) exists and can be obtained 
by differentiating under the integral sign. Then, 

1. In general we have 

u·here div ( ·) stands for the divergence operator. 

2. Jf ali the sectional curi-atures are ::ero, [( = O, then 

.J. /f ali the sectional curt'atures are non-positive, [( $ K., < O and - n < div ( B), 
then 

where 

_ (n-l)(~IIBl!coth(~IIBll)-1) 
Sn - 1 + div(B) + n · 
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4- [J ali sectionaJ cun:atures are less than or equal to a positive constant JC, d( M) < 
¡¡/2vK. d(.H) being the diameter of the manifold, and -1 :5 div(B), then 

u:here 

2 
l _ 4(n - l)IIB!l 2 /C 

(n +div(B))rr2 

Tn=-~===~============ 
l+ 

( n + div(B) - 4(n - 1) 11
8

11; .e) 
l + 16(n - 1)/C knrrl "' 

In particular. for intrinsically unbiased estimators, we have 

4. lf ali sectional curvatures are non-positive, then 

4. lf all sectional curvatures are less or equal than a positive constant JC and 
d(.\l) < 11' /2vK,, then 

4 n ( 2 ) -----------2 k :5 E p (U1c, p) . 
( l + Jt + 16(n - l)/C/(kn-2)) 

Proof: 
Let ,.\cr(x;8), o= l, ... ,n, be the components of exp; 1(U1c), Bª = E(Acr) and 

C-:t(.r; 0), a= 1, ... , n, the components of any first order contravariant random tensor 
field. Then, by the Cauchy-Schwartz inequality, 

l(A - B, C)I :5 IIA - BII IICII, 

where (, ) and 11 11 stand for the inner product and the norm defined on each tangent 
space. Additionally, 

E (l(A - B, C)I) :5 E (IIA - BII IICII) :5 JE (IIA - B112 ) JE (IICll2), 

again by the Cauchy-Schwartz inequality, and where the expectations, at each point p, 
are computed with respect to the corresponding probability measure P(1ci dµ1c. 
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Let be C ( x: 0) = grad ( log Pr kl ( x; tJ)), w here grad ( ·) stands for the gradien t operator. . 
In components notation, and freely using the repeated index summation convention, 
we may write 

eº( . .a) _ c,¡](0) 8 log P(k) (x; tJ) 
X , u - g f} t}/3 , 

g'~J ( 0) being the components of the contravariant fundamental tensor field and where 
p is the joint sample density function. Therefore we have 

IICll2 = gºJ fj [;~:(k) fj [;~!(k) 
taking expectations, and using matrix notation, 

E (11c11 2
) = E(C'G- 1C) = E (tr(C'G- 1C)) = E (tr(G- 1CC')) = 

= tr (G- 1 E(CC')) = k tr(G- 1G) = k tr/ = kn. 

On the other hand we also have 

\E( (.4, C) )1 = IE( (A - B, C) )1 $ E (l(A - B, C)I) 

and 
E (IIA - B11 2

) = E(IIAll 2
) - !1B11 2

. 

Therefore 
IE((.4,C))I $ JE(IIAll2)- IIBll 2 fu, 

but 11~11 2 = p2(p,Uk), where pis the Riemannian distance, also called in this case the 
Rao distance. Then 

IE((A,C))I $ JE(p2(p,Uk)) - !1B11 2 fu. 

On the other hand 

(A C) = g -,AºCº = g Aºg;3.., fJ log p(I,) = -4º a log P(k) 
t Q/J o,{3 0 (}'Y • 0 t}Ot t 

thus, 

E(( 4 e)) - j Aº 8 log Pr1cJ d 1 0 o Pr1cJ 
• ' - x1c O 80 Pr1c, µk = x" ,4 0 80 dµk, 

:\'atice that .4.ºfJP(k}/fJBº is a function of x which is independent of the coordinate 
system: when x is fixed it is a scalar function on the manifold. 
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Additionally, since 

taking the covaríant derívative we obtain, 

f {8Aª fª ;} d f iaºP<1e, d - 8Bª fª BJ 
le f)8i + 1) .4 P(1e¡ µ1c + le ."1 é)8i µ1c - 88i + 1) 

X X 

where r0 are the Christoffel symbols of the second kind. 
If we carry out an index contraction we shall obtain a scalar equation: 

or equivalently, since .4.ª, a= div(A), and B 0
, cr = div(B), 

E(div(A)) + l1e Aª:;1 
dµk = div(B), 

25 

which is invariant with respect to coordinate changes. That is, both integrands depend 
on x, but are independent of the coordinate system. Therefore 1 follows. 

Fixing x, we are going to choose a convenient coordinate system. Given p and 
U1c(x), we choose a geodesic spherica.l coordina.tes system with origin U,c(x), i.e. a 
system (p, u) as discussed in 9.4 of the Appendix, a.nd defined almost surely, since 

(P)1c (u; 1(;\1,Du1c(:r))) = o. 
It is clear tha.t the components of tensor A are (-p, O, O, ... , O) when p, the Rie­

manni~n distance between p and Uk(x), is the first coordinate. Additionally, 

oAª = -1 and fª. A1 = -p fª
1 

= _ olog.¡g p aea Ct) a op ' 

where g is the determinant of the metric tensor. Then 

f 0 8pp,i . f { 8log.¡g} 
x" A 080 dµ1c = d1v(B) + x• 1 + p &p P(1o¡ dµ1c, 

Now we consider severa! cases. 

Case 4.1.1 Sectíonal curt'ature equal to zero. 
As a corollary of Bis~op's comparison theorem, see Theorem 9.8 of the Appendix, 

or by direct calculation, we have 
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fJlog Jg n - 1 
f)p = -p-, 

yielding 

Then, we have 

ldiv(B) + ni :::; / E (p 2(Uk, p)) - 11B11 2 fu, 
which turns out that 

Case 4.1.2 A.ll sectional curvatures less than zero, K < IC < O and -n :::; div(B). 
By 10 in Subsection 9.4 of the Appendix, we have 

yielding 

é)l1Jg > (n-1)\/'=Kcoth(\/'=Kp), 
p -

J AªªP(l,)d > 
,. f)8et µk -

)( 

div(B) + fx,. { 1 + (n - 1)\/'=KIIAII coth ( v'=KIIAII)} P(1c¡dµk 

~ div(B) + 1 + (n - l)J=K°IIBII coth ( J=K°IIBII), 

26 

where the second inequality is due to the fact that the function u coth u is a convex 
function, and we can apply the Jensen inequality, and that 11B11 ~ EIIAII, by the 
Cauchy-Schwartz inequality. Therefore if -n ~ div(B), since 1 < u coth u, '<tu > O, 

{ div(B) + 1 + (n - l)J=K°IIBII coth ( J=KIIBII)} 
2 

( ) 
kn + 11B11

2 ~ E p
2(Uk, p) . 

Case 4.1.3 Ali sectional curt·atures are positive and less than a fixed positive constant 
K ~ IC, d(,vl) < rr/2..;K, and -1:::; div(B). 

From 11 in Subsection 9.4 of the Appendix we have 

alogJg ~ 
é)p ~ (n - l)v/Ccot(pvK), 
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yielding 

27 

but lucot ul ~ 1 - -1u 2/rr 2 , O < u $ rr/2, and therefore, taking into account that 
O $ p $ rr /2..;K, we have 

[ -1°ºPr1ri dµ > div(B) + n - (n -1) 4KE(p
2

) 
J..,..i• . ofJª le - 7r2 , 

since (n - l)-t~E
2
(p

2
) - n $ -1 $ div(B), we have 

iT 

( 
.· -tKE(p

2
))

2 
( ( ) d1v(B) + n - (n - 1) tr 2 $ E p2 (U1c,p) -11B1! 2

) kn, 

and finally, solving the inequation, it turns out that 

4 (n + div(B) - 4(n - l)IIBll 2K,/,r2)
2 

--;----=============:::::::::::::::::==========~2 + 11 B
2

11 

(
vfñ, + kn + 16(n _ l)K, (n + div(B) - 4(n - l)IIBll

2K:/1r2
) 

7r2 

$ E (p2(U1c,P)). 

The cases S. and 6. follow trivially from cases 2., 3. and 4., with div(B) = O and 
11B11 =0. • 

Remarks. Notice that all the one-dimensional manifolds corresponding to one-parameter 
families of probability distributions are always Euclidean. Moreover, there are sorne 
well-known families of probability distribution which satisfy the hypothesis of last theo­
rem, like multinomial, see Atkinson and Mitchell (3], negative multinomial distribution, 
see Oller and Cuadras (29], or extreme value distributions, see Oller [27], among many 
others. 

Additionally, it is easy to check that in the multivariate normal case, with known 
covariance matrix, the sample mean is an estimator which attains the intrinsic Cramér­
Rao lower bound, 
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E (p 2 (X1c - µo)) = E (Uú - µon:- 1 (Xk - µo))= 

- E ( tr(E- 1(X\: - µo)(X 1c - µo)')) = 
= tr (E- 1 E ( (fk - µo)(Xk - µo)')) = tr( ¼ [) = ¡-

Furthermore, observe the effect of the sectional curvature on the precision of the 
statistical estimates. Finally, since the mean square Rao distance is bounded from 
above by D 2 , D being the diameter of the manifold, it turns out. from the fact that 
ldiv(()..-1)1 ~ 1, that a necessary condition to have an unbiased estimator is D ~ Jrn· 

5 Global estimator efflciency 

Whichever loss function is considered, it is well known that, in general, there is no 
estimator which a risk function that is uniformly smaller than a~y other. Therefore, 
given an estimator, it seems reasonable in arder to measure its performance over a 
certain region of the statistical model, to compute the integral of the mean square 
Rao distance, and then divide this quantity by the Riemannian volume of the region 
considered. ~lore precisely, let 8 C M be a measurable subset, with V(B) i: O, where V 
is the Riemannian measure, then we shall denote theRiemannian average o/ the mean 
square Rao distance by 

Í E (p 2(U1r,p)) V(dp) 
Ri. (8) = ..... J 8=-----,------l V(dp) 

t he performance index obtained is a weighted average of the mean squared distance. 
This approach is compatible with a Bayesian point of view, assuming a prior uniform 
with respect to the Riemannian volume, see Jeffreys (l 7J; a similar approach can be 
found also in Prakasa Rao (30] and Cencov [12]. 

In this section we are going to find sorne lower bounds for the abov~mentioned 
performance estimator measure. First, we shall start with sorne general results. 

Proposition 5.1 Let X be a C00 vector field and f be a C00 almost everywhere ¡,os­
itfre real function, with respect to the Riemannian measure, V, defined at least over 
a Riemannian ball with center p and radius R > O, SR, A.ssume that div(X) ~ -a, 
u:here a is a strictly positive real number. Then 
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O < I ~5 ) {R { f dV dr ~ I ts ) { f !!XII dV + 
VO R j O j Sr VO R j SR 

+ ¡ ts ) {R f !!XII llgrad(f)II dVdr. 
va R lo is, 

Proof: 
Since 

div(JX) = fdiv(X) + (X,grad(/)), 

and for O < r < R, 

{ Jdiv(X) dV ~ -a { f dV, 
ls, ls, 

we have 

{ div(JX) dV - f (X,grad(/)) dV ~ -a f f dV. 
ls, ls, lsr 

1Ioreover, as a conseq uence of Gauss 's divergence theorem, 

f div(/X) dV = f (IX, v) dA, 
J Sr lasr 

where v denote the outward unit normal vector field, and dA the Riemannian measure 
induced on {)Sr, and taking into account, by the Cauchy-Schwartz inequality, that 

it turns out tha.t 

l(X,grad(/))1 ~ IIXll llgrad(/)11, 

!(IX, v)I ~ J IIXII, 

o < a f J dV ~ f J IIXII dA + f IIXll llgrad(f)II dV. 1~ k~ 1~ 
~ow, following standard integration rules in spherica.l coordinates, we have 

¡R ( r f IIXII dA) dr = r f IIXII dV, 
!o lasr J SR 

and thus, varying r from O to R, integrating and dividing by vol (SR) = fsR dV, 
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o< l~S) ¡R r fdV dr::; its) r JIIXlldV + 
VO R j O j Sr VO R j SR 

+ vol tsR) laR fsr IIXll llgrad(f)II dVdr. 

Theorem 5.2 With the same conditions as in Theorem ( 4.1) , if we let 
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• 

we obtain the following lower bound for the Riemannian average of the mean square 
Rao distance 

(2) 

u·here a = n if the sectional curvatures are non-positive and a = 1 i/ the supreme 
of the sectional curvatures, /(,, is positive and the diameter of the manifold satisfies 
d(Jf) :< rr/2J'K.. 

Proof: 
First of all, observe tha.t A,(x) = exp;1 (Uk(x)) is a C00 random vector field a.nd 

p = P(k¡(x; 9), the likelihood function which defines the statistica.l model, is a. ra.ndom 
C"XJ function. Then, following the sa.me steps a.s in theorem (4.1), we can choose a 
geodesic spherica.l coordina.te system with origin U1c ( x); under this coordina.te system, 
using the repea.ted index summation convention, we ha.ve 

aAª = -1 and fª. Ai = -p fª
1 

= - a log Jg p 
890 ª 1 ª 8p ' 

where g is the determinant of the metric tensor. Then 

div(A) = -1- p º10:Pvi. 
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In the Euclidean case 
8log Jg n - 1 

=--, op P 

and thus div(A) = -n. 
\Vhen the sectional curvatures are non positive, we obtain 

fJlog Jg n -1 
{)p ~ -p-, 

and therefore div(A) '.S -n. 
Finally, when the supreme of the sectional curvatures, K, is positive and the diam­

eter of the manifold satisfies d(l'v[) < 1r /2\/X,, we have 

81og Jg 
{)p ~ o, 

and then we obtain div(A) 5 -1. 
In any case, div(A) < -a with a= nora= 1, depending on the sectional curvature 

sign. Therefore, we can apply the previously obtained formulas, and integrating with 
respect to dµ, the reference measure, we obtain 

o < vol ~SR) fxk (foR lr P(k) dV dr) dµk 5 vol tsR) fx,. (lR P(k) IIAII dV) dµk + 

+ vol ~SR) fx,. (foR lr IIAll l!grad(p(k))II dV dr) dµk 

By observing that 

h 1c P(k) dµk = 1, 
X 

and llgrad(p(k))II = llgrad(logp(kJ)II P(k) 

interchanging integrals, it follows that 

o< vol ~SR) foR vol (Sr) dr s vol tsR) lR E(IIAII) dV + 

+ vol ~SR) foR lr E (\IAII j\grad(logp)\\) dV dr, 

where E is the ordinary expectation operator with respect to the probability measure 
P(k) dµk. By Cauchy-Schwartz inequality, 
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and additionally 

E(llgrad(log P(k)) 11
2

) = k n, 

we have 

O< vol ~SR) foR vol (Sr) dr ~ vol ~SR) fsR E(IIAII) dV + 

+ vo~) foR (fsr J E(IIAll 2
) dV) dr. 

~Ioreover, by Jensen inequality 

E(IIAII) ~ J E(IIAll 2
), 

and 

1 r 2 
vol (Sr) Jsr E(IIAII )dV, 

for any O ~ r ~ R, and then 

1 r 2 
vol (SR)lsR E(IIAII ) dV + 

Taking into account that 

is a positive monotonous increasing function of r, since E (IIAll 2) = E (p2 (Uk, p)), if we 
let 
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then 

• 
Remarks. It is interesting to notice that while the local bounds obtained in The­

orem (4.1) could vanish, the global bound, for halls with radius greater than zero, is 
always positive. On the other hand the curvature effects are present here through the 
volume of a Riemannian hall. Proposition (9.11) in the Appendix implies, in manifolds 
with constant sectional curvature, that for small halls, the bound will decrease with the 
curvature since the arder of the numerator in the inequality (2) will be the arder of the 
bound. :-.Ioreover further investigations using the expressions obtained in subsection 
(9.10) for the volume of a Riemannian ball could revea! more precise information on 
the curvature effects. 

Corollary 5.3 When the parametric statistical model is an Euclidean manifold we have 
the following lower bound for the Riemannian average of the mean square Rao distance 

o< n (n + 2) R < ni,,, (SR). 
{ }

2 

(n+l) (n+2+2JimR) -

lf the Euclidean manifold, lvl, is complete and simply connected, we obtain the 
J ollowing lower bound o ver ali the manifold 

n(n+2) 2 • 2 _ 2 
k ( )2 ~ hm Ru,. (SR)= Ru,.(M). 

4 n + 1 R• oo 

Proof: 
Since 

we have 
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= ( 8rrn/2 Rn+2 ) 1/2 

n(n+2) 2 r(n/2) ' 

and 

n(n + 1) r(n/2)' 

then 

{ 
n(n+2)R }

2 

O< ---'------- ~ Ri,. (SR). 
(n+ 1) (n+2+2v'knR) 

\Ve derive the second statement taking limit when R • oo. • 

Example 5.4 As an example, consider the n-variate normal distribution with known 
covariance matrix E. Given a sample of size k, the Riemannian density of the mean 
square Rao distance corresponding to the sample mean Xk is Rl1,. (SR)= n/k, which 
is clearly greater than n(n + 2)2/4k(n + 1) 2 . 

6 Conditional mean values of manifold valued 
maps and the Rao-Blackwell theorem 

\Ve have already obtained a lower bound for the mean square Rao distance, now we are 
going to study how we can decrease the mean square Rao distance for a given estimator. 

Classically, this is achieved by taking the conditional mean value respect to a suf­
ficient statistic. We shall follow a similar procedure here, but now our random objects 
are valued on a manifold and thus we will have to explain the meaning of a conditional 
mean value in this context and then obtain intrinsic versions of the Rao-Blackwell and 
Lehmann-Scheffée theorems. 

Let (X, a, P) be a probability space. Let (M, 2l) be a complete, (Hausdorff and 
connected) C 00

, n-dimensional Riemannian manifold. Then M will be a complete 
separable metric space (a Polish space) and we will have a regular version of the con­
ditional probability of any random object, f, valued on Af with respect to a O'-algebra 
1) on the sample space, X. 
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:vforeover if the mean square Rao distance off exists, we can define 

E(p2(m, f)!'D)(x) = f p2(m, t)Pfl'v(x, dt), l\,f 
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where P¡¡v(x, B) is the regular conditional probability of f given 'D, x E X, B a 
Borelian set in Jf. 

If for each x E X there were one and only one extreme p E M of E(p2(m, f)!'D)(x), 
or equivalently a point p E lvl such that 

J, exp; 1 (t)P¡¡v(x,dt) = Op, 
.\1 

we would have a map from X to I'vl that would assign a mean value for each x. It 
is clear that if the image of this map were countable, the map would be measurable, 
but since we have a dense countable set on ¡vf it turns out that this map is always 
measurable. This justifies the following definition. 

Definition 6.1 Let f be a random object on A,f and 'D a u-algebra on X; we shall 
define the conditional mean value off with respect to 'D as a 'D-measurable map, Z, 
su.ch that 

E(exp:z1(f(·))l'D) = Oz. 

We shal/ write m (!IV) = z. 

Remarks. From 2.16 a sufficient condition to ensure that the mean value exists 
is to have an open regular convex subset N C M such that P{f E N} = l. Also 
we can extend the previous results to the case where lvl is not complete, since N is 
diffeornorphic to an open set in IR.n and then there will exist regular versions of the 
conditional probability of f given 'D. 

The following propositions are immediate. 

Proposition 6.2 lf f is a 'D-measurable map then 9Jl (!IV) = f a.e.-P 

Proposition 6.3 lf f is independent of V then 9Jl (!IV) = 9Jt (!). a. e. -P 

Remark. It is necessary to point out that, in general, 9Jt (9Jt (!IV)) -::j:. 9Jt (!), as 
Kendall (21] already noticed and as it is easy to see with simple counterexamples. 

Let us apply these notions to statistical point estimation. Given a parametric sta­
tistical model {X, a, Pe O E 0}, let lvl = {p : p = p( ·; O), O E 0} be the associated 
manifold with the Riemannian metric given by Fisher's information matrix. We shall 
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assume that the model is regular and that there exists an open regular convex subset 
.V e .\/ such that µ( J1l "- N) = O (µ being the dominating reference mea.sure in the 
model). 

Let V be a sufficient O'-algebra for the statistical model. Given a sample of size k 
andan estimator Uk we can now consider the estimator 9J1(UklV). Let 

ili1c (p) = Ep(p2 (Uk, p)), 

.:l[11c1v(P) = Ep (p2(9J1 (UklV), p)). 

Taking into account that a function h(q), q E A,f on the manifold is said to be convex 
if h(-y(t)), t E lR is an ordinary convex function for any geodesic line 1 (t), we have the 
following theorems. 

Theorem 6.4 (Intrinsic Rao-Blackwell) lf fixed p E N the square of the Rao dis­
tance p2(p, •) is a convex function then ut1v(P) ~ i1..i(p). 

Proof: 
This proof is adapted from Kendall [21]. By convexity, for all positive t 

P2 (¡ ( t) ' P) ?: P2 (¡ (O) ' P) + d P2 ( ;~ s)' P) . t 
s=O 

= p2
(1 (0), p) + \ grad(p2)(0), !: (O)) · t, 

then writing m = 1 (0) and q = ,(t), since 

d, 
ds (O)t = exp;;/(q), 

and 
grad(p2)(0) = -2 exp;;/ (p), 

the above inequality can be written 

p2(q, p)?: p2(m, p) - 2 ( exp;1 (p), exp;1 (q)), 

then taking m = 9J1 (Ukl'D) and integrating with respect to Pu1c¡v(x, dq) we obtain 

fv p2(q, p)Pu,.¡v(x, dq) ?: p2(!JJ't (Ukl'D), p), 
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since 

f exp;;/ (q)Puk1v(x, dq) = ºm• I'v[ 
Finally taking expectations we obtain 

~l,k(p) = Ep(p2 (Uk,P)) = Ep (Ep(p2(Uk,P)ID)) 

> Ep (P2(911(Uk!D),p)) = ~ik1v(p). 

37 

• 

Theorem 6.5 IJ the sectional curvatures in N are at most O, or K, > O with d(N) < 
1r /2./K, then 

Proof: 
From 9.3 in the Appendix, we are in the conditions in which the square of the 

Riemannian distance is convex. Thus from the previous theorem the result follows . 

• 
Remarks. If sorne curvatures are positive and we do not irnpose conditions about 

the diarneter of the regular convex set, N C lvf, we cannot be sure about the convex­
ity of the Riemannian distance and then it is not necessarily true that the mean of 
Riernannian distance between the true density and the estimated one should decrease 
when conditioning to D. 

On the other hand we can improve the effi.ciency of the estirnators by conditioning 
with respect to a sufficient u-algebra D, obtaining 911 (Uk!D), but the bias is not preser­
ved in general, in contrast to the classical Rao-Blackwell theorem. In other words, if Uk 
were intrinsically unbiased, 911 (UklD) would not, in general, be intrinsically unbiased 
since 

911(911(UklV)) =f. 911(Uk), 

However, the norm of the bias tensor of 911 (Uk!D) would be bounded. If we let 
B911 (Ui.lV) be this bias tensor, by the Cauchy-Schwartz inequality, 
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Eventhough the bias tensor is not preserved in general when we condition with re­
spect to a sufficient statistic, a theorem, wich is analogous to the Lehmann-Scheffée one, 
can be formulated in the intrinsic context. We need first to redefine the completeness 
notion. 

Definition 6.6 A sufficient statistic T is said to be complet, for J;f, iff 

implies that f(T) = g(T) (a.e. µ). 

Then, with the same conditions a.s in the previous theorem, we have the following 
proposition 

Proposition 6.7 (Intrinsic Lehmann-Scheffée) LetU be an estimator that isfunc­
tion of a complete sufficient statistic for .H, then, it is the uniformily mínimum Rao 
distance estimator Jor a fixed bias tensor. 

Proof: 
The proof is trivial from the previous definition and Theorem. • 

7 Asymptotic properties 

First of all notice that, given a sequence of random variables taking values on a n­
dimensional C 00 (Hausdorff and connected) manifold with Riemannian structure, the 
definition of the different types of stocha.stic convergences is straightforward: weak, 
in probability, almost sure, or in r-th mean convergence, like in any metric space. 
~[oreover, since the topology induced by the Riemannian metric is the same as the 
topology induced by the atlas, if a global chart exists, taking coordinates, we can 
reduce the study of these convergences, with the exception of the r-th mean, to the 
convergence of random sequences taking values on IR.n. 

We have seen that the estimators often are intrinsically bia.sed but we are going to 
show that the intrinsic bias tends to zero far large samples in important ca.ses such a.s 
the maximum-likelihood estimators. 

Definition 7.1 An estimator U is asymptotically intrinsically unbiased if and only if 
it is intrinsically unbiased asymptotically, that is, we can construct a sequence of mean 
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ealues of Uk which converges to p0 • When the sequence of mean values is uniquely 
defined, we may write 

whatever Po E i'vl. 

and we shall say that U is asymptotically strictly intrinsically unbiased. 

In the two following propositions we shall suppose that the estimator U is regular 
in the sense that 

sup Ep0 (p 2(Uk, Po)) < ~ 
kEN 

and the covariant derivative of the vector field í(p) = Ep0 (exp; 1 (Uk)) exists and can 
be obtained differentiating under the integral sign. We shall also assurne that the as­
sociated manifold of the regular parametric family of densities has sectional curvatures 
[{ bounded from above and below, i.e.: K < [( < K, and the diameter of the mani­
fold d( M) < -rr /2-vK, if K, > O and oo otherwise. Notice that in theorem 4.1 we had 
analogous conditions and also that these conditions are sufficient to assure a convex 
geornetry, see 9.3 in the Appendix, and thus that the mean value is in fact a centre of 
mass. 

Proposition 7.2 An estimator U is asymptotically intrinsically unbiased if and only 
if for the corresponding bias tensor field, Bk (Po) = Ep0 ( exp;

0
1 (Uk)) which depends on 

the sample size k, we have 

lim Bf {po) = O 
k • oo 

a = 1, ... , n 'if Po E 1vf. 

Proof: 
Suppose first that lirn IIBk{Po)II = O. Let 1ik(P) = Ep0 (p2(Uk,P)) and let ,(t) be a 

k • oo 
geodesic line such that -y{O) = 9'Jl:p0 (Uk) and 1 (1) = Po• Then 

llgrad(11.k) ( ,( 1)) 11 lli'( 1) 11 

since 
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beca use 'Y(Ü) = 911 Po (Uk) is a local mínimum of 1-lk(p). Additionally, by the regularity 
conditions of Uk we can write 

By 8 in Subsection 9.3 of the Appendix, 

d2 
dt2 p2 (Uk, 'Y(t)) 2:: C(/C) · p2 ('Y(O), 'Y(l)), 

with C(/C) > O. Thus we obtain 

llgrad(1lk)b(l))lllli'(l)II? C(/C) · p2(,(0), 'Y(l)). 

Finally, since lli'(l)ll = p(,(O),'Y(l)) and 

grad(1ik)b(l)) = -2 { exp;/(Uk(x))Pu,i(x; 0o) µk(dx) = -2Bk(po), lx · 
we have 

1 IIBk(Po)II? 2C(/C) · p('JJ?p0 (Uk),Po), 

then, taking limits, we obtain 

Suppose now that lim 911 Po (Uk) = Po 
k• oo 

since grad(1lk)(,(O)) = O, and where the last inequality is dueto the fact that for any 
C 1 vector field X, JIXJJ' ~ JJX'II- Herein we denote the covariant derivative of X, along 
a curve determined from the context, by X'. Then, since 
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with c(s,t) = expu"(s •expü;b(t)), we obtain, by the regularity conditions on Uk and 
with the same notation as in 9.3 of the Appendix, 

From 9.3 in the Appendix, we know that 

and 

\ : Jtan(l), Jtan(l)) \ Jtan(l), Jtan(l)) ~ O 

· ( ~Jtan(l),Jnor(l)) = -( ~Jnor(l),Jtan(l)) = O. 

Also, from Proposition 9.5 of the Appendix, we can bound the covariant derivative 
of the normal component of J, and taking into account the geodesic speed, we have 

!IJ'(l)II < IIJ(l)II · ( max ( 1, llc'(l, t)II (
2f: -~~) (llc'(l, t)il))) 

< p(rotp0 (Uk),Po)2 · (1 + Jiji¡p(Uk,Po)), 

where the second inequality follows by tS~(t)/Si,;(t) ~ l+JfITTlt, 11 E IR, as the reader 
can check easily from its definitions in 4 in Subsection 9.2 of the Appendix. 

Finally, since the second order moments of U1c are uniformly bounded 

with C = 1 + supkeN Ep0 (p(Uk, po) ), and taking limits the proposition follows. • 

Remark. Notice that in fact we need only that the first moment be uniformly 
bounded. However we maintain this condition in order to be coherent with the condi­
tions in theorem 4.1. Nevertheless, it seems quite sensible to demand this condition for 
any good estimator. 

Example 7.3 For the univariate exponential distribution we obtained, see example 
3 . .5, that Bk(P) = 'lt(k)-log k, where W(k) = f'(k)/f(k) , then, since limk• oo k/e'~(k) = 
1, it turns out that the maximum-likelihood estimator is asymptotically unbiased. 
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Deftnition 7.4 An estimator U is an o-consistent estimator if and only if 

whatever Po E M. 

Theorem 7.5 Let U be an a-consistent estimator for a regular parametric family, with 
a 2: 1. Then U is asymptotically intrinsically unbiased. 

Proof: 
By hypothesis, 

lim Epo (pº (Uk, Po)) = O with a 2: 1, 
k • oo 

where p is the Riemannian distance. Therefore, by Jensen inequality, 

lim Ep0 (p (Uk, Po)) = O, 
k • oo 

and taking into account that p (Uk, po) = 11Ap0 IIPo, where Ap0 is the estimator vector 
field, it follows that 

obtaining the required result. • 

Now we introduce a definition of normal distribution on a manifold. There are 
severa! ways to built distributions on a manifold, for a comprehensive exposition see 
Jupp [18]. First we define a normally distributed random vector on the tangent space. 

Deftnition 7 .6 Let Y be a random vector on the tangent space Mp, where p is a fixed 
point in lvl. We shall say that Y is normally distributed if there exists a vector r¡ 
and a positive definite 2-contravariant tensor E such that for any coordinate system, 
(Yº)~ N ((,,,8), (E-Y")). We shall write Y~ N(17,E). 

Remark Notice that this definition is independent of the coordinate system. This 
is possible due to the fact that the parameters, r¡ and E, in a normal distribution change 
as a vector and a 2-contravariant tensor, respectively, when we change the coordinates 
of the random vector Y. Now we can define the meanning of a normal distribution on 
a complete manifold M. 

As usually in the paper we are going to consider only random objects Z that take 
values, almost surely, on regular neigbourhoods, see definition 2.5, of any point in 
a complete manifold lvf. For this kind of random objects the random vector field 
exp; 1(Z), p E A1 will be almost surely well defined and we shall suppose that exp; 1 (Z), p € 
JI is defined in this sense. 
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Definition 1.1 Let Z be a random object valued on a complete manifold M. We shall 
say that Z is normal/y distributed with respect p and with parameters ( r¡, :S), if there 
is a random eector Y ~ ~ ( r¡, :S), on Afp, such that Z = expP (Y). We shall write 
z ~ \:(r¡; :S)p-

>l'otice that if r¡ = O then 9Jt (Z) = p. We now introduce the concept of asymp­
totically normal distribution in this context. Let {Zk}keN be a sequence of M-valued 
random variables, then 

Definition 7.8 Let .\1 a complete manifold, a random sequence {Zk}kEN is said to 
be Sk-asymptotically normally distributed with mean p E .W if and only if there is a 
positive definite 2-contravariant tensor in Mp, E such that 

with Y~ N(O, E), 

u·here C stands for the weak convergence or convergence in law, and { Sk} kEN is a 
sequence of positive real numbers with limk• oo sk = oo 

Remark. Notice that if {ZkheN is Sk-asymptotically normal with mean p then 

with Z ~ N(O, E)p, 

but if we have that {VkheN ~ Z is not necessarily true that exp;1 (Vi) converges 
in law to a normal distribution. We also say that the estimator U is Sk-asymptotically 

normally distributed if its corresponding random M-valued sequence is asymptotically 
normally distributed. 

Proposition 7 .9 Let U be an Sk-asymptotically normally distributed estimator, of a 
regular parametric family of probability distributions, with mean p0 E .. \1. .·-1.lso, assume 
that 

supEp0 (Pl+f(Uk,Po)) < oo /oran€ E IR+. 
kEN 

Then, U is asymptotically intrinsically unbiased. 

Proof: 

Since U is Sk-asymptotically normal then p(p, Uk) ~ O. The sequence of random 
variables p(po,Uk) = IIAk(Po)II is uniformly integrable because p(po,Uk) = IIAk(Po)II; it 
follows that Ep0 (1!Ak(Po)II)-+ O and since O< IIEp0 (Ak(Po)) 11 < Ep0 (IIAk(Po)II), the 
proposition is derived. • 
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Theorem 7.10 Assuming the previous theorem assumptions, maximum-likelihood es­
timators are asymptotically intrinsically 1.mbiased. 

Proof: 
This is an immediate consequence of the previous theorem, assuming sufficient 

conditions to ensure the supkeNEp0 (pl+e(Uk,Po)) < oo, for an E E R+, by observing 
that the maximum-likelihood estimators are v'k-asymptotically normally distributed. 
In fact, 

/f exp; 1 (Uk) -5:...+ N ( O, (gcx/3)) , 

where (gªi1) is the contravariant version of the metric tensor. • 
From the equations of the geodesics it is easy to obtain a power expansion of the 

inverse of exponencial map in a point p of the manifold M. The equations of the 
geodesics in a coordinate neigbourhood of a point p and with unit tangent vector u are: 

d2 xª dxi dxJ 
dt2 + rf; dt dt = O, 

with (xª(O)) = p, (±ª(O))= u. Thus 

Then we can obtain all derivates at the point p recursively: 

and so on. 

xª(O) - -r0 (O)uiuj 

xª (O) - -ff;(O)uiuj - 2r0(o)ixJ 

= -t0(0)uiuJ + 2ff;(O)f}r(O)u1uruJ 

= (-ajr~+2r0rfr)(o)u1urui, 

On the other hand 

XC, (t) - xª (O)= xª (O)t + ~xc,(O)t2 + i iª (O)t3 + O(t4 ), 

where f(t) = O(t4
) if limt• o(/(t)/t4

) = k > O and we use the convention that, when 
the expression, say, O(t4

), is used several times in an argument, different quantities 
may be involved on each occasion. Moreover, 
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Aº= (exp; 1 (x(t)))º = t.iº(O), 

so, this yields 

But, in fact, we are interested in expressing A as a power expansion. Then we should 
invert the above expression. This can be done iteratively. At first order 

at second order 

at third order 

1 · · 1 ( · ) ¡ · Aº = uxº + -fº•AX 1 A 3 + - ar)< + r0 .r1 
ilX Axr Ax3 + O(t4

) 2 IJ 6 J Ir 13 Ir , 

and so on. 
If we generalize the O notation to randorn variables, writing Yk = O p ( X k) if the 

sequence of randorn variables {Yk/ Xk} is bounded in probability, we can say the fol­
lowing: 

Proposition 7.11 Let (U,B(·)) a local chart, where 9(p) = 90 , U such that v'kexp; 1 (Uk) 
converges in distribution to a random vector with mean zero and second order moments. 
Then, · if we write 91,.¡ = 9(Uk) 

A% (p)ª = 
. 1 .. . . . . 
8~) - eg + 2nj(9(/c) - Bb)(lP - 9b) 

+i (ajrh- + qjrir) (9!,.) - Bb)(IJr - Bó)(9Í,.) -OÍa) + Op(k-2
), 

where Ak (p) = ( exp; 1 (Uk) r' and the Christo.ffel symbols and its derivatives are cal­

culated in p. 

Proof: 
First of all, since v'k exp; 1 (Uk) converges in distribution to a randorn vector with 

mean zero and second order moments, Uk ~ p. Then the norm of the remainder term 
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in the Taylor expansion at third arder is Rk · t4
, where Rk _!_,,. J (p), t can be chosen as 

the arclength, i.e. t = 11 exp; 1 (Uk)II and f(p) is a function that depends only on p but 

not on k. e 
From the hypothesis and by the Slustky theorem k2t4 -+ IIYll 4

, such that Y have 
a distribution function with mean zero and variance Eo. Finally, since k2t4 converges 
in distribution k2t4 = Op(l) and equivalently t4 = Op(k- 2

). Then the proposition 
follows. • 

With certain obvious conditions we can say something similar for the moments. 

Proposition 7.12 In the above conditions if supkeN E(k2p3+e(e(J,¡, &o)) < oo and the 
Christoffel symbols and its derivates are uniformily bounded on the support of {Uk} 

Bª(p) = Biasª(B(l,J) + ½ff; { Biasi(B(kJ)BiasJ(O(kl) + Cov (8Íkl' Btk¡)} + O(k-312 ). 

with Bª (p) = Ep(Aª) and Bias(B(kl) = Ep(B(I,¡ - &o), 

8 Concluding remarks 

The parametrization invariance of an inference procedure has been valued as an im­
portant and desirable property by severa! authors, see Barndorff-Nielsen [.5], S. Amari 
[2] among others. Notice, for instance, that we need this property if we want to use, 
in a consistent way, the parametric bootstrap. Basically the parametrization invariance 
means that the inference procedure yields the same conclusion in any coordinate or 
para111eter system. But what <loes "same conclusion" mean?. We cannot talk about 
same conclusions if the tools used to reach a conclusion like the- bias, the mean square 
error, etc .. depend on the parametrization. It is pointed out that the classical bias and 
mean square error measures are not intrinsic quantities and therefore, in this sense, 
inconvenient. Therefore, the defined bias measure and the mean square of the Rao 
distance allow us to investigate the estimator properties in a more objective way. Un­
fortunately in many com_mon and simple cases intrinsically unbiased estimators do not 
exist, although it is possible to correct the bias locally, obtaining a new estimator with 
its corresponding bias tensor null at one fixed point, p0 , provided that the bias tensor 
field is defined at Po• Observe that for a fixed sample of size k, in order to correct the 
bias of an estimator Uk ( x), at a fixed point po, it is sufficient to define the modified 
estimator 
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where B(p0 ) is the bias tensor corresponding to Uk(x) at Po- This could be used in 
testing hypothesis theory, when the null hypothesis is simple, correcting the estimator 
bias under the null hypothesis, and allowing the construction of tests which would be 
invariant under reparametrizations. 

It is also possible to give an average measure of the bias, like the integral of the 
square of the norm of the bias tensor, over the manifold, as a scalar bias measure: 

Blk = f,)IB(p)ll 2 
VR(dp) 

where VR is the Riemannian measure over the manifold. Notice that this definition is 
independent of the coordinate system, and with possible Bayesian interpretations. 

~loreover, it will be interesting to characterize the parametric families which allow 
an estimator to attain the intrinsic lower bound for the mean square of the Rao distance. 

Rao distance has been used as a too! in different approaches, but now we emphasize 
its use as the right distance between estimates, namely the appropriate scale to observe 
and compare the estimates and consequently the estimators, even if the samples belong 
to the same population. The estimates are in the same manifold w·here the populations 
are. Note that the distance between estimates depends on the statistical model from 
wich the sample have been drawn and that if we considered the estimates located in 
the tangent space of the true density we would obtain, as distance between estimates, 
the .víahalanobis distance. This being a first approximation in our context. 

In this work we have established a way to compare different estimators, then the 
following step will be to find the best estimators according to these principies. 

9 Appendix 

In this Appendix we present a set of notions and results that belong to the differential 
geometry and which are necessary to prove the statements in the paper. The reader 
can find further information in Spivak [31], Kobayashi and Nornizu (22], Hicks [16], 
Chavel [13], Cheeger [14], Bishop (7] and Karcher (19] among others. 

Let (Af, 21.) be a n-dimensional connected C 00 real manifold, 21. is the atlas, TM 
denotes its tangent bundle with projection map rr : T1vl • Af, where rr({) = p if 
{ E Afp, the tangent space at p. Assume that there is an affine connection V on the 
manifold. Let e: ( a, ¡3) • ['vi be a smooth path in M. A vector field X along e is a map 
X: (a,,B) • TM such that rroX = e, i.e.: X(s) E J\,.fc(-') for all s E (a,¡3). The tangent 
vector field corresponding to e is given by the map t t--+ e'= c .. (d/dsls=t), where c .. is 
the differential of e and d/ ds is the standard derivation operator on the real line. For 
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the sake of simplicity we shall often identify the fields along curves or surfaces with 
their images. For instance, we shall write e' instead of the map t t-+ c'(t). 

To define the derivative of X along e, (v' /ds)X, also called covariant derivative, 
let ( C. x) E 21 be a local chart on ~w such that e( ( a, J)) n U =/:- 0, and let rt be the 
Christoffel symbols corresponding to the affine connection v', with respect the local 
chart ( U, x), defined through 

í,j=l, ... ,n, 

where {)1 , •.. , On are the basis vector fields corresponding to the local chart. Let X = 
L,i=l r¡J ( Oj o e), and cj = x1 o e, x1 being the j-coordinate function. 

The derivanive of X is another vector field along e given by 

(r¡k)' and (el)' being the usual derivatives on IR. This definition is· coordinate indepen­
dent and therefore the vector field (v' / ds)X is well-defined, provided the existence of 
rl, k == 1, ... , n derivatives. 

Sorne well known propertys are 

y' y' y' 
-(X+ Y) == -X + -Y 
ds ds ds 

:ux) == tx + ¡ :x, 
where X and Y are smooth vector fields along e and f is a real valued C 1 function, 
/: (a, /3)-+ IR. lf the manifold is Riemannian, and v' is the Levi-Civita connection, we 
also have 

d V V 
ds (X, Y) = (dsX, Y)+ (X, dsY). 

Given an arbitrary connection V on the manifold, the curves whose tangent vector 
field remains constant along them, like the straight lines in a Euclidean space, are the 
geodesics, defined by (V /ds)c' == O. 

9.1 The exponential map 

The exponential map, expP : Mp -+ .\l, corresponding to V, is defined through the 
corresponding geodesics as follows. Let p be a point of the manifold, p E J,f, lvlp be 
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the tangent space at p, { E ¡1,/p, and !et A/: [O, l]-, A/ be a geodesic such that 

1 (0) = p and 1
1
(0) = ,.(:sls=O) = {, 

where d/ dsls=O is the standard derivation operator on the real line, at s = O. Then, the 
exponential map is given by expp({) = 1 (1), defined for all { in an open star-shaped 
neighbourhood of 0p E Mp. 

>Íotice that expP maps the straight lines which start at 0p to geodesics starting at 
p, and since .\/p is also a manifold and any tangent vector r¡ E A/p may be identified 
as a parallel vector field on lvlp and therefore as an element of (A/p)( for arbitrary 
( E :Wp, we have (expp).¡0 (r¡) = r¡, where (expp).¡0 is the restriction of (expp)* to the 
tangent space (J./p)o. This shows, from the inverse function theorem, that expP is a 
local diffeomorphism. 

Now we are going to focus on Riemannian rnanifolds with their natural Levi-Civita 
connection. Denote by 6p(r) C .WP 

where r > O, and for each { E 6p = 6p(l) we define 

Cp({)=sup{s>O: p(p, 1e(s))=s}, 

where p is the Riemannian distance and 1e is a geodesic defined in an open interval 
containing zero, such that 1e(O) = p and with tangent vector equal to { at the origin. 
Then if we set 

and 

we have the following proposition: 

Proposition 9.1 expP maps '.Dp diffeomorphically onto Dp. 

Proof: 
lt will be sufficient to show that expP is injective since is obviously surjective and 

srnoothness follows by the smooth dependency of geodesics with respect the inicial 
conditions. 

Let ,e a geodesic segment connecting p to m, i.e. expp(s~) = m, with s = p(p, m). 
Consider a normal ball of sorne radius t: at m E Dp. Suppose there is another curve 
; (pararnetrized by the arclenght) frorn p to m with lenght s = 1,1. lf A¡(s - t:) #-
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,ds - t:) the corresponding curves would eventually form a corner with the extension 
of íf. beyond m. By cutting across this comer we would get shorter curves from p to 
:ds + t:) than s + t:, contradicting the minimality of A(f. beyond m. • 

:\foreover, if the manifold is also complete, the boundary of '.Dp, 8'.Dp, is mapped 
by the exponential map onto 8Dp, called the cut locus o/ p in ,vi. It is also interesting 
to note that the cut locus of m has zero n-dimensional Riemannian measure in J1[ 

(essentially due to the Sard theorem), and .H is the disjoint union of Dm and 8Dm. 
For more details can be found in Hicks (16] or Spivak [31]. 

Additionally. !et us consider the 1-parameter family of geodesics c(s, t) defined as 

c(s,t) = expp(s((t)), 

where ((t) is any curve in 6p with ((O) = ~' defined for s sufficiently small. Denote by 

e'= c.(:s), e= c.(;t), 

where fJ/ os and 8/ ot are the ordinary partial derivation operators on JR.2. Observe that 

º('º) (V'.) ('V.) 
os e ' e = os e ' e + e ' os e ' 

where V/os and V/ot are the covariant derivatives along the curves c(·,t) and c(s,·) 
respectively. Then, since, fixing t, ch t) is a geodesic, (V/ os)c' = O, the Levi-Civita 

connection is torsion free and the Lie bracket [e', é] = O, (where [e', c]f = ( ~!,_ -
88 && 
iJt 0)(! o e) for any C2 real function fon M ), we have (V /fJs)c = (V /ot)c', and 
therefore 

º('º) ('V') 18('') os e 'e = e ' ot e = 2 ot e 'e = o, 
since JJc'JI = ll((t)II = l. Therefore the scalar product (e', é) is independent of s, and 
for s = O, we have c(O, t) = p, and thus é(O, t) = O, obtaining ( e', é) = O. This result 
is known as the Gauss lemma, and if we let ,é (s) = (expp).¡.,e(~) it could be expressed 
as 

( (expp)•ls{(TJ), ,é(s) ) = O, 

where T] E (6p(s)).,e. Therefore the curves obtained fixing s = a, w(t) = c(a, t) = 
expp(a ((t)) are orthogonal to the radial geodesics obtained fixing t = b, 1 (s) = c(s, b) = 
expp(s((b)) and the map (expp)* : (.i\llp)v • Mexpp(v), although it does not preserve 
angles, maps orthogonal vectors to orthogonal vectors. 
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9.2 Jacobi fields 

\Vith the same basic notation as in the previous subsection, let us consider a smooth 
1-parameter family of geodesics, c(s, t) on }vl, such that c(s, t) is a geodesic for every 
t. Let us denote by e'= c_(8/8s) ande= c.(8/8t). Then we have, for an arbitrary 
vector field X along s H c(s, t), 

where R is the curvature tensor, since the Lie bracket, [e, e'] = O. 
Therefore, sin ce fixing t, e( s, t) is a geodesic, we have 

v', v'v', v'v', ('º' 
O - 8s e - éJt 8s e - as ate + R e' c)c' 

and finally, since (v/at)c' = (v'/os)c, the vector field e along the geodesic s • c(s,t) 
satisfies the second order differential equation 

v2 v' v 
where fJs2 = (as) os. 

v'
2 

. R( ' ') ' O 
882 

e+ e , e e = , 

In general. if e= c(s) is a geodesic on Af, a Jacobi field along e, Y is a. C 00 vector 
field along e satisfying Jacobi 's equation: 

y'2 / / 
ds2 Y+ R(c, Y)c = O, 

where e'= c,.(d/ds) and v' /ds is the covariant derivative a.long c. 
Sin ce this equation is linear in Y, the set of all J acobi fields along e is a vector space 

:F1 over IR of dimension equal to 2n, n being the dimension of Af. A Jacobi field Y 
along a geodesic is determined by its value, Y, and (v' / ds) Y in an arbitrary geodesic 
point. ~foreover, if X and Y are Jacobi fields, 

d { v v } v12 v12 
ds (dsX, Y) - (dsY,X) = (ds2 X, Y) - (ds2 Y,X) = 

= -(R(c', X)c', Y)+ (R(c', Y)c', X)= O, 

by a well known property of the curvature tensor, therefore the Wronskian 

v' v' 
(-X, Y) - (-d Y, X) = const. 

ds s 
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and, in particular, if X(so) =}''(so)= O we will have 

v v 
(dsX, Y) - (dsy' X)= O. (3) 

Additionally. for any Jacobi field Y there exist two real constants a and b such that 

( Y, e' ) = a + bs, 

since e' is also a Jacobi field. If a = b = O we obtain all the normal Jacobi fields 
( orthogonal to e'), which form a subspace of FJ with dimension 2n - 2. 

Therefore we can decompose any Y E FJ along the geodesic c(s) into its normal 
component and its tangential component: Y = ynor + ytan, both components also 
being Jacobi fields. 

For a tangential Jacobi field, as a consequence of the Jacobi equation, we have, 

Y ( s) = ( a + bs) e' ( s). 

Ali the results on Jacobi fields can be formulated in terms of unit speed geodesics, 
i.e.: with llc'II = 1, since if Y(s) is a Jacobi field along c(s) then J(s) = Y(rs) is a Jacobi 
field along the geodesic c(rs), with J(O) = Y(O) and (v /8s)J(O) = r (v /8s)Y(O). 

In order to study the behaviour of Jacobi fields we can introduce the following 
differential equation, as we shall see later. Let ,-;, : IR • IR be a continuous function and 
consider the differential equation f" + ,-;,f = O. Let us denote by S 1( the solution of this 
equation with S11:(0) = O and S~(O) = 1, and by C11: the solution satisfying C11:(0) = 1 
and C~ (O) = O. 

It is easy to verify that if ,-;, = K, where K is a real constant, then 

sin( ./Kt) 
if K > O, 

,/K 
SK(t) = t if [(=o, (4) 

sinh(..;-::::Kt) 
if K < O, 

FK 
and CK = SK. 

Given a normal ( orthogonal to e') J acobi field Y, let us define 

!11: = IIYll(O) e 11: + IIYll'(O) S11:, (5) 

Let us also introduce the sectional Riemannian curvature bounds, along the geodesic 
e, ó(s) ~ K ~ ~(s) (for arbitrary linearly independent 2-planes), where l( is the 
sectional Riemannian curvature, 

K(X, Y) = (R(X, Y)X, Y) 
2

• 

(X, X)(Y, Y) - (X, Y) 
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Then, we have the following comparison 's theorems 

Theorem 9.2 (Rauch comparison theorem) Let Y be a normal Jacobi field along 
a unit speed geodesic c(s), then it satisfies the following inequalities, as long as it does 
not rnnish and f~(t) > O O< t < s: 

( IIYll(s))' > 0 
h.(s) - ' 

__ IIY-'-11.....;.'(_s) > _J;_(s) 
IIYll(s) - J:i(s)' 

IIYll(s) 2: ÍA(s). 

Where the second inequality can be written as 

V 
J:i(s) (

88 
Y(s), Y(s)) 2: J;(s) (Y(s), Y(s)). 

Proof: For al! t E (O, s) 

IIYll"(t) = { ll~II (~Y, Y)}' (t) = ll~II (-R(c', Y)c', Y)(t) 

1 { V V V 
2

} +IIYll3 (atY'atY)(Y,Y)-(atY,Y) (t) 

> -ü(s)IIYll(t) 

by Cauchy-Schwartz inequality. Therefore, we have 

IIYll"(t) + ~(t)IIYll(t) 2: o, 

and since J:i(t) > O 
( ÍA(t)IIYll'(t) - f~(t)IIYll(t) )'~o, 

since !1 + ~ÍA = O. Then, since IIYll(O) = !A(O) and IIYll'(O) == !1(0), integrating 
from O to s the inequalities follow. 

Proposition 9.3 Let Y be a normal Jacobi field along the geodesic c(t) and let X a 
normal field along e with X(O) = Y(O) == O and X(s) = Y(s) then l/iy(s) :S l/ix(s), 
where _ f5{ V V ( , , } 

IPx(s)= lo (dtX'dt'X)- R(c,X)c,X) dt. 

and equality holds if and only if X= Y. 

Proof: 
Let Y1 , Y2 , ••• , Yn-l be Jacobi fields linearly independent vanishing at t = O. There­

fore 
n-1 n-1 

X= I:J¡Y;, y= L a¡Y;, 
i=l i=l 
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where a¡ are constants. \Ve have 

n-1 n-1 y' n-1 n-1 y' 

= ( L J:Y¡ + L f¡ dt Y¡' L ¡; Yj + L Íj dt fj) 
i=l i=l ;=l ;=l 

n-1 n-1 n-1 n-1 V 
= (¿ J[Y¡, L J5Yi) + 2(L f[Y¡, L /j dt Yj) 

i=l j=l i=l j=l 

n-1 V n-1 y' 

+(¿ f¡ dt Y¡, L /j dt Yj), 
i=l ;=l 

n-1 

(R(c', X)c', X)= ¿ f¡(R(c', Y¡)c', X), 
i=l 

and 

n-l n-l V n-l V 
= ( L J:Y¡ + L f¡ dt Y¡' L /j dt Yj) 

i=l i=l J=l 

n-1 y' n-1 v72 
+ (X, L !5 dt Yj + L /j dt2 Yj) 

;=1 1=1 

n-1 n-1 y' n-1 y' n-1 y' 

= (¿ JIY¡, L /j dt Yj) + (¿ f¡ dt Y¡, L 11 dt Yj) 
i=l 1=1 i=l J=l 

n-1 V n-l n-1 

+(X, L !5 dt Yj) - (¿ f¡Y¡, ¿ /jR(c', Yj)c'). 
;=l 1=1 ;=l 

Therefore combining the above equations we obtain 

y' y' n-1 n-1 

(-d X, -d X) - (R(c', X)c', X)=(¿ flY¡, ¿ J5YJ) 
t t í=l j=l 

n-1 n-1 y' d n-1 y' n-1 y" 

+ ( L JlY¡' L h dt Yj) + dt (X' L Íí dt Yi' ) - (X• L 1; dt Yi) 
1=1 J=l J=l i=l 

n-1 n-1 d n-1 y' 

- (¿ J:Y¡, L t5Yi) + dt (X, L Íj dt Yj) 
i=l J=l J=l 

n-1 n-1 
1 

{ y' y' 

+ ~ ~ /Jj (Y¡, dtYj,)- (Yj dtY¡)}. 
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where the last term is zero by 3. Thus 

similarly 

sin ce a¡ are constants. Finally, sin ce J¡ ( s) = a¡, we have 

s n-l n-l 

1;>x(s) = /o (¿ J:Y¡, ¿ J;Yj) dt + ipy(s), 
O i=l j=l 

consequently 
1/'y(s) ~ 1/'x(s), 

and the equality holds if and only if J[ = O far i = 1, ... , n - 1 and hence X = Y. • 

Theorem 9.4 Let Y be a normal Jacobi field along a unit speed geodesic c(s) that 
vanishes at s = O. A.ssume also that for any normal vector field Z along e 

ó( ) < (R(c', Z)c', Z) 
s - 11z112 , 

then we have the following inequalities 

IIYll'(s) Js(s) ---<--
IIYll(s) - Js(s) ( IIYll(s))' < o IIYll(s) ~ Js(s), 

Js(s) - ' 

where the second inequality may be written as 

Js(s) (~ Y(s), Y(s)) ~ Js(s) (Y(s), Y(s)). 

Proof: 
Define 

u(s) = (Y, Y)(s), v(s) = Jf (s), 
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and 

lo
s 

' 2 - 6 2 dt iby(s) (Us) Is) 
µ(s) = ~' v(s) = o v(s) . 

~otice that 

los ( Us) 2 
- 6ft) dt = Us!s) (s) - UUs) (O) = UUs) (s), 

since fsf'/ + 6JJ = O and fs(O) = O. Then 

du v 
ds = 2(

08
Y, Y)= 21t,y = 2µu, 

And solving the diferential equations we obtain 

dv 
1

, 
1 ds = 2uJ8 = 2vv. 

u(s) = u(€) exp{2¡s µ(t) dt}, v(s) = v(e) exp{2 ¡s v(t) dt}. 

U sing twice the l 'Hópital rule 

lirn u(e) = IIY'll2(0) = 1, 
! • O v(E) (/s(0))2 

and therefore 

u((s)) = exp{2 {s (µ(t) - v(t)) dt} 
v s lo 

56 

.Now we are going to see that µ(t) $ v(t). Let W be a parallel vector field along 

c(t) s_uch that W(s) = Y(s). Additionally, we introduce the vector field Z = Js !:) . 
Observe that Z(O) = O and Z(s) = W(s) = Y(s), then by the above proposition 

1PY(s) $ Wz(s) 

and taking into account that 

we have 

µ(s) = 7/'Y((s)) < v(s) 
us -
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and thus u(s)/v(s) is monotonous decreasing, with u(s)/v(s) S 1, and the inequalities 
follow. • 

Proposition 9.5 Let Y be, as above, a normal Jacobi field along c(t) such that Y (O)= 
O. .4ssume that 8 and Ll are lower and upper curva tu res bounds along e( t). Let k be a 
continuous function. Then, as long as S A > O and S~ > O 

Proof: 

IIY'll(t) s { IIYll(t). (2 ~~~ - !~) (t) 

IIY'(O)II · S~(t) 

if"-S½(8+~) 

if K? ½(8 + 0-) 
(6) 

Let f,. be as in 5, and Z a parallel vector field along c(t) such that ¡¡z¡¡ = 1, then 

(!,.Y' - f~Y, Z)(O) = O. 

On the other hand 

(!,.Y' - f~Y, Z)' = J,_(KY - R(c', Y)c', Z), 

and since (("- - R(c', •)e') Y, Z) is a symmetric bilineal form such that 

(("- - R(c', ·)e) Y, Y) S max(A - "-, K - 8)11Yll 2
, 

we have 
(!,.Y' - J~Y, Z)' S f,. max(A - K, K - 8)11YII, 

Then by the two above theorerns 

{ 

IIYII (s) {(A - K)f,.f A} (t) if K S ½(8 + ~) and 
(!,.Y' - J~Y, Z)'(t) s h. 

fA(t)>O, O<tss 
{(K - 8)f,_fs} (t) l'i,? ½(ó + ~) 

= { l~II (s) (J~f A - J,.f~)' (t) if "- S ½(8 + Ll) and 

f A(t) > 0, Ü < t SS 
(J,.J5 - f~!s )' (t) "' ? ½(8 + A) 
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Integrating from O tos, choosing Z such that Z(s) = Y'(s)/1/Y'/l(s) and taking into 
account that, by hypothesis, J~ > O, we have 

IIY'll(s) ~ { \\Y\I (2~: - ~~) (s) ~ ~ ½(8 + .l) 
Js(s) ~ ? ½(8 + .l) 

where we have applied the Cauchy-Schwartz inequality. The last inequality is dueto the 
fact that IIYll(s)::; fs(s). Finally putting the expressions for JK. and JÁ the proposition 
follows. • 

9.3 Convex geometry conditions 

Now we are ready to analyze the convexity of the square Riemannian distance, p2 , 

equivalent to the convexity of the real function p2 (p, 1 (t)) for any geodesic I and arbi­
trary p E M. 

We have the following important proposition: 

Proposition 9.6 Let N be a regular convex set in a Riemannian manifold AJ. IJ the 
sectional curvatures in N are at most O, or K, > O with d( N) < 1r /2./K, then the square 
of the Riemannian distance is convex. 

Proof: 
Let I be a geodesic on N and consider the family of geodesics from p E N to 1 (t) 

defined by cp(s, t) = expp(s exp; 1 ("Y(t))). Let us denote 

It is well known that p(p,1(t)) = llc~(s,t)il is independent of s and the mapping s ~ 
ép(s, t) is a family of Jacobi fields, since cp(s, t) is a smooth 1-parameter family of 
geodesics. Then, 
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since lle;!! is independent of s and (v/flt)c~ = ('v/éls)ép, where v/fJs and 'v/fJt are 
the covariant derivatives along the curves cp(·, t) and cp(s, ·) respectively. Taking into 
account that (v /8s)c~ = O, we have 

therefore, by observing ép(O, t) = O, we obtain 

:tp2 (p, A¡(t)) = 2(cp(l, t), c~(l, t)). 

Differentiating again, since ('v /fJt)cp(l, t) = ('v /fJt)t = O it results in 

:i:p2(p, -y(t)) = 2(ép(l, t),: ép(l, t)), 

denoting the Jacobi field ép along s -+ cp(s, t) by J(s), then J(O) = O, J(l) = ..:t(t) 
is independent of p, and ('v /fJs)cp(l, t) = ('v /fJs)J(l). We can decompose J into its 
normal and tangential component: J = Jnor + Jtan. For the tangential component, 
since Jtªn(O) = O, we obtain 

Jtªn(s) = bs c~(s,t), 

and 
'v 'v 
08 

Jtªn(s) = b c~(s, t) + b s fJs c'(s, t) = b c~(s, t), 

resulting in J 1ªn(l) = ('v /8s)Jtªn(l). 
Far the normal cornponent, frorn the Rauch comparison theorern, and taking into 

account the geodesic speed, we have 

and 

f ~ (jjc~( 1, t) 11) ( 11~(~, t) 11 ! Jnor (1), Jnor (1) ) .?: 

?: /1(11c~(l,t)jj) ( Jnor(l),Jnor(l) ). 

Therefore, combining these results we get 

( :Jtan(l),Jtan(l)) = ( Jtan(l),Jtan(l))?: O 

( :Jtan(l),Jnor(l)) = -( :Jnor(l),Jtan(l)) = O, 

( a'vsJnºr(l),Jnºr(l)) > 11 '(1 t)!I /~(11~(1,t)II) 11Jnºr(l)ll2 
cp ' 1~11~(1, t)II) ' 
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resulting in 

i a2 2 
28t2p (p,7(t)) = ( J(l), ! J(l)) 

> \\ , (l t)\\ J.~(\\c~(l, t)I\) \\Jnor(l)\\2 + \\Jtan(l)\\2. 
cP ' ÍA(\IS>(l, t)I\) 

\Ve are going to consider two cases. First, let us assume u(s) = O. In this case, 
since ÍA(O) = O, ÍA(s) = bs, obtaining 

1 f/2 
2 éJt2 P2 (p, 7(t)) ~ \\J(l)\\ 2 = p2 ("'!(0), 7(1)) > O, (7) 

and p2 (p, 7(t)Y is a convex function. 
Second. let us assume u(s) = K where K > O, and additionally the manifold has a 

diameter d(M) < rr/2v'K. In this case, ÍA(O) = O, !A(s) = sin (v'K, s), and therefore 

1 > \\c'(l t)\lf~(lld,i(l,t)\I) = v'K!ld,i(l,t)II cos(v'Klld,i(l,t)\I) > 0 
P' ÍA(IIS>(l,t)/1) sin(v'KIIS>(l,t)/1) ' 

since 11<!,i(l, t)II = p(p, 7(t)) < d(A1) and O< v'K \ld,i(l, t)\/ < rr /2, obtaining 

!~ 2 ( (t)) > v'K-l/c~(l,t)/1 cos(v'K-l/c~(l,t)\l)//J(l)\l 2 

2ot2 p P,"'I - sin(v'KIIS>(l,t)I/) 

v'K-11<!,i(l,t)/I cos(v'K /ld,i(l,t)/1) 2 = sin(vK/ld,i(l,t)\I) p (-y(O),A¡(l)) > O, (8) 

and again, p2 (p,-y(t)) is a convex function. • 

9.4 Geodesic spherical coordinates 

In order to describe the notion of spherical coordinates, first we have to introduce the 
following property. 

Proposition 9.7 Let Y be a Jacobi field along -ye(s) = expp(s~), with p E Arf, ~ E j\¡[P 

determined by the initial conditions Y(O) = O, (v' /ds)Y(O) = r¡. Then 
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Proof: 
Let us consider the 1-parameter family of geodesics c(s, t) defined as 

c(s,t) = expp(s((t)), 

where ((t) is a path in Jlp with ((O) = { and ('(O) = r¡, identifying, as usual, the 
elements of .\lp as elements of any (.'vfp)se, where (.\Ip)se is the tangent space at s{. In 
this case we know that the vector field 

Z(s) = c(s, O)= c.(! jt=o) , 
is a Jacobi field, and 

therefore Z(O) = O, and with the same basic notation as in the previous subsection, 

(~z)(o) = (~e) (O,O) = (;e') (O,O) =('(O)== 1?, 

concluding that 

• 

Given a point pin a Riemannian manifold, we are now able to introduce now geo­
desic spherical coordinates on Dp, through expPl'.Dp, the restriction of expP on '.Dp. Let 
us assume that there is a coordinate system on 6p, € = €( u) where u varies over a 
domain in an- 1

. A coordinate systern on Dp is defined through 

v(p, u)= expp(P€(u)). 

Denote by 

A¡~(p) = v. (:P) and Y0 (p,€) = v. (
8

~
0
), 

then, for every € E 6p, Y0 , a = 1, ... , n - 1 are Jacobi fields along ,e determined by 
the initial conditions 

Y0 (O,{) = O and 



lntrinsic Estimation Analysis 62 

v.(8/8uo.) E .v/expp(Pe) being orthogonal to 1f(p), as a consequence of Gauss's lemma. 
Therefore in a neighbourhood of expp(P~(u)) there exist a coordinate system (p, u), 
such that the corresponding basis vector field 

satisfies 

911 (p, u) = (81, 81) = 1, 91o(P, u) = 901 (p, u)= (81, 80) = O, a = 2, ... , n, 

where g0 ¡3 are the metric tensor components, and 80 , a = 2, ... , n are Jacobi fields 
along the geodesic A/ ( s) = expP (p ~ (u)). Therefore the Riemannian metric may be 
expressed as 

n 

ds2 = dp2 + ¿ 9of3(P, u)duº du/3, (9) 
c,,{3=2 

where 
9o/3(P, u)= (Yo(P,~(u)), Y¡3(p,~(u))), a,/3 = 2, ... , n. 

We have the following important theorem: 

Theorem 9.8 (Bishop's comparison theorem) Let K. and K, be lower and upper 
curvature bounds in a re9ion where det G > O then in this re9ion we have 

( n - 1) f~ (p) > i. tog v' det G > ( n - 1) fk (p) . 
f,,.(p) - 8p - f>c(p) 

Proof: 
lf we let G = (9of3)nxn be the fundamental tensor components in matrix form, along 

the geodesic 1e(p) we have 

i_ log v'det G = 1 t 8detG 890 {3 = 
8p 2 detG o$f3=Z 890 {3 8p 

1 ~ 0 ¡3 8 (Y Y, ) ~ o{J v1 = 2 L.. g a º' f3 = L.. 9 (Yo, ¡¡-Yf3), 
o,i3=2 p o,/3=2 p 

where gºf3 are the coefficients of c-1• Throught a lineal transformation of the fields 
Y0 , thus without changing the value of the previous expression, we can make Y

0 
to be 

orthogonal ata point (p, u). Then, we have 

8 n 1 v1 a log v'det G = L -IIY 112 (Yo, ¡¡-Yo), 
P o=2 ° P 
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then, since we have the conditions to apply the previous theorems, 

(n - 1) f~(p) > i.1og v'detG > (n - 1) fk(p). 
f,.(p) - f)p - ftc(p). 
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now, since the Jacobi fields vanish at the origin, J,.(p) = S,. and Jx:. = Sx:. and the 
theorem follows. • 

\Ve are now going to consider two cases. First, !et us assume K, s; O. In this case 
ftc(p) = SK.(p) = sinh( J=°Kp), and fk(p) = CK.(p) = J=X cosh( J=°Kp) if K, < O, 
and thus 

:p log v'detG 2: (n - l)v'=K coth(v'=Kp), (10) 

the case K, = O can be obtained directly or by continuity, resulting in 

8 ~ n - 1 
-
8 

log v detG > --. 
p - p 

Second case, !et us assume K(p) = K, where IC > O, and additionally the manifold 
has a diameter d(.\J) < rr /2,/K,. In this case frc(p) = Stc(p) = sin( vK,p), and Jf.:(p) = 
CK.(p) = ,/K, cos( vK,p), and therefore 

a 
op log v'detG ~ (n - l)v'K cot(v'Kp) > O. (11) 

9.5 Comparison theorems and volumes 

We can use Bishop's theorem in order to obtain the volume of a ball of radius r in a 
Riemannian manifold whose sectional curvatures are constant and to give bounds of this 
volume when the sectional curvatures are bounded. We have the following propositions: 

Proposition 9.9 // the sectional curvatures are constant and equal to IC, the volume 
of a Riemannian ball of radius r and center p E Af is given by 

21rn/2 r 
vol(Bp(r)) = r(n/2) lo s~-1

(t) dt. 

Proo/: 
From the expression 9 in subsection 9.4, and writing Grc for the metric tensor, we 

obtain 
vol(Bp(r)) = ¡r [ JdetGrcdu dp. 

lo le-ics,.¡ 
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Where Sn is the unit sphere in Alp. On the other hand, by Bishop's comparison theorem, . 
when the sectional curvatures are constant 

o ,_____ S' 

op log JdetG,c(p, u)= (n - 1) S~ (p), 

then, integrating this expression, we have 

But, in fact, ÜK: <loes not depend on K. Obviously 

l
. JdetG,c(p, u) 
lffi l = 1, 

p • O pn- ü(u) 

where ü( u) du is the area element of the unit esphere in a Euclidean manifold, and, 
since 

sn-1 

lim ~= 1, 
p• O pn-

we conclude that ÜK: = n. Thus we may write 

Finally, it is easy to check that 

1 2rrn/2 
ü(u)du= --, 

e-1 (571 ) r(n/2) 

and the proposition follows. • 

Proposition 9.10 When the sectíonal curvatures are constant and equal to K, and 
KS'i(r) < 1 we have the following expression for the volume of a Riemannian ball of 
radius r. 

vol(B(r)) = 2
7rn/~ St(r){l + f nf(j + ½~ K,JS~(r) }· (12) 

nf(n/2) i=l y0r(n+2J) J! 
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Proof: 
From the previous proposition 

2-;rn/2 r 
vol(B(r)) = f(n/

2
) lo s~-

1
(t) dt 

Then, taking into account, from the definition of S,c, that 

{ SK ( t)} 
2 + K { S ,e( t)} 2 = 1 

and doing y= S';;;(t)/S~::(u), we have 

lar sK- 1 (t)dt = ~Sx;(r) fo 1 

y"2
2 (1-KSi(r)yrt dy 
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On the other hand we have a relationship between this kind of integrals and the gen­
eralized hypergeometric functions, see Abramowitz [1), 

"° (a) ( b) · zj 
F(a b· e· z) = ~ J J - izl < 1 

' ' ' - L.,¿ ( ) . ., 
j:0 C J J. 

where (a)j = a(a + 1) •••(a+ j - 1), given by 

F(a, b; e; z) = r(b)~~c¡ _ b) fo1 

tb-t (1 - t)c-b-i (1 - tz)-ª dt, Re(c) > Re(b) > O. 

Then this leads to 

¡r sn-i (t)dt = !sn (r) r ( ! ) F (! ~- n + 2 · KS2 {r)) = Jo K: 2 K: r( ni2 ) 2' 2 ' 2 ' K: 

= !sn (r)-1-~ r(½ + j) K,JS~(r) 
2 x:, f(l) L..J !l + . :r ' 

2 j=O 2 J J. 

and the proposition follows. • 

Proposition 9.11 Let vol(Bp(r)) be the volume of a ba/l Bp(r) with center p and 
radius r. Then 

volit(Be_(r)) 2: vol(Bp(r)) 2: vol,t:{B¡;(r)), 

u:here volK ( Bp ( r)) and vol,c( B¡;( r)) are the volumes of ba/ls o/ radius r and arbitrary 
centers l!. andp respective/y, in manifolds with constant sectional curvatures K and K. 
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Proof: 
If we integrate, from p0 to p, the inequalities in Bishop's comparison theorem we 

obtain 

:\foreover 

s~- 1 (p) > JdetG(p, u) > s~- 1 (p) 
s~- 1 (po) - JdetG(po, u) - S7k- 1 (po) · 

,----- sn-1 ( ) ,----- ,----- sn-1 (p) 
Iim ✓detG(p0 , u) 11:_ 1 p ~ JdetG(p, u) ~ lim J<letG(po, u) sn':. 1 ( ) , 

Po • O s~ (po) Po • O X:: Po 

and, since 

l
. JdetG(po, u) 

1
. JdetG(po, u) n( ) 

1m = 1m 1 = H u , 
Po • O s~-l (Po) Po • O S";:,- (Po) 

with f2( u) as in the proof of 9.9, we conclude 

s~-1 (p)f2(u) ~ JdetG(p, u)~ s7k-1 (p)f2(u), 

and the desired result follows. 
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