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1 Introduction

The necessity of measuring how different two populations are appears in many
statistical problems. A wide class of indices or divergences has been used with
such a finality (for a comprehensive exposition see Burbea (1983)). We are not
able to give an universal rule for the choice of a divergence in each practical case.
Anyway, we can investigate the general properties that an Índex of discrepancy
should possess in order to describe a meaningful dissimilarity between populati¬
ons. For instance, suppose to assemble the individuáis of two finite populations
in classes Ai,...,Am. Let D(Pi,P2) be a convenient function of the proporti-
ons Pi = (P¿(Ai),..., Pi(Am)), i = 1,2, of individuáis belonging to the different
groups in the two populations. We can now decide to join several classes, ob-
taining B\,..., B¡, l < m. If P, = (P,(Pi),..., P¿(P/)), it is natural to demand
that D(Pi,P2) < P(Pi,P2), since the new classification brings less informati-
on than the previous one. It is also necessary to ask that the introduction of
new artificial classes does not cause any change in the divergence. Formally, if
Qi = {qnPi(Ai),..., qiriPi{Ai),..., qmiPi(Am),..., qmrmPi(Am)), i = 1,2, where
El=iqjk = 1, j = l,...,m, then D(PUP2) = D{Qi,Q2).

Divergences satisfying these two properties have already been studied by Cencov
(1972). He gives their Taylor expansión up to second order, by means of the in-
variance of the Fisher metric. In this paper we extend Cencov’s result to fourth
order, using the invariance properties of the a-connections. Following Campbell
(1986), we do not use the language of the categories.

An additional property allows us to extend a divergence to the case of when the
individuáis are classified in an infinite number of groups. This property expresses
a sort of continuity of the divergence, when we let the number of classes tend to
infinity.

2 Some basic definitions

In this section, we introduce operators representing an Índex of discrepancy betwe¬
en probability measures defined on the same measurabíe space.
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In the sequel, we indícate with (X, a) a measurable space. aa C a is a finite
suba-field of a and PQ is the restriction of P, defined on (X, a), to aa.

Definition 2.1 A divergence D(P,Q) is a real-valued function whose arguments
are two probability measures defined on the same measurable space.

Definition 2.2 Let (Xi,flí) and (X2,a2) be two measurable spaces. We say that
K : Xi x a2 —> [0,1] is a Markov kernel, K £ Stoch{(Xi, at), (X2, a2)}, if it
satisfies the following properties:

1. VA2 € a2, K(-, A2) is a measurable map;

2. Vxi € Xi, K(x!,•) is a probability on (X2,<*2);

If P is a probability measure on (Xi, at), then K induces a probability measure
on (X2, a2), KP, defined by

Let D(-, •) be a divergence and (Xi, ai) and (X2> a2) be two measurable spaces.

Definition 2.3 D(P, Q) is said to be monotone with respect to Markov kernels if

(2.1) —00 < D(KP, KQ) < D(P,Q) < +00,

for every P, Q probability measures on (Xi, a¡), and for every Markov kernel K £
Stoch{(Xi, ai), (Xs, a2)}.

As observed in the introduction, (2.1) is a natural property to require, since a
transformation through a Markov kernel will, in general, cause a loss of information
that is well explained by a decreasing of the divergence.

Monotonicity of a divergence function implies its invariance under a particular
class of Markov kernels. Let V be a family of probabilities on (Xi, aj)-
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Defínition 2.4 K G Stoch{(Xi, a¡), (X2, a2)} ¿s said to be Blackwell sufficient
(B-sufficient) with respect to V if there exists N G Stoch{(X2, as), (Xi, a¡)} such
that N(KP) = P, VP G P. ITe say that K is B-sufficient if V is the family of all
probability measures on (Xi, o-i)-

Proposition 2.1 If D is a monotone function with respect to Markov kernels,
then, for every B-sufficient K,

(2.2) D(P, Q) = D(KP, KQ), VP, Q.

Proof:
D(P, Q) = D{N(KP),N(KQ)) < D(KP,KQ),

that, together with the monotonicity, gives (2.2). ■

This is also natural since a B-sufficient Markov kernel does not cause any loss
of information.

Corollary 2.1 The valué of D(P,P) is independent of P and it is a mínimum
valué of the function D :

D(P, P) = D0 < D(Q, R), VP,Q,P.

Proof: Given a probability measure P, it always exists a Markov kernel K, taking
every probability measure on P: K{x, •) = P(-), Vx € X- Then,

D(Q, R) > D(KQ, KR) = D(P, P), VQ, P,

proving that D(P, P) is a minimum valué for D. Now, for every probability
measure P', K is B-sufficient with respect to the family V = {P, P'}, since
N(x,-) = P'(-), Vx € X, transforms P ¡n P'. By (2.2),

D(P, P) = D(P', P') = D0, VP,P'.
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Definition 2.5 D(P,Q) is said to be regular if

(2.3) D(P, Q) = \imD(Pa,Qa),

for every P and Q probability measures on (X, a), where the limit is taken over the
filter of all finite suba-fields aa of a, that is, over any increasing sequence {a„}
such that cr(U„ a„) = a.

Remark. Since thé restriction of a probability measure to a sub<r-field is a par¬
ticular case of Markov kernel, for monotone divergences the limit in (2.3) is a
supremum.

The regularity condition enables us to extend to the general case a divergence
originally defined on probability measures over finite cr-fields.

3 The multinomial case

In the present section we consider equivalent probability measures defined on the
measurable space (X, am), where am is a finite sub<r-field of a generated by the m
atoms Ai,...,Am. Every probability measure P on (X, a) induces a probability
measure on (X, am), defined by m valúes, xi...,xm, with = P(A¿) > 0 and

xí = 1. Thus, every P corresponds to a point of the simplex

Sm-i x £

Sm-i can be regarded as a surface in the differentiable manifold Rm.

, i = 1,... , m|, associated
to every point x £ Rm. If x £ Sm-1, the derivative of a function h(x i,..., xm) along

dh
a curve Xi = ipi(t), i = 1,... ,m, tangent to Sm-1, takes the form YT=i —•

C/X í
Since Yl'iLi V’t'ÍO = 1, then V’KO = 0 and every vector X tangent to the
simplex Sm-1 can be represented as X — a¿X,, with SíTx a¡ = 0.

There is a tangent space Mx, with base < Xi — dx
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For n > m, let B\,..., Bn be a partition of X such that A, = Uje/, Bji * ~

1,..., m, where /1?..., Im is a partition of {1,..., n}. For any probability measure
P on (X, a), let cr¿ = P(A¿), i = 1,..., m, and yj = P(Bj), j = 1,..., n. Thus
(3.1) Xi = J2vj, * =

je/,

Conversely, define

9¿j = -P(5j|A¿) =

— if j G
Xi
0 if j & U.

Then
m

(3.2) yj = £ftja:¿, j = 1,..., n.
i=i

Note that (%)¿j is a stochastic matrix, that is: qij > 0, V¿, Y^j=lq¡j = 1, Vi;
and qr¡¡qaj = 0 if r / 5, Vj. (3.2) defines a Markov kernel / : 5'm_i —)• 5n_i and
(3.1) an inverse of /, so that / is B-suíficient with respect to the family of all
probability measures on (X, am)- In fact, it is easy to prove that any B-sufficient
Markov kernel with respect to the family of all probability measures on (X, am),
can be written in the form (3.2). We cali f a Markov embedding.

The jacobian map associated to /, /* : Mx —> My, is defined by

(3.3) f*Xi = J2qaYP i = 1,...,m.
j=i

3.1 Embedding invsiriant structures

In the present section we consider geometrical structures defined on the simplex,
that are invariant with respect to Markov embeddings. We characterize invariant
Riemannian metrics and affine connections, showing that, up to constant factors,
they coincides respectively with the Fisher metric and the a-connections.

3.1.1 Invariant Riemannian metrics

Definition 3.1 If

(3.4) (U, V}m(x) = (rU, rV)n(y), W, V € Mr,
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where x € Sm_i and y = f(x) € we say that f is an isometry and that {•, •)
is invariant under f. (•, •) is said to be embedding invariant if it is invariant under
every Markov embedding.

The following result was first given by Cencov (1972). Anyway, we refer the
reader to Campbell (1986) for an easier proof.

Theorem 3.1 The only embedding invariant Riemannian metrics are of the form

(3.5) (Xi,Xj)m(x) = A^
where A > 0 and 6¡j is the Kronecker delta.

Remark. (The Fisher metric) Theorem 3.1 states the unicity, up to a multiplica-
tive constant, of embedding invariant metrics. Let = X{ — Xm, i = 1,..., m — 1.
Then

(íí¿, Uj)m (•£ )

(3.6)

(Xi - Xm,X, - Xm)m(x)
j\ík_ ^im _ _j = a(— +

\ / \ %i %m /

that is the same, up to a constant factor, that the Fisher metric in the multinomial
case, see Amari (1985, p. 31).

3.1.2 Invariant affine connections

A similar characterization can be given for embedding invariant affine connections.
For this purpose, even though the tangent space Mx has dimensión m — 1, it will
be better for us to work with an overdefined system of m vectors, vx,..., vm, such
that:

1. {u.-j,..., vim_1} is a base of Mx, V{iu ... ,im-ij C {l,...,m};
2- Z?=1v¿ = 0.



Monotone and regular divergences 8

^ m
We choose = X{ Y' X¡, i = 1,..., m, where X{ =

d
1,..., m is the

usual base of Mx in Rm. Notice that € Mx, x € Sm-u = 1 since

vi — I2T-i atXj, with a, = , and a, = 0. We suppose the tangent
. m . .

space is equipped with an embedding invariant Riemannian metric.

We will describe an affine connection on Sm_i through the coefficients ytJk
obtained by evaluating it on the vectors ui,..., vm:

(3.7) VVtVj = '%2~/ijkvk, V*,j =
k=1

Since {ui,... ,uTO} is not a base of Mx, 7¿jfc,s are not Christoffel symbols for the
connection V and, moreover, they are not uniquely determined. We choose the

satisfying the following condition:

(3.8) £V = 0, V?, j = 1,..., m — 1.
fc=l

Condition (3.8) guarantees that expression (3.7) is a good definition for V. To see
this, let

77i m

2 7í/vfc = ¿ 7¿>feUfc,
A:=l

that is
m

- 7¡i*K = 0.
fc=l

Since

m m—1

0 = H ~ ~ am)vk =>■ ak = am, Vk = 1,..., m - 1,
k=i k=i

then

7,'/ ~ 7¿j* = 7¿jm “ 7¿jm, Vfc = 1,..., m - 1.

E(7¿¿
A:=l

7./) = mtó" - = 0,

By (3.8),
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that is 7^m = 7,-jm and

7¿/=7¿A Vfc=

¿From the 7¿jfc’s, i,j,k = — 1, we can easily obtain Christoffel symbols
Tijk for V, with respect to the base 17,... ,

m m —1

= Ei¡7> = Efe‘-7iJ”K =
k= 1 k=1

m—1 m —1 m —1

fc=i /=l fc=i

Thus
m—1

(3.9) r¿jfe = 7.J* + £ 7.-;*»
;=i

Let V, '7ij k and Tij k denote respectively the affine connection V on 5m_i, its
coefficients in (3.7) and the corresponding Christoffel symbols in (3.9). We will
omit the superscript m when not necessary.

m

If / is a Markov embedding between 5m_i and 5n_i, m < n, then V induces
through / an affine connection on f(Sm-1), an (m — l)-dimensional submanifold
of 5n_i, defined by

f (wv(x)j, vu,veMx,
where /* : Mx —>■ My is the jacobian function corresponding to /. Moreover, as
a submanifold of the Riemannian manifold 5n-i, f{Sm-1) naturally inherits the
affine connection of Sn-\i

VrufViy), w,v e Mx,

where V is the orthogonal projection of V on the tangent space to /(5m_1). We
can thus give the following definition of invariance:

Definition 3.2 .4n affine connection V is said to be embedding invariant if the
m

affine connection induced by V on ) through f coincides with that induced
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on by V, that is

(3.10) /* (vu v(x)) =$f.u rv(y),
for every Markov embedding f.

Next theorem gives a characterization of the affine connections defined on the pro-

bability simplex, that are invariant under Markov embeddings. Following Camp-
bell’s characterization of invariant metrics, we give a proof that does not use
Cencov’s language of categories.

Theorem 3.2 The only affine connections that are embedding invariant are of the
form

Vw = iU- + G^ (xt - S¡t),
where I and G are constants and S¡j is the Kronecker delta.

Proof: Condition (3.10) of invariance for V can be written in terms of the vectors
of Mx as

/ m \ n

(3.11) /* vj(x) =V/*ví f*vj(y), i,j = 1,..., m.

Consider first the case of m = n. In this situation, f(Sm-1) = 5n_i and V
n

coincides with V- If / interchanges xr and then /* interchanges Xr and Xs,
and thus vr and va. Let xi = ... = xm, that is x = ( —,..., — ); then f(x) = x.

\m mj

If i = j, by (3.11) we obtain:

fm (^víVí(x)) = /* {yuk(x)vkj = 7ük(x)f*vk = V/*„,/*u¿(x).
It follows that:

7rrr(x) = 7s/(a:),

7ür(x) = 7¿¿s(a:), i {r,s},
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and

1rr'(x) = 7ss’(x), íg{r,s}.
Since r and s may be chosen arbitrarly, we may write

7¿¿ (>e) — Fm

and

If * # 3,

'ynk{x) = Gm, i^k.

r (v„»y(i)) = r (7ü‘(*k) =7= v/.„r^(x).
It follows:

7r**(®) = 7srfc(a:),
7fcr (*^) — 7^3 (•I')?
75itr(a;) = 7rJfeS(x),
7¡j (a:) = 7«j (*c))

where k,i,j ^ {r, s}, which imply

7ú (*^) ^7717 ® / J /

Similarly,

7»> (*^) — 7i« (‘^)í
7ri (**-) = 7s¿ (^)í
7¿rr(x) = 7¿ss(x),
7ri (•*-) = 7

where ¿ ^ {r, s}, together with the simmetry condition

7íik = 7ü*,

imply
7»j í3') = -^7717 ^7 € {*).?}•
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1 1
Thus, for x — ( —,..., —

\m m

rn j ,

7 ijk{x) =

Fm ^ — 3 — k
Gm * = J / ^
Hm ¿/j, k € {i,j}

.4» * / i, £ £

Next, let n = hm, where h is an integer bigger than one. If fh is the Markov
embedding defined by y = fh(x) = \-r-, • • •, ~r, • • •, -p-, • • •, ■— j, each compo-

\ h h h h 3

nent being repeated h times, then f*X{ = — + ... + and f*V{ =h
1 1 1 71
- (ií(,-_i)A+l + ... + uih) = t Y un where u¿ = Y{ YYj and Ri = {(i -n h

reñ, n j=i

l)h + 1,..., ih}, i =

For i — j, we have

/* (Vv, v¿(a:)) = /* (luk{x)v^j =lnk{x)f*vk = ^ 7nk(x) Y urr€Rk

T \ 7,■,■*(») £ «r + Y 7«fc(a:) «r )
\ fcjí» r€-Rfc /

. ( ^ , ur -(- ^ ^ ur | ,h ' r€ü,

and

V/*„, f*Vi(y) =
1

h2

J_
/i2

J_
/i2

E VUr Us(y) = — Y 7r.*(y)u*
r,s£R¡ r,a€Ri

Y 7rr*(y)ttjfc + E E *,* (y)«*
r£Ri r£R¿ s€ñ,

s#r

El%K + EEi-‘ (y)«* + E E E (y)w*
r(¿Ri r€Ri k^ir rgfí¿ k^r,s

*¿r
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rgf?, j€Rí
a^r

+ X! £ Pr/(2/)Ur+7r.*(y)w<

h?
Fn ^2 Ur ur + (/í — l)Gn ^ Ur

rgfl, rgR, rgfi¿

+ /i(/l - l)/n 5>r + (A - l)(/l - 2)/B ^Ur + 2(/l - l)ffn 5] Ur

r£Ri r£Ri r£R,

Since VpVi f*Vi(y) belongs to the tangent space to f(Sm-1) in y, we do not need
n n n

to project it to find V/*n¿ f*Vi(y), that is, V=V-

Condition (3.11) implies:

(3.12) Gm = Gn + (h — 1 )In

and

(3.13) Fm = ^ + ^Gn + íh~1)j.— 2)In + 2^Hn.h h h h
For i / j, we have:

/* (vv, Uj(x)) = /* (\jk{x)vk^j =7ijk(x)f*vk = i 7¿j*(x) 5]r€Rk

= 7 E ™ijk(X) “r+ 7V(x) 2 Ur+ 7¿/(x) 5] Ur
r€Rk rgfí¿ rg-R,

—

Al Im ^2 Hm ^2 ) >
rgR.uR,

and

V/*v, /*u¿(y) =

= ¿EEi u.(y) = lEE %3k{y)ukh2

h?

reRi seRj r€Ri agR,

EEE (y)«* + EEpr«r(y)«r+ 7„-(y)«
• eR «cR l-¿r. . -1- n -<-R 'rgR¿ agRj kjír,a r£fi¡ agRj
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h2
h2In ]T Ur + - l)4i Ur + Ur

r£R,Uñj reR,UR} refí.uR,

V/*v, f*Vj(y) still belongs to the tangent space to /(5m-i) in y and V coincides
with V-

By (3.11),
(3.14) Irn — hln

and

(3.15) Hm = Hn + (h-l)In.
Now, by (3.14), mlm = nln = /, that is

/ =11 m. —

m

By (3.15), Hm - Im = Hn - In = H, so

Hm = H+~.
m

A similar expression holds, by (3.12), for G:

Gm — G H .
m

Finally, (3.13) implies that -(Fm -G-2H - Im) = ~(Fn - G - 2H - /„) = F,
m n

that is

Fin = mF 4 (- G + 2H.
m

We can then write, for x = (—,..., —^,
Vm m/

7«fc(*) =

mF + //m + G + i = j = k
G + //m i == j ^ k
H + I/m i^j, ke{i,j}

. I/m ij^j, kg{i,j}.
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(T\ T \ where JZíli ri — n, and all are positive integers.
n n J

Define
— if je Ri
ri«7íj =
0 otherwise,

where = {n + ... + r¿_i + 1,..., n + ... + r¿}, ¿ = 1,..., m. The corresponding
Markov embedding / maps x to y = i—,..., — ). Moreover

n n

and thus

f*Xi — ~ (K1+...+r,_1+i + • • • + k^n+.-.+r,)n \ /

/ vi = ~ ^ri + ...+r¿_i + l + • • • + nri+...+ri^ = — 53 ur.
reRi

For i = j, we have

/* ÍVv¿ u¿(x)) =liik{x)f*vk = — 7uk{x) 53 un
r* reRk

and

V/*v; / Vi(y) — 2 Y1 ^Ur us{y) — ^2 53 ^rs (y)Uk
ri r,seRi ri r,seRi

1
53 lrrk(y)Uk+ Yl 1rsk(y)Uk
rSRi

s^r

(nF + - + G + 2H) YUr + ri (g+-)Y Ur
' n ' r£fí¿ ' n' rgfí,

+(r¿ - 1) (g + -) 53 ur + r¿(rf - 1)- 53 urV nJ rlR, n r$R,

+(r¿ - 1 )(rt- - 2)- 53 “r + 2(r¿ - 1 )(h + -') 53 ur” ' U' r€R,

n n

Since f*Vj(y) belongs to the tangent space to f(Sm-1) in y, V=V-
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Invariance condition (3.11) gives:
m i/ \ 1
ltil{x) ---- - nF + r,G + 2r¿i/ H—

n.

— + G + 2i/ + Ixí
Xi

and
V}, k/ \ Tk j xk T ; / •
7„- (a:) = — <3-1 / = G 1- Ixk, k^i.

r¿ n X{

For x =
r i

n n
, we have:

(- Ixí -)- G + 2H
Xi

G— + /**
Xi

H + Ixk
Ixk

i=j = k

i - j i1 k
i^j, ke{i,j}

Finally, any x G Sm-1
Since the

V n n )

can be approximated arbitrarily well by an x of the form
m i

lijk,s are C°° functions, then

(3.16) ™¡jk(x) = ¡Xk + H{Sik + 5jk) + Sij Vx e Sm-1.

Tít i

We can now impose condition (3.8) on the coefficients 7,¿ fe,s. If i ^ j, we obtain
H = — for i = j, we have F = —(3. Substituting these conditions in (3.16) gives
the result. ■

Remark. (a-connections) By (3.9), we can obtain the Christoffel symbols of any
embedding invariant connection on the simplex Sm_i, with respect to the base

(3.17) Vij k(x) = l(xk-xm- + GSf- (xk -xm- Sik).

Let us now show that the affine connections characterized by (3.17) are in fact,
up to a constant factor, Amari’s a-connections.
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1 771 — 1

m i=l

Let Ui = Vi - vm = Xi - Xm, i — 1,... ,m — 1. Then vm = ^ Using
the repeated índex convention and avoiding the superindex m,

XUtUj = VV,-Vm(vj V7n)
~ Vl,tVj XViVm XVmVj d" XVrnVm
— lij 7/im Vk 'Ijm Vk d~ 7mm ^k

m —1

— fTíj Títm Ijm “h Ttnm ^ í V ^' m ¿=i

í fc
~ I 7ij 7«m 7jm

^ m
d* 7mm ^ ' (7ijmfeí V

7¿m 7jm d“ 7inm ^ j

+ G^J2(xk-8ik)= 0

for ¿, j = 1,2,..., m — 1. Now, by (3.8) and since
m 771/ r 1 r \ x

^

k= 1 A:=l V Z / X* ¿=1

for ¿ = 1,..., m, we have
r..fe — ^..k _ -v. k4-'\ k

for — 1,2,..., m — 1. That is,

iV = i(xk-5ik + *Jk-xk +
$ik d- $mk . $jk d- mk &mk d" &mk

^ Xk d- d- xk

+G(- 5ih) - —(xt - 6,t) - ^-(x* - Sjt) + — (x„ - Smt)
Xi Xi Xr,

= Gfarfc(^ + —)V V xi Xm I Xi

Finally,
m—1

rijt = ri/<w = GEU(- +—1
r=l Xi Xr Xi

— +
Xr Xr

(3.18) =
Xm Xi

that coincides, up to a constant factor, with the coefficient of the a-connections in
the multinomial case, see Amari (1985, p. 43).
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3.2 An expansión for D

To study the local behaviour of a divergence D, suppose it is weakly smooth,
that is, at any point of Sm-i it admits an expression in local coordinates that is
differentiable up to necessary order.

Theorem 3.3 At each point P of Sm-i, any monotone divergence D(P,Q), ad¬
mits the expansión

D(p,Q) = D0 + Dl± WAL-flM1 + ¿ - JW
Í=1 P{Ai) i=i p(Aty

+e>3 £ [Q{A%) - P(A)}< + D^ [Q(At) - P(At)rP{*)
+o(\\Q - P\\4),

U = 1 P(Ai)

where Do, Di, D2, D3, Z)4 are constants, D\ > 0.

Proof: Consider in 5m_i the system of local coordinates that to each P £ 5m_i
associates a vector p = (p\,... where = P(Ai), i = Then
D(P,Q) = d(p,q) is the expression of D in local coordinates. In a neighborhood
of p, we have:

d(p, q) = d(p,p) + d-i(p,p)(qi - Pi) + ^d.ij(p,p)(qi - pt)(qj - pj)
+ ^d.ijk(p,p)(qi - Pi)(qj -Pj)(qk-Pk)
+ ^d;ijkh(p,p)(qi - Pi)(qj - Pj)(qk - pk){qh ~ Ph) + o(||<? - p||4),

where o?... are the partial derivatives of d with respect to the two arguments. For
any divergence we have that:

d(p,p) = d0,

dÁPiP) = 0
and

d;iÁP,p) > 0,
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since d takes mínimum valué in the diagonal. Moreover, by Proposition 2.1, mo-
notonicity of D implies its invariance; then, if it does not vanish, that is the only
interesting case, d.¿j(p,p) defines an inner product on Rm_1 which is embedding
invariant. We take d;!J(p,p) as the metric tensor and denote by d’13 the inverse
matrix of d;,¿. By (3.6), we obtain

(3.19) d]tj(p,p) = A (— + —) , »,i = l,...,m-l, A>0.V Pi Prn )

Thus,

(3.20)
m —1

]T d;¿J(p,p)(<?¿ - Pi){qj - Pj) =
i,j=l

TO_1 (8- 1 \
= A ¿ (~T + — ) (Qi ~ Pi){<lj ~ Pj)

i,j=l \Pl Pm /

A /y (<?¿ - Pi)2 | y-1 (<?¿ - Pi){qj - Pj)
\ ¿=1 P* i,j=1 Pm

a fy? (Qi-Pi? , (qm-Pm)2\

= ¿r {qi-Pif
i=i Pi

m—1

since qm - pm = - (<?, - p¿)-
¿=i

As regards the third order term, by differentiating (3.19), we obtain that

(3-21) d.ijk(p,p) + dk;ij(p,p) = A .

\Pm Pi )

On the other hand, <4;¿¿(p,p) behaves as the Christoffel symbols of an affine con-
nection, see Amari (1985, p. 98). Since D is an invariant divergence, the affine
connection is embedding invariant and by (3.18) we can write

dk-,ij(p,p) = H , i,j,k = 1,..., m — 1.
\Pm Pi /
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By (3.21),

(3.22)

Thus,

(3.23)
m — 1

2 d;*jk{p,p)(qi - Pi){qj - Pj)(qk - Pk) =
i,j,k= 1 '

m — 1 / i r
, \

= # Z ( T-) (* “ #)(# ~ ~ Pfc)
¿,j,fc=l \Pm Pi /

r> V'' (9* — P*)3
= ~b2^—~2—•

! = 1 P*

Let us now study the fourth order term. By differentiating (3.22), we obtain

(3.24)
$ijkh 1d-,ijkh(p,p) + dh,ijk(p,p) = B I + -j- I •

\ Pi Pm J

Since c^ijfcÍP,?) = d’htdh;ijk{p,p), behaves as the components of a connection string
(see Blaesild (1988)), we can write

= ViV^efc,

for some covariant derivative V and any vector e. Moreover, by the invariance of
Z), V must be embedding invariant, that is, the corresponding Christoffel symbols
are of the form

rijk = g(^t-s-^].
Pm Pi

In order to calcúlate we will need the following expressions:

a'r- = 2G(¿+7f)
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d’rS = A {6rspr - prps),
m—1

£ drs = A~lpm( 1 - pm),
■,s= 1

m —1

^ ' d’ Sjkr = djkPjPm i

r,í=1

m —1

^ ) d’ SjkfSisf — A (dijktPi &jk&itPiPj ) •

r,í=l

We thus have

^■ijket — V,Vjefc = V¿(r^ses) = á,(rjfcs)es + rjfcsV¿es
= (dfiy + rJfcT¿sf)e(.

Now,

d\Yjk + r^r,-,4 —

= -d'rad'htdid;sh Tjkr + d}rsd'htY3krYish + dhtdiTjkh
= dht [d;rT,fcr {-did,ah + Tiah) + diTjkh\
= dht

= dcht

(¿- ’f) a-1) *x (¿+íy'
c(—+—) í—+^)+f(4-+%

, \Pm Pi ) \Pm Pj J \Prn Pi ,

Then

\Pm Pj ) \Pm

Finally, we substitute the preceding expression in (3.24), obtaining

(3.25) i„kk{p,p) = C (— + ^) (— + —) + D (4- + ^\Pm Pj J \Pm Pi J \Pm Pi ,

Thus,
m —1

(3.26) Y1 dijkh{p,p)(qi - pi){qj - Pj)(qk - pk)(qh - ph) =
i,j,k,h=l
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= C (— + ^ (qj - Pj)(qk - pk) £ (— + —\ (qi - Pi){qh ~ Ph)jjíl \Pm Pj J i,h=l \Pm p. /JyK=

m

+DE (i. - PiY
_3
Pt

= C (±te-^V + D±&-j!£\i= 1 Pl / 1 = 1 ^1

By (3.20), (3.23) and (3.26), we can finally write

d(p-,q) =

+<¿4 Íe"^^)2 + “(lií -í>II4).
di > 0, that, written in terms of D, gives the result.

t=i Pi

4 The general case

In the preceding section, we obtained a local expression for monotone divergences
defined on multinomial distributions. Using the regularity condition, we are able
to extend this expansión to the general case. We need the following result:

Theorem 4.1 Let f : R —> R+ be a convex function. For any P and Q, equivalent
probability measures on (X, a), there exists a non negative integral

fxf{lP(x)) P(ix) = li°m?/ ($£)) P(A>)'
where the limit is taken over the filter of all finite subcr-fields aa of a.

Proof: Since

p(Wé)p^=Ixf (^)p°^
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the thesis can be written in the form

Üam/X f PÁ<ÍX) = Ix f WiX)) P(dX)-
It is sufiicient to prove it for any increasing sequence {a„} of finite subcr-field of
a, such that tr(Un an) = a. Since /-divergences are monotone, see Heyer (1982,
Theorem 22.9, p.169), and by the remark following Definition 2.5, we obtain:

P(dx).

We show now that the reverse inequality also holds. Since

we can apply a well known theorem of convergence of martingales, thus obtaining

dQn
dPn

dQ
dP

4 E dQ \
_ dQ

dP Ü) ~dP'
Since / is a continuous function, the convergence still holds:

dQa\ m- r ( dQ]
dPj J\dPr

By the Fatou lemma,

Ix f (§W) P{ix) - U»m/x f (^(l)) P{dx) = n»m/x ; (^(I)) K{dx)'
and the thesis is proved. ■

Remark. The preceding theorem can be easily extended to the case of / being
any linear combination of non negative convex functions.

We can now prove the main result of the present section:
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Theorem 4.2 If

/* Q(dx) — P(dx)
P(dx) P(dx) < oo,

then, at each point P, any monotone and regular divergence D(P,Q), admits the
expansión

(4.1) D(P,Q) D°+ Dl ¡X lQ(dx) - P(dx)]2
P(dx)

[Q{dx) - P(dx)}3
P(dx)2

+D,k [Q(dx) - P{dx)Y
IX P{dxf

+o(\\Q-p\\%

+ D4
ir [Q(dx) ~ P(dx)}2
\JX P(dx)

2

where D0, Di, D2, D3, D4 are constants, D\ > 0.

Proof: By Theorem 3.3, it holds:

D(P„,Q„) = D0 + D, £ MiizZíii)]! + o2 ^ WW - p(^)]3P(Ai)

+o(\\Qa-Pa\\4),

p(Aiy
[Q(Ai) - P(AiW

P(Ai)

for every Pa and Qa, restrictions of P and Q to the finite dimensional subcr-field
aa of a. We can now pass to the limit. The terms with coefficients Di and Z)4 can
be obtained by applying Theorem 4.1 with f(x) = (x — l)2. The same holds for
the term with coefficient D3, with f(x) = (x — l)4. For the third order term we
can use the remark following Theorem 4.1, since f(x) = (x — l)3 can be written
as the difference of two non negative convex functions:

where

and

f(x) = f^x) - f2(x),

fi(x)
0 x < 1

(x — l)3 X > 1

/ai*) —(x — l)3 X < 1
0 x > 1.
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The regularity of D guarantees the result.

4.1 The parametric case

Suppose now that P and Q belong to some regular parametric model, that is,
P and Q are equivalent probability measures with densities p(x]0) and p(x-,9'),
0, 9' € 0 C with respect to some common dominating measure p. By Theorem
4.2, we have that any monotone and regular divergence between P and Q can be
expanded as:

(4.2) D(P,Q)

Moreover,

fl(M')

Do + Dí(p(ñlt^lñJ \ p{x;9)

2

p(x;O)p(dx)

p{x;0') -p(s;fl)
p{x-0)

3

p(x; 0)p(dx) + o(\9' - 0|3).

p(x; 9') = p(x; 9) + <9tp(x; 9)(9'i - 9,)
- «i)+o(i«' - «i2).

so that

(p(x;9') ~p(x;9)\2
\ p(x;*) /

/ ^ 1 djjpjx; 9)
\ P(x]9) "l) + 2 p(x-,9) (*í - 0i)(9' - 9i) + o(\9' — 0|3)

= dil(x]9)dJl(x-,9)(0'-9i)(9'J-9J)
+dkl(x] 9) [<9tJ/(x; 9) + 9)djl(x; 9)] (0' - 0t)(0' - 9}){0'k - 9k)
+o{\9'-9\%

(P(x;9') - p{x;9)
V P(x\0)

djp{x; 0)
p(x;9) (*í - Oí) + o(\9’-9\3)

and
3
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= dií(x;$)d3i(x]e)dki(x-,e)(9't - BiWi - QjM - ek) + o(\e' - 9\3).
By substituting in (4.2), we obtain

D(9, 9') = Do + Digij(d)(9¡ - 0¿)(0' - 9j)
+D, Tijk (9M - OiM - 03){9'k - 6k)
+D2Ti]k{6){6\ - et)(e’ - - ek) + o{\6' - 9\3)

'rnAWi ~ KM - *;)+ hk (om - om - e3){e'k - 9k)

where a =

— Do + D\

+o{\0'-9\%
D\ + 2D2

Di
and gij(9) and Tijk (9) are respectively the Fisher metric

and Amari’s a-connections of the parametric model, see Amari (1985, pp. 26 and
39).
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