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1 Introduction

Let (A, m) be a noetherian local ring with maximal ideal m and I an ideal of A. The fiber
cone of I (with respect to m) is defined as Fm(I) = ©„>o 7n/m/n, which is a noetherian

graded algebra over the residue field A/m. This graded object encodes several informations
on /. For instance, when the residue field is infinite its dimensión coincides with the

minimal number of generators of any minimal reduction of I, that is the analytic spread
of I. Also the Hilbert function of Fm(I) provides the minimal number of generators of the

powers of I. See [26] for basic information concerning these facts.

The arithmetical properties of fiber cones have been scantily studied. If I is generated

by a regular sequence, or more in general by a family of analytically independent elements,

Fm(I) is trivially Cohén-Macaulay. On the other hand, C. Huneke and J. Sally proved
that if A is Cohén-Macaulay and I is m-primary with reduction number one then F4I)
is Cohen-Macaulav, see [11]. Also, M. Morales and A. Simis have shown in [19] that the
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fiber cone of the defining ideal of a monomial curve in ¡P3 lying on a quadric is always

Cohen-Macaulay. That result was extended by P. Giménez [2] to monomial varieties of

codimension two whose Rees algebra is presented by an ideal generated by elements of

degree at most two.

A more general approach to the Cohen-Macaulayness of the fiber cone was made by

K. Shah in [27], where the case of equimultiple ¡deais with reduction number at most two

was considered. In particular, it was proven there that if A is Cohén-Macaulay and / is an

equimultiple ideal with reduction number one the fiber cone of I is always Cohen-Macaulay,
see also [28] for another related result. The method followed by Shah to study the Cohen-

Macaulayness of fiber cones is the follovving (we always assume that A/m is infinite): Let

/ be an ideal of .4 and J a minimal reduction of I. Then Fm(I) is a finite extensión of

Fm(J) (which is. in fact, a Noether normalization of Fm(I)). Since J is generated by a

family of analytically independent elements, Fm(J) is a polynomial ring over the residue
field A/m, henee Fm(I) is Cohen-Macaulay if and only if it is free as Fm(7)-module, see

[20]. Now, if J is generated by a regular sequence and the reduction number of / is at

most two, Shah is able to find conditions which guaranty the existence of a basis of Fm(I)
as a Fm(</)-module.

The first goal of the present paper was to extend the above results to ¡deais of any

reduction number. We achieve it, since as a consequence of the basic criterion we prove in

Theorem 2.8 we may formúlate the follovving:

Theorem 1.1 Let (A.m) be a noetherian local ring and I C A an ideal. Let J be a

minimal reduction of I and denote by rj(I) the reduction number of I with respect to

J. Assume that J is generated by a regular sequence and that J D In = J/n_1 for all
1 < n < rj(I). Then, Fm(I) is Cohen-Macaulay if and only if J ti m/n = Jmln~l for all
1 < n < rj(I).

This result recovers what Shah proved for reduction number at most two, but our

approach is completely different. Nimely, a minimal system of generators of a minimal
reduction of I provides a system of . rameters of Fm(I) composed by homogeneous ele¬
ments of degree one. Our conditions may then be viewed as a ”mixed-Valabrega-Valla”
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iike criterion to t his familv of homogeneous elements of degree one be a regular sequence in

Fm(/). In order to prove ¡t, we introduce a filtration of submodules of A whose associated

graded module can be thought as an intermedíate of the associated graded ring of I and
the fiber cone of I. while to controle depths we use a slight generalization of the modified

Koszul complexes studied by S. Huckaba and T. Marley in [9]. Furthermore, this point of
view allows us to extend Shah’s results not only to ideáis of any reduction number but also

to noetherian filtrations which include the filtration of the integral closures of the powers

an ideal.

All the above technical results, including our basic criterion Theorem 2.8, are developed

in Section 2, while Section 3 is devoted to study fiber cones of equimultiple good filtrations.
In particular, we give a criterion for an integrally closed m-primary ideal whose second
Hilbert coefficient (resp. normalized second Hilbert coefficient) is equal to one having

Cohen-Macaulay fiber cone (resp. normalized fiber cone), Theorem 3.10 (resp. Theorem

3.12). This allows us to characterize for which 2-dimensional rational or elliptic sigularities
the normalized fiber cone is Cohen-Macaulay, see Theorem 3.13. In Section 4 we prove that
if A is Cohen-Macaulay and I is an analytic deviation one ideal with reduction number

one the fiber cone of / is always Cohen-Macaulay. Finally, in Section 5 we apply all the
above results to determine in each case the minimal number of generators of the powers

or the integral closures of the powers of the ideal.

2 Modified Koszul complexes and the depth of the fiber

cone

Let A be a commutative noetherian ring, I an ideal of A, and E an A-module. Let
E = (En)n>o be a filtration of A-submodules of E : E = Eq D E\ D • • ■ D En D • • • .

Recall that E is said to be an /-filtration if IEn C £n+1 for all n > 0. Then, for a given

family ai,..., of elements in I the A-module E = ©n>0 En can be viewed as a graded
module over the polynomial ring A[Xi,..., Tfc] by means of the multiplicaron

/(F\,..., Tk) nii = /(ai,...,afc)m¿, m,- € ,
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see [15]. Thus we can consider K{T\Tk\ E) the graded Koszul complex of Ti,..., Tk
with coefficients in E. It’s component of degree n

Kn(T\, Tk; E) : 0 —<■ 'n-k-1 En —► 0

is a subcomplex of the Koszul complex A'(ai, • • •, ak; E) of ai,..., a* with coefficients in

E. Henee the re exists an exact sequence of complexes

0 — I\n[T\,.. .,Tjt;E) — K{ax,...,ak\E) -»■ C{ax,..., ak\E; n) -* 0

where C(ai, ak;E;n) = K(ai,..., ak; E)/Kn(Ti,... ,Tk; E).

Definition 2.1 The complex C(ai,..., ak; E; n) is the n-th modified Koszul complex of

ai,..., ak with coefficients in E.

Note that from the natural exact sequence

o - A'(ri....,7*_i;E)- A'(ri,...,rfc;E)-* A'(T1,...,rfe_i;E)(-l)-0

and taking components of degree n we get the exact sequence of modified Koszul complexes

0 -»■ C(ax njt_i; E; n) -* C(au ..., ak; E; n) — C(ai,.. .,a*_i;E; n - 1)(-1) 0,

as well as the long exact sequence of homologies

~ K¿(C{oi■,.. •, ají;—i> E, 7i)) > Hi(C(a\,..., ak, E, n)) ►

Hi-i(C’(ai ctjt—i; E; n - 1)) /fj_i(C(ai,.. .,a*;_i;E; n)) —► • • • .

Similarly to [9. Lemma 3.2], where the case of Hilbert filtrations is considered, one can

explicitely compute some homologies of modified Koszul complexes. We omit the proof.

Lemma 2.2 (i) tf0(C(ai,..., ak; E; n)) = E/(En + (ax,..., ak)E).

(ii) Hk(C(ai,.... afc¡ E: n)) = (En—k+\ ‘e (®i> • • •»En—k•

(iii) If a i,.. .,nk is a regular sequence in E then

H\(C(a\,.. .,ajt;E; a)) = ((ai,...,ak)E fl £’n)/(ai,..., ak)En-\.
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Now, let us cousider a filtration Z = (/„)„>o of ideáis of A, i.e. a sequence of ¡deais

A = Jo 3 /] D ■ ■ ■ D In D ■ ■ ■ sucli that InIm C In+m for all n, m > 0. (For an ideal /

we shall also denote by / its adic filtration.) A filtration E of an A-module E is said to

be Z-compatible if InEm C Fn+m for all n,m > 0. (Observe that if / is an ideal, E is an

/-filtration if and only if E is /-compatible.) Then, G(E) = ®n>0 En/En+j is in a natural

way a graded module over G(Z) = ®n>0/n//n+i> the associated graded ring of Z.
Let a £ I\ and denote by a* its image in h/h G(Z). Recall that a filtration Z

of ideáis A is said to be noetherian if R(I) = ©n>o 4iín í A[f], the Rees ring of Z, is
noetherian. Then. the associated graded ring of Z is also noetherian. By a straightforward

adaptation of [9. Proposition 3.3, Lemma 3.4, and Proposition 3.5] we obtain the following:

Proposition 2.3 Assvme that 1 is a noetherian filtration and that G(E) is finitely gen-

erated as G(X)-module. Let aj,..., be a family of elements in Ii. Then:

(i) depth(a. U.)G(E) = min{j | ///t_J(G(a1,... ,a*; E; n)) ^ 0 for some n}.

(ii) If Hj{C(ai...., a*..; E; n)) = 0 for all n, then Hi(C(a\,..., a&; E; n)) = 0 for all i > j
and n.

(iii) (Generalized Valabrega- Valla) aj,..., a£ is a regular sequence in G(E) if and only if
ai,.... ük is a regular sequence in E and (ai,..., ak)E Pl En — (ai,..., at)En_i for
all n > 1.

Now we turn to the rnain object of this paper. Let Z be a filtration of ideáis of A and
H an ideal of .4 which contains I\.

Definition 2.4 The graded ring Z//(Z) = 0n>o /n/HIn is the fiber cone ofl with respect
to H.

Assume that E is an Z-compatible filtration. Then we can consider the graded Z//(Z)-
module defined by F//(E) = ®n>0 En/HEn. On the other hand the following filtration of
E:

Eh = {E^)n>o, where E„ = HEn.i if n > 1, Eq = E
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is an /i-filtraticm. henee G{EH) is a graded G(I\ )-module. Finally, for any given element

a G I\ denote by a’, n°, and a' ¡ts ¡mage in I1/I2 ^ G’(Z), I\¡HI\ <—► Fh(1), and

l\!l\ c— G'(A), respectively.
Our next proposition relates by means of an exact sequence, the Koszul complex with

coefficients in the fiber cone with the modified Koszul complexes with coefficients in E and

Eh.

Proposition 2.5 Let nj,...,Ojt be elements in I\. There exists an exact sequence of

complexes

0 -<■ Kn(a° a°: Fh{E)) — C{ax,.. ,,a^EH;n + 1) — C(ai,... ,ak; E; n) — 0

where A'n(a°,.... a°; E^(E)) is the n-th component of the graded Koszul complex of

a®,..., a°k with coefficients in Fh(E).

Proof. Straightforward after explicitely writing each complex.

Proposition 2.6 Assume that I is noetherian and G(E) finitely generated as a G{T)-
module. Let a\,...,ai¡ be elements in I\. //depth(a. a.jG(E) > r then

Hj(K(ag,.. ,,a°k; Fui E)))n ~ Hj(C(au...,akiE;n+ 1)) for all j > k - r, for all n.

Proof. From the exact sequence in Proposition 2.5 we get a long exact sequence of

homology

Ht+l(C{au ..a*; E; n)) — ..., ag; FH(E)))n —

Ht(C(a, fljt;Etf;n+ 1)) —*■ H,{C(ax,.. .,ak\E;n)) —- ••• .

If depth(a. a.jG'(E) > r then by Proposition 2.3(¡) Hj(C(ai,..., a^; E; n)) = 0 for all
j > k - r and n. henee #,•( A'(ai,...,ag; F//(E)))n ~ H}(C(ai,.. . ,aj¿; EH; n + 1)) for all
j > k — r and n too.

If we assume that depth(a. a.jG(E) is the biggest possible we obtain:

Proposition 2.7 Under the hypothesis of Proposition 2.6, ¿/depth(a. )a.jG(E) = k then
depth(ao aok)FH( E) = depth(o, a<k)G{EH).
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Proof. Apply Proposition 2.3(i) and Proposition 2.6.

Finally, writing the above proposition in terms of the generalized Valabrega-Valla we

get:

Theorem 2.8 Let A be a noetherian ring, X a noetherian filtration of ideáis of A, and E

a filtration of submodules of an A-module E. Suppose that E is I-compatible and G'(E)

finitely generated as a G(X)-module, and let a\,.. ,,ai¡ be a family of elements in I\. As-

sume that

(i) ai,..., ftfc is a regidor sequence in A.

(ii) (aj,..., ajt )E n En = (ai,.. .,ak)En-i for all n > 1.

Then, depth(aoaO)//f(E) = k if and only if (aj,... ,ak)E fl HEn = (ai,.. .,ak)HEn-i
for all n > 1.

Proof. Apply Proposition 2.7 and Proposition 2.3(ii¡).

3 The case of equimultiple good filtrations

From now on (.4. m) will be a d-dimensional local ring with an infinite residue field. Let
/ be an ideal of .4 and X = (/„)n>o a filtration of ideáis of A. Recall that X is said to

be /-good if I is an /-filtration and there exists no such that IIn = /n+i for all n > uq.

More generally, X is said to be good if it is /-good for some ideal / C A, equivalently if X
is /i-good. Note that every good filtration is noetherian.

Adíe filtrations are good, and it is well known that if A is analytically unramified
the filtration given by the integral closures of the powers of an ideal / is also good. On
the other hand, if .4 is Cohén-Macaulay and / denotes the Ratliff-Rush closure of I, the
filtration (/n)n>o is good when ht(/) > 0.

In [7] reductions of good filtrations were studied. Let J = (/n)n>o < X = (/n)n>o be
two filtrations of .4. Following [21], it is said that J is a reduction of I if there exists a

positive integer m such that In = In-\J\ -| h /n_m/m for all n > 0. It was observed in



[21] that minimal reductions of filtrations never exist. On the contrary, in [7] it is proved
that minimal good reductions of good filtrations always exist. Let J be a good filtration
which is a reduction of a good filtration I. We then say that J is a minimal (good)
reduction of I if does not properly contain any good filtration which is a reduction of I.

Proposition 3.1 ([7, Proposition 2.6]) Let I be a good filtration. Then J is a minimal

(good) reduction of 1 if and only if J = (7n)„>o, where J is a minimal reduction of I\.
In particular, minimal (good) reductions of T always exist.

By abuse of language we then say that the ideal 7 is a minimal reduction of I. Most

of the properties of minimal reductions of ideáis can be in this way extended to good
filtrations. Define s(I) = dim Fm(l) to be the analytical spread of I. As a natural

generalization of the classical result of Northcott and Rees we have the following:

Proposition 3.2 ([7, Lemma 2.8]) Let I be a good filtration, and for a given element
a 6 I\ denote by a° its image in A/m/i •—* Fm(l). The following are then equivalent:

(i) a\,.. .,a3 is a minimal system of generators of a minimal reduction ofl.

(ii) a],.... a® is a system of parameters of Fm(2).

It is easy to see [7, Lemma 2.7] that for a good filtration J, s(l) = dim G(I)/mG(l).
Next lemma shows that if depth Fm(l) > 0 then we also have the equality Fm{l) =

G(I)/mG{I).

Lemma. 3.3 Let I be a good filtration. If depth Fm(J) > 0 then In+\ C m/n for all n > 0
and Fm(T) = G(I)/mG{l). In particular, if I\ = m then I = (mn)n>o.

Proof. Consider the exact sequence

0 _ ®(m/n + In+l)/mln - FJI) - G(I)/mG(I) - 0 .
n>0

Since T is good In+i C m/„ for n » 0, henee dim(0n>o(m/n + /n+1)/m/n) = 0. If
depthFm(I) > 0 this implies that ®n>0{mln -)- /n+1)/m/„ = 0, thus In+i C m/n for all
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n > 0. Now. if /] = m \ve have I\In C In+l C mIn = IxIn for all n > 0, that is, /n+1 = I\In

for all n > 0. This meaus that I = (m'l)n>0.

Let I be a good ñltration and J a reduction of X. Similarly to the adic case we define
the reduction number of X with respect to J as the number rj(X) = min{n | /m+i = Jim
for all m > n}, and the reduction number of X as r(X) = min{r/(X) \ J a minimal reduction
of X }. If A is analytically unramified, X - (In)n>o and J is a minimal reduction of I we

set rj(I) — rj(X), and similarly for 7(1), the normalized reduction number of I. We also

say that X is equimultiple if ht(/) = s(I). Note that if A is Cohén-Macaulay this implies
that J is generated by a regular sequence.

The following result extends [27, Theorem 1 and Theorem 2], where only adic ñltration
with reduction number one and two were considered. Our result is valid for good filtrations
of any reduction number, as well as ¡t shows that the conditions there are also necessary.

Theorem 3.4 Let X be a good filtration and J a minimal reduction ofX. Assume that

(i) J is generated by a regular sequence, and

(ii) J fl In = i for all 1 < n < rj(X).

Then Fm(X) is Cohén-Macaulay if and only if J D m/„ = JmIn-\ for all 1 < n < rj(X).

Proof. Let J = (ai,...,a*), s = s(X). Then, ai,...,a° is a system of parameters of

Fm(X). On the other hand, the equalities Jfl/n = JIn-1 are satisfied for all 1 < n < rj(X)

by hypothesis. and also for n > rj(X) since then In = JIn-\. Thus, by Theorem 2.8 Fm(X)
is Cohén-Macaulay if and only if J fl m/n = for all n > 1. The statement is then
clear taking into account that J fl mIn = Jm/n_! for n > rj(X) trivially.

Remark 3.5 Note that in [27, Theorem 2] (adic case with reduction number two ) it was

used the stronger condition I2m = Jml instead J fl mi2 = Jml.

Remark 3.6 Let I — (fn)n>o be a good filtration with r(X) < 1 and let 7 be a minimal
reduction of X such that rj(X) = r(I). Then /„ = Jn~lI\ for all ra > 1 and In = Jn~lh C

irlh C /” C In. Therefore In = for all n > 0 and X is the /i-adic filtration.
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Corollary 3.7 [27. Corollary l(a)J Let (.4, m) be a Cohén-Macaulay local ring and I an

equimultiple ideal with r(I) < 1. Then Fm{I) is Cohén Macaulay.

Proof. Since .4 ¡s Cohén-Macaulay and / is equimultiple any minimal reduction of I is

generated by a regular sequence. Let J be a such one with rj(I) = r(J). Then, condition

(ii) in Theorem 3.4 holds trivially. On the other hand, since any minimal system of

generators of J is part of a minimal system of generators of I we have that J H mi — Jm.

Consequently, Fm(I) is Cohén-Macaulay by Theorem 3.4.

Example 3.8 Let .4 = K[[X,Y, Z,T]]/(T2, ZT,XZ — YT) = A'[[x,y,2,í]] where K is a

field with |A'| = oo. .4 is a 2-dimensional Cohen-Macaulay local ring. Let I = ((x +

z)2,yt(x + z) ) and J — ( (x + z)2 ). Then ht(7) = 1 and I2 = JI, thus since 7 is not a

complete intersection I is equimultiple with r(I) = 1. By Corollary 3.7 Fm(7) is Cohen-

Macaulay. Note that A/I is not Cohen-Macaulay, see [6, Remark (22.21)], and neither

G(I) is by [6, Proposition (25.1)].

Proposition 3.9 Let I — (/„)„>o be a good filtration with I\ m-primary. Assume that

G(I) is Cohen-Macaulay and let J be a minimal reduction ofl. The following are then

equivalent:

(i) Fm{I) is Cohen-Macaulay.

(ii) J D mIn = ./m/n.j for all 1 < n < rj(I).

Proof. Let J = (ai,..., a¿). Then, a\,..., a¿ is a system of parameters of G(I), and so

it is a regular sequence since G(T) is Cohen-Macaulay. Now apply Proposition 2.3(iii) and
Theorem 3.4.

Assume now that / is m-primary. Let H¡(n) — length{A/In) and P¡(n) its Hilbert
function and its Hilbert polynomial respectively. Then, H¡(n) = Pj(n) for n > 0 and

P[{n) may be written as

¡=o

'
n d — i — 1

d - i
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Suppose furthermore that A is Cohén-Macaulay. It’s a well known result of Northcott that

e\{I) > eo(I) -length( A/I) > 0 and that ei(/) = 0 if and only if / is generated by a system

of parameters of A. It has also been proved by Huneke [10, Theorem 2.1] and Ooishi [24,
Theorem 3.3], independently, that e¡(/) = eo(/) - length(A//) if and only if rj(I) < 1 for

any minimal reduction J of I. More recently, Sally [25] proved that if d > 2 and (/) / 0,
then €i(!) = eo(/) - length(A//) + 1 if and only if for some (every) minimal reduction J

of /, rj(I) = 2 and length(/2/7/) = 1. And that if such conditions hold then e-i(/) = 1,

see also [9]. Moreover, Sally also noted that the equality eo(/) - length(A//) + 1 = e\(/)
does not imply e¿(/) ^ 0. Finally, Itoh [13] has proven that if d > 2 and / is integrally

closed, e2(/) = 1 if and only if e\(I) = eo(/) - length(4//) + 1.

For such kind of equimultiple ideáis which reduction number two we may then formúlate

the following:

Theorem 3.10 Let (A, m) be a Cohén-Macaulay local ring and I a m-primary ideal. Sup¬

pose that I is integrally closed and ei(I) — 1. The following are then equivalent:(i)Fm(I) is C'ohen-Macaulay.(ii)p(JI) < p(I2) for any minimal reduction J of I.(iii)p(JI) = p(í2) — 1 for any minimal reduction J of I.

(Here, p(-) denotes the minimal number of generators.)

Proof. Let J be any minimal reduction of I. By [13, Corollary 14], rj(I) = 2,

length(/2/.//) = 1, and G(I) is Cohén-Macaulay. Henee by Proposition 3.9, Fm(I) is

Cohén-Macaulay if and only if J D mIn = for n = 1,2. On the other hand,
ni/2 C JI because length(/2/7/) = 1, henee the conditions we have to check are equiva¬
lent to J H mi = ./m and m/2 = Jml, where the first equality holds because J is a minimal
reduction of /.

Consider now the exact sequence

0 .// —> I2 I2/JI — 0.

11



Tensorizing by A/m we then get the exact sequence

Jl/mJI -1. I2/mi2 — I2¡JI + m/2 — 0 .

Since I2/.// + m/2 = I2/JI ~ A/m we llave that mj/ = m/2 if and only if is injec-
tive if and only if rkA/m{J I¡mJI) = rkA/m(I2 ¡mi2) — 1 if and only if vkA/m(J I¡mJI) <

TkA/m{I2/mI2).
Let now (/i. m) be an analytically unramified local ring, and / an ideal of A. As we

have already mentioned the filtration (In)n>o defined by the integral closures of the powers

of / is good. Suppose furthermore that / is m-primary and let H/(n) = lengthí4(A//n)
the normalized Hilbert function of I, and P¡{n) its normalized Hilbert polynomial. Then

H¡(n) = P¡{n) for large n and P¡{n) may be written as

i=0

n + d - i — 1
d - i

Suppose moreover that A is Cohen-Macaulay of dimensión d > 2 and / is a parameter

ideal. In [14, Proposition 10 and Proposition 12], Itoh has shown that éi(/)-length(///) >

length(/2///), and that equality holds if and only if f¡(I) < 2. Furthermore, ej(/) >

éj(/) — lengthf ///), and equality also holds if and only if r¡(I) < 2.

The following lemma may be obtained from the above by means of easy arguments,

and so we omit the proof. Note that if d ~ 2 it can also be obtained from [10].

Lemma 3.11 Let (A, m) be a Cohen-Macaulay local ring of dimensión d > 2 which is

analytically unramified. I a m-primary ideal, and J a minimal reduction of I. Then:

(i) Ife2{I) = 0. rj(I) < 1 (and I is normal).

(ii) Ifé2(I) = 1. rj(I) = 2 and length(I2/JI) = 1.

Moreover, if I is integrally closed and ei^I) < 1 then rj(I) < rj(I), e2(/) < ^(Z), and
both equalities hold if and only if I is normal.

Let I = (In)n>o and denote by Fm(I) = ®n>0 In/mln the normalized fiber cone of I.
{F(A) if I = m). Similarly to Theorem 3.10 we may obtain:
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Theorem 3.12 Let (A,m) be a Cohen-Macaulay local ring with dimensión d> 2 which

is analytically unramified and I a m-primary ideal. If e2(/) = 1 the following are then

equivalent:(i)Fm(/) is Cohen-Macaulay.

(ii) p{JI) < p{I2) for any minimal reduction J of I.

(iii) p{JI) = p(I2) — 1 for any minimal reduction J of I.

Moreover, if I — m. F( A) is Cohen-Macaulay if and only if m is normal.

Proof. First of all note that G(l) is Cohen-Macaulay by [12, Proposition 3j. We may then

proceed as in the proof of Theorem 3.10. Finally assume / = m. If F(A) is Cohen-Macaulay
then m is normal by Lemma 3.3. Conversely, if m is normal then F(A) = G(I) = G(m)
which is Cohen-Macaulay as we have already noted.

Recall now that if (.4, m) is an analytically unramified local ring of dimensión d and I is

m-primary, the normal genus of I is defined as g(I) = é<¿(/), and the arithmetical genus of A
as pg(A) =sup {g(I)\I is m—primary}, see [22]. Assume in addition that A is 2-dimensional
and Cohen-Macaulay. It can be then shown that for any m-primary ideal I C A, the normal

genus g(I) equals to length(//^A', Ox)) where A' = Proj(R(I)), [22, Theorem 3.1]. If A is
also analytically normal then by Lipman [17] there exists a desingularization Y —*• Spec(A),
and the integer length(i7 ‘(y, Oy)) does not depend on Y and equals to H(A) = sup

{length(/f1(2', Oz)) | 2 — Spec(A) a proper birational map with Z normal}. Further-
more, if A is normal such a desingularization can be obtained by blowing up an m-primary
ideal. Therefore. if A is analytically normal we have that pg{A) = H(Á). The ring A is
said to be a rational singularity if H(A) = 0, and elliptic if H(A) = 1.

As a consequence of Theorem 3.12 we may characterize for which rational or elliptic

singularices the normalized fiber cone is Cohen-Macaulay. Namely:

Theorem 3.13 Let (A.m) be a 2-dimensional Cohen-Macaulay local ring which is ana¬

lytically normal. If A is a rational singularity, then F(A ) is Cohen-Macaulay. If A is an

elliptic singularity the following are equivalent:



(i) F(A) is Cohén-Macaulay.

(ii) m is normal.

(iii) m is normal and r(m) = 1, or 7’(m) = 2.

Proof. If .F( A) is Cohén-Macaulay then m is normal because of Lemma 3.3. Assume now

that m is normal. Then r(m) = r(m) by Lemma 3.11 and so r(m) < 2 since g(m) < 1.

For (iii) => (i) we only need to show that if r(m) = 2 then T(A) is Cohen-Macaulay.

But, by Lemma 3.11 we have that m is normal with é2(m) = 1, henee by Theorem 3.12

F(A) is Cohen-Macaulay.

Example 3.14 (i) Let A = C [[a*, y, r]]/(a:4 + y4 + z2) (the local ring of an elliptic complex
surface singularity of type Ei)- It’s easy to see that in this case r(m) = 1 and m is not

normal, henee F(A) is not Cohen-Macaulay. (Note that r(m) r(m).)

(¡i) Let A = r;[[x.£/,z]]/(x3 4- j/3 + z3) (type Es). Then r(m) = 2, thus .F(A) is

Cohen-Macaulay by Theorem 3.13.(iii)Let A = C [[x, y, z]]/(x6 -f y3 + z2) (type Es)- Now we have r(m) = 1, and it can

be shown that m is normal. Therefore, F(A) is Cohen-Macaulay.

4 The case of analytic deviation one ideáis

Let I be an ideal of A. Recall that the analytic deviation of I is defined as the difference

ad(/) = s(I) - ht(/). The arithmetical properties of blow up rings of ¡deais with small
deviation have been deeply investigated in recent years, see e. g. [8,3,4,30,5], and the
results are particularly good when the reduction number of / is also small. Our main

goal in this section is to show that the fiber cone of any analytic deviation one ideal with
reduction number less or equal to one is Cohen-Macaulay.

Next lemma summarizes most of the properties concerning minimal reductions of ana¬

lytic deviation one ideáis we shall use. We say that I is generically a complete intersection
if fJ,(Ip) = ht(/) for all p 6 Min(A//).
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Lemma 4.1 Let (.4,m) be a local Cohén-Macaulay ring, and I a generically complete

intersection ideal of A with ht (/) = h. Assume ad(/j = 1 and let J be a minimal reduction

of I such that 12 — JI. Then, there are elements ai,.. .,a/i+i in J such that:(i)J = (ai ft/i+i) and a\,... ,ah is a regular sequence.

(ii) /p = (a! ah)P for all p G Min{A¡I).

(iii) ((ax,. ..,ah)m : a)í+1) D Im = {au ... ,ah)m for all n,m.

(iv) If h > 1, («i a/J' fl In = (a1?..., a/i)‘/n_‘ for all n > 1, i = 1,..., n — 1.

Proof. For (i) and (ii) see [30, Lemma 2.2]. By [8, Remark 2.1 (iii) and Lemma 2.5 (ii)]
we get (iii) and (iv).

Now we State the main result of this section.

Theorem 4.2 Let (A.m) be a Cohén-Macaulay local ring and I an ideal of A. Assume

that I is generically a complete intersection, ad(/) = 1, and r(I) < 1. Then, Fm(I) is

Cohén-Macaulay.

Proof. By induction on h = ht(J). Assume h = 0 and let J = (aj) a minimal reduction
of / as in Lemma 4.1. Since dimFm(I) = 1 it suffices to see that a® G I/ml«—*• Fm(I) is
not a zero divisor. This is equivalent to see that (m/n+1 : ai) fl In = m/n for all n > 0,
which is clear if n = 0 since ai is part of a minimal system of generators of /. Assume
n > 0 and let x G (mIn+1 : ai) fl In. Since r(I) < 1 we have Jn+l = a\In, so xai G mai/n
and there exists y G m/n such that ai(x - y) = 0. By Lemma 4.1(iii) x - y = 0 and so

(m/n+1 :ai)n In = mIn.

Assume now that h > 1 and let J = (ai,..., a^+i) be a minimal reduction of I as

in Lemma 4.1. First we are going to see that aj,...,a® is a regular sequence in Fm(I).
By Theorem 2.8 it suffices to show that (i): (ai,..., a^) fl Jn+l = (ai,..., a^)/n, and
(ii): (ai,... .a/,) n m/n+1 = (ai,..., a*)m/n, for all n > 0. (i) being a direct consequence

of Lemma 4.1(iv). let us prove (ii). If n = 0 then (ai,..., ah) fl mI = (ai,.. .,a/,)m be-
cause ai, a/, is part of a minimal system of parameters of /. Assume n > 0. Since
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r(I) < 1 then («x (n)nra/"+1 = (ax,.. .,ah)DmJIn = (ax,.. ., a/jD(m(ai,.. .,a/i)/n +

ma/,+1/n) = m(ax, «^)/n + ((«i,..., a^) fl ma/,+1/n). Thus it suffices to see that

(aj,.. .,ah) D mak+iln C m(ax,.. . ,a/J/n. Let xcih+i G (ax,.. .,a^) with x 6 m/n. Then
x € / H (ax,....: (ih+i and by Leraraa 4.1(¡ii) x 6 (ax,... , a^). Henee x G m/n H

(ax,...,<*&) = (ai a/¡)m/n_1 by ¡nduction. Consequently, xa/,+x G m(ax,.. .,dh)In as

we wanted to see.

Now set B = .4/(«x,..a/,), m = m/(ai,..a^), and 7 = //(ai,.. Then S
¡s Cohén-Macaulay, ad(/) = 1, and ?•(/) < 1. Furthermore, Fm(I)/(ax,..., a°) ~ Ftr(/),
henee by induction Fm(/) is Cohén-Macaulay and so Fm(/) is.

Remark 4.3 Note that one can find analytic deviation one ideáis with r(7) = 1 such that
the associated graded ring G(I) is not Cohen-Macaulay, see [30, Example].

Remark 4.4 By means of Theorem 4.2 we may also recover the case of monomials curves

in P3 lying on a quadric. Indeed, by [19, Proposition (3.1.2)] the defining ideal of such a

curve has analytic deviation and reduction number one.

5 The Hilbert function of Cohen-Macaulay fiber cones

In this section we want to describe the behaviour of the Hilbert function of Cohen-Macaulay

fiber cones. So assume (4,m) is a local ring, I = (In)n>o a good filtration of ideáis of
A, and let .J be a minimal reduction of X. There exists a finite morphism of graded rings
defined by

Fm(J) Fm(I)
a G Jn/mJn ip(a) = a° G In/mln

(note that $ is ¡njective in degree one since J fl mIx = mJ). Furthermore, J is generated

by a family of analytically independent elements and so Fm(J) is a polynomial ring in

fi(J) = s(X) variables. As a consequence we have that Fm(Z) is a Cohen-Macaulay ring if
and only if Fm(I) is free as a Fm( J)-module. In particular, the multipllcity e(Fm(/)) equals
to its rank, and since JFm(I) = ©n>l(Z +tn/n)/m/n is generated by a system of parameters
of Fm(Z) with dim (Fm(Z)/./Fm(Z)) = 0 we obtain e(Fm(I)) = length(Fm(Z)/ZFm(Z)).
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We summarize the above considerations in the following lemma.

Lemma 5.1 Let (.4, m) be a local ring and X a good filtration of ideáis of A. Let J be a

minimal reduction ofl. Then:

(i) Fm(I) is Cohén-Macaulay if and only if Fm(X) is free as a graded Fm(J)-module.

(ii) If Fm(I) is C'ohen-Macaulay then

rkFm(J)(-MI)) = e(Fm(I)) = length(Fm(I)/JFm(X)).

Remark 5.2 Observe that ¡f Fm(l) is Cohén-Macaulay then the morphism $ must be

injective, henee J" D m/n = mJn for all n > 0.

Now we mav give the following behaviour of the Hilbert function of a fiber cone which

is Cohen-Macaulay. It generalizes [27, Theorem 6] to good filtrations,

Theorem 5.3 Let (A. m) be a local ring and X = (/„)„>o fl good filtration of ideáis of A.
Let J be a minimal reduction ofX, r = rj(X), and s = s(T). If Fm(X) is Cohen-Macaulay
then

r

f.i{In) = - length(J/.-j/J/,-! O m/,))
1=0

DO

= ~ le»gth(.//1-i/</J¿-i O m/,))
¡=o

Proof. Consider the family of elements in Fm(X) given by { 1, {a° ,..., } > , where‘ t 1 r> ) 1=1,...,r

1 £ 4/m and {«^...., «^ } is a basis of the .4/m-vector space + JIi^\, for all i —

1,..., r. It’s then clear that 11, {r¿^ ,..., a9 } > is a system of generators of Fm(X)
as a Fm( J)-module which is a basis because its cardinal equals to length(Fm(I)/7Fm(J)) =

TkFm(j)(Fm(X)). Let us denote by 6’ = a°, for all i = l,...,r and j = l,...,r,.
Then, Fm(X) = ©’=1 (©^1.! bjFm(JÍj and taking the piece of degree n we get /n/m/n =
©•_0(¿>i,..., blri )Fm(J)„-i for all n > 0. Since length(Fm(7)n_,) = (n+*rj_1) we have that
l¿(In) = length(/„/m/n) = £[_0 r, (n+as"|''1). Furthermore, r¿ = length(/,/m/¿ + =

length((/,/m/¿)/( m/, + JIl_l/mIi)) = length(/¿/m/,) - length(m/,• + -

length(7/,_i/.//,_! O m/(). And the sum can be extended to oo since I¡ = JIi~\ for i > r.
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Remark 5.4 As a by-product of the above result we also get that if Fm(X) is Cohen-

Macaulay then rj[I) and length(.//t_ii D mi,) are independent of J for all i > 0.

The part concerning the independence of the reduction number can also be deduced for
adic filtrations from [16, Proposition 4.25]. See [7,18,29] for other related results.

Remark 5.5 It may be proven in the adic case that the converse of Theorem 5.3 also

holds, see [1]. The same idea can be applied for the case of good filtrations: Assuming
that particular form for the Hilbert function of the fiber cone and after a straightfor-
ward computation one gets that the multiplicity of Fm{X) coincides with the length of

Fm(X)/JFm(X), henee Fm(I)_being Cohen-Macaulay. We thank J. Verma for explaining us

that.

For the particular case of m-primary good filtrations whose associated graded ring ¡s

Cohen-Macaulay we may express the Hilbert function of the fiber cone in a better way.

As a consequence we also give and affirmative answer to what Shah conjectured in [27,
Question 3(d)].

Corollary 5.6 Let (.4. m) be a local ring and I = (/n)n>o a good filtration such that I\
is m-primary. Let J be a minimal reduction of X and r = rj(X). If G(X) and Fm(X) are

Cohen-Macaulay then

p(In) = í>(/«) - ^ for aU n > 0.
Furthermore, p{ I,) - p( J Ii-\) > 0 for all i = 0,..., r.

Proof. By Proposition 3.9 JIi-\ n m/, C J n mi, = C J/,_i fl mi, for all 0 < i < r,

thus JIí-i fl mi, = Jmli_i for all 0 < i < r. Novv, apply Theorem 5.3 and note that

p(Ii) - p{JIi-\) = length (/¿/mí, + .//,_!) > 0 for all i = 0,..., r.

Corollary 5.7 Let (A. m) be a local ring and I an ideal of A with r(I) = 1. Let s = s(I)
and assume Fm(I) is Cohen-Macaulay (for instance, if A is Cohen-Macaulay and I is

equimultiple). Then

//(/")
n + s - 1

s - 1
+ (/*(/) - s)

71-1-5-2
S - 1

for all n > 0.
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Proof. Apply Theorem 5.3 taking into account that if J is a minimal reduction of I then
Jílm/= mj.

If / is an analvtic deviation one ideal with small reduction number we then obtain:

Corollary 5.8 Let (A.m) be a Cohén-Macaulay local ring and I an ideal of A with ht (/) >

1. Assume I is genericully a complete intersection, ad(I) = 1, and r(I) = 1. Set h = ht (/).
Then

M(/n) = (” h k) h ~ ^(n + h ^ ^0r alln ~ °‘
Proof. Fm(I) is Cohen-Macaulay by Theorem 4.2.

As for m-primary ideáis whose second Hilbert coefficient is equal to one we record the

following nice formula if d = 2.

Corollary 5.9 Let (A.m) be a 2-dimensional Cohen-Macaulay local ring and la m-

primary ideal which is integrally closed. Assume e^(/) = 1 and Fm(I) is Cohen-Macaulay.
Then

p{In) = np(I) for all n > 0.

Proof. Let J be a minimal reduction of I. By Lemraa 3.11 rj(I) = 2 and (?(/) is Cohen-

Macaulay. Furthermore, by Theorem 3.10 p(JI) = p{I2) - 1- Henee by Corollary 5.6 we

get n(In) = Ct1) + (mU) - 2)(") + ("71) = np(I) for all n > 0.

Similarly, if the second normalized Hilbert coefficient is one we obtain:

Corollary 5.10 Let (A, m) be a 2-dimensional Cohen-Macaulay local ring which is an-

alytically unramifíed and I a m-primary ideal. Assume é2{I) = 1 and Fm(I is Cohen-
Macaulay. Then

p(In) — np{I) for all n > 0.

Finally, we may also recover the following result concerning the minimal number of

generators of the powers of the maximal ideal of an elliptic surface singularity.
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Corollary 5.11 [23, Corollary 3.6] Let (.4, m) be a local ring and assume A is an elliptic

surface singularity. Then, either /¿(m") = e(A)n + 1 = (emb(.4) - l)n for all n > 0, or

p(mn) = e{A)n = emb(.4)n for all n > 0.

Proof. Since .4 is elliptic </(m) < 1 and by Lemma 3.11, r(m) < 2. If r(m) = 1 then

<j(m) is Cohen-Macaulay by Corollary 3.7, henee by Corollary 5.7 /z(mn) = (emb(.4) —

l)n + 1 = e(A)n + 1 for all n > 0. If r(m) = 2 then m is normal by Lemma 3.11, and

F(A) = G(m) is Cohen-Macaulay by Theorem 3.12. Now apply Corollary 5.10 to get

/i(mn) = e(.4)n = emb(.4)n for all n > 0.

References

[1] C. D’Cruz, Iv. N. Raghavan, J. K. Verma, Cohen-Macaulay fiber cones, preliminary

report, August 1996.

[2] P. Giménez. Elude de la fibre spéciale de l’éclatament d’une varieté monomiale
en codimension deux, Thése de Doctorat de Mathématiques de l’Université Joseph

Fourier, Grenobre. 1993.

[3] S. Goto, S. Huckaba, On graded rings associated to analytic deviation one ideáis,
Amer. J. Math. 116 (1994), 905-914.

[4] S. Goto, Y. Nakaniura, Gorenstein graded rings associated to ideáis of analytic devi-
ation two, J. Algebra. 175 (1995), 811-819.

[5] M. Herrmann. C. Huneke, J. Ribbe, On reduction exponents of ideáis with Gorenstein

form ring, Proc. Edinb. Math. Soc. 38 (1995), 449-463.

[6] M. Herrmann. S. Ikeda, U. Orbanz, Equimultiplicity and Blowing up, Springer-Verlag,
1988.

[7] L.T. Hoa, S. Zarzuela, Reduction number and a-invariant of good filtrations, Comm.

Alg. 22 (14) (1994), 5635-5656.

20



[8] S. Huckaba. C'. Huneke, Powers of ideáis having small analytic deviation, Amer. J.
Math. 114 (1991). 367-403.

[9] S. Huckaba. T. Marley, Hilbert coefficients and the depths of associated graded rings,

preprint.

[10] C. Huneke, Hilbert functions and symbolic powers, Michigan Math. J. 34 (1987), 293-
318.

[11] C. Huneke, J. D. Sally, Birational extensions in dimensión two and integrally closed
ideáis, J. Algebra 115 (1988), 481-500.

[12] S. Itoh, Integral closures of ideáis generated by regular sequences, J. Algebra 117

(1988), 390-401.

[13] S. Itoh, Hilbert Coefficients of Integrally Closed Ideáis , J. Algebra 176 (1995), 638-
652.

[14] S. Itoh, Coefficients of Normal Hilbert Polynomials , J. Algebra 150 (1992), 101-117.

[15] D. Kirby, H. E. Mehrann, Hilbert functions and the Koszul complex, J. London Math.
Soc. (2), 24 (1981), 459-466.

[16] T. A. Korb. On a-invariants, filter regularity and the Cohén-Macaulayness of graded

algebras, Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-
Naturwissenschaftlichen Fakultat der Universitat zu Kóln, 1995.

[17] J. Lipman. Desingularization of two dimensional schemes, Annals of Math. 107

(1978), 151-207.

[18] T. Marley. The coefficients of the Hilbert polynomial and the reduction number of an

ideal, J. London Math. Soc. (2) 40 (1989), 1-8.

[19] M. Morales. A. Simis, Symbolic powers of monomials curves in !P3 lying on a quadric

surface, Comm. Alg. 20(4) (1992), 1109-1121.

[20] M. Nagata. Local rings, Interscience, 1962.

21



[21] J.S. Okon, L.J. RatlifF, Reductions of filtrations, Pacific J. Math. 144 (1990), 137-154.

[22] A. Ooishi, Genera and arithmetic genera of commutative rings, Hiroshima Math. J.

17(1) (1987). 47-66.

[23] A. Ooishi, Tangent cones at curve and surface singularities, J. Puré and Appl. Alg.
95 (1994), 189-201.

[24] A. Ooishi, A-genera and sectional genera of commutative rings, Hiroshima Math. J.
17 (1987), 361-372.

[25] J. D. Sallv, Hilbert C'oefficients and Reduction Number 2, J. Algébrale Geom. 1 (1992),
325-333.

[26] J. D. Sally, .Xumber of generators of ideáis in local rings, Lect. Notes in Puré and

Appl. Math. 35, Marcel Dekker, 1978.

[27] K. Shah, On the Cohen-Macaulayness of the Fiber Cone of an Ideal, J. Algebra 143

(1991). 156-172.

[28] K. Shah. On equimultiple ideáis, Math. Z. 215 (1994), 13-24.

[29] N. V. Trung. Reduction exponent and degree bound for the defining equations of graded

rings, Proc. Amer. Math. Soc. 101(2) (1987), 229-236.

[30] S. Zarzuela, On the depth of blow up algebras of ideáis uiith analytic deviation one,

Proc. Amer. Math. Soc. 123(2) (1995), 3639-3647.

22



Relació deis últims Preprints publicáis:
196 A second order Stratonovtch differential equation with boundary condittons. Aurell Alabert

and David Nualart. AMS Subject Classification: 60H10, 60H07. January 1996.

197 A Gentzen system e.quivalent to the BCK-logic. Romá J. Adillon and Ventura Verdú.
Mathematics Subject Classification: 03B20. January 1996.

198 On Gentzen systenu¡ associated with the finite linear MV-algebras. Ángel J. Gil, Antoni
Torrens Torrell and Ventura Verdú. Mathematics Subject Classification: 03B22, 03F03,
03G20, 03G99. February 1996.

199 Exponentially small splitting of separatrices under fast quasiperiodic forcing. Amadeu
Delshams, Vassili Gelfreich, Ángel Jorba and Tere M. Seara. AMS classification scheme
numbers: 34C37, 58F27, 58F36, 11J25. February 1996.

200 Existence and regularity of the density for Solutions to stochastic differential equations with
boundary conditions. Arturo Kohatsu-Higa and Marta Sanz-Solé. AMS 1990 SCI: 60H07,
60H10, 60H99. March 1996.

201 A forcing constmction of thin-tall Boolean algebras. Juan Carlos Martínez. 1991 Mathe¬
matics Subject Classification: 03E35, 06E99, 54612. March 1996.

202 Weighted contínuous metric scaling. C. M. Cuadras and J. Fortiana. AMS Subject Classi¬
fication: 62H25, 62G99. April 1996.

203 Homoclinic orbits m the complex domain. V.F. Lazutkin and C. Simó. AMS Subject Clas¬
sification: 58F05. May 1996.

204 Quasivarieties generated by simple MV-algebras. Joan Gispert and Antoni Torrens. Mathe¬
matics Subject Classification: 03B50, 03G99, 06F99, 08C15. May 1996.

205 Regularity of the law for a class of anticipating stochastic differential equations. Caries Rovira
and Marta Sanz-Solé. AMS Subject Classification: 60H07, 60H10. May 1996.

206 Effective computations m Hamiltonian dynamics. Caries Simó. AMS Subject Classification:
58F05, 70F07. May 1996.

207 Small perturbations in a hyperbolic stochastic partial differential equation. David Márquez-
Carreras and Marta Sanz-Solé. AMS Subject Classification: 60H15, 60H07. May 19%.

208 Transformed empirical processes and modified Kolmogorov-Smimov tests for muliivariate
distributions. A. Cabaña and E. M. Cabaña. AMS Subject Classification: Primary: 62G30,
62G20, 62G10. Secondary: 60G15. June 19%.

209 Anticipating stochastic Volterra equations. Elisa Alt» and David Nualart. AMS Subject
Classification: 60H07, 60H20. June 1996.

210 On the relationship between a-connections and the asymptotic properties of predictive dis-
tnbutions. J.M. Corcuera and F. Giummolé. AMS 1980 Subjects Classifications: 62F10,
62B10, 62A99. July 1996.

211 Global efficiency. J.M. Corcuera and J.M. Oller. AMS 1980 Subjects Classifications: 62F10,
62B10, 62A99. July 1996.

212 Intrinsic analysis of the statistical estimation. J.M. Oller and J.M. Corcuera. AMS 1980
Subjects Classifications: 62F10, 62B10, 62A99. July 1996.

213 A characterization of monotone and regular divergences. J.M. Corcuera and F. Giummolé.
AMS 1980 Subjects Classifications: 62F10, 62B10, 62A99. July 1996.



 


