
cW>o<V is. i2>

UNIVERSITAT DE BARCELONA

A STRONG COMPLETENESS THEOREM FOR THE GENTZEN

SYSTEMS ASSOCIATED WITH FINITE ALGEBRAS

by

\

Angel J. Gil, Jordi Rebagliato and Ventura Verdú

Mathematics Subject Classification: 03B50, 03F03, 03B22

Mathematics Preprint Series No. 218
Noveraber 1996



 



A Strong Completeness Theorem for the
Gentzen systems associated with finite

algebras
Ángel J. Gil* Jordi Rebagliato** Ventura Verdú**

Abstract

In this paper we study consequence relations on the set of many
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Introduction and outline of the paper

A class of sequent calculi associated with finite algebras is defined in [2]. In
this paper we continué the study of the Gentzen system determined by these
sequent calculi. This study started in [11], where, generalizing a result of
[14], the m-dimensional algebraizable Gentzen systems were characterized.
The Strong Completeness Theorem for the Gentzen systems determined by
the sequent calculi associated with the finite linear MV-algebras was proved
in [11], by using algébrale methods.

The aim of this paper is to prove the Strong Completeness Theorem (The¬
orem 4.1) for the Gentzen systems associated with arbitrary finite algebras.

By using the notion of satisfaction of sequents defined in [16] and [2], we
define, for any finite algebra, a semántica! consequence relation on the set
of ro-sequents, where m is the cardinality of the algebra. These semanti-
cal consequence relations are finitary (Theorem 2.19) and satisfy the same
deduction detachment theorem satisfied by the Gentzen systems mentioned
above (Theorem 3.6). Then, by also using the already known Completeness
Theorem for provable sequents ([2, Theorems 3.1 and 3.2]), we prove the
Strong Completeness Theorem.

It is worth noticing (see Theorem 3.7) that for every finite algebra only
one Gentzen system is associated with it by means of the sequent calculi
defined in [2]. The Computer system MULTLOG ([3] and [4]) provides a way
to obtain automatically an axiomatization of these consequence relations
such that the rules satisfy certain optimality conditions.

1 Preliminary definitions and results
This section contains the basic definitions for this paper and some already
known results about deductive systems and Gentzen systems.

Consequence relations and deductive systems
Let £ be a propositional language (i.e. a set of propositional connectives).
By an £-algebra we mean a structure A = (A, {üA : □ € £}), where A is
a non-empty set, called the universe of A, and üA is an operation on A of
arity k for each connective □ of rank k. A consequence relation on A is
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a relation h between subsets of A and elements of A such that the following
conditions hold for all X U Y U {a} C A:

(i) a e X implies Aha;

(ii) X\~a and X C Y implies Fba;

(iii) X\~a and Yh-b for every b € X implies Fha;

A consequence relation is finitary if

(iv) X\-a implies X'\~a for some finite X' C X.

We denote by Fm¿ the absolutely free algebra of type £ freely generated
by a countable infinite set of variables. Its elements are ealled £-formulas.
If A is an £-algebra, the set of homomorphisms from Fm¿ to A will be
denoted by Hom(Fmc, A).

Example 1.1 Different consequence relations have been considered in the
literature; for instance:

(i) A deductive system is a pair S = (£,1-5), where hs is a fini¬
tary consequence relation on the set of £-formulas, Fmc, which is
structural in the following sense: TN/? implies h(F)\-h(tp) for every
h e Hom(Fmc,Fmc), where h(T) stands for {^(7) : 7 € T}. Deduc¬
tive systems have been studied, among other places, in [6] (where the
concept of an algebraizable deductive system is defined), [5] and [9].

(ii) Let 1 < k. A k-dimensional deductive system S over £ is a pair
(£,1-5) where hs is a finitary consequence relation over Fmkc, (Fmkc =

{(<¿?o>- • • ><^-1) : Vi e Fmc}), which is structural in the following
sense: for all {(7¿,... ,7^) : i < n} U {(^0, • • •, y>*-i)} Q Fmkc, and
all h e Hom(Fmc,Fmc),

{<7oi • • • >7fc-i) : i < n}t-s(ipo,...,<pk-i) =►

{(h(7o). • • •, M7*-i)> : i < k}\-s(h(<po),h(ipk-i)).

The set Fmkc is ealled the set of fc-formulas.
^-dimensional deductive systems have been studied in [7].
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(iii) The theory of (2-dimensional) Gentzen systems was developed in [14],
where sequents are defined to be pairs of finite sequences of formulas,
possibly with some limitations on the length of the sequences given by
the type of the sequents. Let us recall some of the definitions given in
[14]:
Let a and ¡3 be subsets of the set u of natural numbers. An £-
sequent of type (a, (3) is a pair of finite sequences of £-formulas
such that the length of T belongs to a and the length of A belongs
to ¡3. A (2-)Gentzen system of type (a, (3) is a pair Q = (£, hg),
where \~g is a finitary and structural consequence relation on the set
SeQc*'^ of £-sequents of type (a, {3). In [14] the consequence relation
is denoted by the Symbol |~g. A consequence relation hg on the set
Seq^’® is said to be structural if {(r*, A<) : i £ /}he(r, A) implies
{h(Ti, Ai) : i £ I}\~gh(T, A) for every h £ Hom(Fmc,Fmc), where
h((<po,..., (fim-i), (fpo, • • •, fpn-i)) stands for the sequent

((Hipo), h(<pm-1)), (h(7p0),..., h(^n_i))).

i

Matrices for deductive systems
The notion of a matrix allows the introduction of a very general concept of
a semantics for a deductive system. Let us recall the definitions of a matrix,
a matrix model of a deductive system and a matrix semantics of a deductive
system (cf. [17], [6] and [7]).

An £-matrix is a pair (A, F), where A is an £-algebra and F is a subset
of A.

Every matrix (A, F) defines a consequence relation ]=(a,f> over the set
of formulas by the condition T [=<a,f> for each h € Hom(Fmc, A),
h(T) C F implies h(ip) £ F.

Let S = (£,1-5) be a deductive system. A matrix (A, F) is a matrix
model of S (or an <5-matrix) if implies T (=(a,f) lo this case
we say that F is an <S-filter. Let M = {(A: i £ 1} be a class of
íS-matrices. M is a matrix semantics of S if T ]=(Aí,f<) for all i £ I
implies r\-s<p.
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Example 1.2 If the set A is finite, then the consequence relation H(A,f) is
finitary and ¿><a,f> = (£, |=(A,f)) is a deductive system, called the deductive
system determined by the matrix (A, F). In this case (A, F) is an «S<a,f)~
matrix and {(A, F)} is a matrix semantics for 5<a,f> (cf. [17]). i

Deflnition 1.3 A finite valued logic over a propositional language £ is any
deductive system oftheform <S(a,f>> where Ais a finite C-algebra and F C A.

The deduction detachment theorem for deductive Sys¬
tems

Let us recall the deduction detachment theorem for deductive systems (see
[5, III] and [8]).

Let S be a deductive system over a propositional language £. A finite
set E(p, q) = {r}o{p, q),. . ■, r}k-i(p, <?)} of formulas in the two variables p and
q is called a deduction detachment set for <5 if, for all T C Fmc and all
<p,Í> e Fmc,

ru{v?}hsV’ iff
where T\~sE((p, ip) is an abbreviation for the conjunction of the assertions
rhsty^VO, i < k.

S has the deduction detachment theorem (DDT for short) if there is
some deduction-detachment set for S.

Example 1.4 ^4s is well known, the set E(p,q) = {p —► q} is a deduction
detachment set for the Classical Propositional Calculus. i

Note that in the abstract definition of the deduction detachment theorem,
the set E(p, q) collectively acts as a kind of implication.

m-sequents and m-sequent calculi
An m-sequent, also called m-dimensional sequent or m-sided sequent, is a
sequence (r0, Tx,..., rm_x) where each I\ is a finite sequence of £-formulas,
which is called the i-th component (or place) of the sequent. Those se-
quents have been taken into account in [16], [3], [2], [18] and [11]. As in these
works we will write To [Ti | ... | Tm_i for (ro, Ti,..., rm_i). We denote by
m-Seqc the set of m-sequents.
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Thus in the 2-dimensional case we will write T | A instead of the more
common notations TI-A or T —*• A. The use of the Symbol | as a separator
of the components prevents us from thinking of entailment relations between
the components of a sequent. Note that in our notation the Symbol h is only
used, possibly with a subindex, to denote consequence relations on the sets
considered (formulas, fc-formulas, sequents or m-sequents).

If we have two or more sequents, we will sepárate them by the symbol .

In this way there will be no confusión between, for instance, the 3-sequent
T,a; | A,y | II and the two 2-sequents r,a: | A; y | II. The comma will be
reserved for the juxtaposition operation on sequences: that is, expressions
such as T, 6 will stand for (70,..., ik-u <5), where T = (70,..., 7fe_i).

If T is a sequence of formulas and <p occurs in T, we will write <p € I\
Also, we write T C {ip0,..., <pn} to denote that all the formulas that occur
in T are in {tpo, • • •,

To increase the readability of some of the results of this paper in which
we use simultaneously formulas, sequences of formulas, sequents and sets of
sequents, we will use the following notation: lowercase letters from the end
of the alphabet, possibly with subindex and superindex (p,Q,p¡r • •) to de¬
note propositional variables; Greek letters (<¿?, ...,) to denote formulas;
uppercase Greek letters (r, A,...) to denote sequences and sets of formu¬
las; boldface uppercase Greek letters (T, A, Ai}...) to denote sequents, and
boldmath uppercase letters of the end of the alphabet (T, S,...,) to denote
sets of sequents.

If r is an m-sequent and i < m, then F(i) denotes the z-th component of
r. If A is a sequence of formulas and I = {¿1,..., z‘„} Q {0,..., m — 1}, we
denote by [I : A] the m-sequent whose z-th component is A if z € / and is
empty otherwise, that is:

if\V¡.
We will write [¿1,..., zn : A] for [{z¿,..., zn} : A].

If r and II are m-sequents then we denote by |T, II] the m-sequent

r(o), n(o) |... | r(m -1), n(m -1),
and by 0m the sequent such that all its components are empty.

Note that while Ti, • • • are sequents, the expression T(i) stands for the
z-th component of the sequent T.
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If I C {O, —, m — 1}, then we will write Ic for the set {j < m : j £ /}.

Example 1.5 Let m = 3.

(i) [{0, 2} : ip] = <p | 0 | tp.

(ii) [{2}c =

(iii) [[{1}C : V?],[l : <p]\ = [[0,2 : : y)\ = <p \ tp \ <p. I

An m-rule of inference is a set (r) of ordered pairs of the form (T, T),
where T U {r} C m-Seqc and T is finite, such that it is closed under
substitutions, i.e., for every h e Hom(Fmc,Fmc), if (T,r) G (r) then
(h(T),h(T)) G (r). Rules having all pairs of the form (0,r) are called
axioms and, in this case, T is called an instance of the axiom.

Rules are often written in a schematic form; for instance,

r

[r, [* : ¥>]J

denotes the rule {({r}, [r, [i: (/?]]) : T is an m-sequent and y? is a formula}.
An m-sequent calculus is a set of m-rules of inference.
The following are called structural rules (see [2]), where T and A are

arbitrary sequents and ip and tp are arbitrary £-formulas:

• Axiom: [0,..., m — 1: tp].
• Weakening rule (w : i) for the place i <m:

r
w: i

[r, [*: p]\

• Contraction rule (c : i) for the place i <m:

[r,[z:y?,y?]]
[r, [*: <p]]

• Exchange rule (x : i) for the place i <m:
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[r, [z: ip,ip], A| _

[r, [i:ip,(p\,A]

• Cut rule (cut : i, j) for the places i < m,j < m, i ^ j:

[T, [¿d] [A, [?:¥>]1
[r,A]

cut: i,j

Note that we have a structural rule of each kind for each component of
the sequents (or pair of components, in the case of the cut rule). If m — 2
there is only one cut rule, which has the usual form:

ro,<p | Tj Ao | Ai,ip
cut : 0,1

Tq, Ao | Ti, Ai

Example 1.6 Let m = 3:

(i) Axiom:

(ii) Weakening:!

<p\v\<p.

r01 Ti | r2
W : 1

r01 ri,^ | r2

(iii)Cut:0,l
To,^ | Ti | r2 Ao | Ai, tp | A2

cut : 0,1
r0,A0 | Ti, Ai | r2,A2

Example 1.7 The sequent calculus LK for the Classical Propositional Cal-
culus is shown in Table 1. It is a 2-dimensional sequent calculus that contains
all the structural rules. In Table 2 we show a 3-dimensional sequent calculus
obtained from the three-element MV-algebra following [2]. i

If LX is a sequent calculus that contains some of the cut rules, we say that
the cut elimination theorem holds for LX if every sequent LX-provable
can be proved without using any of the cut rules.
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The VL-sequent calculi
Each finite £-algebra of cardinal m induces a semantical interpretation on
the set of m-sequents, in such a way that several m-sequent calculi are known
to be complete with respect to this semantical interpretation. Since in this
paper we will extend the definition of the semantical interpretation to a
semantical consequence relation on the set of m-sequents we will now recall
some of the basic definitions involved.

Definition 1.8 Let L be a finite C-algebra with universe L = {no,..., um_i}
of cardinal m.

(i) Let h E Hom(Fmc, L). h L-satisfies an m-sequent T(0) | ... | T(m —

1), if there is ani <m such that, for some formula 7 € T(z), h{7) =

(ii) IfT is an m-sequent, s(r) is the set of homomorphisms that L-satisfy
the sequent I\

(iii) r E m-Seqc is L-valid if for every h E Hom(Fmc,L), h L-satisfies
r, that is, iff s(r) = Hom(Fmc, L).

(iv) T C m-Seqc is simultaneously L-satisfiable if / 0.

The above definition of validity is the restriction to the propositional case
of [2, Def 3.2] and of the definitions given in [3] and [18].

The elements of L are called truth valúes and if T is an L-valid sequent
we will write, following [18], [=l T.

A dual semantical interpretation of sequents, which corresponds to ana-
lytic tableaux is studied, for instance, in [18].

It is always possible to find sequent calculi complete with respect to this
definition of L-validity (see [2] and [18] for histórica! remarks). The calculi
we will deal with were defined by M. Baaz et al. in [2] and they play the
same role with respect to the algebra L as the sequent ealculus LK does
with respect to the two-element Boolean algebra 2, in which case, as is well
known, a sequent T | A is LA'-provable iff for every interpretation of the
variables of the sequent in 2, some formula in T is false or some formula in
A is true; thus a sequent is LA-provable iff it is 2-valid (see [2, p. 336] and
[18, p. 31 and 33]).
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We will now recall the definition of the introduction rules of these ealculi,
which are called in this paper VL-rules, that is, preceding the ñame of the
algebra with the letter V.

Definition 1.9 (cf. [2, Definition 3.3]) and [3]). A VL-introduction rule
(□ : i) for a connective □ at place i is a schema of the form:

{r0,A¿ | ... | rm_1,AÍ,_1}i€/
□:» (1)

r<) I • • • | r¿, □(v?0) • • • > ^Pn—l) | • • • I Tm-l

where Aj C {<¿>0,..., for every l < m and j € I, □ is a propositional
connective of rank n, I is a finite set, and, for each h € Hom(Fmc,L), the
following properties are equivalent:

(VL1) h L-satisfies the sequent A¿ | ... | &3m-i for every j 6 /.

(VL2) h(O(ip0t...t<pn-1)) =Vi.

The existence of such rules for an arbitrary algebra is proved in [16,
Lemma 1]. As pointed out in [2], it should be stressed that for any connective
□ and any i < m, there may be different rules that satisfy the definition of
a VL introduction rule (□ : i). In [2] there is a description of how to find
these rules from the partial normal forms in the sense of [15] (see aíso [18, p.
8-9]). A procedure to find rules that are minimal with respect to the number
of premises and the number of formulas per premise has been implemented
in the system MULTLOG (see [3] and [4]).

With these introduction rules and the structural rules, a class of sequent
calculi associated with the algebra L, and denoted by the letter V in front
of the ñame of the algebra, is defined as follows:

Definition 1.10 (see [2]). Let L be a finite C-algebra. A VL-sequent calcu-
lus consists of

(i) A VL-introduction rule (□ : i) for every connective □ and every place
i <m,

(ii) All the structural rules, that is, the axiom and the rules (w : i), (c : i),
(x : i) for all i < m, and the rules (cut : i, j) for all i,j < m, i^ j.
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This definition corresponds to the propositional fragment of the sequent
calculi VL defined in [3] and [18], and in [2] with the ñame LM. Among
the properties of the sequent calculi just defined we are interested in the
restriction to the propositional case of the following result:

Theorem 1.11 (Completeness and Cut Elimination) Let L be a finite
algebra, then the following properties hold:

(i) Ifan m-sequent is provable in a VL-sequent calculas, then it is L-valid.

(ii) If an m-sequent is L-valid, then it is provable in any VL-sequent cal¬
culas without cuts. i

Proof: (i) See [2, Theorem 3.1]. (ii) See [2, Theorem 3.2]. i

Since the VL introduction rules for a given connective are not unique, for
any finite £-algebra L there may be several calculi that satisfy the definition
of a VL-sequent calculus. However, it follows from Theorem 1.11 that each
VL-sequent calculus has the same provable sequents. More generally, we will
prove in Theorem 3.7 that each VL-sequent calculus determines the same

consequence relation over the set of m-sequents, that is, the same Gentzen
System.

G. Rousseau defines in [16] another class of sequent calculi for each C-
algebra L, which we refer to as RL-calculus, and which have a different
axiom and no structural rules. Although for any finite £-algebra L the VL
and RL-sequent calculi have the same provable sequents, the absence of the
structural rules makes the later less appropriate for our purposes. In [11]
some differences between the consequence relations associated with these
classes of calculi are considered.

Example 1.12 Let L = ({/,p, t}, A) be an algebra of three elements where
the truth table of the connective is given by

A f V t

/ f f f
V f V V
t f V t
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Let us now find a VL-rule (A : 1). First note that /i(<p A^O = p 4=>- (h(ip) =

p or hty) — p) and (h((p) = p or h(tp) = t) and (h(ip) = t or h(ip) = p).
This expression corresponds to a conjunctive normal form. Now, each of

the conjuncts can be expressed by the fact that the homomorphism satisfies
a certain sequent; for instance

(h(ip) = p or h(ip) = p) <=> h £ s(0 | <p, | 0).
Indeed h(<p A i¡>) = p h £ s(0 | <p, ^ | 0) n s(0 | <p | ip) n s(0 | if | ip).

Now, writing this equivalence in the usual rule-style form we obtain the
following introduction schema

0|<p,^|0 0 | <p | <p 0 | ^ | ^
0 | (p A ip | 0

from which we obtain the VL-introduction rule of the connective A in the

place 1:
r\A,<p,i¡>\n riA,y|n,y? r|A,-^in,^

r | a, tp a i¡> | n
i

The relation between the VL-provable sequents and the finite valued
logics defined over L is given in the following result:
Theorem 1.13 Let F C L = {uo,... ,vm-x} and let Ip = {i < m : Vi £ F}.
For every set of formulas F and every formula <p:

(i) |=L [If ■ ¥>] *=► 0 I=<L,f) <P

(ü) (=L [[hc ■ r], [If ■ <p]] «=► r h(L,F> <p

Proof: (i) Note that for each h £ Hom(Frac, L), h £ s([If : <p]) iff
h{<p) = Vi for some i such that i £ Ip, that is, iff h(<p) £ F.

(ii) 4=) Let h £ Hom(Fmc, L). Either h(T) C F, in which case, by hypoth-
esis h(tp) £ F and then h L-satisfies the sequent [\IfC : T], [Ip : <p]], or
h(F) £ F, in which case there exists some 7 £ T such that h(7) = Vj for
some j & If, and then h also L-satisfies the sequent [[IfC ■ T], [IF ■ <p]J.
=>) Let h £ Hom(Fmc, L). If h(F) C F and since the sequent |[[/fC :
T], [Ip : <p]\ is L-satisfied by h, there must exist some i £ If such that
h(tp) — Vi, that is, h(<p) £ F. ■
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2 Gentzen Systems
In order to study the consequence relations determined by the VL-sequent
calculi, we first recall the abstract definition of an m-dimensional Gentzen
system. These systems were introduced in [11] (with some limitations on
the length of the sequent, not considered in this paper) and can be seen
as a generalization of the 2-dimensional Gentzen systems introduced in [14]
(allowing an arbitrary but fixed number of components in the sequents), and
also as a generalization of the m-dimensional deductive systems (considering
m-tuples of sequences of formulas, instead of m-tuples of formulas).

An m-dimensional Gentzen system is a pair Q = (£, \-g) where bg is a
finitary consequence relation on the set of m-sequents, m-Seqc , which is also
structural in the following sense: For every h e Hom(Fmc,Fmc),T\-gF
implies h(T)\-gh(T) where h(T) = {h(A) : A G T} and

h(7o i • • ■ > 7o° 1 ~°
ri’ >7i

ti-i
im—l) 1

stands for the sequent

h(TS),-.M7S'-1)l'*(7f),--,h(7Í,-1)|.
Let Q be a Gentzen system. If Th^A and Ab^r we will say that T and

A are ¿7-equivalent. If $\-gT we will say that F is ¿/-derivable. We will
sometimes write T; TbgA for T U {r}bgA.

Every m-sequent calculus, LX, determines a Gentzen system QLX =

(£, blx) by using the rules of the calculus to derive sequents from sets of
sequents, not just from the axiom alone, as stated in the following definition
(cf. [14, p.14] and [1, p. 267]):
Definition 2.1 GivenT\J{T} C m-Seqc , we say thatT follows fromT in
Glx, in symbols T\~lxF iff there is a finite sequence of sequents To,..., r„_i,
(n > 1), called a proof ofV from T, such that F„_i = T and for each i <n
one of the following conditions holds:

(i) r< is an instance of an axiom;

(ü) Ti e T;

(iii) Ti is obtained from {r_¿ : j < i} by using a rule (r) of LX, i.e.,
(S, I\) 6 (r) for some S C {r,- : j < i).
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n is called the length of the proof.

Example 2.2 The Gentzen system determined by the sequent calculus LK
is studied in [14], where it is denoted by Qcpc■ This Gentzen system is
equivalent to the Classical Propositional Calculus and is algebraizable, the
variety of Boolean algebras being its equivalent quasivariety semantics (see
[14] for the definitions of equivalence and algebraizability of 2-dimensional
Gentzen systems). Other Gentzen systems, obtained modifying some of the
rules of LK, are studied in [14] and [13]. i

Deñnition 2.3 Let L be a finite C-algebra. A VL-Gentzen system is a
Gentzen system determined by a VL-sequent calculus.

Example 2.4 The Gentzen system determined by the VS(3)~sequent cal¬
culus given in Table 2 is studied in [11] and [10]. This Gentzen system is
equivalent to the 3-valued Lukasiewicz propositional logic and is algebraiz¬
able, the variety generated by the three-element MV-algebra being its equiv¬
alent quasivariety semantics (see [11] for the definitions of equivalence and
algebraizability of ra-dimensional Gentzen systems). The Gentzen systems
determined by a VS(m)-sequent calculus (defined in [2]), where S(m) is the
linear MV-algebra of m elements are also studied in [11]. i

Definition 2.5 An m-dimensional Gentzen system satisfies an m-rule (r)
if T\-gT for every (T, T) e (r).

The structural rules

The structural rules play an important role in the proof of some basic theo-
rems of this paper. We introduce now some technical lemmas that will help
us to shorten some proofs where different structural rules are involved.

Lemma 2.6 Let Q = {£, bg) be an m-dimensional Gentzen system that sat¬
isfies the contmction and exchange rules for a given place i <m. For every
{r;n}c m-Seqc and every sequence of formulas A

[r,[¿: A,A],n]he[r,[z: A],n],

Proof: Straightforward. i
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Lemma 2.7 Let Q — {£, h-j?) be an m-dimensional Gentzen system that sat-
isfies the axiom and the weakening rules. For all {T; 11} C m-Seqc and
every tp e Fmc

1 : y?], II].
If, in addition, Q satisfies the exchange rules, then

0hg[r, 1 : <^],nj.

Proof: Straightforward. i

As regarás the cut rules (cut : i,j), although the cut is made on the
last formula of the components i, j, if Q satisfies the exchange rule for these
components, the cut can be made on some other formulas, that is:

Lemma 2.8 Let k < m and j < m, k ^ j. Let Q = {C,\~g) be an Tri¬
dimensional Gentzen system that satisfies the rule (cut : k,j) and the ex¬
change rules for the components k and j. For every {r*o;Ti; Ao; Ai} C
m-Seqc

Po, [*: <p], rj; [Ao, \j: <p], AJ^tTo, rlf A0, Ax].
Proof:

[To, Ttl
• x : k

[A0, \j- p\, Ai]
: x : j

[A0, Ai, \j: <p\\
cut: k, ?

[r0,ri, a0, Ai]

The next lemma allows us to cut a formula not only in a pair of different
components, but in a pair of disjoint sets of components.

Lemma 2.9 Let Q be an m-dimensional Gentzen system (m > 2), such that
it satisfies the exchange, cut and contraction rules. Let I,J be a pair of
disjoint and nonempty subsets of the set {0,..., m — 1}. For any sequents T
and A and for any formula <p,

{[r,[J:^]];[A,[/:^]]}hg[r,A]. (2)
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Proof: First we prove the Lemma for the case I = {¿}. We proceed by
induction on Card(J). If Card(J) = 1, J — {j}, (i -/ j), and we can use
(cut: j, i). If J = {ji,... ,jn},n> 1, then by (cut: jn,i)

{p\ Ui,..., jn-1, jn ■ <p]\\ [A, [i : ¥>]J}h7[r, A, \jl, ■. . ,ju-1 •• V>]J.

By inductive hypothesis and by using Lemma 2.6 severa! times we have

ir, A, : ¥>]]; JA, [i : ¥>]JI-g[r, A]
so

|T,[J:¥>]];[A,[t:V»]]hc(r>A]. (3)
In the general case we proceed by induction on Card(I).

If Card(I) = 1 it is done. If / = {ii,... ,in},n > 1, then IA, [7 : </?]] =

(A, [*1,..., ¿n-1 : ip), (¿„ : <¿>]J and then by using (3),

[r, [J : <p]\ [A, [i|,..., ¿n-1 : V>], [*n : ¥>]]
ir, A, [¿1,...,¿„_1 : </?]]

By inductive hypothesis, as in the previous case, we obtain

[r, [J : tp)\\ ir,A,(¿1,...,¿„_1 : <d]h0[r,A]. i

Note that if m = 2, then I = {0} and J = {1} or viceversa, so (2) is the
cut rule.

Lemma 2.10 Let Q — (C,\-g) be an m-dimensional Gentzen system that
satisfies the exchange, contraction and cut rules. For any sequents T and A,

(i) Ifk<m then

r;{[A,[{fc}c:7]I:7€r(fc)}l-(,n.
where

nm-/r(í)’AW ifi^kW L A(fc) ifi = k

(ii)

r; U{ÍA,[{fc}C:7]J:7€r(fc)}b,A.
fc<m

16



Proof: (i) Let T(k) — (70,... ,7r-i)- For every j < r — 1 let II, be the
sequent defined by

ír(¿),A(¿) if i^k
Á \7j+i»---.7r-i,A(fc) if¿ = fc.

The result follows from the following chain of inferences, which are
obtained by Lemma 2.9 and Lemma 2.6 (thus using only the exchange,
contraction and cut rules)

r¡ [A, [{fc}° : 7„]] \-g no
n0¡ [A, |{fc>c: 7,]] hs n,

nr-2; (A, ({fc}c : 7r-l]] hg n

Notice that lio = II in the case r = 1.

(ii) For every k < m — 1, let Afc be the sequent defined by

A*; r(*),A(¿)
A (¿)

if i > k
if i < k.

The result follows from the following chain of inferences, which are ob¬
tained by Lemma 2.6 and (i) (thus using only the exchange, contraction
and cut rules)

r;{[A,[{0}c;7l]:7er(0)} 1-5 Ao
A0; {|A, [{1}C : 71] : 7 £ r(l)} hg A,

Am_2;{IA, [{m- 1}C 17]]: 7 e r(m- 1)} hg A. ■

Accumulative Gentzen Systems
An m-dimensional Gentzen system Q — (C,\~g) is called ¿-accumulative
(¿ < m) if it satisfies the following properties:

(i) For every <p G Fmc, 0 \~g [0,..., m — 1 : y?];

17



(ii) For every T U {I1; A} C m-Seqc and every formula <p,

T, ThgA implies T; ¡T, [i : [i : </?]].

We will say that a Gentzen system is accumulative if it is i-accumulative
for every i < m. Accumulative (2-)dimensional Gentzen systems have been
defined and studied in [14]. (2-)dimensional systems satisfying a similar
property have been studied by A. Avron in [1] with the ñame of “puré”. Now
we will give sufficient conditions for a Gentzen system to be accumulative.

Proposition 2.11 Let Q = (£,\~c) be an m-dimensional Gentzen system
and i <m. IfQ satisfies the following two properties:

(i) Q satisfies the axiom and the weakening rule for the place i,

(ii) Q can be defined by a set of rules such that an arbitrary sequence of
formulas A appears at the end of the i-th component of all the sequents
that appear in the rule. That is, Q can be defined by a set of rules of
the following form:

{[n,, [t : A]) : j < n}
[n, [i : AH

where {rr¡: i < n] u {n} c m-Seqc and A is an arbitrary sequence
of C-formulas,

then Q is i-accumulative.

Proof: Let TU {I1;A} be a set of sequents and a formula. Suppose
T; rhcA and let us see that T; ÍI\ ¡i: <¿>j|hcfA, \i : <p]1. We apply induction
on the length I of a proof of A from T u {r>:

If l = 1 then we have two cases:

(i) If A is an axiom, by (w : i), 0b$[A, [i: <^]];

(ii) If A G T, by using (w : i) we obtain Ahg[A, ]i : (p]|;
and in both cases T; [T, [i : vU^IA, [* :

Let Z > 1. If the last rule applied in the proof of A from T is (r), then
A = pI,[i:A]]f thus we have the following instance of (r):

{[Ilf, [i: A]] :j<n}
[n, [i : A]]

18



By induction hypothesis

r; [r, [i: ^ili-cin^, [¿: a, v>]1 (4)

for all j < n. Now, by the same rule (r), we obtain

{pIi>[»:A,¥)]]:j<n}l-g[n,[i:A>ví]]. (5)

Thus, by using (4) and (5) T; [I\ [* : y?]]hc[A, [* : tp\\. i

Corollary 2.12 Let Q = (£, h¿) be an m-dimensional Gentzen system. If
Q satisfies the axiom and the weakening rules and can be defined by a set of
rules of the form

{[IX,-, T] : j < n}
[n,r]

where {iij: j <n}u{n;r} c m-Seqc , then Q is accumulative. i

Theorem 2.13 Let L be a finite C-algebra. The VL-Gentzen systems are
accumulative.

Proof: Since every VL-sequent calculus contains the axiom and the weak¬
ening and exchange rules, the Gentzen system determined satisfies these
rules. The weakening, the contraction rules and all the VL-introduction
rules can be written as in the hypothesis of Corollary 2.12, by using the ex¬
change rules. The exchange rules are already in the desired form and finally,
by using the contraction and the exchange rules, the cut rule can be replaced
by

Po,[fc¥>l,r| lAp.frd.r]
[ro,A0,n

So each VL-Gentzen system satisfies the hypothesis of Corollary 2.12. Thus
they are accumulative. i

Matrices for Gentzen systems
Our definition of the notion of a matrix model of a Gentzen system is similar
to the corresponding definition for a deductive system.
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Let A be an £-algebra. An m-relation on A is a set R C U{An° x ... x
Anm~l : rii E üj, i < m}, that is, a set of m-tuples formed by finite sequences
of elements of A; 7Zm(A) will be the set of all m-relations on A. If there is
no risk of confusión we write 7Zm instead of T^^A).

An m-matrix, or just a matrix, is a pair (A, R} where R is an m~
relation on A. Notice that instead of considering a set F C A, we consider
an m-relation.

Let h E Hom(Fmc, A). If T is the sequent

7o. v»-1>7o /y°Im—1> ) Im— 1 .

then h(T) stands for

MiS) W1) M-rS,-,)..... Hi£:}-') e x • • • *

Let Q be an m-dimensional Gentzen system and let (r) be an m-rule of
inference. An element R E 7Zm is closed under the rule (r) if for every pair
(T,r)e(r),and every h € Hom{Fmc, A), h(T) C R implies h(T) € R. A
(y-filter is a set R € 7Zm such that for every set of sequents T U {T} and for
every h E Hom(Fmc, A), T\~gF and h(T) C R imply h(T) E R. When Q
is defined by means of some axioms and inference rules, R is a £-filter iff R
contains all the interpretations of these axioms and is closed under each of
these rules. A matrix (A, R) is called a matrix model of Q (or ¿/-matrix)
if R is a ¿/-filter.

If (A, R) is an m-matrix, let (=<a,í?> be the structural consequence relation
on the set m-Seqc defined by the following condition: T |={A,fí) r iff for
every h E Hom(Fm.c, A), h(T) C R implies h(F) E R.

Now we are going to define a semantical consequence relation over the
set of m-sequents based on the definition of L-satisfaction. This consequence
relation is defined from an m-matrix on the algebra L. So we start by
defining the following m-relation, which contains the interpretation of the
valid sequents:

Definition 2.14 Let L be a finite algebra with universe L = {uo,... ,um_i}
of cardinal m, then

(AT(0),... ,X(m — 1)) E LA0 x ... x Lrhn~1 : ni E u for i < m,
and exists i <m such that Vi E X(i)
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The connection between the m-matrix (L, Di) and the definition of L-
validity and L-satisfaction is shown in the following

Theorem 2.15 Let T U {T} C m-Seqc ■ The following properties hold:

(i) Ifh € Hom(Fmc, L), then

h e s(T) <=* h(T) e Dl.

(ii) 0 r <*=>■ r is an L-valid sequent.

(iü) t hL,DL> r <=► fis(n)^s(r)-
neT

Proof: Straightforward. I

Definition 2.16 Let T U {T} C m-Seqc , if T r we say that T
follows semantically from T.

In order to prove that the consequence relation associated to any VL-
sequent calculus and the semantical consequence relation (=(L,dl> are equal,
and since the first one is, by definition, finitary, we will show first that the
second is also finitary. We will follow the topological proof given by Los
and Suszko (and sketched by Wojcicki in [17, p. 262]) of the fact that the
consequence relation determined by a finite class of finite matrices is finitary.
The topological basis of the proof can be found in [16].

Let us assign to L the discrete topology and to LVar the product topol-
ogy, where Var is the set of propositional variables. Since L is a compact
Hausdorff space, LVar is also compact Hausdorff, by Tychonoff’s Theorem.
Now, by identifying each homomorphism h : Fm£ i—>■ L with its restric-
tion a : Var i—► L, we can identify the sets Hom(Fmc, L) and LVar, so
Hom(Fm.c, L) is also a compact Hausdorff space.

Theorem 2.17 ([16, p. 25-26] Let L be a finite C-algebra. Let T € m-Seqc
and let s(r) be the set of homomorphisms that L-satisfy the sequent T. Then
the set s(T) is open and closed in the space Hom(Fmc,L)

21



Proof: Let V'ar(r) = {p0> • • • >P/-i} be the set of propositional variables
occurring in T. Since V'ar(r) is finite, the restrictions to Var(T) of the
elements of s(r) form a finite set {w°,... ,ws~1}. Now we have the following
equivalences:

h G s(r) «*=>■ there exists j < s : h/Var(T) = uP
<*=*► there exists j < s : h/Var{T)(pi) = uP(pi) (i < f)
<=$■ there exists j < s :

h G pr~1(wj(p1)) D .. • Dpr'^iuPipf-i)),

(where prPi : LVar —► L is the projection over the propositional variable
Pi G Var), thus

s(r) = U {Wp'Wipi)) n • • •
JG{1 í-1}

and s(T) is open and closed in /íom(Fin£,L). i

With this result, an immediate proof of the compactness theorem can be
given:

Theorem 2.18 [16, Theorem 2] Let L be a finite C-algebra. A set of se-
quents is simultaneously h-satisfiable iff every finite subset is simultaneously
L-satisfiable.

Proof: If T is not simultaneously L-satisfiable, by definition, =
0. Now, since s(r) is closed for every T, and Hom(Fmc,L) is compact
Hausdorff, there exists a finite subset T* C T, such that nr€jys(r) = 0,
and then T1, being finite, is not simultaneously L-satisfiable. The other
implieation is obvious. i

Theorem 2.19 (Finitariety) Let L be a finite C-algebra. Let T U {r} be
a set of m-sequents. The following properties are equivalent:

(i) t h(L,dl> r.
(ii) There exists a finite subset T' C T, such that T' [=(l,ol) r.
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Proof: Assume T t=(L,DL) I\ by Theorem 2.15, nAgj's(A) C s(r), and
then

( fl W) u s(r) = ( U (s(A))c]uS(r) = MF"ic.L), (6)
Wr / \AeT )

where, if H C Hom(Fmc,L), Hc denotes Hom(Fmc, F)\H.
Since Hom(Fmc, L) is a compact Hausdorff space, and s(A) is always

closed, there is a finite subset of T that satisfies (6), that is, there exists a
finite subset T' CT satisfying

( \° ( \
n

Wr
Us(F) U

AeT' /
U s(r) = Hom(Fia.c,Fmc),

thus DAe2vs(A) C s(r) and then T' P. The other implication is
straightforward. i

3 The deduction detachment theorem for

Gentzen systems
The definition we give of the deduction detachment theorem (DDT for short)
is a generalization of the one given in [14] for (2-)dimensional Gentzen Sys¬
tems, which is, in turn, a generalization of the deduction detachment theorem
for deductive systems. This DDT is formulated by means of a deduction de¬
tachment set (DD-set for short) which acts as a kind of implication between
sequents. If a Gentzen system has the DDT, then the DD-set malees it pos-
sible to carry one sequent from left to right of the consequence relation by
using a finite number of sequents. These sequents will be in as many variables
as there are formulas in the two sequents involved. Thus we need different
sets of sequents, according to the lengths of the components of the sequents.

After giving the definition, we obtain sufficient conditions for a Gentzen
system to have the deduction detachment theorem.

Let Q — (£, hg) be an m-dimensional Gentzen system.
If k = (ko,km-1) e um and l = (lo,lm-1) ^ um, p¡¡ and will denote
disjoint sequences of distinct variables



Let E = {Eir. k,l ewro}, where each E¿f is a finite set of m-sequents
in the variables and q¡- (at most). In the case = /< = 0 for allí < m,
E(0,.. j0) (0 o) is a finite set of m-sequents in one variable, (at most). Then

Ekf (P¡k-^) = (A<(P£><Jr) : * < Q rn-Seqc
and in the case kt = li = 0 for allí < m,

£(o,...,o))(o,...,o)(Po) = {n,•(?*>) : i < 1} C m-Seqc .

If r and n are the sequents
r = 7§,7oI,---,7o‘°"‘ l7?,7Í,
n = 7rS,ir¿,...,7r¡r~‘
we will write

ÍTl.íTl.

.7i1-1
,*}■-*

.7m-i‘ 1 and-V1
lm— 1) im— 1)

the result of replacing the variable p¡ by 7/ (i < m,j < k{), and the variable
q{ by 7r¿ (i < m,j < li) in every sequent of E^.
In the case kt = U = 0 for allí < m, we will write

E($rnt ®m) — ■®(0,...,0),(0,...,0)(Po)'

The set E is calíed deduction-detachment set (DD-set, for short) for Q if
for all T U {r; n} c m-Seqc ,

T,T\-gn iff T\-gE{r,n).

Definition 3.1 A Gentzen system Q has the deduction-detachment the-
orem (DDT, for short) if it possesses some deduction-detachment set.

If a Gentzen system Q has the deduction detachment theorem, the conse-
quence relation 1-g is determined by the (/-derivable sequents and the DD-set,
as shown in the following

Theorem 3.2 Let Q\ = {C,\-gf) and G2 = (£,l-£2) be two m-dimensional
Gentzen systems. If Gi and G2 have the deduction detachment theorem uñth
respect to the same deduction-detachment set and they have the same deriv-
able sequents, then Gi and G2 are equal.



Proof: We prove that for any finite set of sequents T and any sequent T

rh^r <*=>■ T\-g2r

by induction on the cardinal of the set T.
If 01-^ T, then T is C?i-derivable and, by hypothesis, 0b^2r.
Let £ be a DD-set for both Gentzen systems Q\ and Q2. If T'; Ilb^r,
then, by the deduction theorem, T,hg1¿2(n, T). By inductive hypothesis
T>\-g2E(TÍ, T), and since has the same DD-set,

T',U\-g2T,
and this finishes the proof. i

Now we will give sufficient conditions for a Gentzen system to have the
deduction detachment theorem. First we show that, in a Gentzen system
that satisfies the axiom, weakening and exchange rules, we can associate to
each sequent T a set of derivable sequents: those obtained adding a formula
that occurs in any component of T to all the other components, that is:

Lemma 3.3 Let Q = (£, hg) be an m-dimensional Gentzen system that sat¬
isfies the axiom, and the weakening and exchange rules. If T € m-Seqc ,

then, for every k < m and every 7 G T(k), the sequent [r, [{fc}c : 7]] is
Q-derivable.

Proof: Note that, if 7 G T(k) and i <m, then

[r,[W-:7]](!) = {rI(^ Jf;f‘
and then 7 G [r, [{fc}c : 7]! (z) for all i < m, and the result follows from
Lemma 2.7. 1

Theorem 3.4 Let Q = (C,\-g) be a Gentzen system that satisfies all the
structural rules and is accumulative. Then Q satisfies the deduction detach¬
ment theorem with respect to the DD-set given by the follouñng equivalences,
where T U {r;A}c m-Seqc

(i) J/r # 0m,

T; TbgA T\~g |A, [{k}c : 7]], for all k <m and all 7 G T(k).
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(ii) // A^0m,

T; 0mbeA iff T\-gA(0),..., A(ro - 1) | ... | A(0),..., A(m - 1).

(iü) T; 0mbe0m ¿¿f Thepo I • • • | Po-

Proof: Cases (ii) and (iii) are obvious, because both sides of the equivalence
are always true. Let us prove (i): Assume T; Tb^A and let k < m and
7 € T(k). Since Q is accumulative

T;|r,[{*}c:7]]l-íIA,[{t}c:i]]. (7)

By Lemma 3.3, 0bg[r, [{fc}c : 7]]! and then, by using (7)

Tbff|A,[{A:}C:7]J.
To prove the other implication, by using Lemma 2.10

r; (8)
k<m

But by hypothesis Tbg|A, [{&}c : 7]J for any k < m and 7 € r(k). So, by
using (8), T; TbgA. 1

Note that only variables occur in the sequents of the DD-set of this the-
orem.

Example 3.5 Let Q be a 3-dimensional Gentzen system that satisfies the
hypotheses of Theorem 3.4. Then, by applying the deduction detachment
theorem

T\ y \ ij> | V Vi 11>i I Vi t^~9 <Pi I V>i, V I Vu V
T\-g (pur¡> I I r/i.V'
TVg ipUT) I iffUr¡ \r]i.

Since the VL-Gentzen systems satisfy all the structural rules, and are
accumulative, they satisfy the deduction-detachment theorem.
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Corollary 3.6 Let L be a finite C-algebra. LetQ = (C, \-g) be a VL-Gentzen
system. Then Q satisfi.es the deduction detachment theorem given in Theorem
3.4. 1

Although all the VL-Gentzen systems satisfy this DDT, by using special
properties of the algebras involved, it may be possible to prove other DDT.
For instance, in [11, Theorem 45 and 48] we give two different DDT for
the VS(m)-Gentzen systems, where S(m) is the linear MV-algebra of m-

elements, in which the sets E¡¿¡-consists of a single sequent, for all k, l 6 um.

Theorem 3.7 Let L be a finite C-algebra. If Gi and Gz are VL-Gentzen
systems, then Gi — Gz, that is, each VL-sequent calculas determines the
same Gentzen system.

Proof: All the VL-Gentzen systems satisfy the deduction detachment the¬
orem with respect to the DD-set given in Theorems 3.4 and Corollary 3.6,
and they all have the same set of derivable sequents (see Theorem 1.11).
Thus, by Theorem 3.2, all these Gentzen systems are equal. 1

This theorem proves that the consequence relation determined by any
VL-sequent calculus is independent of the set of introduction rules we choose
for each connective and place. The consequence relation associated with
any VL-sequent calculus will be denoted by bvL> and the Gentzen system
determined by any VL-sequent calculus will be denoted by the expression
Gvl = (£, Fvl)- This Gentzen system will be called the Gentzen system
associated with the algebra L.

The Strong cut elimination Theorem
In [1, pag. 270] there is a proof of the Strong Cut Elimination Theorem for
the “Gentzen-type system for the Classical Propositional Logic”. By using
Theorem 3.4 we now extend this theorem to a wide class of Gentzen systems:

Theorem 3.8 Let LX be a sequent calculus such that the cut elimination
theorem holds for LX and such that the Gentzen system Glx is accumulative
and satisfies all the structural rules. For allTU{A} C m-Seqc , ifT\-¿xA,
then there is a proof of A from T in which every cut is made on a formula
that occurs in some sequent ofT.
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Proof: By induction on the number of sequents n in T, which can be
assumed to be finite. The case n — 0 is just the cut elimination theorem
for LX. If n > 0, let T = T1 U {r}. If T ^ 0, since Qlx satisfies the
deduction detachment theorem given in Theorem 3.4, for all k < m and all
7 € T(fc) we have

TV„[A,[{*}c:7|].
By inductive hypothesis, there is a proof from T' of every sequent

|A, mC : 7]!

where each cut is made on a formula that occurs in some sequent of T'. With
all these proofs, and since in the proof of

T; u {[A. [Wc: 7]h 7 € r(*)}HIJrA
k<m

(see Lemma 2.10) the cuts are made on formulas that occur in T (thus in a
sequent of T), we obtain a proof of A from T as desired.
If r = 0m, then A can be proved from T using only the weakening rules, i

4 Strong Completeness Theorem
Next we prove a Strong Completeness theorem for the Gentzen system as-
sociated with a finite algebra L with respect to the semántica! consequence
relation introduced in Definition 2.1. This theorem provides, from a semán¬
tica! point of view, a characterization of this Gentzen system and, from the
syntactical point of view, an axiomatization of the relation f=(L,£>L>-
Theorem 4.1 (Strong Completeness) Let L be a finite C-algebra with
universe L = {ifo,... ,um_i}. //TU {T} C m-Seqc , then

t \=(l,dL) r ThVLr.
Proof: Since the consequence relation [=(L,nL) is finitary (Theorem 2.19),
G{L,dl) = (£, h{L,oL)) is a Gentzen system. It is easy to see that C/<l,dl)
satisfies all the structural rules; we show here that it satisfies the cut rules,
i.e.,

ír> [i '■ y»]]; [A. Li ■ ^11 h<L,nL) [r, aj
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for i,j < m, i ^j.
Let h 6 Hom(Fmc, L) such that h € s([r, [i : </?]J) fl s([A, \j : <¿?]J). If

h £ s(T) U s(A) then h € s([r, AJ). Otherwise we have h(<p) = Vi and
h{i¡)) = Vj, a contradiction.

Now let us see that Q(l,dl) is accumulative. Assume T; T (=<l,dl) A and
let us show that

T; [r, [i : </?]] |={L,dl) [A, [¿ : <p\J
for i < m and ip 6 Frric- Let h € Hom(Fmc, L) such that

he ( n s(n)| ns([r,[¿: ^]]).VrieT /

If h G s(r), then h € s(A) and so h 6 s([A, [i : Otherwise we have
h(í/?) = i and henee h G s([A, [¿:

Thus as well as £vl> satisfies the hypotheses of Theorem 3.4.
Therefore and Qyl have the DDT with respect to the same DD-set.
As, in addition, they have the same provable sequents (see Theorems 1.11
and 2.15), by Theorem 3.2, Q(L,dl> and QvL coincide. i

The special case of the strong completeness theorem for the VS(m)-
Gentzen systems, where VS(m) is the linear MV-algebra of m-elements, was
obtained in [11, Theorem 6.6] by using the fact that these Gentzen systems
are equivalent to the m-valued Lukasiewicz propositional logic. This equiva-
lence is proved by using the fact that every m-sequent is VS(m)-equivalent
to a sequent of the form [m— 1 : p\ (see [11, Theorem 5.12]), that is, a sequent
such that all its components are empty, except the last one, which consists
of a single formula. This formula is obtained by means of McNaughton’s
Theorem (see [12]). The strong completeness theorem proved in this paper
holds for any finite algebra.

5 Tables
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Table 1: LK

p | p (axiom)
r|A,v? ¥?,n|A

r,n | a, a
(cut)

r | a

r>| a
(w : 0)

r I A
r | A,p

(w : 1)

I a

r,v\ a
(c:0)

r | A,y>,y?
r | a)Vp

(c:l)

r,v?,^,n|A
(e : 0)

r.^.ni a
r\A,p,i>,A

(e : 1)
r | a,v>,¥>,a

r 1 a,y

-i</p,r | a
(- = 0)

</?, r | a1 (i : 1)
r ¡ a, -><p

¥?,r|A ^,r|A
——- ——! (A : 0)
<¿?A^,r | a pAii>,r\A

r\A,p r|A,ip
(A : 1)

r¡A,<¿>A-0

y,r|A ^,r| A
pvij}, r | a

r\A,p y>,n[A
v -* ^.r,n | a, a

(|:0)

(-:0)

r| Ayp
r | a, p v ip

r[ A,y>
r | A,pvip

(V: 1)

y>r | A,y>
r | a ,p^i¡>

(-: 1)
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Table 2: A VS(3)-sequent calculus
Introduction rules

r | a | nlV3
n r | | n i>|A|n

r,-.p|A|n r|A,^|n r|A|n,^
r,¥> I a | n r,^ | a | n

v: o
r, <p v xp | a | n

r|A,y,y»| n r,y»|A,y|n r,y.|A,y»|n
r | | n
r I a | n.v?,^

V : 2
r | a | n, (p v V’
r,(p,tp | a | n

A : 0
r, <p a ip | a | n

r | A,y?,^ i n r | A,y? | n,y? r|A,^|n,^
r | | n

r | a | n, v? r | a | n,^>
A : 2

r | a | n, ip a i¡j
rIaIn,y> r,^|A|n

q
I>-*tf|A|II

r 1 a, ^ | n, <p r i a, y, | n r, y> | a | n, y?

r| AlV-v»|n K
r,y? 1 a,<¿?| n,^ r,y?| A,y> | n,y>

r | a | n, y? —*• xp

Structural rules: All of them.

31



References

[1] A. Avron. Gentzen-type Systems, resolution and tableaux. Journal of
Automated Reasoning, 10:265-281, 1993.

[2] M. Baaz, C. G Fermueller, and R. Zach. Elimination of cuts in first-order
finite-valued logics. Journal of Information Processing and Cybemetics.
EIK, 29(6):333-355, 1994.

[3] M. Baaz, C.G. Fermueller, A. Ovtrucki, and R. Zach. MULTLOG: A
system for axiomatizing many valued logics. In A. Voronkov, editor,
Logic Programming and Automated Reasoning. (LPAR’93) LNCS 698
(LNAI) , pages 345-347. Springer, 1993.

[4] M. Baaz, C.G. Fermueller, G. Salzer, and R. Zach. MUltlog 1.0: Towards
an expert system for many-valued logics. In A. Voronkov, editor, Proc.
13th Int. Conf. on Automated Deduction (CADE ’96), LNCS(LNAI).
Springer, 1996.

[5] W.J. Blok and D. Pigozzi. Abstract algebraic logic. A course given at the
Summer School on Algebraic Logic and the Methodology of Applying
it, Budapest, July, 1994 .Preprint, October 5, 1994.

[6] W.J. Blok and D. Pigozzi. Algebraizable Logics, volume 396 of Memoirs
of the American Mathematical Society. A.M.S, Providence, January
1989.

[7] W.J. Blok and D. Pigozzi. Algebraic Semantics for Universal Hom Logic
without Equality. In A. Romanowska and J.D.H Smith, editors, Uni¬
versal Algebra and Quasigroups, pages 1-56. Heldermann Verlag Berlin,
1992.

[8] J. Czelakowski. Algebraic aspects of deduction theorems. Studia Lógica,
44:396-387, 1985.

[9] J. Czelakowski. Logic, algebra and consequence operations. Preprint,
1992.[10]A.J. Gil, A. Torrens, and V. Verdú. An algebraizable Gentzen system
for the three-valued Lukasiewicz propositional logic (Abstract). The
Bulletin of Symbolic Logic, l(2):235-236, 1995.

32



[11] A.J. Gil, A. Torrens, and V. Verdú. On Gentzen Systems Associated
with the Finite Linear MV-algebras. Journal of Logic and Computation,
7:1-28, 1997. (In Press).

[12] R. McNaughton. A theorem about infinite-valued sentential logic. The
Journal of Symbolic Logic, 16:1-13, 1951.

[13] J. Rebagliato and V. Verdú. On the algebraization of some Gentzen
Systems. Fundamenta Informaticae, Special Issue: Algébrale Logic and
its Applications, 18:319-338, 1993.

[14] J. Rebagliato and V. Verdú. Algebraizable Gentzen systems and the
Deduction Theorem for Gentzen systems. Mathematics Preprint Series
175, Universitat de Barcelona, June 1995.

[15] J. B. Rosser and A. R. Turquette. Many- Valued Logics. Studies in Logic.
North-Holland, Amsterdam, 1952.

[16] G. Rousseau. Sequents in many valued logic I. Fundamenta Mathemat-
icae, 60:23-33, 1967.

[17] R. Wójcicki. Theory of Logical Calculi. Basic Theory of Consequence
Operations, volume 199 of Sinthese Library. Reidel, Drodrecht, 1988.

[18] R. Zach. Proof theory of finite-valued logics. Diplomarbeit, Technische
Universitat Wien, Vienna, Austria, 1993. Available as Technical Report
E185.2-Z.l-93.

33



Relació deis últims Preprints publicáis:
200 Existence and regularity of the density for Solutions to stochastic differential equations with

boundary conditions. Arturo Kohatsu-Higa and Marta Sanz-Solé. AMS 1990 SCI: 60H07,
60H10, 60H99. March 1996.

201 A fordng construction of thin-tall Boolean algebras. Juan Carlos Martínez. 1991 Mathe-
matics Subject Classification: 03E35, 06E99, 54612. March 1996.

202 Weighted continuous metric scaling. C. M. Cuadras and J. Fortiana. AMS Subject Classi¬
fication: 62H25, 62G99. April 1996.

203 Homoclinic orbits in the complex domain. V.F. Lazutkin and C. Simó. AMS Subject Clas¬
sification: 58F05. May 1996.

204 Quasivarieties generated by simple MV-algebras. Joan Gispert and Antoni Torrens. Mathe-
matics Subject Classification: 03B50, 03G99, 06F99, 08C15. May 1996.

205 Regularity of the law for a class of anticipating stochastic differential equations. Caries Rovira
and Marta Sanz-Solé. AMS Subject Classification: 60H07, 60H10. May 1996.

206 Effective computations in Hamiltonian dynamics. Caries Simó. AMS Subject Classification:
58F05, 70F07. May 1996.

207 Small perturbations in a hyperbolic stochastic partial differential equation. David Márquez-
Carreras and Marta Sanz-Solé. AMS Subject Classification: 60H15, 60H07. May 1996.

208 Transformed empirical processes and modified Kolmogorov-Smimov tests for mvÜivariate
distributions. A. Cabaña and E. M. Cabaña. AMS Subject Classification: Primary: 62G30,
62G20, 62G10. Secondary: 60G15. June 1996.

209 Anticipating stochastic Volterra equations. Elisa Alós and David Nualart. AMS Subject
Classification: 60H07, 60H20. June 1996.

210 On the relationship between a-connections and the asymptotic properties of predictive dis¬
tributions. J.M. Corcuera and F. Giummolé. AMS 1980 Subjects Classifications: 62F10,
62B10, 62A99. July 1996.

211 Global efficiency. J.M. Corcuera and J.M. Oller. AMS 1980 Subjects Classifications: 62F10,
62B10, 62A99. July 1996.

212 Intrinsic analysis of the statistical estimation. J.M. Oller and J.M. Corcuera. AMS 1980
Subjects Classifications: 62F10, 62B10, 62A99. July 1996.

213 A characterization of monotone and regular divergences. J.M. Corcuera and F. Giummolé.
AMS 1980 Subjects Classifications: 62F10, 62B10, 62A99. July 1996.

214 On the depth of the fiber cone of filtrations. Teresa Cortadellas and Santiago Zarzuela. AMS
Subject Classification: Primary: 13A30. Secondary: 13C14, 13C15. September 1996.

215 An extensión of Ito ’s formula for anticipating processes. Elisa Alós and David Nualart. AMS
Subject Classification: 60H05, 60H07. September 1996.

216 On the contributions of Helena Rasiowa to Mathematical Logic. Josep Maria Font. AMS
1991 Subject Classification: 03-03,01A60, 03G. October 1996.

217 A maximal inequality for the Skorohod integral. Elisa Alós and David Nualart. AMS Subject
Classification: 60H05, 60H07. October 1996.



 



i

i

\

I


