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1 Introduction

Let Y be a smooth closed subscheme of Pj¿-1 defined by a homogeneous ideal I C A =

¿[Xi,... ,Xn]. Let X be obtained by blowing up P£-1 along Y. Denote by Ic the degree
c part of I. For c large enough, there is an embedding of X in P^-1, where N = dim* Ic.
The homogeneous coordínate ring of this embedding is the subalgebra k[Ic] of A. On the
other hand, it’s well-known that Proj(RA(Ie))=Proj(Rj\(I)), that is, powers of / blow-up
to the same scheme X. So the rings k[(Ie)c] are coordínate rings of projective embeddings
of X, for c >> e > 0.

We want to study the Cohén-Macaulay property of these rings. Considering the Rees

algebra Ra(I) endowed with a natural bigrading, one can obtain the above rings fc[(/e)c]
as diagonals of Ra(I) (see Section 2). A natural question is which properties of Ra{I) are
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inherited by k[(Ie)c]. Assume that Ra(I) is Cohen-Macaulay. Do exist positive integers

c, e such that k[(Ie)c] is Cohen-Macaulay?.

Our study is based on the paper by A. Conca, J. Herzog, N.V. Trung and G. Valla

[2]. When / is a complete intersection ideal, they prove that there exist positive integers

c, e such that &[(/e)c] is Cohen-Macaulay and describe exactly for which c, e the rings

k[(Ie)c] are Cohen-Macaulay (see [2], Theorem 4.6). When I is an equigenerated ideal,

they also give a positive answer if k[I¿] is Cohen-Macaulay and a(fc[/j]) < 0 (e.g., this
holds when I is of linear type), and if / is a perfect ideal of codimension 2 such that / has
a linear presentation matrix, p(I) > n and I satisfies Gn (see [2], Corollaries 3.12, 3.13
and 3.14). Their results are obtained by studying a Z2-graded minimal free resolution of

Ra(I) over S, where 5 is a suitable polynomial ring endowed with a certain bigrading. If
this resolution is ”good” (see Definition 2.6 for the precise meaning) it is possible to give
a positive answer to the question. They also conjecture that if Ra(I) is Cohen-Macaulay
then always exist positive integers c, e such that k[(Ie)c] is Cohen-Macaulay.

In Section 4, we will give a positive answer to the above conjecture. Our approach is
based on a detailed study of the bigraded minimal free resolution of Ra(I) • We will see

that if Ra{I) is Cohen-Macaulay this resolution is always ”good” and so the conjecture is
true. Namely, let A = k[Xi,..., Xn] be a polynomial ring and I a homogeneous ideal of A.

Suppose that I is minimally generated by forms /i,...,/r of degree di,...,dr respectively
and put d — dr > ... > di, u = £j=i dj. Then:

Theorem (Theorem 4.4) Assume that Ra{I) is Cohen-Macaulay. Then k[(Ie)c] is Cohen-

Macaulay for c >> 0 relatively to e » 0. More explicitely, given e > 0 let

a = min{(e - 1 )d + u - n, e(u — n)}
(3 — min{(e — 1 )d + u - di(r - l),e(u - di)}

Then fc[(/e)c] is Cohen-Macaulay if c > max{ot,(3,de}.
Moreover, if I is equigenerated then A:[(/e)c] is Cohen-Macaulay for all c > max{a, de}.

In particular, if I is equigenerated and n > u then A:[(/e)c] is Cohen-Macaulay for all
c > de.
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Our main tool is the bigraded a-invariant of the Rees algebra. By computing this

a-invariant (see Proposition 3.7), and then comparing with the results obtained in the key

Proposition 3.6, we are able to bound the shifts appearing in the bigraded minimal free
resolution of Ra(I) when Ra(I) is Cohen-Macaulay, and as a consequence one can see

that the resolution is good.

Recently, S.D. Cutkosky and J. Herzog have proved a very general theorem about the

Cohen-Macaulay property of the rings &[(/e)c] when the scheme Proj(RA(I)) is Cohen-
Macaulay ( a weaker assumption). In this case, other conditions are needed to ensure that
there exists a constant / such that /c[(/e)c] is Cohen-Macaulay for c > ef (see [3], Theorem

4.1).

We may also apply the relationship between the bigraded a-invariant and the shifts in
a graded minimal free resolution proved in Proposition 3.6 to obtain an analogous result
for the diagonal of a standard bigraded fe-algebra. We get the following:

Proposition (Proposition 4.5) Let R be a standard bigraded Cohen-Macaulay k-algebra.
Assume that a(i?) < 0. Then R& is a Cohen-Macaulay ring, for all the diagonals A.

This result has been proved by E. Hyry for the (1, l)-diagonal of any standard bigraded

algebra defined over a local ring in [9], Theorem 2.5.

2 Preliminaries

In this section, we fix some notation and recall several results of [2] which will play a

fundamental role in the sequel . Throughout this paper k will be a field, A = fe[Jfi,...,Xn]
the polynomial ring in n variables with the usual grading and I a homogeneous ideal of A.

Let R = ®(u y)eN2 R(u¡v) be a N2-graded fe-algebra and denote by M2(R) the category
of Z2-graded R-modules. Given c,e positive integers, the set A := {(el, el) | I 6 Z} C 22
is called the (c, e)-diagonal of Z2. We may then define the diagonal subalgebra of R along
A as R& R(d.ei) C R■ Similary, given a Z2-graded R-module L we define the
diagonal submodule of L along A as L& := ©iez¿(ci,ei)' It can be easily seen that we
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have an exact functor ( )a : M2{R) —*■ where M1(R&) denotes the category of

Z-graded ^A-modules.

Assume that I is minimally generated by homogeneous polynomials /i,fT of degrees

d\,...,dT respectively, and put d = dr > ... > di, u = dj. In this situation, we can

consider the Rees algebra of I: Ra(I) = ©n>o^n^n C A[t] with the N2-grading given by

Ra(I)(íj) — On the other hand, let S = k[Xi,..., Xn, Y\,..., Yr) be the polynomial
ring in n + r variables with the N2-grading obtained by giving deg X{ = (1,0) for i = 1,n,

deg Y] = (dj, 1) for j = 1, Then we get an epimorphism of N2-graded algebras defined

by :

5 Ra(I)
X¡ ~ X,

Yj fjt

The next result gives a relationship between fc[(/e)c] and the Rees algebra Ra{I)- If
c > de we obtain that fc[(/e)c] is isomorphic to the (c,e)~ diagonal of Ra(I)- By this

reason, it will be useful to study the functor ( )a-

Proposition 2.1 ( [2], Section 1)(i)5a is a Cohén-Macaulay ring and dim 5a = n + r - 1.

(ii) Ifc> de then RA{I)a = k[(Ie)c}.

(iii) If c > de + 1 then dim &[(/e)c] = n.

From now we will always assume that c> de + 1.

Let 0 —k Dt — •. • —Di —* Do = 5 —► Ra(I) —* 0 he a Z2 -graded minimal free reso-

lution of Ra(I) over 5. For every p, Dp is a direct sum of 5-modules of the type 5(a,6),
where 5(a, 6) is the twisted module 5 with shifting degree (a, 6). The central idea in [2] is
to obtain information about Ra(I)a from this resolution and the modules S(a, 6)a- We
will denote by ms and msA the homogeneous maximal ideáis of 5 and 5a respectively.

4



From the computation of the local cohomology of the modules S(a, b)A it is easy to

see that dim S(a. b)A = n + r - 1 ([2], Corollary 3.2). As a consequence, and applying [2],
Proposition 2.8 we obtain:

Proposition 2.2 Let L be a finitely generated Z2-graded S-module and let

0 —► Dt —► ... —► D\ —► D0 —> L —► 0

be a Z2-graded minimal free resolution of L over S. Assume that (Dp)A is a Cohen-
Macaulay module, for p = 0,..., t. Then

V9> 0.

In order to apply the above proposition we need study the Cohén-Macaulayness of the

diagonals of the twisted modules S(a,b).

Definition 2.3 For any Z-graded module E, we define: suppE = {l £ Z \ E¡ ^ 0}

Proposition 2.4 ([2], Lemmas 3.1 and 3.3) Let a,b £Z. Then :

(i) H^sJSia.b)A) = 0, Vg # n,r,n+ r - 1.

(ii) supp HrmsJS(a,b)A) = {s £ Z \ {b+rc)*~¿'a <s< -^}.
(iii) supp H”sJS(a,b)A) = {s£Z\=± <s< .

Definition 2.5 We say that a property holds for c >> 0 relatively to e >> 0 if there
exists eo such that for all e > eo there exists a positive integer c(e) depending on e such

that this property holds for all (c,e) with c > c(e).

Definition 2.6 Let L be a finitely generated Z2-graded S-module and

0 —* Dt D\ —* Do —*• L —*■ 0

a Z2-graded minimal free resolution of L over S. We say that the resolution is good if

every module Dp is a direct sum of modules S(a,b) such that S(a,b)A are Cohen-Macaulay
for c >> 0 relatively to e » 0.

5



In this paper we are interested in studying the relationship between the Cohen-

Macaulay property of a finitely generated Z2- graded S-module X and that of its diagonal

Xa- Note that if X has a good resolution we can apply Proposition 2.2 for large A. In

particular, if X is Cohén-Macaulay this property will be inherited by Xa-

The last result of this section gives necessary and sufficient numérica! conditions for the

Cohen-Macaulayness of the modules S(a,,b)a for c >> 0 relatively to e >> 0. Applying

Proposition 2.4. we obtain:

Proposition 2.7 ([2], Corollary 3.5) Let a,b € Z. Then 5(a, 6)a is a Cohén-Macaulay
module for c >> 0 relatively to e >> 0 if and only if a,b satisfy one of the following
conditions:(i)b < —r and {b + r)d - u - a > 0,

(ii) -r < b < 0,

(iii) b > 0 and bd - a - n < 0.

3 On multigraded a-invariants

A. BASIC DEFINITIONS

In this section we recall some definitions of the theory of multigraded rings. The
basic source is [7]. Let S = ©ngpr^n be a Nr-graded noetherian ring. Let us denote by
5+ = ©n?ío Sn, d = dim S and MT(S) the category of r-graded 5-modules.

Given a group morphism tp : 7Lr —► Z9 such that y?(Nr) C N9, we can define :=

©m€N«(©v(n)=m Sn)- We may think S* as the ring S endowed with a different grading.
Similary, given an r-graded 5-module X, we define Xv := ®mez«(®v,(n)=m -¿n)- Then
( ^ : MT(S) — Mq(Sv) is an exact functor. Considering <pi : 17 —>■ Z defined by
y»¿(n) = n¿, with n = (ni,..., nr), we will denote by S, = SVi, Li = Lv‘.

We will say that S is defined over a local ring if So = A. is a local ring. Then S has a

unique homogeneous maximal ideal A4 = m© 5+, w'here m is the maximal idea! of A.
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The next lemma shows that the local cohomology modules behave well under a change
of grading.

Lemma 3.1 ([7],Lemma 1.1) Let S be a NT-graded noetherian ring defined over a local

ring. Let M be the homogeneous maximal ideal of S. Let <p : 17 Zq be a morphism such
that <¿>(Nr) C For every r-graded S-module L, we have

{HiM{L)Y = H'mv(L«), Vi.

Definition 3.2 Let S be a W-graded noetherian ring defined over a local ring and M the

homogeneous maximal ideal of S. Let Mj = , for j = l,...,r. Let

üj = a(Sj) = max{ m € Z \ # 0}.

We define the multigraded a-invariant of S as a(S) = (aj,..., ar).

Using Lemma 3.1 we obtain that

aj = max{ m e Z | 3n € Zr : <pj(n) = m, [Lfj/,(5)]n 7- 0}.

In analogous way, given a finitely generated r-graded 5-module L, we can define the

multigraded a-invariant of L. If dim L = /, let

bj = max{ m € Z \ 3n € Zr : <¿>,(n) = m, [HlM(L)]n jí 0}.

Then a(X) = (&i,.... 6r) is called the multigraded a-invariant of L.

B. ON THE COMPUTATION OF MULTIGRADED a-INVARIANTS

Let S be a Nr-graded noetherian fc-algebra and M the homogeneous maximal ideal of
5. Assume that we have an exact sequence of finitely generated graded 5-modules

Dt —* ...—*• D\ —* Do —>■ 0

such that Im {Dp+i) C MDP, for all p > 0. Let us denote by {vPi¿} the set of degree
vectors of a minimal homogeneous system of generators of Dp. Note that this set is uniquely
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determined because it can be obtained as the homogeneous components of the vector space

Dp ®s k which are not zero. We set mp = min<jM.{ vp¿} and Mp = max<lti{ uPi¿), where
<¡ex is the lexicographic order. Let us denote by n3p = min,{ N3 = max,{ vPi¿},
where vJ ,is the j-th component of the vector vPi¿, np = (np,np), Np = (Np,Np) and
let us consider also < the partial order in 17 defined coefficientwise. Then we have:

Lemma 3.3 (i) np < np+i-

(ii) mp <iex mp+1

Proof. Let Cp = Coker(Dp+i —> Dp), Vp > 1. Then there are short exact sequences:

0 —>• Cp+2 —*■ i?p+i —> Cp+1 —► 0, Vp > 0.

Applying the functor — 05 k, we get exact sequences:

Cp+2/MC'p+2 ► Dp+i/MDp+i —*■ Cp+i/MCp+i —*■ 0, Vp > 0.

It holds that Cp+2 C MDp+i and so the first arrow is the zero morphism. Therefore
we get isomorphisms

Dp+i/MDp+i —*■ Cp+i/MCp+i.

Let us denote by { ePi¿} a minimal homogeneous system of generators of Dp with

deg(ePi¿) = vP'¡ and by / : Dp+1 —► Dp. From the last isomorphism it follows that

f(ep+i'i) 0, for all i. Let us fix i = l. We can write f(ep+iti) = A,eP),-, where A,- are

homogeneous elements of M. Set deg(Xi) = (A¿,...,A¿) G Nr and note that deg(Xi) ^ 0 if
A¿ / 0. Looking the j-th component of the degree, we get vp+ll > min/{ vpi} = n3p, and
so rip+1 > n3p, for all j. To show ii) we will prove that vp+i,i >iex mp. It is clear that
wp+lií > min;{ vD} = m*. Ifu¿+1, > then weget vp+1,¡ >¡ex mp. Otherwise, vD = m\
and A¿ = 0 for all i. such that A¿ 7^ 0. So we get vp+l l > min,{ vpi \ vpi = mp} = mp. By
repeating this argument, we obtain the result since there exist i,j such that A¿ > 0.

Let L be a finitely generated r-graded 5-module and assume that there exists a finite

r-graded minimal free resolution of L over 5:

0 —► Di —► ... —► Di —► Dq —* L —- 0
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For every p = 0.....Í, let Dp = 0,- S(apa£¿). In the next lemma we study the shifts
appearing in this resolutíon. For the Z-graded case, see for instance [4], Exercise 20.19.

Note that, with the notation introduced before, n3p = min¿{ — •}, N3 = max¿{ —a^,},
mp = min<l„{(-ajii,...,-a^i)} and Mp = max<le,-o^,-)}.

Lemma 3.4 (i) np < np+i.

(ii) mp </ex mp+i ■

(iii) If S is a Cohén-Macaulay ring and L is a Cohén-Macaulay S-module,
then Np < Np+i and Mp <¡ex Mp+j.

Proof. We get (i) and (ii) from the Lemma 3.3. Let us prove (iii). Denote by Ks the
canonical module of 5. Note that it exists because 5 is a finitely generated ¿-algebra. If
L is a Cohen-Macaulay module, dualizing by Ks we get an r-graded exact sequence:

0 — Homs(D0, Ii's) Homs(Dt, Ií’s) -*■ Ext^L, Ks) -*• 0.

Let D*=Homs{Dp, Ii's)={Bi Ks(-ap i, ...,-ap i), Vp. One can easily see that Im(Dp) C
MD*+j .

Let {bi,...,bm} the set of degree vectors of a minimal homogeneous system of gen-

erators of A's- Denote by aPi¿ = (ap,,..., api). Then the vectors aPi¿ + b¡ are the de-
grees of a minimal homogeneous system of generators of D*. Let us consider mp =

min<(ei{ap.< + M = _Mp + min<(ei{ b/} and ñ3p = min,-,/{a^¿ + bj} = -N3 + min/{í>f}.
Applying Lemma 3.3, we obtain that ñp+1 < ñ3p and mp+i <¡ex mp and so Np+i > Np
and N4p_|_i *^iex NIP.

Remark 3.5 For j = 1, ...,r, let us consider the following orden

(Sl,...,.Sr) ^ j (£i,...,ír) (•Sj, ..., Sr, Si, ..., Sj—i) <lex (íj , • •., tr, íj , ..., íj —1).

Note that <! is the lexicographic order. Then Lemma 3.4 is also true if we define mp =

min<}{ (-aJit,...,-o;¡)},Mp = mai<j{ •••>



The next result gives a formula for the multigraded a-invariant of L by means of a(S)
and the shifts appearing in the resolution (see [1], Example 3.6.15 for the Z-graded case).

Proposition 3.6 Assume that S is a Cohén-Macaulay k-algebra and L a Cohén-Macaulay
S-module. Theri a[Lj) =■ a(Sj) + max,{ —a:>ti},forallj = l,...,ríi.e. a(L) = a(S) + Nt-

Proof. Let d = dim 5, / = dim L and M the homogeneous maximal ideal of S. From

the graded minimal free resolution of L

0 —► Dt —* ... —► D\ —► Dq —* L —* 0

and using that t = d - l and 5 is a Cohén-Macaulay ring, we obtain the graded exact

sequence:

0 — HlM(L) -* H%f(Dt) -*■ H^(Dt-i).

Note that HjA{Dp)= )• In degree (07,...,ar), we get the exact se¬

quence:

o - [!&(£)),., «,) - ®K(-S)],„,+„. - ®MUS)]<„1+.;_1.
i i

Let 71 = a(5j) + max,{ — oj,}. We will prove that a(L\) = 71.

Given Qj > 7i, then aj -f a}¿ > a(Si) 4- max,{-a)¿} + aJ - > a(Si). So

HM(s)(ai+a]^...,ar+art t) = 0, for all i. Therefore HlM(L){au_tClr) = 0 and so a{Lx) < 71.
Let ¡3i := a(Si) and {02,-,0r) := majc<(eI{ (a2, ...,ar) € Zr_1 | ar) #

0}. Then we consider ~fj := 0j -)- MtJ. We will see that H^L)^ 7rj ^ 0. First
note that for i such that (-a*1;,...,-art i) = (M¡,..., M¡) then >+<,'<) =

Híi(S){íh,02,-,0r) £ 0. On the other hand, by the Lemma 3.4 we have
(—...,<¡ex Mt-1 <¡ei Mt, for all i. Let l such that -aj_1{ = Ml^j < l
and —a[_l i < M¡. Then 7j + a¡_i ■ = 0j,Vj < l and 7/ + > Pi, thus
(7i + aí-i,¿,-,l/r + art_u) >iex P- From this it follows that ^(5)hl+a;_iii,...,7f.+af_i i) = 0,
for all i. Therefore HlM(L){71,..., 7r) ^ 0 and a(Xj) = a(Si) + max,{ — a)¿}. The proof is
similar for j = 2,..., r (use Remark 3.5).
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C. THE BIGRADED a-INVARIANT OF THE REES ALGEBRA

Let A = k[Xi,... ,X„] be a polynomial ring and I C A a homogeneous ideal. Denote

by R the Rees algebra of I and by G the associated graded ring of I. We can consider R
and G as bigraded rings in the following way:

R(í,í) = (ñ-
G(hj) = (P)í/(P+1)í

Let denote by a(R) = (a(Ri), a(R2)) the bigraded a-invariant of R and by a(G) the usual
a-invariant of G. We set M the homogeneous maximal ideal of R. Then:

Proposition 3.7 (i) a(R2) = —1, a(-ñi) < —n.

(ii) Assume that R is Cohén-Macaulay and a(G) < —1. Then H2f1(R)(-n<~i) ^ 0 and
so a(R\) = —n.

Proof. We set R+ = ©J>0(P)¿. We have two bigraded exact sequences:

0-*R+^R^A^0

0^ R+(0,1)^ R^G-»0.

For every (z,y), we get exact sequences:

- - ■»«-%.,) - - 0

- - - íJ'(lVi) - ^ 0-

Note that = 0 if j 0 and so H^(A)^^ = 0 if j ^ 0.
As R2 = ©j(®¿(LJ)¿) = ©j P is the Rees algebra with the usual 7L- grading,

a(R2) = -1. We want to determine a(R\) = max{ i | 3j : H^’1(R)(ij') £ 0}. Sup-
pose that H'¡lfx{R)^^ ^ 0. As a(R2) = — 1, we have j < —1. From the second
exact sequence, H^/l(R+)^jí 0. If j + 1 < 0, from the first exact sequence,
we have Ff^+1(i?)(¿j+1) = X) 0. Repeating this argument, we obtain
hm'1(r+)(í,o) í As H^l(R\ii0) = 0, H%f(A)(it0) / 0 and so i < a(A) = -n. From
this it follows that a(R1) < -n.
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Assume now that R is Cohén-Macaulay and a(G) < —1. If — 0, from

the second exact sequence we get H^1(R+)^ny0) = 0. As R is Cohen-Macaulay, we get
from the first one that H^í{A)(_nQ^ = 0, which is a contradiction.

Remark 3.8 Note that in the proof of the Proposition 3.7 (ii) it is enough to assume that

HMG\-n,-i) = 0 and HnM{R)(-nfi) = 0.

Remark 3.9 Let us consider the group morphism V’ : Z2 -+ Z defined by ip(i,j) = i+j. By
Lemma 3.1, - ©,+J=/ Hff¡’l{R)^ijy Therefore, applying Proposition 3.7 we get
a(R^) < —7i—l. If R is Cohen-Macaulay and a(G) < — 1 we know that H'^l{R)^_n _^ ^ 0
and so a(i?^) = — n — 1.

4 The main result

Let S the polynomial ring in n+r variables introduced in section 2 and let

0 - Dt - ... -> £>i - D0 = S - Ra{I) - 0

be a Z2 -graded minimal free resolution of Ra(I) over S. For every p, Dv is a direct sum

of 5-modules of the type S(a,b).

Assuming that RA{I) is Cohen-Macaulay, we will give bounds of the shifts (a, b) in
this resolution. This will be done by using the valúes of the a-invariant of the RA(I)

computed in section 3. Recall that / is minimally generated by homogeneous polynomials

f\,..., fr of degrees di,..., dr respectively , and put d = dr > ... > di and u = dj.

Proposition 4.1 Assume that the Rees algebra RA(I) is Cohen-Macaulay. Let

0 —> Dr-\ —+...—► D\ —> Do — S —>• Ra(I) —* 0

be a Z2 -graded minimal free resolution of RA(I) over S. Given p > 1, for every shift

(a, b) of a free sumand of Dp we have

(i) a < 0, b < 0 , a < d\b.
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(ii) —a — b < u + p.

(iii) —a<u + p — (r — 1).

(iv) —r<b< 0.

Proof. It is clear that a < 0, b < 0 , a < d\b. Let us prove the other ones. For (ii)
consider the morphism ip : 1? —► Z defined by ip(i,j) = i + j■ Applying the functor ( )^,
we get a Z-graded minimal free resolution of Ra{Iover . Note that for every shift
(a, b), S(a,b)'f' = S'i'(a + b). Moreover a(S^) = —» — u - r and a(iZ^) < — n - 1 (see
Remark 3.9). Given (a, 6) in Dp, we obtain by Lemma 3.4 and Proposition 3.6:

—a - b < max{ -a - f3 | (a,(3) in Dp} < max{ -a - ¡3 \ (a,P) in Dr-1} +p — (r - 1) =

= a(R^) - «(SH + p - (r - 1) < u + p.

The proof of (iii) is analogous by considering <p : 1? —* 7L defined by <p((i,j)) = i.
Let (a,b) be a shift in Dp, with p > 1. By Lemma 3.4 and Proposition 3.6 we have:

-b < max{ - i) | (a,/3) in Dp} < max{ ~/3 \ (a,/3) in Dr-i} = a(R2) - a(S2) = -1 + r < r.

Therefore we get b > — r. Moreover we know the first homomorphism in the resolution:

5 —► Ra(I)
Xí h- X,

Yj >—► fjt

So, if (a,6) appears in D\, b must to be less than 0 and we obtain (iv).

Remark 4.2 When / is a complete intersection ideal, ail the shifts in the resolution may

be explicitely computed. In fact, by the Eagon-Northcott complex if (a, b) appears in Dp,

(a, b) is of the type:

a = — dji — ... — djp+1,6 = —m

where 1 < j\ < ... < jp+i < r, 1 < m < p (see [2], Lemma 4.1). Note that b takes all the
valúes between -r and 0 and the bounds of Proposition 4.1 (ii), (iii) are sharp if p = r — 1.
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Corollary 4.3 As-sume that the Rees algebra Ra{I) is Cohén-Macaulay. Then R¿{I) has
a good Z2-graded minimal free resolution.

Proof. As a consequence of Proposition 4.1 (iv) and using Proposition 2.7, we have that

Ra{I) has a good Z2-graded minimal free resolution.

Now we state our main result:

Theorem 4.4 Assume that the Rees algebra Ra(I) is Cohén-Macaulay. Then A;[(/e)c] is

Cohén-Macaulay for c >> 0 relatively to e >> 0. More explicitely, given e > 0 let :

a = min{(e - 1 )d + u - n, e{u — n)}
d = min{(e - 1 )d + u — d\{r — 1), e(u — ¿i)}

Then &[(/e)c] is Cohén-Macaulay if c > max{a,/3,de}.
Moreover, if I is an equigenerated ideal, then &[(/e)c] is Cohén-Macaulay for all c >

max{ a, de}. In particular, if I is an equigenerated ideal and n> u then fc[(Je)c] is Cohen-

Macaulay for all c > de.

Proof. By Corollary 4.3 we have that Ra(I) has a good Z2-graded minimal free resolution
and so, by Proposition 2.2, fc[(/e)c] is Cohen-Macaulay for c >> 0 relatively to e >> 0.

By virtue of Proposition 2.1, (.Do)A = ¿a is Cohen-Macaulay for all A. We want to de¬
termine positive integers c, e such that (Dp)a is Cohen-Macaulay for all p = 1,..., r. Using
Proposition 2.4. we are looking for c, e such that H^ (5(0,6)^) = H™ (S(a,b)A) = 0
for every shift (a.b) that appears in the resolution, in other words such that the sets

, (b + r)d — u — a b 4- r.
x = {sez\ —; < 8 < ——} = 0,

c - ed e

T, r , —b bd — a - n. _

Y = {se Z\ — <s< —} = 0,
e c — ed

for all (a, 6) in the resolution. We know that 6 > — r by Proposition 4.1 . So, if s e X then
s < -1. One can see that if c > e(u — d\) then by Proposition 4.1 (i) it holds ^b+r]^J¿~a >
— and so X = 0. Also if c > (e - l)d + u — dj(r — 1) one gets ^b+T]^~¿~a > —1 and
so X = 0. Therefore, if c > (5 then X = 0. Note that if I is an equigenerated ideal (i.e.
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d — dr = ... = di) then (6 + r)d -u-a = bd-a>0 and X is always empty. In analogous

way, if c > a then Y = 0.

The same methods may be used to study the diagonals of standard bigraded algebras.

Proposition 4.5 Let R be a standard bigraded Cohén-Macaulay k-algebra. Assume that

a(R) < 0. Then R¿¡, is a Cohén-Macaulay ring, for all the diagonals A.

(Here a(i?) < 0 means a(Ri) < 0 and a{Rz) < 0.)

Proof. Let R=k[s\,..., sn, ti,..., tT\ be a standard bigraded ¿-algebra, where Si,tj are

homogeneous elements with degs, = (1,0) , degíj =(0,1). Let us consider the polynomial

ring S = k[Xu---,Xn.Yi,...,Yr] with the bigraded structure given by degX¿ = (1,0),

degYj = (0.1). Let
0 —► Dt —► ... —► D\ —* Dq = S —> R —* 0

be a Z2-graded minimal free resolution of R over S. Note that t = n + r — dim R. For all
the shifts (a, b) in Dp, p > 1, we have (Lemma 3.4 and Proposition 3.6):

—a < max{ —a \ (a,(3) in D¡ } = a(Ri) — a(S\) < n

-b < max{ -0 | (a, 0) in Dt} = a(R2) - 0(^2) < r.

Therefore, a > — n and b > —r. Let us see that the resolution is good. We note that for
all p > 1 and (a, 6) in Dp we have a < 0, b < 0 and (a, b) ^ (0,0). So, if b = 0 then a < 0.
Thus, every shift (a, 6) in Dp holds -n < a < 0 or -r < b < 0. By Proposition 2.7, the
resolution is good. Moreover, we will see that for all c, e H^s((Dp)^) = H^^Dp)a) = 0.
In our case oí = dr = ... = di = 0, u = 0 and we have

supp Hrm (S(a,b)A) = {s eZ \ ~ < s <
ce

supp H^s^(S(a,b)A) = {s eZ \ -^ < s < ° g n}
Using — r < 6 < 0 and —n < a < 0 it is easy to check that these supports are empty.
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Remark 4.6 Let i be a finitely generated Z2-graded 5-module. For i = 1,2, let us

denote by Lt = L*', where <¿>¿ : 1? —► TL is defined by <p¿(n) = n, . By considering the initial

degree of Lt, indeg(Li) = min{ j \ [L{]j ^ 0}, then one can define the initial degree of L

indeg(L) := {indeg(L\),indeg{L2))-
Assume that L is a Cohen-Macaulay 5-module. A natural question is when there exists

a diagonal A such that ¿a is Cohen-Macaulay. This problem has already been studied
when L is the Rees algebra or a standard bigraded fc-algebra. By using the same methods,
if a(L) is good enough one can ensure that L has a good resolution, and so L& is Cohen-

Macaulay for c >> 0 relatively to e >> 0. Namely, given e >> 0 (depending on indeg(L2))
one can find a depending on e, a(L) and indeg(£) such that L& is Cohen-Macaulay if
c > a.
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