C A1 St

UNIVERSITAT DE BARCELONA

STOCHASTIC VOLTERRA EQUATIONS IN THE PLANE:
SMOOTHNESS OF THE LAW

by

Carles Rovira and Marta Sanz—Solé

AMS Subject Classification: 60H07, 60H10, 60H20

Blaloﬁ{iilii Lﬂumwiwiﬁﬁﬁﬁim”ﬁ
0701570860

Mathematics Preprint Series No. 226

January 1997

IS



STOCHASTIC VOLTERRA EQUATIONS IN THE PLANE:
SMOOTHNESS OF THE LAW

by

CARLES ROVIRA and MARTA SANZ—SOLE

Facultat de Matematiques
Universitat de Barcelona
Gran Via, 585
08007 BARCELONA, Spain

| g EUE. 1997

MATEMATIOUES



1. INTRODUCTION

Let T = [0,1] x [0,1] and {W,,z € T} be a Brownian sheet on T. We consider the
stochastic Volterra equation on the plane

X, =H. + / F(z 7 X ) AW, + / b(z 15 X, )dn, (1.1)
R, R,

where the functions f = f(z;7n;z) and b = b(z;n;z) are Borel functions of (z,n,z) €
TxTxR,H:T— Randif z=(s,t) € T then R, := [0, s] x [0,t]. In the one-parameter
case stochastic Volterra equations have been studied for instance in [B-M 1], [B-M 2] and
[P].

Consider the stochastic partial differential equation
LXe = f(Xo )W + 8(X,0),  (s,t) €T, (1.2)

where L is some hyperbolic second order differential operator, (W, ;) is white noise in the
plane and the value of X, ; on the axis is some deterministic given function. One possibility
to give a meaning to the formal equation (1.2) is to use Riemann’s method, that means, if
v:(n),0 <n <z <(1,1), is the Green function associated to L, then a solution to (1.2) is
a stochastic process { X, ., (s,t) € T} satisfying

X; = Xot+ X50— Xoo + /R 7:(77)[f(Xn)de + b(Xn)dTI]- (1.3)

In [R-S] we have studied the problem for the operator defined by

0? 0 o

Ly(s,t) = 5-59(s,t) - al(s,t)-a—i(s,t) - az(s,t)a—i(s,t). (1.4)
As has been shown by Norris in [N] these type of equations appear in the construction
of path-valued processes in Riemannian manifolds. This is one of the motivations for the
analysis of stochastic differential equations like (1.1), which include as particular examples
(1.3).
The existence and uniqueness of solution to (1.2) can be stated using the usual Picard’s
method, assuming that the coefficients f and b are Lipschitz in the variable z and have
linear growth, uniformly in z and 7.

Consider E = ({0} x [0,1])U([0,1] x {0}). Our aim is to obtain sufficient conditions for the
existence of a smooth density for the probability law of the solution X, to the equation
(1.1), at fixed z € T \ E. Our theorem will cover the results obtained in [R-S] and [M-S]
for the solution to the nonlinear hyperbolic SPDE (1.2) with L given by (1.4).

The paper is organized as follows. In Section 2 we state the rigorous formulation of the
hypotheses and we state the main theorem. In Section 3 we present the proof of the
theorem. Finally, in Section 4 we include some estimates involving the Brownian motion.

Along the paper we will use the following notation: z = (s,t),7 = (u,v),a = (r,€), and
u=(w,y), z,n,a,u € T.If 2,7 € T then z @ n := (s,v).
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2. FORMULATION OF THE PROBLEM

We need the following set of hypotheses.

(H1) f and b are measurable, infinitely differentiable with respect to z with uniformly
bounded derivatives of any order.
(H2) There exists a constant C such that

If(zim;2) = f(2'sn"s2" ) < C(lz = 2'| + [n = 7’| + |z = 2')),
10z f(z;m52) — B f(z3n";2") S C(ln — 0"} + |z — 2')),

for all z,2',n,n' € T, z,2' € R.
(H3) f and H are two times differentiable with respect to u with bounded derivatives of
second order. That is, there exists a constant C such that

|02 f(z3m5.2)| + |05 Hy| < C,
for any z,n € T, ¢ € R. Moreover
|0u f(2: 15 2) = Bu f(z;m52")| < Clz ~ &',

for any z,n € T, z,z' € R.
(H4,) f is infinitely differentiable with respect to £ and n times differentiable with respect
to u with bounded partial derivatives up to order n.

We introduce some conditions on the coefficients. Fix z € T\ E,

(C1) f(2;0 ® z; Hog:) # 0,

(C2) 9: f(2;0 ® z; Hog:) # 0,

(C3) there exists v € (0,t) such that f(0® 2;(0,v); He,v)) # 0,

(C4) fy ([, 8:£(0 ® 2;(0,v); Ho,0)) F((0,); (0, 4); Heo, ) )dv) dy # 0,

(C5) 04 f(2;0 @ z; Hog:) # 0,

(06) for all v,y € (O’t)v v 2y, f((()’v); (Ov y); H(O,y)) =0,

(CT,) for all j,! with j + =k, k€ {0,--- ,n—1}, 8% ,f(2;0 ® z; Hog.) = 0,

(C8n) T j41mn 7105 w1 F(2:0 ® 2 Hog:)( f; b(0 ® 2;(0,0); Hio,))dv + 8u Hog:)’ # 0.
Notice that (C7,) implies not(Cl) , (C6) yields not(C4) and (C8;) reduces to
8: f(2;,0 ® z; Hop:)( Jy b(0 ® 2;(0,v); Ho,v))dv + 8y Hog:) + 84 f(2;0 @ 2; Hog:) # 0.
Then, we will consider the following sets of hypotheses:

(h1): (H1) and (C1)

(h2): (H1), (H2) and not(C1), (C2) and (C3)

(h3): (H1), (H2) and (H3) and not(C1), (C2), not(C3) and (C4)

(h4): (H1), (H2) and (H3) and not(C1), not(C2), not(C3) and (C5)

(h5): for some n > 0, (H1), (H4,) and (C6), (C7,) and (C8,).



The main result reads as follows.

Theorem 2.1. Suppose that (H1) is satisfied and that H, is a Lipschitz deterministic
function. Fiz z € T\ E and assume that one of the assumptions (hl1)-(h5) hold. Then, the
law of X, 1s absolutely continuous with respect to Lebesgue’s measure on R and its density
18 infinitely differentiable.

Remark. The conclusion of this theorem can be obtained by exchanging the roles of t and
s, v and u, and y and w, in all the hypotheses.

3. PROOF OF THE RESULT

The proof of Theorem 2.1 relies upon a sequel of lemmas and propositions. We recall first
a technical lemma from [R-S].

Lemma 3.1. Let {F,,n > 1} be a sequence of random variables inDVN?, N > 1,p € [2, ).
Assume there exists F € DV =1 such that {DN-'F,,n > 1} converges to DN~'F in
LP(Q; L2(TN-1Y)) as n goes to infinity and, moreover, the sequence {DNF,,n > 1} is
bounded in LP(Q; L*(TV)). Then, F € DV?,

Proposition 3.2. Assume (H1). Then X, belongs to D> and for 0 < a < z,

DX, = f(z;a; Xo)+ O0:f(z;m; X)) Do XgdWhy + 0:5(z;m; X)) Do Xpdn. (3.1)

(a,z] (a,7]

Proof. Consider the Picard approximations
X?=H,,

X = |, 4+ /R Fzm X)W, + /R o(z;m; Xy )dn,  n2>0. (3.2)

In order to deal with the derivatives of X7 and X, of any order we introduce some notation
inspired in Leibniz derivation rule. Let v = (11, ,¥~) € TV; we denote by |v| the length
of v, that means N. Set ¥; = (y1, - ,¥i=1,%i+1,"** ,YN), ¢ = 1,--- | N. For a random
variable Y € DV'?, we denote by D.’:’ Y the iterative derivative D,y D,,_, --- D, Y. Let

fe C,?‘°°(T x T x R), the space of continuous functions defined on T x T x R, infinitely
differentiable with respect to the last variable, with bounded derivatives. Set

N m
Ly(fizim Xy) = Z zaﬁ‘f(Z;n;Xn)HD,(,’.-")Xm (33)
m=1 i=1
where the second sum extends to all partitions py,--- , pm of length m of v. T'y(f; 2;1; X7)

is defined in an obvious manner.

We will check, for any p > 2, by induction on N, the following set of hypotheses (H(M)
(a) {X*, n>0} cDV?,
(b) DN1X? — DN-'X, in LP(Q, L*(TN 1)) when n — oo,
() sup, sup,er supjyi=n E(DYX7IP) < oo.
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Notice that by Lemma 3.1, (H™)) yields X, € D7,

Let N = 1. It is easy to prove the convergence of {X?,n > 0} to X, in LP(2). The
fact that for every n > 0, X € D''? is checked by induction on n, using the stochastic
rules for Malliavin derivatives, (3.2) and the properties of the coefficients. Moreover, the
derivatives satisfy the equations

D.X? =0, (3.4)
D, XI* = f(z7: XT) +/( ]DaXI,'[azf(zm;X,’,‘)de + 0:b(z; 15 X7 )dn],
~,z

0 £ v < z. Hence, there exists a constant Cp such that
E(ID,X!P) < Gy,
E(D, XV < G+ [ E(D X7 1Y)
(73]

for all n > 1,2 € T. Consequently condition (c) holds. Taking n — oo in (3.4) we obtain
(3.1).

Suppose now that (H(¥)), 1 < k < N — 1, holds. The proof of (a) in (H(N)) can be done
using induction on n. Moreover, using (3.3) one can write

DY X! =0, (3.5)
N

DYXI* =) To(fizy X5) + /( ][F7(f;2;n;X,',‘)de + T (b; z;m; X' )dn),
i=1 sup v,z

n > 0, where supy :=v; V---V yn.

The convergence (b) of (H™)) can be checked taking into account that DV =1 X2 n > 1
and DN ~1X, satisfy equations of the same type than (3.5).

Set, for |y| =N

Ay(fizm X7) =Ty f;25m X2) — 0N f(z;m; X2)DY X7

Then for any n > 0 we can write (3.5) as
N

DYXIH =3 "To(fizvi; X2) + / [Ay(f;2m; X7 )dWy + A4 (b; 2z m; X )dn]
i=1 (sup 7,2] (3.6)
+ [ DYXFIOL s X)Wy + 0N (s Xg)dl
(sup 7,z]
Notice that in the first two terms of the right-hand side of (3.6) only derivatives of X of

order less or equal to N — 1 do appear. Hence, condition (¢) in (H®),1 <k < N -1,
implies the existence of a constant C, such that

B(DYX!P) < G,
(DY X < G+ [

(supv,2]

E(|DY X7 |?)dn),
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foralln > 1,z € T and |7| = N. This proves property (c) of the set of assumptions (H(™).
O

We introduce some new notation. Let {Y;(a):0 < a <z < (1,1)} be the solution to

Yi(@)=1+ 0: f(z:m; Xy) Yy(a)dWy + 0:b(2;m; X ) Yy (a)dn. (3.7)

(&,:] (O,Z]

Fix €,8,6 € (0,1), = € T, we define the sets Cj (¢) = (0,6P) x (t — €%,t) and Gi(e) =
(0,67) x (0,¢).

Using Burkholder’s and Hoélder’s inequalities and Gronwall’s lemma one easily gets the
following.

Lemma 3.3. Assume (H1). Then, for any q¢ > 1 there exists a constant Cy such that for
any z € T,

sup E(|Y:(a)*?) + E(|X.|*) < C,, (3.8)
a<lz

sup  E([¥x(a) = 1) < Cye, (39)
aéCg’é(e)

sup E(|Xq — Hal?9) < Cue?l. (3.10)
aGG‘[’,(s)

Notice that, unlike for ordinary stochastic differential equations, here Y, (a)f(z;a; Xo) #
D, X, in general.

The following lemma will be useful to control the difference between the two terms.
Lemma 3.4. Assume (H1). Then, for any ¢ > 1 there ezists a constant Cy such that for
any z € T,

sup E(|DaX. — f(2;0; Xa)Y2(@)|??) < Cpe®l. (3.11)
0605,6(5)

Proof. Burkholder’s and Holder’s inequalities, (3.7) and the estimate (3.8) yield
E(lDa-X-z - f(z; a; Xg )Yz(a)|2q)
(%0 [ B(DaX, = f(ziai Xa)¥y(e))dn)

(a,7]

< Cpeftih) (56 +/
(

a,z]

E(|DaXy — f(n; 0 Xa)Yy(e)?)dn).

Thus, (3.11) follows from Gronwall's lemma. O

Lemma 3.5. Assume (H1).
a) Suppose that (C3) does not hold. Then, for any ¢ > 1 there ezists a constant C, such
that

sup  E(|Xq — Hol¥) < Cy (%P1 + (F+29)0), (3.12)
€C; () !
o ‘3.8 £



b) Suppose that (C6) holds. Then, for any q¢ > 1 there ezists a constant Cy such that

sup E(|Xo — Hal??) < Ce?P. (3.13)
aeGg(e)

Proof. Introducing f g, f(0 ® 2,0 ® n; Hogy)dW, = 0, from Burkholder’s and Hélder’s
inequalities we obtain,

E(|Xa - Hal2q) <C, (E(l‘/;Z (f(CV;’?;Xr:) -f0®z0Qmn H0®n))de|2q)

+ E(] /R ba; m; X, )dn[*)) < G207 + £P4290 4 0D f E(|X, — Hy|*")dn).

«

Then, (3.10) yields (3.12). The inequality (3.13) can be checked using similar calculations.
O

Proposition 3.6. Suppose that (H1) is satisfied and that H is a Lipschitz function. Fiz
2 € T\ E and assume that one of the conditions (h1) to (h5) hold. Then, for any p > 1,

(fR, lDalezda)-l € Lr.
Proof. 1t suffices to show that

P(e) := P(/ |DaX;|*da <€) < P,
R,

p 2 1, for any € < ¢g, where ¢y depends on p, z and the coefficients f and b.
Fix ¢,,6 > 0 such that ¢ < s,e% < t. We have P(¢) < Py(8,6,¢) + P2(B,6,¢), with

Pi(8,6,¢) := P(/(;' |DaX: — f(z;a ® 2; X4 )|Pda > €),

5.5(¢)

Py(8,6,¢) := P(/ |f(z;a ® 2; Xa)|Pda < 4¢).
Cs.s(e)

Chebychev’s inequality and Lemma 3.4 yield
Pi(B,6,6) S CuelPHo-9(f 1 sup  E(|f(2;0; Xa)Ya(e) — f(z; 0 @ 2; Xa)|?9)).

a€C} ,(e)
Then, using the Lipschitz property of the coefficient f, (3.8) and (3.9), we obtain
Pi(B,6,€) < C,elP+26-1, (3.14)
We will now study P2(f, 6, ¢) under the different sets of hypotheses.
Assume (h1). We can write Py(8,6,¢) < PX(B,6,¢) + P(B, 6,¢), with

P2(11)(»3,5,€) = P(/c If(z;2 ® 2; Xa) — f(2;0 @ z; Hog )| Pda > 4¢),

5.5(¢)

Py,(B.8,¢) i= P(1f(2;0 ® z; Hog: )| < 1617A=9))
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From Chebychev’s inequality, the properties of f and (3.10), we have that for any ¢ > 1,
P(B,8,e) < Cy(e@BH8-1)a 4 (B+26-1)g)

Choose 3,6 € (0,1) such that 3+6 < 1,28+6 > 1 and B+26 > 1 (for instance 8 = % and
= 7 ). Then, (C1) implies Pg)(ﬂ, d,€) = 0 for € small enough and the result is proved.

Assume (h2). Using a Taylor expansion, (1.1) and not(C1), one has
6
f(za®@zXa) =Y TP (z5a),
=1
with
(D, . . -
Tl (Z,C!) A f(Z, ax® z HO@G))
1
TP(z;0) = 502 f(2;0 © 2 H*)(Xa — Hoga)?,
T (z0) =0, f(z;0 @ 2 Ho®a)(/ b(e;n; Xy )dn + Ha — Hoga),
Ra
TP (z;0) := (8: f(z;0 ® 7 Hoga) — 0:f(20 ® 2; Hog.)) / fla;n; Xy)dW,y,
Ra

T5(2)(z; a):=0.f(z;0Q® z; H0®z)(/ fla;n; Xy)dW, — / f(0® z;0® n; Ho®,,)dW,,),
R, Ra@s

Téz)(zW‘) = 0:f(2,0Q z; H0®z)/ f(0 ® 2;0 ®n; Hogy)dW,,
Ra@:

where H* denotes a random point between X, and Hoga-

Then Py(8,6,¢) < P{2(8,6,¢) + P2 (B, 6,¢), with
5
Pz(f)(ﬁ, 6,¢) = P( /; “ lz Ti(z)(z; a)|’da > 4¢),
p.6\¢) =1

Pz(g)(ﬁ,&e) = P(/c" © |Té2)(z;a)|2da < 16¢).
g6\

Using (3.8), (3.10) and Chebychev’s, Burkholder’s and Holder’s inequalities, we prove for
any ¢ 2 1,
PR(8,6,¢) < C,(L4+28-D1 1. ((38+5-10) (3.15)

Set K; :=(0: f(2;0 ® z; Hye:))? > 0 and K, := fot |£(0 ® z;(0,v); H(o,))|?dv > 0. Define
MO = / f(0 ® z;0 ® n; Hogy)dW,.
Rr,!
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Then, {Alﬁl),r > 0} is a martingale with < MW > = rK,. So, there exists a Brownian

motion Z(1), such that A!Y = Z(<11)W<1)> Thus,

8

: 16
Pg)(ﬁ,a,e)-_-P(/o 1280 Pdr < o 7 el-?).

Define now Z{? : =K,? e=72%) . Then {Z,r > 0} is also a Brownian motion and

rKq.ef*

1
P2(8,6,¢) = P / ZOdr < —5_c1-5-26), (3.16)
0 K K,

Then, from (3.14), (3.15) and (3.16), choosing §, 8 € (0,1) such that 28+ 6 < 1,38+6 > 1
and B+ 26 > 1 (for instance § = { and § = 1) and using Lemma 4.1 the proof is finished.

Assume (h8). Consider the Taylor expansions
f(z;a® 2;Xa) = f(2;0 @ z; Hoga) + 0z f(z;a ® 2; Hoga ) (Xa — Hoga)
+ %3ff(z;a ® 2 H* )Xo — Ho®o,)2,
f(z30 ® 2 Hoga) = f(2;0 ® 2 Hoga) + r0u f(2;0 @ 2; Hoga) + %r233f(z;n*; Hoga),
Ha = Hoga + 8. Hoga + 57202 Hy,

with H* some random point between X, and Hoga, 7* € (0® z,a ® z), u* in the segment
joining 0 ® a and a. Then

4

f(zia®zXa) =Y Tz 0),

i=1

with

T (z;0) = f(2;,0 © z; Hoga) — £(2;0 ® 2; Hog:),

T (z;a) i= 500 f(z5 ® = H*)Xa ~ Hoga,

T3 (z;0) = %Tz (2 f(2;n*; Hoga) + 82 f(2; 0 ® 25 Hoga )03 Hu ),

T (z;a) = 8, f(z;0 © z;Ho@n)(/R flasn; Xq)dW, +/R b(e; m; Xy)dn

+ r8uHoga) +7'6uf(z;0®z;H0;a)' °
Then Py(8,6,¢) < P{(8,6,¢) + PS)(B,6,¢), with
P(8,6,¢) = P(/C' ( )|§3:T,.<3’(z;a)|2da > 4¢),
s\ =1

s\¢ '
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Using Lemma 3.5 and similar calculations as for (3.15), we prove

PiD(3,6,6) < Cy(eP+3810 1 ((38+5-Day - g >, (3.17)
Define
513)(;;; a):=0:f(z;0Q z Ho®,)(/ fO0® 2,0 ® n; X,)dW,
Ra

+ / 50 ® 2;0 ® n; Hogy )dn + 18y Hog:) + 104 f(2;0 ® 2; Hog:).
Ra@z

We can write Pég)(ﬂ,é,s) < Pz(g%(ﬂ,é,e) + Pég%(ﬂ,&,e), with

PR =P P50 - SP(s0)Pda > 166),
.6

Pj3(B,8,¢) := P( /C o 158 (2;0)%da < 64¢).
g.s\¢

It is easy to check that for any ¢ > 1
P(B,6,c) < C,y(elBF36-1)1 4 (48+8=1)g), (3.18)

Set K3 := 0;f(2;0® 2; Hoo: )( fot b0 ® z;(0,v); Ho,v))dv + O Hog:) + 3u f(2;0® z; Hog: ).
Using again a Taylor expansion for f(0 ® z;0 ® n; X,) we have Sis)(z;a) = Si?l)(z; a)+
Si?z,)(z;a) with

Si?l)(z; a):=rK3; +0:f(z;,0Q 2; Hyg:)
x /R (0:f(0® 200 n;Hom)/R f(ns 5 X )dW, ) dWry,
Sia(z0) =0, f(2,0© z; H0®z)(/R [0:£(0® 2,0 ®n; H0®n)(/R b(n; p; X )dp
1
+ Hy = Hogy) + 502 f(0® 2,0 @ n; H*)(X, — Hoan)?]dWy ),

where H* is a point depending on the Taylor expansion.
Set

9(v,y) := 0: f(2;0 ® z; Hop:)0: f(0 ® z; (0,v); Ho,0)) f((0,v); (0,5); Heo,y))

U, :=rK; +/ S(u,0)@Wu,v, with  S(,.p) :=/ g(v,y)dWy 4.
Ry

u,v

9



Then, P3)(B,6.¢) < P3)(8.6,¢) + P3),(8.6,¢), with

P (B.6,¢) = P(/ | 1S3z, @) + S8 (2,a) — ¥, 2da > 64¢),
z 6(6

&P

PZ(g%Z(ﬁaé»ﬁf) = P(/ |\I’,-|2dr $256€l_6),
' 0

It is not difficult to check that, for any ¢ > 1
P (8,6,€) < Cpe™I(E s 2dal?
2221(:83 ,6) = Vg« (l s ()l 4’2(z,a)| C!l )
p.8\¢

+ E(]/ ( )l5(3)( a) - \I’r|2da|q)) < Cq(€(2ﬁ+26—1)q +€(4ﬂ+6—1)q)‘ (
o.ae 3.19)

Now, putting together (3.14), (3.17), (3.18) and (3.19) the proof reduces to study

P{3),(B,6,€) with 6,8 € (0,1) such that 8+ 26 > 1 and 48 + & > 1 (for instance, § = 1
and B = 1). We will follow the method presented in Norris’ lemma (see [Nu]). Set

t
Av) :i= {w; sup / |S(u,0)|2dv < ¥},

0<u<e? JoO

N, :=/ \I’us(u,v)qu,vv
Rr.t

]\,[,. :=/ S(u,v)qu,v'
R, .

Thena P2(g%2(6, 635) < QI(V) + Q?(V) 41) + Q3(q1’q2) + Q4(q2) with
Q1(v) := P(A%),

!ﬁ
Qg(V,ql):zP(Aﬂ{/ 19, [2dr < 2566} N { sup [N/ > e®}),
0 0<r<e?
e? &?
Qulan,q) = P( [ |0.Pdr <2568, sup [N <en, [ <M > dr>ev),
] 0<r<e? 0
B8

Qa(q2) := P(/ <M >, drSe‘“).
0

Setvi=f—p,q:=3(1-8+8-3u),q2:=3(1-6+33- 5;1) Choose6 B,p > 0 such
that v > 0,¢; >0and 1 -6 > ¢ >3{3(for1nstance for 6 =1 and B = 1, take p = 35).
Notice that ¢ + 8 > g2 and g2 < 3(1 — 6 + 38).

By Chebychev’s and Burkholder’s inequalities, for any ¢ > 1

Qu(v) < Cpe1 / E( sup |Suwl ")dv < Cpe™. (3.20)

0 0<u<es
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o
Fix w € A, such that [ |¥,.|]?dr < 256¢'7°. Then, for any r < ¢f

r t
<N >r=/ W uS(u,vy|*dudv =/ I\I'ul"’(/ Sy ?dv)du < 256" 0+,
0 0

r,t

Then, using the exponential inequality for martingales,

Q2(v,q1) < P( sup [N, >e", <N >,5<256e'7%F) < 2exp(—Ce™2#).  (3.21)
0<r<e?

A
Fix now w such that [ |¥,|2dr < 256¢'~% and supy<,<.s |Nr| < €%, Then, from It&’s
formula we have,

Cﬁ Cﬁ
/ <M>rd7_/ v, |2dr+"/ I/\Ild\Il |dr
0

el~ 6+|I\3|/ |/ U duldr + ¢? sup |/ Vo S(u,0)dWu o))
Rr,t

0<r<es

5 r
<o@ 41l [* [ a4 o)
0 0

< C(e170 4 [Ip|e 318430 4 cit+h) < e,
Hence, by the choice of 3,6 and p,

Q3(q1,92) = 0. (3.22)

Using Holder’s inequality and Fubini’s theorem, we can obtain

’ e" r t
4(q2) £ P(/ / [/ (/ 9(v,y)dv)dW,, 4|2 dudr < ted?).
o] 0 Ry vy
Set Ky := [, ( f; g(v,y)dv)?dy. Notice that from (C2) and (C4), K4 > 0. Define
t
MP = [ ([ o)W,
Ru,t y

Then, {M,(‘z),u > 0} is a martingale with < M(? >,= uKj. So, there exists a Brownian

motion Z®, such that M{? = Z(<3;4(,)> Thus,

Qi(gq2) < P( / / |Z(3) [2dudr <t€q’)



-1 . .
Define Z{! = I, 25“%25131\}.453. Then {Z.(f),u > 0} is also a Brownian motion and by a
change of variable,

1
Qilq2) < P(/ (1 —w)|Z®2du < 45‘12'3").
0 I\4

Then, from Lemma 4.1, (3.20),(3.21) and (3.22), this part of the proof is completed.

Assume (h4). We follow the proof of the previous case till the decomposition
P(B,6,¢) < PS)(B,6,) + P3)(B,6,¢). Set K5 := (8uf(2;0 ® z; Hog:))?. Notice than
1
under (h4), K5 > 0 and 513) =rKg, so

P3)(B,6,¢) = P(Ks < Ce'~07%), (3.23)

On the other hand, P{5)(43.6,¢) can be studied as in (3.18). Thus, from (3.14), (3.17),
(3.18) and (3.23), choosing 6,3 € (0,1) such that 3+2§ > 1,48 +6é6 >1and 3+6< 1
(for instance, § = 1 and 8 = 1), the proof of this case is finished.

Assume (h5). Using a multidimensional Taylor expansion, we have

3

fzia®zXa) = > Tz 0),

=1

with

10 (sia) = S 3 = 0%, f(5:0 © 2 Hogo)r! (Xa — Hoas)),

k=0 j+I= L
1 .
ETIEY % w f(20@ 2 Hog:)r'(Xo — Hoo:)’,
j+1=n]' !
1 o" * * ]
Ty (za) = ) =5 0Rtif(zin" B! (Xa ~ Hog: Y,
j+i=n+1 gt

where H* n* are random points depending on the Taylor expansion.
From (C7,), T®)(z;a) = 0. Then Py(8,6,¢) < P&(8,6,¢) + PS)(B,6,¢), with

PO (8,6,) := P / T8 (23 0)Pda > 4¢),

Ci.5()

PY(8,6,¢) := P(/ 1T (2;0)|2da < 16¢).
5 .6(¢)
By Lemma 3.5 (b) it is easy to check that for any ¢ > 1

(5)(ﬂ 8,6) < Cpe™le (B+6)(g—1) Z / zq'E(IX,, _ H0®z|2qj)da
j+i=n+1"C5,6(¢)
< Cq(c.(ﬂ+36—l)q + c((2n+3)B+6— l)q). (3_24)

12



Define Kg := fot b0 ® z;(0,v); Hio,») )dv + Oy Hyg:. Using again the Taylor expansion
1
Hog: = Hog: + rOuHog: + §T283H,,-,

with n* a random point in (0 ® z,a ® z), we can write X, — Hog. = Vi(a; 2) + Va(a; 2),
with

o

Vi(a; 2) :=/ (f(a;n;Xn)—f(0®a;0®n;Ho®n))de+/ b(a; n; Xy)dn
Ra
L _
— [ H0@ 508 1 Hogndn +(Ho — Hogs) + 31700,
a®z
V2(a;z) = / b(O ® 20 ®77;H0®1,)d77 +r6uH0®, =rKs.
Ra@z

Notice that from (3.13), for any ¢ > 1
E([Vi(a; 2)|27) < Cy(e%%7 4 £3P9), (3.25)

:Using now a Taylor formula for the function f(z) = z7, for any j > 0 there exists a random
variable A; (0 < Aj < 1) such that

(Xa — Hog:) =Va(aiz) + j(A(Xa — Hog:) + (1 = Aj))Va(a; 2))°
X (Xo — Hog: — Va(a;2)) = PP K} + jVi(a; 2)(\;Vi(a; 2) + rKg )L,

Hence T} (2;0) = Téi’(z; a) + T§3(z; @) with
T(5)(z-a)._ Z — 8% . f(2;0 ® z; Hog:)ri Vi(e; 2)(A; Vi (a; 2) + rKe )1,
2,1 ' = 'l' riul Rz rpvilasz 1012 Ti\g
j+i=n

1 .
Téi)(z; CY) =" Z J—'—ﬁag, ulf(Z; 0 ® z; Ho@z)Ké.
jrien

Then P3)(8,6,¢) < PS)(B,6,¢) + PE)(B,6,¢), with

PEB.6e)=P([ T a)da > 166),

ﬁ.6(

PS)(8,6,) = P( / IT$)(2; )P der < 64e). (3.26)

Cj.6()

From (3.25), by Chebychev’s and Holder’s inequalities we have that for any ¢ > 1
P18, 6.¢)

<C, c(B+8)(g—1)~q Z / PR E(|Vi(a; 2)|29|A; Vi(es z)+rK6|2q(J U)da
JHi=n 56(!)

S Cq(e(ﬂ+36"’l)(l +5((2n+2)ﬁ+5 l)q). (3.27)

13



Set K7:=3 ../, ﬁ@“ S0 = H()@,)Ké. Notice that from (C8,), A7 > 0 and

7 u

P2 (8.6,¢) = P(K2? < 64¢!—0-(2n+1)8), (3.28)
Then, by (3.24),(3.26), (3.27) and (3.28) and choosing §, 8 € (0, 1) such that (2n+1)8+6 <

1,(2n+2)8+6 > 1 and 3+ 26 > 1 (for instance § = 715 and § = 1), we end the proof.

a
Proof of Theorem 2.1. Apply Malliavin’s criterion for the existence of a smooth density
(see [M]) and Propositions 3.2 and 3.6. O

4. APPENDIX

Lemma 4.1. Let {W,,t > 0} be a Brownian motion and A\, K € R. Then for any 8 >0
such that 8 < A, there exists €9 such that for alle < ¢

1
P(/ [W,|2dt < Ke*) < 2exp(—i,€‘ﬂ), (4.1)
; 2K
1
P(/ (1 —1t)|W,|%dt < Ke*) < 2exp(—%5"3). (4.2)
0

Proof. Set v := %(/\ — /). It is well-known that for any ¢

t
(We|? = 2/ W.dW, +t.
0

Then,
1 1 1 t
5 =/ tdtg/ |Wd2dt+2 sup | W dW,|.
< 0 0 0<t<1 Jo

Hence, for ¢ small enough, the exponential inequality for martingales implies

1 1 t
P(/ W [2dt < Ke?) SP(/ \Wil?dt < Ke*, sup | [ WadW,|> &)
0 0 0<t<1 Jo
1

< 2exp -5?76
4 $N

So, (4.1) holds true. The proof of (4.2) is similar. Indeed

2»—/\).

1 1
é:/ (1—t)|W,[2dt—/ (1 - ty’W,dW,.
0 0

Thus, for small ¢,

1 1 1
P(/ (1= )|W,?dt < K*) < P(/ (1 —t)|W,|%dt < Ks*,|/ (1 —t)’WodW,| > €*)
0 0 0

1 s
SP(/ (1 —t)*|W,2dt < Ke*, sup | [ (1 —t)?WidW,| > €*) < 2exp(— !
0

2v—A
€ ).

14
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