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INTRODUCTION.

Let X be a smooth complex variety and let E be a vector bundle over X. Given a
hermitian metric h on E we can define an explicit representative of the Chern character of
E ([B-C}). Let Ex denote the differential graded commutative algebra of complex valued
differential forms on X, and let Ex g denote the subalgebra of real forms.

Let D be the unique connection of E satisfying

(1) D preserves h.
(2) f U C X is an open subset and s is a holomorphic section of E|y, then Ds is of
pure type (1,0).
Let K = D? be the curvature form. Let us write

cho(E, h) =trexp(—K) € @(zm)pE?ﬁ&_
P

The form c’fxo(E , h) is closed. Its cohomology class, denoted cho(E), is the Chern character
of F and is independent of the metric A.

Chern classes for higher algebraic K-theory were introduced by Gillet in [Gi]. These
classes are defined on any cohomology theory satisfying certain properties. In the particular
case where the class is the Chern character class and the cohomology theory is absolute
Hodge cohomology, the map obtained is called Beilinson’s regulator map. We will give a
description of this map in terms of hermitian metrics.

The Chern character class on the Kj is additive for exact sequences. Nevertheless one
cannot make a consistent choice of representatives of the Chern character that behave addi-
tively for exact sequences. An analogous statement is true for higher K-theory. Following
Schechtman ([Sch]) the lack of additivity of the representatives of the Chern character for
K; is responsible for the Chern character for K;,;.

For instance, let

£:0 = (E'\h') = (E,h) = (E",h") =0,
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be an exact sequence of hermitian vector bundles. Then the Chern character classes satisfy
cho(E) = cho(E') + cho(E").
Nevertheless, in general
cho(E, k) # cho(E', h') + cho(E", A").

In the case when k' and h" are the induced metrics, Bott and Chern ([B-C]) have defined
a differential form ch;(€), that will be called the Bott Chern form of £, such that

(1) —200 chy (€) = cho(E', h') + cho(E", k") — cho(E, h).

Note that the normalization factor we use is different from the normalization factor used in
the original paper. The forms ch;(¢) are natural and well defined only up to Imd + Imd.

Bismut, Gillet and Soulé ([B-G-S}, [G-S]) have given a different construction of Bott
Chern forms that can be applied to the case when h' and h” are not the induced metrics.
These Bott Chern forms are also well defined only up to Imd + Im d.

Bott-Chern forms measure the lack of additivity of the Chern character forms. And,
when X is proper, Gillet and Soulé ([G-S]) have given an explicit description of Beilinson’s
regulator for K;(X) in terms of Bott Chern forms. Moreover, in the same paper they have
used Bott Chern forms to define arithmetic Ky groups of arithmetic varieties. Deligne has
suggested ([De]) the existence of higher arithmetic K-groups. In the definition of these
groups, higher Bott Chern forms as presented in this paper might play a central role.

Following Schechtman’s idea, the lack of additivity of Bott Chern forms should allow
us to define second order Bott Chern forms that give a description of Beilinson’s regulator
map for the K;. And we can repeat this process to obtain Beilinson’s regulator map for
all the K groups.

In this direction, for X is proper, the second author ([Wan]) has defined higher Bott
Chern forms for exact n-cubes. The Bott Chern form of a n-cube measures the lack of
additivity of the Bott Chern forms of the faces of this cube, generalizing equation (1).
Higher Bott Chern forms provide characteristic classes from K-theory to real absolute
Hodge cohomology. Moreover, in [Wan] it is proved that, if one can extend naturally
higher Bott Chern forms to the non proper case, then these characteristic classes agree
with Beilinson’s regulator map.

In this paper we shall give a variant of Wang’s original construction that can be easily
extended to the non-proper case. Thus we obtain a description of Beilinson’s regulator
map in terms of differential forms. An interesting feature of the construction given here is
that we obtain well defined Bott Chern forms and not only modulo Im 8 + Im 4.

Paralel results in the framework of multiplicative K-theory have been obtained by
Karoubi in [K1] and [K2].

Throughout the paper all vector bundles will be algebraic and we shall use the equivalent
notion of locally free sheaf.

The plan of the paper is as follows. In §1 we recall the definition of real absolute Hodge
cohomology. We shall also show that real absolute Hodge cohomology can be computed by
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means of a complex composed by forms defined on X x (P!)*, n > 0. Higher Bott Chern
forms will live in this complex.

In §2 we introduce and study some properties of smooth at infinity hermitian metrics.
Over a non proper smooth complex variety, to compute real absolute Hodge cohomology,
one needs to impose logarithmic conditions at infinity to the differential forms. Thus we
cannot use arbitrary hermitian metrics because they will produce differential forms with
arbitrary singularities at infinity. The use of smooth at infinity hermitian metrics ensures
that Bott Chern forms have the right behaviour at infinity.

In §3 we recall the notion of exact metrized n-cubes and define higher Bott Chern forms.
These forms live in X x (P1)*.

In §4 we use higher Bott Chern forms to define Chern character classes from higher
K-theory to real absolute Hodge cohomology.

In §5 we prove that the higher Chern character defined in §4 agrees with Beilinson’s
regulator.

In §6 we recall several complexes that compute real absolute Hodge cohomology and
homology. Using them we give, for X proper, two different versions of higher Bott-Chern
forms which are defined on X. The first one, obtained using the Thom-Whitney simple,
is multiplicative. The second one agrees with classical Bott-Chern forms and with the
original definition due to Wang.

Aknowledgements. We would like to thank Prof. C. Soulé who suggested us this question
and helped us with encouragement and numerous hints. Without him this paper would
never have been produced. We would like to thank Prof. V. Navarro Aznar for his help
and ideas, in particular the final definition of Bott Chern forms is due to a conversation
with him. Moreover, he proposed some shortcuts in §2. We also would like to thank Prof.
B. Mazur for his support and guidance. We acknowledge the help of many colleagues
for useful conversations which have helped us to understand a number of aspects of the

subject. Our thanks to J.B. Bost, N. Dan, H. Gillet, D. Grayson, P. Guillen, C. Naranjo,
P.Pascual and D. Roessler.

§1 ABSOLUTE HODGE COHOMOLOGY 1.

In this section we shall recall the definition of real absolute Hodge cohomology [Be] of a
smooth complex algebraic variety X. By a smooth complex variety we shall mean a smooth
separated scheme of finite type over C. We shall also construct a complex, composed by

forms on X x (P!)*, n > 0, whose cohomology is the real absolute Hodge cohomology of
X.

(1.1) Let X be a smooth proper complex variety. Let ¥ C X be a normal crossing divisor
and let us write X = X —Y. Let E% be the differential graded algebra of differential forms
on X, and let E*f(log Y) be the differential graded algebra of C*® complex differential
forms on X with logarithmic singularities along Y (see {Bu 1}). The algebra E%(logY’) has
a real structure, E%(logY)g, a weigh filtration W defined over R and a Hodge filtration

F. Moreover the cohomology of this algebra gives us the cohomology of X with its real
mixed Hodge structure.



Let us denote by W the décalée filtration of W. That is
W,E%(logY) = {z € W,_n E%(log¥) | dz € Wy_n_1 EX'(log ¥)}.
We write

Ef(X)= lim E% (logYa),
(Xa,Ya)

where the limit is taken along all the smooth compactifications X aof X withY, = X «—X a
normal crossing divisor. Then Ej, (X ) is a differential graded algebra and it has an induced
real structure, a weight filtration and a Hodge filtration. Moreover the map

(Ex(log YR, W) — (B (X)R, W)
is a filtered quasi-isomorphism and the map
(Ej*x_'(log Y)’ ‘/V, F) —_— (Elt)g(X)’ W’ F)

is a bifiltered quasi-isomorphism.

(1.2) Let us write
H*(X,p) = (273 Wap B g (X )m ® Wap 0 FPEjy (X) = Wap By (X)),
where u(r, f) = f — r and s denotes the simple of a morphism of complexes, i.e. the cone

shifted by one. The differential of this complex will be denoted by dg.
The real absolute Hodge cohomology of X ([Be]) is

Hy(X,R(p)) = H*(H(X, p))-

(1.3) A cubical or cocubical object (see [G-N-P-P}) is an object modeled on the cube in the
same way as a simplicial or cosimplicial object is modeled on the simplex. Let (P¢) be the
cocubical scheme which in degree n is (P¢)", the n-fold product of the complex projective
line. The faces and degeneracies

di: (PY)" — (PE)™,i=1,...,n+1, j=0,1
st (PO)* — (P 1, i=1,...,n,
are given by

dé(:cl,...,:z:n) =(Z1,...,Zi=1,(0:1),2;,...,25)
di(:cl,...,xn) =(z1,...,%i=1,(1:0),z;,...,2p)

sHZ1, o Zn) =21y oy Tic1y Tigly e« -y Tn)-
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(1.4) The complexes H*(X x (P!)’, p) form a cubical complex. We shall write

si = (Id x s*)*,
dl = (Id x d})*.

Let us denote by $Hp"(X,p) the associated double complex. That is
Hp"(X,p) = HT(X x (P)™",p),
with differentials

d = dg,
d" = (-1yHdl.

(1.5) We want to obtain from $p*(X,p), a complex which computes the absolute Hodge
cohomology of X. On the one hand, since we are using a cubical theory we need to
factor out by the degenerate elements (see [Mas]). On the other hand, we need to kill all
cohomology classes coming from the projective spaces.

Let us denote by py : X x (P!)® — X the projection over the first factor and by
pi : X x (P!)* — P!, 7 = 1,n, the projection over the i-th projective line.

Let w be the standard Kahler form over P!. Let w; = plw € Ef (X x (P1H)*). For an
element

z =(r,f,n) € H(X x (P)",p),

we shall write

wiNz = (w; Aryw; A fywi A7)
€ HX x ()™, p+1).

Deflnition 1.1. We shall denote by 5*’*(X ,p) the double complex given by

-n

57(X,p) = 55"(X,p) / s (9EmXp) @ wins (957 (X p - D).

i=1

We shall denote by ?)*(X, p) the associated simple complex. The differential of this complex
will be denoted by d.

In the definition of 5’*"(X ,D), the first summand of the quotient is meant to kill the
degenerate classes, whereas the second summand should kill the classes coming from the
projective spaces. The next result shows that we have reached our objective.
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Proposition 1.2. The natural morphism of complezes
f)*(X’p) = f)*'o(X,p) - f)*(X,P)
18 a quasi-isomorphism.

Proof. Since 5*(X ,p) is a simple complex associated to a double complex, there is a second
quadrant spectral sequence with E; term

E]™ = H™(H""™(X,p)).

When this spectral sequence converges, the limit is H "‘(3’3*()( ,p))- The following lemma
shows that this spectral sequence converges and implies that ¢ is a quasi-isomorphism.

Lemma 1.3. For n < 0 the cohomology of the complez 5*’"(X,p) 18 zero.

Proof. For each j let us write

B"(X,p) = 55"(X,p) Z s (X)) @ win s (B (X p - D).

Let us prove, by induction over j, that for j > 1
H*(5;™(X,p)) =0.
For j =1, n < —1, the complex H™(X,p) is the cokernel of the monomorphism
(X x(PH™Lp) & H(X x(PH™ Lp-1[-2] — H(X x(P)™"p)
! ® B — s1(a) +wi A si(B)

But by the Dold-Thom isomorphism for absolute Hodge cohomology, the above morphism
1s a quasi-isomorphism. Forj > 1,n < -1, S’J;’"(X , p) is the cokernel of the monomorphism

X)) @& BT (X -2 —  H5(X,p)
a ) ] — Sj(a)wj A Sj(ﬁ)
By induction hypothesis, the source and the target of this morphism have zero cohomology
Therefore the cokernel also has zero cohomology.

§2 SMOOTH AT INFINITY HERMITIAN METRICS.

In this section we introduce smooth at infinity hermitian metrics. For a smooth complex
variety X and a locally free sheaf F, a smooth at infinity hermitian metric is a metric that
can be extended to a smooth metric over some compactification of 7. The interest of
smooth at infinity hermitian metrics is that they provide representatives of Chern classes
in absolute Hodge cohomology.

(2.1) Before defining smooth at infinity hermitian metrics, we shall study classes of com-
pactifications of locally free sheaves.

Definition 2.1. Let X be a smooth complex variety and let F be a locally free sheaf over
X. A compactification of F consists in a smooth compactification of X, ¢ : X — X , &
locally free sheaf F over X and an isomorphism ¢ : F — i* F.

A compactification of F will be denoted by (7, X F, @) Usually, we shall identify X
with #(X) and F with F|x. and denote a compactification by (F,X).
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Proposition 2.2. Let X be a smooth complez variety and let F be a locally free sheaf over
X. Then there ezists a compactification of F.

Proof. Let X — ‘?1 be any compactification of X. Then there is a coherent sheaf
F1 on X; such that f1|x F. By [Ro] (see also [Ri] and [N 1]) there is a proper
modification ¢ : X — X;, which induces an isomorphism %~ 1(X) — X, and such that
F = ¢*(F1)/ Tor(*(F1)) is a locally free sheaf. Moreover flw—l(x) is isomorphic to Fi | x.
Thus the induced map: : X — Xisa compactification of X, and Fisa compactification

of F.

Definition 2.3. Let .X' be a smooth complex variety and let F be a locally free sheaf
over X. Let (zl,Xl,fl,cpl) and (zg,Ag,fz ©2) be two compactlﬁcatlons of F. We say
that fl and fz are equivalent if there exists a third compactification (23,X3,.7'_3, ¢3) and
morphisms v : X; — X; and 9 : X 3 — Xg such that

1) 9, 0i3 =13 and ¥, 013 = 9.

2) There are isomorphisms a; : Fz — (/4 fl and ag : Fz — P F, such that s 1301003 = @y

and 3as 0 o3 = @3.

In order to simplify the notation, a class of equivalent compactifications of F will be
denoted by a single symbol, for instance F. Moreover, if there is no danger of confusion, we
shall denote by the same symbol the locally free sheaf which appears in any representative
of this class.

(2.2) A compactification class induces uniquely determined compactification classes in quo-
tients and subsheaves.

Theorem 2.4. Let X be a smooth complez variety and let
£: 0 F N CLH—-0

be an ezact sequence of locally free sheaves over X. Then, for any compactification class G
of G, there are uniquely determined compactification classes F and H of F and 'H respec-
tively, such that £ extends to an eract sequence

E:0-FLGSH
over a compactification X of X.

Proof. Let~5(;1 be a compactification of X where J 1s geﬁned. Let » = rtk’H. Let
Grass} () be the Grassmanian of rank r quotients of G ([G-D]). Let us denote by U

the umversal bundle on Grass} (g )- The exact sequence

£: 0—»]—‘—’»gi>H—»0

induces a morphism

p: X — Grass}‘(é).



By resolution of singularities, there is a proper modification Xof X 1, which is a compact-
ification of X and such that ¢ extends to a morphism

(X — Grass} (g)

Then H = @*(U) is a compactification of H, F = Ker(G — H) is a compactification of F
and £ extends to an exact sequence

5: 0—>.7":i>§—g-+7?{—>0.
The unicity follows from the fact that, since X is dense in X, the morphism @ is unique.

Definition 2.5. Let X be a smooth complex variety and let
. f g
£: 0 F>5G->H-0

be an exact sequence of locally free sheaves over X; Let (3 be a class of compactifications
of G. Then the classes of compactifications F and H, of F and H respectively, obtained in
theorem 2.4 are called the induced compactifications.

(2.3) Let us introduce smooth at infinity hermitian metrics.

Definition 2.6. Let X be a smooth complex variety, let F be a locally free sheaf over X
and let h be an hermitian metric on 7. We say that A is smooth at infinity if there exist
a compactification Fof F , and a smooth metric h on F such that h|x = h.

A smooth at infinity hermitian metric determines univocally a compactification class.

Proposition 2.7. Let X be a smooth complez variety and let F be a locally free sheaf on
X. Let F and F' be two compactifications of F and let h and k' be smooth metrics on F
and F'. If hlx = 1'|x, then F and F' are equivalent compactifications.

Proof. We can assume that both compactifications are defined over the same variety X.
Let K be the sheaf of rational functions over X.
The identity on F induces morphisms

f:f@/Ck' -—n%’@K:f,
f':f'@/(fg —*f@ng,

which are inverses of each other. By symmetry it is enough to show that f(.7-' ) C F

Let U be a Zariski open subset of X. A section s € I"(U F ®ICX) belongs to P(U F'Yif
and only if h’(s(x)) <ooforallz € U. Butif s € I(U, .7") then h’(f(s))lxnu = h(s)lx.—w
Since U N X is dense in U we have A’ (f(s(z))) = h(s(m)) <ooforallzeU.



Proposition 2.8. Let
0 F - F—-F"—>0

be an ezact sequence of locally free sheaves on X and let h be a smooth at infinity metric
on F. Then the metrics h' and h" induced by h in F' and F" are smooth at infinity.

Proof. Let Fbea compactification of F provided with a metric Tz, such that %| x = h. By
theorem 2.4. there are compactifications F' and F" such that € can be extended to an
exact sequence

£:0=F - F o F" 0.
Then the metric h induces smooth metrics &' and k" on 7' and F". But the restrictions
of h' and h" to X are h' and h'. Therefore these metrics are smooth at infinity.

Proposition 2.9. Let f : X — Y be a morphism between smooth complex varieties. Let
(F,h) be a locally free sheaf over Y with h a smooth at infinity metric. Then (f*h) is a
smooth at infinity metric on the locally free sheaf f*F

Proof. Let (Y F )be a compactxﬁcatlon of (Y, F), such that there exists a hermitian metric
h with hlx = h. Let X 1 be any compactification of X. We shall denote by I' the graph
of f, and by T the adherence of I"'in X1 x Y. Let X be a resolutxon of singularities of T
and let f : X —» ¥ be the induced morphism. Then (X, f°F ) is a compactification of

(X, f*F) and f*h is a smooth metric such that f hlx = f*h. Therefore f*h is smooth at
infinity.

(2.4) Let us see that smooth at infinity hermitian metrics provide representatives of the
Chern character classes in absolute Hodge cohomology. Let X be a smooth complex va-
riety,  a locally free sheaf and h a smooth at infinity hermitian metric. Let F be the
compactification class of F determined by k, X a compactification of X where F is defined,
and h a smooth metric on F extending h. Let K (resp. K') be the curvature form of (¥, h)
(resp. (F,h)). Let us write
cho(F, k) = Trexp(—K),
cho(]-', h) =Tr exp(—R )
These forms are closed. Moreover,
ol F B \P PP
cho(F,h) € @(m)wm.
Since cho(j':,;zl)lx = c}'lo(}', h), then
cho(F,h) € D (W0E2’ (X)r N Wy N FPE2P (X))
) log R 0 log .
p20
Since this form is closed,
cho(F, h) € D) (Wap Bty (X)m N Wap 1 FPEZ (X)) .
p20
Thus the triple
cho(F, h)n = (cho(F, h),cho(F, h),0)
is a cycle of @, $5%°(X, p).



Proposition 2.10. The cycle cho(]-', h)y represents the Chern character of F in absolute
Hodge cohomology.

Proof. If X is proper we have
H7?(X,R(p)) = HP?(X, (2ri)’R).

Therefore the result follows from the classical description of the Chern character in terms
of curvature forms. In the non proper case it follows from the functoriality of the Chern
character.

§3 EXACT n-CUBES OF LOCALLY FREE SHEAVES.

In this section we shall recall the notion of exact n-cube (see [Lo 2], [Wan]). To each
metrized exact n-cube, F, which satisfies certain conditions, we shall associate a metrized
locally free sheaf on X x (P!)", called the n-th transgression of . This transgression can be
viewed as a homotopy between its vertexes. The Chern character form of the transgression
will play the role of higher Bott Chern forms.

(3.1) First some notations. Let (—1,0,1) be the category associated to the ordered set
{~1,0,1}. Let (—1,0,1)" be its n-th cartesian power. By convention, the category
(—-1,0, 1)0 has one element and one morphism.

Let & be an exact category.

Definition 3.1. A n-cube of &, F, is a functor from (—1,0,1)" to €.

Definition 3.2. Given a n-cube F, and numbers : € {1,...,n}, j € {-1,0,1}, then the
n — l-cube, 8] F defined by

J —_ .
(61 f)ala'"yan-l - fal,...,a.‘_l,],0,',...,07...1

is called a face of F. Given a number: € {1,...,n} and a n—1-tuple @ = (a1,...,an-1) €
{-1,0,1}""!, the sequence

AF =05t 0%, 0% .. O F

is called an edge of F.
Explicitly, the edge 0% F is

fal,“-:ai—ly""l‘ai,-uyan—l ? fcn,---,05—1,0,0i,»-',0n-1 faly--nai—lyl’aiy--wan—l'

Definition 3.3. A n-cube is called an exact n-cube if all its edges are short exact
sequences.

We shall denote by C, & the exact category of exact n-cubes. Observe that, for all non
negative integers n, m, there is a natural isomorphism of categories C, C, € — C €.
In particular, an exact n-cube can be viewed as an exact sequence of exact n — 1-cubes or
as an exact n — l-cube of exact sequences.
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The maps '
8l :0bC, ¢ — ObC,_,€,
are called face maps. The maps
sf:Oan@——JrOanHG, fori=1,...,n, and y = —-1,1,
given by
_ { 0, if a; = ja
fal,...,a;_l,a;+1,...,an+1y lf ai # j’

are called degeneracy maps. An exact n-cube F € Im sf is called degenerate.

(3.2) We shall write C,,€ = ObC,€ and C€ = [[ C,. €.

Assume that the category € is small. To avoid set theoretical problems, in the se-
quel we shall always assume tacitly that we replace any large category by an equivalent
small full subcategory. Observe that the diagram C'€ behaves like a cubical diagram. We
have replaced the category (0,1) by the category (—1,0,1). This motivates the following
construction. :

Let ZC,€ be the free abelian group generated by C,€. And let the differential d :
2C,¢ — ZCp-1€ be given by

n 1
d=3 > (-1)*a].
=1 j=~1
Let D, C ZC,€ be the subgroup generated by the degenerate exact n-cubes. Then dD,, C
D._;. Therefore the following definition makes sense.

Definition 3.4. The homology complex associated to C€ is
ZC¢ = Z.C¢/ D.

(3.3) For the remainder of the section, let us fix a smooth complex variety X. Let €(X)
be the exact category of locally free sheaves on X and let €(X) be the exact category of
pairs (F, h), where F € Ob (X)) and & is a smooth at infinity hermitian metric on . The
morphisms of this category are

Homg xy((F, k), (F', h')) = Home(x)(F, F').

The forgetful functor €& X) — €(X) is an equivalence of categories. A quasi-inverse can
be obtained by choosing a metric for each locally free sheaf.

For simplicity we shall write C(X) = C&X). An element F € Cp(X) is called a
metrized exact n-cube of locally free sheaves.

(3.4) For technical reasons we need to work with metrized exact n-cubes which have, in all
the quotients, the induced metrics.

Definition 3.5. We shall say that a metrized exact n-cube, F = {(Fa, ha)} has induced
quotient metrics (an emi-n-cube for short) if, for each n-tuple @ = (ay,...,a,), and each
¢ with a; = 1, the metric hq is induced by the metric h(ay,....ai_1,0,ai41,.,00m)

Let us see that there are enough emi-n-cubes. Let o € {—1,0,1}" be a n-tuple. We
shall write a < 0 if o; <0 for all z.
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Proposition 3.6. Let F be an ezact n-cube of locally free sheaves and, for all a < 0, let
ho be a hermitiar_z_metrz'c on Fo. Then there 1s a unique way to choose metrics hy for all
a £ 0, such that F = {(Fa,ha)} i3 an emi-n-cube.

Proof. The uniqueness is clear. For the existence, we have to see that, in each F,, with
a £ 0, all the possible induced metrics agree. This is guaranteed by the following result.

Lemma 3.7. Let {E; ;}i j=-1,0,1 be an ezact 2-cube of complez vector spaces. Let h be a
hermitian metric on Ego and let hy o and ho, be the hermitian metrics in E; o and Eg,
induced by h. Then the metrics induced by hyo and ho,1 in E,; agree.

Proof. Let us identify E_; o and Ep —; with their images in Ej 9. Then the metric hy o
in E1, is induced by the isomorphism EZ, , & E;o. Therefore we can identify E o with
EZ%, , and the morphism Ego — Ej ¢ with the orthogonal projection. But the image of
Ey 1 by this orthogonal projectionis (E_; g +E'0,._1)0Ef1,0. Therefore the metric in E; 3
induced by h; o is induced by the isomorphism (E_, o + Eo,_l)l > F,:. By symmetry,
the same is true for the metric induced by hg ;. ’

(3.5) Let ZCemi(X) be the subcomplex of ZC(X) generated by the emi-n-cubes, and let
Demi be the subcomplex of ZCrmi(X) generated by the degenerate emi-n-cubes. We shall
write

ZCemi(X) = ZCemi(X)/ Demi C ZC(X).

To translate results about emi-n-cubes to all exact metrized n-cubes we need to construct
a morphism of complexes

ZC(X) — ZCemi(X).
_Ifae{-1,0,1}" with a; > —1, we shall write a =7 = (a1,...,2; — 1,...,as). Let
F ={(Fa,ha)} € Cu(X). Fori =1,...,n let A} F be defined by
NFE, = { (Farha)y if @i = —1,0,
T (Faohl), ifai=1,

®

where hl, is the metric induced by hq—;. Thus /\}_.7-: has the same locally free sheaves as F,
but we have replaced the metrics of the locally free sheaves of the face 8} F, by the metrics

induced by 8 F.
Let A?2F be the exact n-cube determined by
ITINF =8} F,
AT = ONIF,
RNF =0.

This n-cube measures in some sense the difference between F and A} F.
Let us write \;F = A} F + A?F, and let us denote by A the map

A ZCK(X) — ZCn(X)
— An.. . ALF, ifn>1,
F —_ —
F, if n = 0.
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Then one can check the following properties:

(1) A is a morphism of complexes.
(2) ImA C ZCemi( X).
(3) M(D) C Demi.

Therefore this map induces a morphism of complexes

A:ZC(X) — ZComi( X).

(3.6) Let F be an emi-n-cube of locally free sheaves. We shall associate to it a locally free
sheaf tr,(F) on X x (P!)" which, roughly speaking, is a homotopy between the vertexes
of F.

Let ((z1 : ¥1),---»(Tn : yn)) be homogeneous coordinates of (P!)*. Let I,, (resp. Zy,)
be the sheaf of ideals in X x (P')" defined by the subvariety z; = 0, (resp. y; = 0). Let
po: X x(PH)" — X and p; : X x (P})» — P!, ¢ = 1,...,n, be the projections. Then
the maps

z7!
Iz.' — P:OIP‘ (—1)’
1

T,; = ptOp(-1)

are isomorphisms. The sheaf Op (—1) has a metric induced by the standard metric on
C?. We put in I, and Z,, the metrics induced by the above isomorphisms. By 2.9, these
metrics are smooth at infinity.

For each pair of integers ¢ € {1,...,n} and j € {-1,0}, we write

Ii; = { Ty XfJ =-h
I, ifj=0.

For each a € (-1,0,1)", with « <0, and for each k € {1,...,n}, with ax = —1, we write
n
Ja = HI;;' C K:XX(IP‘)’H
i=1

ja,k = HI,‘T; C KXX(IP‘)",

i%k
where K x . (pt)n is the sheaf of rational functions on X x (P1)™.
Given an n-tuple @ < 0 and an integer k € {1,...,n}, with ax = —1, we write a + k =
(a1y...,ar +1,...,a,). We have the inclusions
ja,k C Jcn
jor,k C ja+k-

Let us denote by ok : Fo — Fati the morphism F(a — a + k). Let ¢ be the
morphism

Y @ @ pa?a ®s7a,k i @pafa ®Jaa
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which sends s ® g € piFa @ Jak to

P(s®g)=3sBg+pai(s)®yg
€ pa?a ® Ja SV P37a+k ® ja+k-

The locally free sheaf @ <, p§F« ® Jo has a metric induced by the metrics of I, Ty,
and F,. This metric is smooth at infinity.

Definition 3.8. The n-transgression of F is the hermitian locally free sheaf
tro(F) = Coker(¢),

with the metric induced by the metric of @, ., P§Fa ® Jo. By proposition 2.8, this metric
is smooth at infinity. -
The following result follows directly from the definition.

Proposition 3.9. Let F be an emi-n-cube. Then there are isometries
trn(?)hxi:ﬂ} = trn—l(a??)v
— — L —
trn (F)l{yi=0) = tr-1(07 ' F) @ trn—1(8} F).

(3.7) Let us give an inductive construction of the transgressions. If n = 1, an emi-1-cube,
F is a short exact sequence

?—-1 L?O _)—fl’

where the metric of F, is induced by the metric of Fo. Then tr;(F) is the cokernel of the
map
Fa — Fa®IL' & Fo®I;]
s — s®1 & f(s)®1.

Observe that this is a minor modification of the locally free sheaf used by Bismut, Gillet
and Soulé ([B-G-S], [G-S]) to construct Bott-Chern forms. In the definition given here,
we avoid the use of partitions of unity, obtaining a natural construction. The price is to
restrict ourselves to emi-n-cubes.

If F is an emi-n-cube, let tr;(F) be the emi-n — 1-cube over X x P! defined by:
tr](?)a = trl( zc?).
Then we write . .
tri(F) = try (trk_l(f)).

The hermitian locally free sheaf tr,(F) defined in this way coincides with the earlier defini-
tion. Thus the transgressions are simply an iteration of the construction of Bismut, Gillet
and Soulé.

(3.8) For any homology complex A., we shall denote by A* the cohomology complex
defined by A¥ = A_;. Let us use the transgressions previously defined, to associate to
every emi-n-cube a family of differential forms.

14



Definition 3.10. Let N
ch: ZC}(X) — €D H*(X,p)(2p]
p

be the map given by _ _ _
ch(F) = cho(tra(F))n,
where éLo(')H is as in (2.4).

Proposition 3.11. The map ch i3 a morphism of complezes and factorizes through a
unique morphism

ch: ZC:mi(.X) -— @5*(}(,?)[2?]-
P

Proof. To see that it is a morphism of complexes, observe that, since the forms &10(~)7¢ are
closed,

n 1
deh(ten(F) = 3 S (1) d dho(tra(F))n

=1 j=0

= Z(—l)i cho(tra(F))alz;20) + 2:(-—1)"+1 cho(trn(F))# | (y:=0)

=1 =1
= Z(—l)‘ cho(trn(F)|(zi=0)) 1 + 2:(—1)“'1 cho (4 (F)| yi =0} )%
i=1 i=1

Therefore, by proposition 3.9,

n 1
deh(tra(F)) = Y 3 (=1)"* cho(trn-1( F))

1=1 y=-1

= ch(dF).

To see the existence of the factorization, we have to show that, for a degenerate emi-n-
cube F, we have ch(F) = 0 in @ 5*(X ,p). By symmetry we may assume that F = s1G,
with j € {=1,1} and G an emi-n — 1-cube.

If j = 1, then tr,—(F) is the exact sequence

0 — (Id x s™)* tra_1(G) -5 (Id x s™)* tra_1(G) — 0 — 0.
Therefore tr,(F) is the cokernel of the map

(Id x s")* trn_l(a) — (Id x s™)* trn_l(—g_) ®Iy‘ul & (Id xs™)* tr,,_l(a) ® I;"l
T — T®1 b r® 1.

But 71 and I are both isometric with p;,O(1). Hence this cokernel is isometric with
(Id x s™)* trp—1(G) © p%O(2), where O(2) is provided with the standard metric. Thus

cho(trn(F))x = (Id x s™)* cho(trn—1(C))n + 2wn A (Id x s™)* cho(trn—1(C))n.
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which is zero in P H*(X,p).
The case j = —1 is analogous.

Definition 3.12. We shall denote also by ch the composition

ZC™(X) 2 ZChi(X) = D H7(X, p)[25).
]

Definition 3.13. Let F be a metrized exact n-cube. The form ch(A(F)) will be called
the Bott Chern form of F and will be denoted by chy(F ).

§4 HIGHER CHARACTERISTIC CLASSES.

The Chern character from K-theory to a suitable cohomology theory, such as abso-
lute Hodge cohomology, is additive for exact sequences. Nevertheless, given a cochain
complex which computes absolute Hodge cohomology, we cannot make a consistent choice
of representatives of the Chern character that behaves additively. Following the ideas of
Schechtman ([Sch]), the lack of additivity at the level of complexes, of the Chern character
for K,, gives us the Chern character for K, 4.

In the previous section we have associated, to each metrized exact n-cube, a family
of differential forms. The differential form associated to an n-cube measures the lack of
additivity of the differential forms associated to its faces. In this section we shall see
that this construction allows us to define higher Chern character classes from K-theory to
absolute Hodge cohomology.

(4.1) Let us begin by reviewing the Waldhausen K-theory of a small exact category. We
shall follow [Sch] (See also [Wal] or [Lo 1]).

For n € N, let Cat(n) denote the category associated with the ordered set {1,...,n}.
Let M, be the category of morphisms of Cat(n). That is '

ObM, = {(:,j) e NxN|0<i<j<n},

and Hom((z, ), (k,!)) contains a unique element if i < k and 7 < [ and is empty otherwise.
The categories M, form a cosimplicial category M.
For any category €, let us denote by M, € the category of functors from M, to €.

Definition 4.1. Let € be a small exact category and 0 a fixed zero object of €. Let S, &
be the full subcategory of M, €, whose objects are the functors M,, — &, such that,
(1) for all z, E;; = 0;
(2) foralli <j <k,
E;; - Eix — Eji

is a short exact sequence.

Let us write S,& = Ob S, €. We shall denote by S& or S*¢& the simplicial exact category
[IS.€, and by S€ or S!'€ the simplicial set Ob S€E.
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In other words we have:

Se€ = {0},
S51€ = O0be¢,
S2 € = {exact sequences of €},

sequences of monomorphisms
Eoy1— Eg2 — -+ — Epn
with a choice of quotients
Ei; = Eo,j/Eo,i

Sp€ =

In particular S€ is a pointed simplicial set. In the sequel we shall sometimes use the word
space to denote simplicial sets. A
For a space C, we shall denote by |C] its geometric realization.

Proposition 4.2. (Cf. [Lo 2].) There is a homotopy equivalence
S¢& = BQE,

where Q denotes Quillen’s Q-construction and B means classifying space. Therefore, for
alli >0,
I\’,‘(Q?) = TMi+1 (IS@I ,0) .

(4.2) Let us recall the notion of spectrum from [Th]. For any pointed space C, let us
write LC for the suspension of C, and §1C for the loop space of C. We shall use the same
notation for topological spaces. '

Definition 4.3. A prespectrum X is a sequence of pointed spaces X, for all non-negative
integers n, together with structure maps £X, — Xp,41. These maps can be described by
their adjoint X,, — QX,41. A fibrant spectrum is a prespectrum such that all X,, are
fibrant spaces and the structure maps X,, — QX, 4, are weak equivalences.

The space S€ is a piece of a prespectrum. To construct the other spaces that form the
prespectrum, we write inductively

ime — _S_S_-m—le’
Sme =85S te.
Then S™ is an exact m-simplicial category and S™ is a m-simplicial set. For a poly-

simplicial set C let diag(C') denote its diagonal space. We shall denote by |C| = |diag(C))|
its geometric realization.

Proposition 4.4. (Cf. [Sch].) There are natural maps
Om: LS™E — STt
inducing homotopy equivalences
|ISTe| = Q|smHie|.
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As a consequence of this proposition, if we write S°¢ = (QS€, then the sequence of
spaces diag(S™€) is a prespectrum. Moreover, if we replace the above spaces by weakly
equivalent fibrant spaces we shall obtain a fibrant spectrum. For instance, let us denote
by Sing the singular functor (see {B-K]). Then, if we write

Km(€) = Sing(]S™€]),

the spaces K,, form a fibrant spectrum. By Proposition 4.2, the homotopy of this fibrant
spectrum is the I{-theory of €.

(4.3) For example, if X is a smooth complex variety, and we write S9(X) = SY(E(X)),

then he K-groups of X are
I(,’(){’) = 7T,'+q(|5q(X)|,0).

(4.4) Let us associate, to each element of S, &, an exact metrized n — 1-cube. We shall do
so inductively. For n = 1, we write

Cub({Ei  }o<icj<1) = Eo,1.

Assume that we have defined Cub F for all E € S,,€, with m < n. Let £ € S,¢. Then
Cub F is the n — 1-cube with

O['CubE =5k _,...s}(Eoy),
9y CubE = Cub(8, E),
07! Cub E = Cub(Go E).
For instance, if n = 2, then Cub ({E; ;}o<i<j<2) is the short exact sequence
Eoy — Eo2 — Ey 2.
On the other hand, if n = 3, then Cub ({E; ;}o<i<j<3) is the exact square

Eyy, —— Eyp — Ey2

l ! l

Eyy —— Eg3 —— Ey3

! ! !

0 —— Ey3 —— Ey;
All the faces of the n — 1-cube Cub E can be computed explicitly.

Proposition 4.5. Let E € S,&. Then, fori = 1,...,n — 1, the faces of the n — 1-cube
Cub E are

O7'CubE =s!_,... ! Cub it ...0,E,
9? CubE = Cubd;E,
9! CubE = s,-"_l1 . ..sl_l Cubdy...0,1E.

By proposition 4.5 and using induction we have,
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Corollary 4.6. The n — 1-cube Cub E 13 ezact.
Therefore we have a map Cub: 5,6 — C,_1 €.

(4.5) Let ZS€ be the homological complex associated with the simplicial set SE. That is,
Z S, € is the free abelian group generated by S, €, and the differentiald : ZS,& — ZS,_, €

is given by
d=Y (-1)'a.
1=0

The map Cub can be extended by linearity to a map
Cub: ZS€[1] — ZC€.

Note that this map is not a morphism of complexes. However, the map Cub induces a map
also denoted by Cub : ZS€[1] — ZC€. And, since by proposition 4.5,

dCub E = CubdF + degenerate elements,
we have:

Corollary 4.8. The map Cub: ZS¢[l] — ZC€ is a morphism of complezes.

(4.6) We can obtain analogous maps for all the spaces S™€&. In particular, we have maps
Cub:S,, ...5,C—Cphi=1...Cn,,<1€ — Cp,4.qn,,-mE.

Let us denote by ZS™@& the chain complex that, in degree n, is the free abelian group

generated by
I Su-.-Sene

nittnm=n

The differential of this complex is the alternate sum of all the face maps. Note that this
complex is homotopically equivalent to Z diag(S™€). The induced map

Cub : ZS™€E[m] — ZC¢E
is also a morphism of complexes.

(4.7) We shall denote by ZS};,(X) the cohomological complex associated to the homological
complex ZS(X).
Definition 4.9. The Chern character map is the composition

ZS3(X)[-m] =2 ZCH(X) 2 ZC:ni(X) = D H*(X, p)(2p)-
P

This map will also be denoted by ch. The Chern character classes are obtained by com-
posing with the Hurewick map:

Ki(X) = mism(S™(X))) = Hism(ZS™(X)) — D Hf (X, p)
P
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§5 BEILINSON’S REGULATOR.

The aim of this section is to prove that the higher Chern character classes defined in §4
agree with Beilinson’s regulator map.

(5.1) Let us begin by extending the definition of the map ch to the case of simplicial
smooth complex varieties. To this end, we first recall the construction of absolute Hodge
cohomology of X = X. a smooth simplicial complex variety. For each p, the complexes
5*()( n,p) form a cosimplicial complex as n varies. Let N'$*(X., p) be the associated double
complex and let us denote the simple complex by

9 (X,p) = s(NH(X.,p)).

Then -
Hy (X, R(p)) = H*(H*(X, p)).
For the definition of K-theory of simplicial schemes we shall follow [Sch]. We shall say
that a smooth simplicial scheme X = X. has finite dimension if there is an integer m such

that
X = Skn(X),

where Sk,,(X) is the m-th skeleton of X, that is, the simplicial scheme generated by
Xo,. oy Xm-

Let X = X. be a simplicial scheme of finite dimension. The family of prespectrums
{S(Xn)}n form a cosimplicial prespectrum S(X.). Let K(X.) be a fibrant cosimplicial
fibrant spectrum weakly equivalent to S(X.). Then the K groups of X are defined as

Ki(X)=m(Tot K(X.)).
Since X has finite dimension, there is a convergent spectral sequence
P = K—y(X,) = K_py(X.)

Observe that for a given simplicial scheme X., of finite dimension, it is not necessary to
work with the whole spectrum. Let m be such that X = Sk,, X. Let us choose an integer
¢, and let K (X.) be a fibrant cosimplicial fibrant space, weakly equivalent to S9(X.). If
g > mor g > —z, then

Ki(X)= 7T,‘+q(T0t Kq(X))

For an arbitrary simplicial scheme we write

R.(X.) = lim K.(Skm(X.)).

m

Let X be a smooth simplicial complex variety of finite dimension. Since the map ch
defined in section §4 gives us a morphism of complexes

ch 1 sSNZS(X.)la] — €D H*(X, p)(2p],
p
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we can extend the definition of the Chern character to the simplicial case, obtaining maps:

ch: K;(X) — @H%p—i(X,R(P))-
P

If X does not have finite dimension, taking limits, we have also characteristic classes

ch: Ri(X) — @ HZ (X, R(p)).
4

Remark. 5.1. All the constructions needed to define the map ch can be extended to the
case of a smooth simplicial scheme over C X. such that each X, is a (not necessarily finite)
disjoint union of smooth complex varieties. For instance, by a compactification of X, we
shall mean a disjoint union of compactifications of each component of X,,.

(5.2) Beilinson ([Be]) has defined characteristic classes from K-theory to absolute Hodge
cohomology. These classes are a particular case of the characteristic classes defined by
Gillet ([Gi]) to any suitable cohomology theory. In particular, Beilinson’s regulator is the
Chern character in this theory. Let us denote by p Beilinson’s regulator.

Then ch and p are natural transformations between contravariant functors. Both agree
with the classical Chern character on the Ky groups of smooth complex varieties. The aim
of this section is to prove the following theorem.

Theorem 5.2. Let X be a smooth complez variety. Let o0 € K;(X). Then ch(co) = p(0).

Proof. Let U = {U,} be an open covering of X. We shall denote by &(X,{) the full
subcategory of €(X) composed by the locally free sheaves on X whose restrictions to all
U, are free. We shall denote by €(X,{l) the category of hermitian vector bundles on X
whose restrictions to all U, are free. Let us write

Ki(X, ) = mip (SE(X, U) = 741 (SE(X, Y)).

Then
Ki(X) =1lim K;( X, ).
m

(5.2.1) Following Schechtman ([Sch]) we know that there is a simplicial scheme BP, which is
a classifying space for algebraic K-theory. More precisely, Schechtman proves the following
result.

Theorem 5.3. (Schechtman) There 1s a homotopy equivalence
S¢(X,d) = Hom(N4, BP),

where Hom i3 the function space and Nl is the nerve of the covering.

(5.2.2) Let Y = Y. be a smooth simplicial scheme and let f : Y — BP be a map of
simplicial schemes. Then f defines an element of roHom(Y, BP). Let us denote by ey the
image of this element by the composition of the morphisms

moHom(Y, BP) — mg Tot, Hom(Y},, BP) — m Totn, SE(Yy,{Yn}) — K_1(Y).
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Remark 5.4. The identity of BP defines an element, denoted by e,, € K_;(BP). More-
over, for f as above, ef = f*(e,p ).

(5.2.3) The element ¢,, is, in some sense, a universal element in K-theory. Since e,, €
K_;, to exploit the universality of this element, we need to relate elements in K, with
elements in K_;. This can be done using spheres.

Let 0 € K,(X). Then there is an open covering 4 of X, such that ¢ € K, (X,U) =
Tn+1(Hom(NYU, BP)). Therefore, since Hom(/NY, BP) is fibrant, o is represented by an
element

Yo € Hom(S™*! x NU, BP) = Hom(S™*!, Hom(NY, BP)),
where S™*1! is the (pointed) simplicial n + 1-dimensional sphere.

Lemma 5.5. Let Y =Y. be a smooth simplicial complex variety. Then there are natural
decompositions '

IA{_I(Sn+l xY)= f(_l(Y) e I’x)n(Y),
HTH(S™ < Y\R(p) = Hyf (Y, R(p)) @ H! T"(Y,R(p)).

Moreover, the maps ch and p are compatible with these decompositions.

Proof. We may assume that Y has finite dimension because the general case is obtained
taking the limit. Then

K_1(8™*1 x V) = mo(Tota(Tot s(K(S™*! x Y3)))).

The spectral sequence associated with Tot, has E,-term:

P = { K_,Y), ifp=0,n+1,
0, ifp#0,n+1.
Let us denote by = the simplicial point. Since the spectral sequence of * x Y splits the
spectral sequence of S™*! x Y, the above spectral sequence degenerates at the E-term,
and the exact sequence obtained from this spectral sequence splits in a natural way.
The same argument works for cohomology. Moreover, since ch and p are natural transfor-

mations, they induce morphisms between the R-theoretical and the cohomological spectral
sequences, proving the compatibility statement.

Let us denote by pr : K_,(S®*!'x N4) — K,(N4) the projection. The precise meaning
of the universality of e, is given by the following result.

Lemma 5.6. In the group K,(NY), the equality
pr(vz(esp)) =0

holds.

Proof. By remark 5.4,
pr(v5(esp)) = pr(ey, ).
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On the other hand, by the definition of v,, the map
7o(Hom(S™! x Ny, BP)) 25 7,41 (Hom(N4, BP))

sends the class of 4, to the class of o. Therefore, since the diagram

mo(Hom(S5™*! x NU,BP)) —— K_;(S™*! x NY)

g g

Tpe1(Hom(NU, BP)) —— K, (N).

1s commutative we have that
Pr(vs(eyp)) = 0.

(5.2.4) By Remark 5.1. the map ch is defined for the simplicial scheme BP. Moreover, by
the naturality of ch and p and their compatibility with the map pr, we have

ch(a) = pr(v;(ch(e,s))),
p(a) = pr(va(pleqp )))-

Thus, to prove theorem 5.2, we are led to compare ch(e,, ) and p(e,, ). For this comparison,
we need to understand the cohomology of BP. This cohomology has been computed by
Schechtman ([Sch]). The simplicial scheme BP is the classifying space of a simplicial group

P., where Py = * and Py = [[,, GL(n). Thus it is a bisimplicial scheme B.P.. The edge
homomorphism of the spectral sequence associated to the second index gives us a morphism

d : Hif*'(BP,R(p)) — [] H}}(BGL(n),R(p)).
n>0

Let us denote by A = H3/(Spec C,R(x*)).
For each #,n let us denote by

¢in = ¢i(En) € HY(BGL(n),R(3)),

the ¢-th Chern class of the tautological vector bundle over BGL(n). Then we have an
1somorphism

;l(BGL(n)a R(*)) = A[Cl,na e )cn,n]-

Let sk,n € Alciyn,... Cn,n] be the k-th Newton polynomial in the c¢; .. That is, sk n/n!
is the degree k term of the Chern character of the tautological vector bundle E,. Let us
write

Sp = (Sk,o,b‘k,l, oo ) € H H%k(BGL(n), R(k))-
n2>0
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Proposition 5.7. (Schechtman [Sch]) There ezist elements s} € HZFY(BP,R(k)) such
that dy(s}) = sk and
H}(BP,R(*)) = Alsp, 8],
(5.2.5) Since
n R, ifn=p=0,0orn=1, p>0,
H}(SpecC,R(p)) = {

any element of H%HI(BP, R(%)) can be written as

0, otherwise,

asi + decomposable elements,

with @ € R. Moreover, since by the proof of 5.7 ([Sch]) the decomposable elements are
mapped to 0 by dy, we have

Corollary 5.8. The group Kerdy C @, H%kH(BP, R(k)) i3 generated by decomposable

elements.

(5.2.6) Schechtman computes the groups K «(BP) in a similar way. In particular, there is
also an edge homomorphism

di : K_1(BP) — [ Ko(BGL(n)).

Moreover, by the naturality of ch and p, they are compatible with the edge homomorphisms.
In particular

dr(plesr)) = p(di(esp)), and du(ch(e,,)) = ch(dk(e,,))-

(5.2.7) Our next step will be to compare dy(p(ezp)) with dy(ch(egzp)). To this end we
shall see that, since the maps ch and p agree for the Ky groups of smooth complex varieties
then they also agree for the group Ko(BGL(n)).

Proposition 5.9. Let 0 € Ko(BGL(n)). Then

ch(o) = p(o).
Proof. Let Gr(n,k) be the Grassman manifold of dimension » linear subspaces of C* and
let E(n,k) be the rank n tautological vector bundle. Let U = {U,} be the standard
trivialization of E(n,k). Let us denote by ¢ : Ny — Gr(n,k) the natural map and

by p& : Ny — BGL(n) the classifying map. Since absolute Hodge cohomology can be
computed as the cohomology of a Zariski sheaf, the map

0" Hi(Gr(n, k), R(+)) — Hi((Nili, R(+))

is an isomorphism. Moreover, for each iy there is a number kg, such that, for all k£ > ko
and all : < 79 the map

ot : Hy(BGL(n),R(+)) — H3(Nik,R(%))
is an isomorphism. But for o € Ko(BGL(n)) we have
?r(ch(0)) = ch(pk(9)) = p(¢i(0)) = @ip((0)).
Since this is true for all k¥ we have ch(o) = p(o).

Combining 5.8 and 5.9 we get:
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Corollary 5.10. The element ch(e,,) — p(eyp) belongs to Kerdy. Therefore it is a sum
of decomposable elements.

(5.2.8) To exploit the fact that ch(e,,) — p(esp) is a sum of decomposable elements, we
shall give a different description of how a class in H3,(BP,R(*)) determines a map between
K-theory and absolute Hodge cohomology.

For any smooth simplicial scheme over C, X, and integers n, p, the complex

H*(X,n,p) = Tgo%‘(X,P)[n]

is a negatively graded cohomological complex. Let H.(X,n,p) be the associated homolog-
ical complex. Let us denote by K(X,n,p) the simplicial group obtained by Dold-Puppe
from H.(X,n,p). Then, for ¢ > 0,

mK(X,n,p) = H‘?i—i(X’ R(p))-

Let us fix a smooth complex variety X, and { an open covering of X. Let us denote by

@ the tautological map
@ : N x Hom(NU, BP) — BP.

Given any class x € H},(BP,R(p)), we have a class

©*(z) € HY(NU x Hom(NYU, BP),R(p)) = Homy,(Hom(NU, BP), K(NYU, n,p)).

For any ¢ > 0, let us denote by m;(z) the induced map
mi(z) : Ki—1(X,4) = m;Hom(N4, BP) — mK(NU,n,p) = Hy (X, R(p)).

This construction can be extended to the case when X is a simplicial smooth complex
manifold.

We have to show that this description agrees with the previous one. Such an agreement
is guaranteed by the following result.

Lemma 5.11. For z € Hf*(BP,R(p)) and o € K;_1(X, ) we have

mi(z)(o) = pr(v;(z)),

where v5 18 as in (5.2.3).

Proof. Since the map m,(z) is natural, the same argument as for ch and p shows that

mi(z)(0) = pr(75(7o(z)(esp )))-

But the map
mo(z) : K1 (BP,BP) = roHom(BP,BP) — noK(BP,2k + 1,k) = H2"+1(BP, R(k)),
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sends the class of f € moHom(BP,BP) to f*(z). Since e,, is represented by the identity
map, we get

mo(z)(egp) = 1d"(z) = 2,

proving the lemma.

(5.2.9) The product structure in absolute Hodge cohomology is given by a morphism of
complexes

H*(X,n,p) @ H*(X,m,q) = H*(X,n +m,p+q),

which induces a map of spaces
K*(X,n,p) x K*(X,m,q) = K*(X,n +m,p+2q).

The spaces K(X,n, p) are naturally pointed by the element 0. Moreover Uz =x U0 = 0.
Therefore the above map of spaces factors through:

K*(X,n,p) x K*(X,m,q) — K*(X,n,p) AK*(X,m,q) — K*(X,n +m,p+g).
Lemma 5.12. Let + € H}(BP,R(p)) and y € HR(BP,R(q)). Then for any i > 0 the
map mi(z Uy) =0.

Proof. Let us write E = Hom(N4, BP). Then the map n(z U y) can be factored as

n; (diag)
—_—_—

7i(E) mi(EANE) — m(K(NU,n,p) AK(NYU,m, q)) — mi(K(NU,u + m,p+ q)).

But since S* A S* = §% and for i > 0, m;5?' = 0, the map ;(diag) = 0.

(5.2.9) We are ready to prove theorem 5.2. Let ¢ > 0 and ¢ € K;_;1(X,4l). By lemma 5.11,
we have that ‘

ch(o) = mi(ch(egp))(0),
p(o) = mi(p(egp))(0).
Therefore
ch(c) — p(o) = mi(ch(esp ) — plegp))(0).

By corollary 5.10, ch(e,, )—p(€eyp ) is a sum of decomposable elements. Therefore by lemma
5.12.

ch(a) = p(o)

concluding the proof of the theorem.

(5.3) The same argument shows that, for a smooth simplicial complex variety X, an integer
¢ > 0, and an element 0 € L;(X) then ch(c) = p(¢). To prove the same result for : < 0
one can use an analogous argument using B™P ([Sch}), with m > —i.
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§6 HIGHER BOTT-CHERN FORMS.

The higher Bott-Chern forms introduced in §3 are differential forms defined on X x
(PY)*. Nevertheless, the original Bott-Chern forms ([B-C]) and the higher Bott-Chern
forms introduced by Wang in [Wa] are differential forms defined on X. The aim of this
section is to relate both notions of higher Bott-Chern forms, in the case when X is a
proper smooth complex variety. The main tool for this comparison will be an explicit
quasi-isomorphism

9*(X,p) — H*(X,p).

To this end we shall first introduce some complexes which compute absolute Hodge homol-
ogy and cohomology.

(6.1) Let us begin by introducing the complex where the simplest Bott-Chern forms are
defined. This complex is a minor modification of the complex used by Wang in [Wa] (see
also [Bu 2]). The use of this complex has been suggested by Deligne in [De]. Let X be a
proper smooth complex variety. We shall write

ER(X)(p) = (2m1)” Eg(X).

Definition 6.1. The complex 20*(X, p) is defined by

(BZ7Y(X)(e-DNn P EF(X), forn < 2p—1,
p'+q'=n-1
p’'<p, ¢'<p
W(X,p) =3 EgX)p)n @@ EP(X)NKerd, for n = 2p,
pl+e'=n
P'2p, ¢'2p
. 0. for n > 2p.

If z € W*(X, p) the differential dyy is given by

—n(dz), forn<2p-—1,
dygz = { —200x, forn=2p—1,
0, for n = 2p,

where
T ENX) — Ea(X)p-1)N P EFI(X),
p'+q¢'=n-1
P'<p, ¢'<p
is the projection.

Proposition 6.2. If X i3 a proper smooth complez variety, then
H*(2*(X,p)) = Hy(X,R(p)).
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Proof. Since X is proper,

H3(X,R(p)), forn < 2p,

HI(X,R =
{ (P)) { 0, for n > 2p,

where HZ(X,R(p)), denotes real Deligne cohomology of X. Therefore the result follows
from [Bu 2 §2].

As in [Bu 2], we have morphisms of complexes

¥ HY(X,p) — W (X,p)

and
P Qﬂ‘(X’p) - f_)*(X,p)
given by
a fw) m(w). forn <2p—1 and
a, f,w)= Z?__:-pp az’,n—:’ + awp—l.n-p-H + (—1)”56"‘1*""’“, for n 2 217,
and

(OxP~1m—P _ Ggn—PP=1 29zP~1m=P 2} forn < 2p—1 and

#lz) = { (z,z,0), for n > 2p,

where, if z € EY, then z = _ zP? is the decomposition of z in terms of pure type. The
morphisms ¢ and ¥ are homotopy equivalences inverse to each other.

(6.2) In order to make the process of comparison clearer, we need an auxiliary complex to
compute absolute Hodge cohomology, which is provided with a graded commutative and
associative product. It can be obtained by means of the Thom-Whitney simple introduced
by Navarro Aznar (see [N 2] for the general definition and properties of the Thom-Whitney
simple).

Let L} be the differential graded commutative R-algebra of algebraic forms over A}.
Explicitly LY = Re] and L] = R[e]de. Let 8y : L} — R (resp. 8;) be the evaluation at 0
morphism (resp. evaluation at 1).

Definition 6.3. Let X be a smooth complex variety. The Thom-Whitney simple of the
absolute Hodge complex, denoted by $H, (X, p), is the subcomplex of

(2riP ey By (X)m & Wy 0 F Efy(X) @ (L @ Wep Eiy(X)))

formed by the elements (7, f,w) such that

w(0) = (8 ® Id)(w) =,
w(1) = (61 @Id)(w) = f.
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Let E and I be the morphisms of complexes

I

Hrw(X,p) _ 9°(X,p)
E

given by
E(r,fiw)=(r,f,e®f+(1-€)@r+de®uw),

I, fr0) = (1 f, / )

where the integration symbol means formal integration with respect to the variable e.
These morphisms are homotopy equivalences (see [N 2]).
We shall denote by I' the composition

DX, %) D H*(X, %) D W (X, %),
and by E' the composition
W (X, %) 2 H*(X, %) > Hpw (X, %).

The morphisms I' and E' are also homotopy equivalences inverse to each other.
We can define a product

53w (X,p) ® HPw(X,q) = HEH(X,p + 9),
by
(‘7‘, fvw) U (rl7 f’aw’) = (T' A r,,f A f',w A w').

This product is associative, graded commutative and satisfies the Leibnitz rule. Therefore

f-);"W(Xs *) = @ ﬁ’}'W(X’p)
14

is a differential associative graded commutative algebra. Moreover, the R-algebra structure
induced in Hj,(X,R(p)) by this product coincides with the R-algebra structure introduced
by Beilinson ([Be]).

(6.3) Let us give the homology analogue of the last complex. This is done by means of
currents. For a proper smooth complex variety X, let D, .(X') be the double chain complex
of complex currents over X, let D,(X) be the associated single complex, and let DR(X)
be the real subcomplex. We shall write

F,D.(X) = P Dy ..
p'<p
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Let 7227 D,(X) be the subcomplex

Dn(X), ifn>2p,
722D, (X) = { Ker(d), ifn = 2p,
0, if n < 2p.

Since X is proper, the filtration 7 plays the role of the weight filtration.
Let L1-be the chain complex defined by Ll = Ll_k (see 6.2). We shall denote by 6y and
01 the evaluation at 0 and 1 as in (6.2).

Definition 6.4. Let HI" (X, p) be the subcomplex of
<(27ri)“’ TZQ”DHE(X) & 2PN FED.(X)®(Ll® r22”D,.(X)))
R

formed by the elements (r, f,w) such that

w(0) = (6 @ Id) (w) =,
w(1) = (6 @ Id)(w) = f.

The homology of the complex HTW (X, p) is the absolute Hodge homology of X.

(6.4) The last complex we introduce is an analogue of 5*(X,p), replacing $H*(X,p) by
H7w(X,p). We shall denote by Hp'7y (X, p) the double complex given by

951w (X, p) = Hrw(X x ()™, p),
with differentials
d' =ds,
d' =Y (-1)"*Hdl.

Then the double complex H}y (X, p) is given by
=r rn - T, . . r—2,n+1
1w (X, p) = Hp 1w (X, p) Z Si (5]}’,”;‘.{;(‘}(’1’)) D wi A sy (‘F-JIP,TW+ (X,p- 1)) .
=1

Finaly let E}W(X ,p) be the associated simple complex. The differential of this complex

will be denoted by d. .
Observe that the homotopy equivalences E and I induce homotopy equivalences

I
Hrw(X,p) _ H"(X,p).
E
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(6.5) In order to pull down forms in X x (P')" to X, we need some differential forms on

X x (P*)™ which will play a role similar to the currents "integration along the standard
simplex”.

Let (z : y) be homogeneous coordinates of P!, and let ¢t = z/y be the absolute coordinate
of P!. Let us write C* = P} — {0,00}. Let
A= %E'(logtf)
1/dt dt _dt dt dt -
=3 <7 -T2t )@ S H(E- DO +d6®logtt)
Let us consider the open subset (C*)* C X x (P!)*. Let us denote by by p; : (C*)* —
C*, 1 =1,...,n the projections over the i-th factor. Let us write A; = p}A.

Definition 6.5. Let W, € H%,((C*)",n) be the form defined by
Wn =A1U"'UAn.

(6.6) Since the forms W, will play a central role, let us present a more explicit description.
Let us write W, = (W}, W2, W3). Then

1y [dt; dt
W= — &4
" an i/=\1 ( t; t; )
r dt
2 __ 7
W= /\ -
=1
1 A dt; dt;
Wg =5z /\ ((e+1)®—-+(5—1)®——+de®logtt>
T 1=l
Let S, denote the symmetric group. Let us write, for : = 0,...,n,
Pi= 3 (_1)adta(n N p Uo Bty dta(n)
" ol to(1) ta(i) to(i+1) to(n)
and, forz =1,...,n,

' (2) dto)  dtoivn) By
Sp= 2 (-1 10g(ta(1)ta(1)) fo@ \ L = A S AL A T
0EG (2 o(i)  lo(i+1) o(n)

Then we have

1 1 .
1 __ = _\yn—i___—-  pt
Wn =5 Z( SR T RS

L (e D (e )P (e DT e
3 _ 1 L de® S:.
Wr = Z ii(n =3 ®P"+2n§ G- Din—s) c®°n
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(6.7) We are not as interested in the forms W,, as in their associated currents. Let
w € Efpyn. Let us denote by [w] € Dyn—r((P')") the current defined by

1
wl(p) = , / Aw.
[ ]( (27(2)" (Pr)m» ¥
Ha@welLll® E(’Hm jn WE write
[a®@w]=a® w]
cLl® Dzn-r((Pl)").

In this way we obtain a map

Drw((PHY™p) — 97 (P)*,n—p)
(r, f,w) — ([r],[f],[w])

This definition can be extended to any locally integrable differential form.
Definition 6.6. We shall denote by [W,] the element of 7% ((P!)",0) given by

The following result exhibits the analogy between the currents “integration along the
standard simplex” and the currents [W;].

Proposition 6.7. The currents [W,] satisfy the relation

n

dWal =D Y (=1 (d})e[Wa-r].

=1 3=0,1

Proof. Formally this proposition is the Leibnitz rule. To prove it we can work component
by component. By a standard residue argument:

n

dW?] =d [ A th-]

=1
n
L 0
=D (D)MW
=1 j=0
By the same argument and taking some care with permutations one sees

d[Pi] =Y (=1)*(d5).([PZi] - (n = )[Pisy)),

k=1 j=0

n 1
d[Si) = [P} + [P+ ) D (=DM (d5)e((E = VIS = (n = )Shi))-
k=1 3=0
The proposition follows from the above formulas and the explicit description of W} and
W3 given in (6.6).
(6.8) Acting component by component, the currents [W,] induce morphisms

(Wal: ﬁr?,}?v(x’ p) = Arw(X x (P, p) — Hrw (X, p).
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Lemma 6.8. The morphisms (W,] factorize through morphisms
(Wal : 573 (X,p) — Hrw (X, p).

Proof. Let us denote by o; the automorphism of (P1)" given by

oi((zr 1), ., (25 Yi)yo o (Tn 1 yn)) = ((21 : Y1) (¥i i Ti)y. . (Th Yn))-
Then (0:).[Wa] = =[V,)], for i = 1,...,n. On the other hand, if

n e s; (f){»ﬁ’;‘}(X,p)) B wi A s; (,6];:-7}";&'+1(X,p — 1))
then (o;)*n = . Therefore
(Waln = =(0i)«[Waln = =[Wal(0:)*n = —[Waln.
Hence [W,]n = 0 proving the result.

Definition 6.9. Let Wrw be the morphism
Wrw : E?W(X,P) — H7w (X, p)
given, for n € H7y (X, p), by
Wrw(n) = [Waln.

Proposition 6.10. The morphism Wrw is a morphism of complezes. Moreover it is a
quasi-isomorphism.

Proof. The fact that is a morphism of complexes is a consequence of Proposition 6.7.

Let ¢ be the quasi-imorphism defined in Proposition 1.2. Let us write ' = Eo o I.
Then ' is also a quasi-isomorphism. Since Wrw o' = Id we have that Wrw is also a
quasi-isomorphism.

Definition. 6.11. Let us denote by W the morphism
W=IoWrwokFE: 5*(X,p) — H*(X,p).

Observe that W is also a quasi-isomorphism. Summarizing, we have the following dia-
gram of complexes and quasi-isomorphisms.

$*(X,p) —— H*(X,p) —=— W*(X,p)
5| dl
5}W(X,P) Wrw y7TW(X P)

(6.9) The above diagram alow us to define different kinds of higher Bott Cher forms. For
instance let us recover the original definition of hlgher Bott-Chern forms due to Wang

([Wan)) and the classical Bott-Chern forms.

Definition 6.12. Let F be an exact metrized n-cube. We shall also call the Bott Chern

form of F the form - -
cho(F)w = ¢ o W(cha(F)n).

One may compute these forms directly using the following result.
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Proposition 6.13. Let F be an emi-n-cube. Then

~ 1 ~ —
Fu(Fhw = o /(Pl)" o(tra(F)) A I'(Wo).

Proof. This result is consequence of the following facts

(1) The morphism [’ is functorial.

(2) For any smooth complex variety Z, if w € ﬁ%pW(Z,p) and n € Hy (2%, %), then
I'(wuUn)=I'(w)AI'(n) (see [Bu 2)).
(3) I' 0o E' =1d. Therefore

I'(E(cho(tro(F))n)) = I'(E'(cho(tra(F)))) = cho(tra(F)).

Up to a normalization factor, the formula given in Proposition 6.13 is the original defi-
nition due to Wang ([Wa]). To see this, let us compute explicitly I'(W,) € 20™((C* )", n).

Proposition 6.14.

rw = S S s,
i=1

Proof. Since W, € H%,,((C*)*,n), by (6.1) and (6.2), we have

I’(Wn)=7r(/01 W,?),

where the integral symbol means integration with respect to the variable ¢, and 7 is the
projection
. n-—-1 \n—1rn-1

This projection is given by 7(z) = (z + (=1)""'z)/2. Therefore
n 1 i-l(c _ 1) . —
I'(W,) = 1 Z (e + D" (e—1) de (s;, + (—1)"—15,,) :

onFT L (i - )l(n —1)!

But TS’_; = Sn~*+1 Then, joining the terms with S}, and taking into account that

Pt rie= 1Pt 0 (e+ DI e—
0 (1 — Dl(n - / G—1)l(n—3) de,

. L ([ e+ e=1 )
I(Wn)=2—nﬁ;(_l Y] deSn>.

(_1)71—1

we have that

But

?

1 (6 + 1)1’—1(6 _ 1)n—-i 3 (_1)n+i—12n
/_1 G- Dl(n - 1) de = n!

proving the result.

The following result is a direct consequence of the definitions.
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Proposition 6.15. Let X be a proper smooth complez variety. Let
E:0—-F—-G—oH—o0

be an ezact sequence of locally free sheaves over X. Let us denote by f);(z) the Bott Chern
form of £ as defined by Bismut, Gillet and Soulé ([B-G-S], [G-S]). Then

&11(5) = —%E::Z mod(Im 8 + Im 9).

(6.10) The use of the Thom-Whitney simple for absolute Hodge cohomology, besides giving
a way to construct the currents W, allows us to define a multiplicative theory of Bott-
Chern forms.

Definition 6.16. Let F be an exact metrized n-cube. We shall call the multiplicative
Bott-Chern form of F the form

chy (F)rw = Wrw(E(cha(F)n)).
In particular, if F is a hermitian locally free sheaf, then
cho(F)rw = E(cho(F)n).

On the other hand, if F is an emi-n-cube, then

1

cha(F)rw = Ok

/ cho(tra(F))rw U Wi,
(Pt~

Definition 6.17. Let F be a metrized exact n-cube and let G be a metrized exact m-cube.
Then F Q@ G is the metrized exact n + m-cube given by

(FQDirrinem = (Fivriin @ (Dingrrvingm

with the obvious morphisms and metrics.

Proposition 6.18. Let F (resp. G) be a metrized ezact n-cube (resp. m-cube). Then

Fnsm(F ® Q1w = chn(F)rw U chm(G) 1w

Proof. We may assume that F and G are emi-cubes. S
Let m : X x (PY)**™ — X x (P!)" be the projection over the first n-projective lines

and let m : X x (P!)"*™ — X x (P!)™ be the projection over the last m-projective lines.
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Lemma 6.19. Let F (resp. G) be an emi-n-cube (resp. emi-m-cube). Then

| tratm(F @ G) = 1} tra(F) ® 73 trm(C).

Proof. By §3, (3.7), it is enough to show that, if m > 1, then

tr1 (? ® 3) = ? ® tr1 (a),
and if m = 0, then
tri(FRG) =tr)(F)QGC.

Since tr; is computed in each edge separately, it is enough to prove the case n = 1, m =0,
but this case follows directly from the definition.

Using lemma 6.19, the multiplicativity and functoriality of the Chern form and the
definition of the forms W,, we have:

CAlan-*‘rn(j':, QG)rw =
1 . _
= W /(IPl . cho (7] tra(F) ® 75 trm(G))Tw U Weim
)fl m
1 o o ‘ ,.
= riynrm / 71 cho(trn(F))rw U 3 cho(trm(G))rw U Wy U T3 Wi
y (Bryntm
= cha(F)rwU chm(G) 1w
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