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Introduction.

Let X be a smooth complex variety and let £ be a vector bundle over X. Given a
hermitian metric h on E we can define an explicit representative of the Chern character of
E ([B-C]). Let Ex denote the differential graded commutative algebra of complex valued
differential forms on X, and let Ex,ir denote the subalgebra of real forms.

Let D be the unique connection of E satisfying
(1) D preserves h.
(2) If U C X is an open subset and s is a holomorphic section of E\u, then Ds is of

puré type (1,0).
Let K = D2 be the curvature form. Let us write

cho(E,h) = trexp(—K) € ^^(27rt)pE^pR.
p

The form cho(E, h) is closed. Its cohomology class, denoted cho (i?), is the Chern character
of E and is independent of the metric h.

Chern classes for higher algébrale 7\-theory were introduced by Gillet in [Gi] - These
classes are defined on any cohomology theory satisfying certain properties. In the particular
case where the class is the Chern character class and the cohomology theory is absolute
Hodge cohomology, the map obtained is called Beilinson’s regulator map. We will give a
description of this map in terms of hermitian metrics.

The Chern character class on the Kq is additive for exact sequences. Nevertheless one
cannot make a consistent choice of representatives of the Chern character that behave addi-
tively for exact sequences. An analogous statement is true for higher 7Gtheory. Following
Schechtman ([Sch]) the lack of additivity of the representatives of the Chern character for
K, is responsible for the Chern character for AT,+i.

For instance, let
? : 0 —► (E\ tí) —► (E, h) (£", h") -> 0,

1 Partially supported by the DGICYT n°. PB93-0790
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be an exact sequence of hermitian vector bundles. Then the Chern character classes satisfy

cho(£) = ch0(£') + cho(£'')-

Nevertheless, in general

ch0(E, h) ± ch0(E\ h') + ch0(£", h").

In the case when tí and h" are the induced metrics, Bott and Chern ([B-C]) have defined
a differential form chi (£), that will be called the Bott Chern form of £, such that

(1) -2dddn(0 = ch0(£', tí) + ch0(E", tí') - ch0(£, h).

Note that the normalization factor we use is different from the normalization factor used in
the original paper. The forms chi(f) are natural and well defined only up to Im<9 + Im d.

Bismut, Gillet and Soulé ([B-G-S], [G-S]) have given a different construction of Bott
Chern forms that can be applied to the case when tí and h" are not the induced metrics.
These Bott Chern forms are also well defined only up to Im d + Im d.

Bott-Chern forms measure the lack of additivity of the Chern character forms. And,
when X is proper, Gillet and Soulé ([G-S]) have given an explicit description of Beilinson’s
regulator for K\(X) in terms of Bott Chern forms. Moreover, in the same paper they have
used Bott Chern forms to define arithmetic Kq groups of arithmetic varieties. Deligne has
suggested ([De]) the existence of higher arithmetic AT-groups. In the definition of these
groups, higher Bott Chern forms as presented in this paper might play a central role.

Following Schechtman’s idea, the lack of additivity of Bott Chern forms should allow
us to define second order Bott Chern forms that give a description of Beilinson’s regulator
map for the K%. And we can repeat this process to obtain Beilinson’s regulator map for
all the K groups.

In this direction, for X is proper, the second author ([Wan]) has defined higher Bott
Chern forms for exact n-cubes. The Bott Chern form of a n-cube measures the lack of
additivity of the Bott Chern forms of the faces of this cube, generalizing equation (1).
Higher Bott Chern forms provide characteristic classes from AT-theory to real absolute
Hodge cohomology. Moreover, in [Wan] it is proved that, if one can extend naturally
higher Bott Chern forms to the non proper case, then these characteristic classes agree
with Beilinson’s regulator map.

In this paper we shall give a variant of Wang’s original construction that can be easily
extended to the non-proper case. Thus we obtain a description of Beilinson’s regulator
map in terms of differential forms. An interesting feature of the construction given here is
that we obtain well defined Bott Chern forms and not only modulo Imd + Imd.

Paralel results in the framework of multiplicative AT-theory have been obtained by
Karoubi in [Kl] and [K2].

Throughout the paper all vector bundles will be algebraic and we shall use the equivalent
notion of locally free sheaf.

The plan of the paper is as follows. In §1 we recall the definition of real absolute Hodge
cohomology. We shall also show that real absolute Hodge cohomology can be computed by
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means of a complex composed by forms defined ónix (P1)”, n > 0. Higher Bott Chern
forms will live in this complex.

In §2 we introduce and study some properties of smooth at infinity hermitian metrics.
Over a non proper smooth complex variety, to compute real absolute Hodge cohomology,
one needs to impose logarithmic conditions at infinity to the differential forms. Thus we
cannot use arbitrary hermitian metrics because they will produce differential forms with
arbitrary singularities at infinity. The use of smooth at infinity hermitian metrics ensures
that Bott Chern forms have the right behaviour at infinity.

In §3 we recall the notion of exact metrized n-cubes and define higher Bott Chern forms.
These forms live in X x (P1)*.

In §4 we use higher Bott Chern forms to define Chern character classes from higher
iv-theory to real absolute Hodge cohomology.

In §5 we prove that the higher Chern character defined in §4 agrees with Beilinson’s
regulator.

In §6 we recall several complexes that compute real absolute Hodge cohomology and
homology. Using them we give, for X proper, two different versions of higher Bott-Chern
forms which are defined on X. The first one, obtained using the Thom-Whitney simple,
is multiplicative. The second one agrees with classical Bott-Chern forms and with the
original definition due to Wang.

Aknowledgements. We would like to thank Prof. C. Soulé who suggested us this question
and helped us with encouragement and numerous hints. Without him this paper would
never have been produced. We would like to thank Prof. V. Navarro Aznar for his help
and ideas, in particular the final definition of Bott Chern forms is due to a conversation
with him. Moreover, he proposed some shortcuts in §2. We also would like to thank Prof.
B. Mazur for his support and guidance. We acknowledge the help of many colleagues
for useful conversations which have helped us to understand a number of aspects of the
subject. Our thanks to J.B. Bost, N. Dan, H. Gillet, D. Grayson, P. Guillen, C. Naranjo,
P.Pascual and D. Roessler.

§1 Absolute Hodge cohomology I.

In this section we shall recall the definition of real absolute Hodge cohomology [Be] of a
smooth complex algebraic variety X. By a smooth complex variety we shall mean a smooth
separated scheme of finite type over C. We shall also construct a complex, composed by
forms on X x (P1)", n > 0, whose cohomology is the real absolute Hodge cohomology of
X.

(1.1) Let Ibea smooth proper complex variety. Let Y Clbea normal Crossing divisor
and let us write X = X — Y. Let be the differential graded algebra of differential forms
on X, and let .K^logF) be the differential graded algebra of C°° complex differential
forms on X with logarithmic singularities along Y (see [Bu 1]). The algebra £~(log Y) has
a real structure, .E^logy)®, a weigh filtration W defined over R and a Hodge filtration
F. Moreover the cohomology of this algebra gives us the cohomology of X with its real
mixed Hodge structure.
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Let us denote by W the décalée filtration of W. That is

WrE^logY) = {x € Wr-nEjr(logY) I dx € Wr^n-\E^'l{\ogY)}.
We write

KS(X)= Hm E*xa(\ogYa),
(Xa, Yo,)

where the limit is taken along all the smooth compactifications Xa of X with Ya = Xa—X a
normal Crossing divisor. Then E*og(X) is a differential graded algebra and it has an induced
real structure, a weight filtration and a Hodge filtration. Moreover the map

(EtflogYfrW) —* (ECog(X)R,W)
is a filtered quasi-isomorphism and the map

(^(logF), W,F) —► (E{og(X),W,F)
is a bifiltered quasi-isomorphism.

(1.2) Let us write

snx,p) = í(C2Jr.)>'w?2,£;l*c,g(V)R e w2p n f>e&,(.x) i w2pe^(X)),
where u(r, f) = / — r and s denotes the simple of a morphism of complexes, i.e. the cóne
shifted by one. The differential of this complex will be denoted by dq.

The real absolute Hodge cohomology of X ([Be]) is

(1.3) A cubical or cocubical object (see [G-N-P-P]) is an object modeled on the cube in the
same way as a simplicial or cosimplicial object is modeled on the simplex. Let (P¿) the
cocubical scheme which in degree n is (Pe)”’ the n-f°ld product of the complex projective
line. The faces and degeneracies

d) : (P¿)* _ (P£)”+1, i = 1,..., n + 1, j = 0,1
:(P¿)" — (P¿)"-‘,» = l,...,n,

are given by

d0 (Xj,. . . , X^) — (xi,.. . , X¿_1,(0 . l),Xj,...,Xn)
di(xi,...,xn) = (xi,...,x¿_i,(l : 0), x¿,..., xn)
á (Xi,...,Xn) = (xi,...,X|'_i,X¿-)-i,...,Xri).
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(1.4) The complexes íj*(X x (Px)',p) form a cubical complex. We shall write

sí = (id * ¿y,
d{ = (Id x d))\

Let us denote by fjp *(X,p) the associated double complex. That is

^n(X,p) = ^r(X x(P')-*,p),

with differentials

d — d¡j,
d" = £(-i)'+’d;.

(1.5) We want to obtain from fjp *(A",p), a complex which computes the absolute Hodge
cohomology of X. On the one hand, since we are using a cubical theory we need to
factor out by the degenerate elements (see [Mas]). On the other hand, we need to kill all
cohomology classes coming from the projective spaces.

Let us denote by p0 : X x (P1)” —> X the projection over the first factor and by
Pi : X x (P1)” —► P1, i = l,n, the projection over the i-th projective line.

Let u; be the standard Káhler form over P1. Let u>¡ = p*ui € ^j*g(X x (Px)n). For an
element

^ = (r,/,p)€Í3r(Xx(P1)n,p),
we shall write

= (uJi Ar,w¡ A /,u>i A r¡)
€^r+2(X x(P1)n,p+l).

Definition 1.1. We shall denote by fó*’*(W,p) the double complex given by

f)T’"(X,p) = f%'XX, p) »i (í5Í'”+1(X,p)) ® u-j A s¡ (fúr^iX.p - 1)) ./ ¿=i

We shall denote by fj*( A', p) the associated simple complex. The diíferential of this complex
will be denoted by d.

In the definition of fjr,n(AT, p), the first summand of the quotient is meant to kill the
degenerate classes, whereas the second summand should kill the classes coming from the
projective spaces. The next result shows that we have reached our objective.
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Proposition 1.2. The natural morphism of complexes

is a qua3Í-isomorphism.

Proof. Since p) is a simple complex associated to a double complex, there is a second
quadrant spectral sequence with E\ term

E¡’n = Hr($m’n(XjP)).
When this spectral sequence converges, the limit is H*(F)*(X,p)). The following lemma
shows that this spectral sequence converges and implies that ¿ is a quasi-isomorphism.
Lemma 1.3. For n < 0 the cohomology of the complex S)*,n(X,p) is zero.

Proof. For each j let us write

firfn(X,p) = Sjp’n(X,p) / ^2 (#pn+1(^>p)) © wi A Si (f>;-2’n+1(X,p - 1)) ./ 1=1

Let us prove, by induction over j, that for j > 1

H*(f)-’n(X,p)) = 0.

For j = 1, n < — 1, the complex fq’n(A,p) is the cokernel of the monomorphism
Sf{X x (P1)-"-1,^) © f)*(X x (pi)-«-i,p_i)[-2] —► f>*(X x (P1)-",?)

ot ® ¡3 i—> sx(a) +wi A si(¡3)
But by the Dold-Thom isomorphism for absolute Hodge cohomology, the above morphism
is a quasi-isomorphism. For j > 1, n < — 1, 9)*'n{X,p) is the cokernel of the monomorphism

í^T^p) © ^iTx(^p-i)[-2] — ii’l\(x,P)
ot ® P '—* Sj(a)ijjj A sj(/3).

By induction hypothesis, the source and the target of this morphism have zero cohomology.
Therefore the cokernel also has zero cohomology.

§2 Smooth at infinity hermitian metrics.

In this section we introduce smooth at infinity hermitian metrics. For a smooth complex
variety X and a locally free sheaf T, a smooth at infinity hermitian metric is a metric that
can be extended to a smooth metric over some compactification of T. The interest of
smooth at infinity hermitian metrics is that they provide representativos of Chern classes
in absolute Hodge cohomology.

(2.1) Before defining smooth at infinity hermitian metrics, we shall study classes of com-
pactifications of locally free sheaves.
Definition 2.1. Let X be a smooth complex variety and let T be a locally free sheaf over
X. A compactification of T consists in a smooth compactification of X, i : X —► X, a

locally free sheaf T over X and an isomorphism : T —► i*T.
A compactification of T will be denoted by (í, X,J-, <p). Usually, we shall identify X

with i(X) and T with F\x, and denote a compactification by (f,X).
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Proposition 2.2. Let X be a smooth complex variety and let T be a locally free sheaf over
X. Then there exista a compactification of X.

Proof. Let X —> A'i be any compactification of X. Then there is a coherent sheaf
X\ on Xi such that X\\x = X. By [Ro] (see also [Ri] and [N 1]) there is a proper
modification i/> : X —► X\, which induces an isomorphism tp~1(X) —► X, and such that
X = tp*(Xi)/ Tor(tp* (Xi)) is a locally free sheaf. Moreover X\^-i(x) is isomorphic to Xi\x-
Thus the induced map i : X —► X is a compactification of X, and X is a compactification
oí X.

Definition 2.3. Let X be a smooth complex variety and let X be a locally free sheaf
over X. Let {i\,X\,X\,f\) and (¿2, X2, X2, f2) be two compactifications of X. We say
that X\ and X2 are equivalent if there exists a third compactification (¿3,X3,^3,(^3) and
morphisms ipi : X3 —► Xi and tp2 ■ X3 —► X2 such that
1) rpi o Í3 = ii and ip2 o z3 = i2.
2) There are isomorphisms oq : X3 —► x¡>*X\ and a2 : X3 —► Í>2X2 such that ¿|ario<£>3 =

and ¿30:2 ° f3 = f2-

In order to simplify the notation, a class of equivalent compactifications of X will be
denoted by a single symbol, for instance X. Moreover, if there is no danger of confusión, we
shall denote by the same symbol the locally free sheaf which appeaxs in any representativa
of this class.

(2.2) A compactification class induces uniquely determined compactification classes in quo-
tients and subsheaves.

Theorem 2.4. Let X be a smooth complex variety and let

£: 0 f -*0

be an exact sequence of locally free sheaves over X. Then, for any compactification class Q
of Q, there are uniquely determined compactification classes X and Ti of X and Ti respec-
tively, such that £ extends to an exact sequence

£: 0->;f4(?-4h^0,
over a compactification X of X.

Proof. Let Xi be a compactification of X where Q is defined. Let r = rk Ti. Let
Grass-^C?) be the Grassmanian of rank r quotients of Q ([G-D]). Let us denote by U.
the universal bundle on Grass-^C?). The exact sequence

£: 0 X Q ^Ti ^0

induces a morphism
f : X —► Grass-^C?).
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By resolution of singularities, there is a proper modification X of X\, which is a compact-
ification of X and such that <p extends to a morphism

p : X —> Grass-^í?).

Then Ti = p*(U) is a compactification of H, T = Ker(C? —> PC) is a compactification of T
and £ extends to an exact sequence

The unicity follows from the fact that, since X is dense in X, the morphism p is unique.

Definition 2.5. Let X be a smooth complex variety and let

0 X Q -+0

be an exact sequence of locally free sheaves over X. Let Q be a class of compactifications
of g. Then the classes of compactifications T and Tí, of T and H respectively, obtained in
theorem 2.4 are called the induced compactifications.

(2.3) Let us introduce smooth at infinity hermitian metrics.
Definition 2.6. Let X be a smooth complex variety, let F be a locally free sheaf over X
and let h be an hermitian metric on T. We say that h is smooth at infinity if there exist
a compactification T of T, and a smooth metric h on T such that h\x = h.

A smooth at infinity hermitian metric determines univocally a compactification class.

Proposition 2.7. Let X be a smooth complex variety and let T be a locally free sheaf on
X. Let T and T’ be two compactifications of J- and let h and h! be smooth metrics on J-
and T*. Ifh\x = h'\x, then T and T' are equivalent compactifications.

Proof. We can assume that both compactifications are defined over the same variety X.
Let ICg be the sheaf of rational functions over X.

The identity on T induces morphisms

/ : T —* J7' <8>

f :r,®lCx —*■ ÍF®Kx,

which are inverses of each other. By symmetry it is enough to show that f{ÍF) C T' ■

Let JJ be a Zariski open subset of X. A section s € T{U,F ®Kx) belongs to T{U,¡F') if
and only if h'(s(x)) < oo for all x € U. But if s € T(U, T) then h'(f(s))\xnu = Ms)|xni/-
Since U H X is dense in U we have h'(f(s(x))) — h(s(x)) < oo for all x £ U.
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Proposition 2.8. Let

be an exact sequence of locally free sheaves on X and let h be a smooth at infinity meiric
on T. Then the metrics h' and h" induced by h in T' and T" are smooth at infinity.

Proof. Let T be a compactification of F provided with a metric h, such that h\x = h. By
theorem 2.4. there are compactifications F' and F" such that f can be extended to an
exact sequence

Í : 0 F' F — F" 0.
Then the metric h induces smooth metrics h' and h" on F' and F". But the restrictions
of h' and h" to X are h' and h". Therefore these metrics are smooth at infinity.

Proposition 2.9. Let f : .Y —► Y be a morphism between smooth complex varieties. Let
{F,h) be a locally free sheaf over Y with h a smooth at infinity metric. Then (f*h) is a
smooth at infinity metric on the locally free sheaf f*F.

Proof. Let (Y, F) be a compactification of (Y, F), such that there exists a hermitian metric
h with h\x = h. Let Yj be any compactification of Y”. We shall denote by T the graph
of /, and by T the adherence of T in Yj x K. Let J be a resolution of singularices of T
and let f : X —► Y be the induced morphism. Then (X,f*F) is a compactification of
(X,f*F) and f*h is a smooth metric such that f*h\x = f*h. Therefore f*h is smooth at
infinity.

(2.4) Let us see that smooth at infinity hermitian metrics provide representatives of the
Chern character classes in absolute Hodge cohomology. Let Y be a smooth complex va-
riety, F a locally free sheaf and h a smooth at infinity hermitian metric. Let T be the
compactification class of F determined by h, Y a compactification of Y where F is defined,
and h a smooth metric on F extending h. Let K (resp. K) be the curvature form of (F, h)
(resp. (F,h)). Let us write

cho(^", h) = Trexp(—A),

cho(^r, h) = Trexp(—A").
These forms are closed. Moreover,

cho(í,í) €

Since cho(/", /i)|x = cho(^\ h), then

cho^, h) 6 ® (w„£%(X), n W„ n F-E^X)) .
p>0

Since this form is closed,

cho(F, h) € ® (w2tEl\(X)x n W2r n F”E^(X)) .
p>0

Thus the triple
di0(F, h)H = (ch0(^, h), ch0(F, h), 0)

is a cycle of 0p>o $f2P{X,p).
9



Proposition 2.10. The cycle cho(.F, h)-n represents the Chern character of T in absolute
Hodge cohomology.

Proof. If X is proper we have

H%(X,R(P)) = Hp'p(X,(27rif R).

Therefore. the result follows from the classical description of the Chern character in terms
of curvature forms. In the non proper case it follows from the functoriality of the Chern
character.

§3 EXACT n-CUBES OF LOCALLY FREE SHEAVES.

In this section we shall recall the notion of exact n-cube (see [Lo 2], [Wan]). To each
metrized exact n-cube, T’, which satisfies certain conditions, we shall associate a metrized
locally free sheaf on A' x (P1)", called the n-th transgression of T. This transgression can be
viewed as a homotopy between its vertexes. The Chern character form of the transgression
will play the role of higher Bott Chern forms.

(3.1) First some notations. Let (—1,0,1) be the category associated to the ordered set
{ — 1,0,1}. Let ( — 1,0, l)n be its n-th cartesian power. By convention, the category
(—1,0,1)° has one element and one morphism.

Let (H be an exact category.

Definition 3.1. A ?r-cube of (£, JF, is a functor from ( — 1,0, l)n to (£.
Deñnition 3.2. Given a n-cube T, and numbers i € {l,...,n}, j € { — 1,0,1}, then the
n — 1-cube, defined by

O’fu «„-, = n

is called a face of T. Given a number i € {1,..., n} and a n — 1-tuple a = («i,..., a„-i) €
{ —l,0,l}n-1, the sequence

d^T = d"-1 ... d*Ud*-x • • •

is called an edge of T.
Explicitly, the edge dfcX is

3~ot\ o<i_i, — l,o¡ on-i * Fai or¡_i,0,aj,...,orn_i ^ ■Fai,...,Qf,_i,l,Qfi,...,arn-i •

Definition 3.3. A ?r-cube is called an exact n-cube if all its edges are short exact
sequences.

We shall denote by C„(B the exact category of exact n-cubes. Observe that, for all non
negative integers n, m, there is a natural isomorphism of categories CnC_m(E —► Cn+m<S.
In particular, an exact n-cube can be viewed as an exact sequence of exact n — 1-cubes or
as an exact n — 1-cube of exact sequences.
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The maps

d¡:ObQne Ob C 1

are called face maps. The maps

s{ : ObCn(£ —*• ObCn+1(£, for i = 1,..., n, and j = —1,1,
given by

íiía,,.. *n + l

0, if ai = i,

■?ai,...,o¡.i,a;+i,...lo„ + ii if ^ j,
are called degeneracy maps. An exact n-cube J- 6 Im s\ is called degenerate.(3.2)We shall write Cn<£ = Ob Cn(E and CG* = [J C„(£.

Assume that the category (£ is small. To avoid set theoretical problems, in the se-
quel we shall always assume tacitly that we replace any large category by an equivalent
small full subcategory. Observe that the diagram C<£ behaves like a cubica! diagram. We
have replaced the category (0,1) by the category ( — 1,0,1). This motivates the following
construction.

Let ZCn<S be the free abelian group generated by Cn(S. And let the differentia! d :
ZC„(£ —► ZCn_i(S be given by

¿=i j=~i

Let Dn C ZCn<£ be the subgroup generated by the degenerate exact n-cubes. Then dDn C
Dn-\. Therefore the following definition makes sense.

Definition 3.4. The homology complex associated to C(£ is
ZC<E = ZC<£/D.

(3.3) For the remainder of the section, let us fix a smooth complex variety X. Let <H(^C)
be the exact category of locally free sheaves on X and let (H(A) be the exact category of
pairs (/", h), where T € Ob (H(X) and h is a smooth at infinity hermitian metric on T. The
morphisms of this category are

Hom = Homc(x)(^,^)-
The forgetful functor <B(X) —> €(X) is an equivalence of categories. A quasi-inverse can
be obtained by choosing a metric for each locally free sheaf.

For simplicity we shall write C(X) — C<£(X). An element T G Cn(X) is called a
metrized exact n-cube of locally free sheaves.

(3.4) For technical reasons we need to work with metrized exact n-cubes which have, in all
the quotients, the induced metrics.

Definition 3.5. We shall say that a metrized exact n-cube, T = {(^a,^a)} has induced
quotient metrics (an emi-n-cube for short) if, for each n-tuple a = (ai,... ,an), and each
i with a i = 1, the metric hQ is induced by the metric h(ai a,_1,o,a,+i,...,a„)-

Let us see that there are enough emi-n-cubes. Let a € { — 1,0, l}n be a n-tuple. We
shall write a < 0 if at <0 for all i.

11



Proposition 3.6. Let E be an exact n-cube of locally free sheaves and, for all a < 0, let
ha be a hermitian metric on Ea. Then there is a unique way to choose metrics hQ for all
a 2: 0, such that E = {(.T7,*,/ia)} w an emi-n-cube.
Proof. The uniqueness is clear. For the existence, we have to see that, in each Ea, with

0, all the possible induced metrics agree. This is guaranteed by the following result.
Lemma 3.7. Let {JET,-,y }*,y= — i,o,i &e an exact 2-cube of complex vector spaces. Let h be a
hermitian metric on £o,o and let /ii,o and hot\ be the hermitian metrics in E\,o and Eot\
induced by h. Then the metrics induced by h\}Q and /io,i in Eit\ agree.

Proof. Let us identify E-i,o and Eo,-i with their images in i?o,o- Then the metric /i^o
in Eito is induced by the isomorphism Ef:10 = £i,o- Therefore we can identify Eito with
E-ifi and the morphism Eo,o —► Ei,o with the orthogonal projection. But the image of
£0,-i by this orthogonal projection is (.F-^o + £'o,-iTherefore the metric in Ei}i
induced by /i1)0 is induced by the isomorphism (£-1,0 + £0,-1 )■*" — -2o,i- By symmetry,
the same is true for the metric induced by /io,i-

(3.5) Let ZCemi(X) be the subcomplex of ZC(X) generated by the emi-n-cubes, and let
Demi be the subcomplex of ZCemi(X) generated by the degenerate emi-n-cubes. We shall
write

ZCemi(X) = ZCemi(X)/Demi C ZC(X).
To transíate results about emi-n-cubes to all exact metrized n-cubes we need to construct

a morphism of complexes
ZC(X) —► ZCemt(X).

If a € { — 1,0,1}" with a¿ > —1, we shall write a — i = (ai,..., a¿ — 1,..., an). Let
E = {(i^a, ha)} G Cn(X). For i = 1,..., n let XfE be defined by

_ { (fa,ha), if a¿ = —1, 0,
1 “ l(^X), if a,- = 1,

where h'a is the metric induced by ha_¿. Thus X\E has the same locally free sheaves as E,
but we have replaced the metrics of the locally free sheaves of the face d}E, by the metrics
induced by dfE.

Let X\E be the exact n-cube determined by

d~1x2É = d¡T,
d°iX'\É=d}X)E,
d}X}E = 0.

This n-cube measures in some sense the difference between E and X\E.
Let us write X¡E — X]E + X2E, and let us denote by A the map

A : ZCn(X)
E

ZCn(X)
Xn... XiE, if n > 1,
E, if n = 0.

12



Then one can check the following properties:
(1) A is a morphism of complexes.
(2) ImA C ZCemi(A').
(3) A(D) C Demi.

Therefore this map induces a morphism of complexes

A : ZC(X) —+ ZCemi(X).

(3.6) Let T be an emi-n-cube of locally free sheaves. We shall associate to it a locally free
sheaf trn(jr) on X x (P1)" which, roughly speaking, is a homotopy between the vertexes
oíX.

Let ((xi : yi),..., (xn : yn)) be homogeneous coordinates of (P1)”. Let lXi (resp. Tyi)
be the sheaf of ideáis in X x (P1)" defined by the subvariety x¿ = 0, (resp. y¿ = 0). Let
Po : X x (P1)” —► A' and : X x (P1)" —► P1, i = 1,..., n, be the projections. Then
the maps

Izt-^PlOni-1),

are isomorphisms. The sheaf CV( — 1) has a metric induced by the standard metric on
C2. We put in TXi and lyi the metrics induced by the above isomorphisms. By 2.9, these
metrics are smooth at infinity.

For each pair of integers i € {1,..., n} and j € { — 1,0}, we write

Xy¡, if J = -1,
JI(., if j = 0.

For each a € (—1,0, l)n, with a < 0, and for each k € {1,... ,n}, with a* = —1, we write
n

IK¿ c ^x(Pi)n’
«=i

Í*k

where íCxx(Pl)n is the sheaf of rational functions on X x (P1)".
Given an n-tuple a < 0 and an integer k 6 {1,..., n}, with a* = —1, we write a + k =

(ai,..., a* + 1,..., an). We have the inclusions

3a,k C 3at
3a,k C 3a+k•

Let us denote by y>a,k '■ 3a —► 3Q+k the morphism 3(a —► a + k). Let rp be the
morphism

* = © © P03a ® 3a,k * Pq3a ® 3ai
a<0 fc|a* = — 1 a<0

3a =

3a,k =
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which sends s ® g £ P$Ja ® Ja,k to

ip(s ® g) = s ® g + <pa,k(s) ® g

€ P,Ta ® 0a © PQra+k ® Ja+k-

The locally free sheaf ©a<oPo^"a <8> Ja has a metric induced by the metrics of XXi, XVi
and Ja. This metric is smooth at infinity.

Deflnition 3.8. The n-transgression of J is the hermitian locally free sheaf

tr„(.F) = Coker(V’),

with the metric induced by the metric of ©aCoPo^c* ® Ja- By proposition 2.8, this metric
is smooth at infinity.

The following result follows directly from the definition.
Proposition 3.9. Let J be an emi-n-cube. Then there are isometries

trn(^)|{*,•=<>} - trn„i(diJ),

trn(7)|{s/i=0} = trn-i(d-lT) © trn-Jdjf).

(3.7) Let us give an inductive construction of the transgressions. If n = 1, an emi-l-cube,
J is a short exact sequence

J-\ -4 Jo —»• Ji,

where the metric of J\ is induced by the metric of Jq. Then tri(.F) is the cokernel of the
map

J-i —► J-\ ® X~' © Jo ® X~l
s i—► s ® 1 © f(s) ® 1.

Observe that this is a minor modification of the locally free sheaf used by Bismut, Gillet
and Soulé ([B-G-S], [G-S]) to construct Bott-Chern forms. In the definition given here,
we avoid the use of partitions of unity, obtaining a natural construction. The price is to
restrict ourselves to emi-n-cubes.

If J is an emi-n-cube, let tri(^) be the emi-n — 1-cube over X x P1 defined by:

trJJ)* = tn(dZ'J).

Then we write

trfc(^) = tn(trjfc_i(.F)).
The hermitian locally free sheaf trn(J) defined in this way coincides with the earlier defini¬
tion. Thus the transgressions are simply an iteration of the construction of Bismut, Gillet
and Soulé.

(3.8) For any homology complex Am, we shall denote by A* the cohomology complex
defined by Ak = A-k- Let us use the transgressions previously defined, to associate to
every emi-n-cube a family of differential forms.

14



Deñnition 3.10. Let
ch : ZC:m,(X) — © fl,(AT,p)[2p]

P

be the map given by
ch(T') = cho(tr„(;F))?i,

where cho(,)'H is as in (2.4).

Proposition 3.11. The map ch is a morphism of complexes and faciorizes ihrough a
unique morphism

ch : ÍC;m,(X) — © fl'(Jf,p)[2p].
p

Proof. To see that it is a morphism of complexes, observe that, since the forms cho(-)'H 3X6
closed,

n 1

dch(trn(jF)) = EB-l),+^ch0(trn(.F))*
1 = 1 j~ o

n n

= £(-l)’ + £(-l)í+1 ch0(tr„(jf))*|,,,¡=0|
i~ 1 1=1

n n

= cho(tr„(7)|{lt.=0})-H + X^-1),+1 ^io(tr„(^)l{w=o})w-
i=l i=l

Therefore, by proposition 3.9,
n 1

d ch(tr„(jr)) = EE (-l),+>cho(tr„-,(aíJP))w
1=1 j= — 1

= ch(dj).
To see the existence of the factorization, we have to show that, for a degenerate emi-n-

cube T, we have ch(^r) = 0 in 0 By symmetry we may assume that T — s3nQ,
with j 6 { — 1,1} and Q an emi-n — 1-cube.

If j = 1, then tr„_i(.F) is the exact sequence

o - (Id x sny trn_!(é) ü (Id x sny trn_!(á) ^ o ^ o.

Therefore trn(X") is the cokernel of the map

(Id x sn)*trn_i(C?) —> (Idxs^tr»-!^)®!-1 © (Id x sn)* tr„_i(£) ® 1~*
x i—► a: ® 1 © x ® 1.

But X'1 and T~are both isometric with p* 0(1). Henee this cokernel is isometric with
(IdxO’trn-!^) © p* 0(2), where 0(2) is provided with the standard metric. Thus

cho(trn(X'))w = (Id x sn)* cho(trn_i(£))w + 2u>n A (Id x sn)* cho(tr„_i(£))-H.
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which is zero in 0 í}*(-Y,p).
The case j = — lis analogous.

Deñnition 3.12. We shall denote also by ch the composition

zc-(X) 4 ic;m,(x) ^ ® V(x,p)[2p\.
P

Deñnition 3.13. Let T be a metrized exact n-cube. The form ch(A(^")) will be called
the Bott Chern form of T and will be denoted by chn(jc’)7<.

§4 Higher characteristic classes.

The Chern character from A'-theory to a suitable cohomology theory, such as abso-
lute Hodge cohomology, is additive for exact sequences. Nevertheless, given a cochain
complex which computes absolute Hodge cohomology, we cannot make a consistent choice
of representatives of the Chern character that behaves additively. Following the ideas of
Schechtman ([Sch]), the lack of additivity at the level of complexes, of the Chern character
for Kn, gives us the Chern character for A’n+i.

In the previous section we have associated, to each metrized exact n-cube, a family
of differential forms. The differential form associated to an n-cube measures the lack of

additivity of the differential forms associated to its faces. In this section we shall see
that this construction allows us to define higher Chern character classes from A-theory to
absolute Hodge cohomology.

(4.1) Let us begin by reviewing the Waldhausen A'-theory of a small exact category. We
shall follow [Sch] (See also [Wal] or [Lo 1]).

For n € N, let Cat(n) denote the category associated with the ordered set {l,...,n}.
Let Mn be the category of morphisms of Cat(n). That is

ObMn = {(¿,j) €NxN|0<i<j<n},

and Hom((¿,<;), (Ar, /)) contains a unique element if i < k and j < l and is empty otherwise.
The categories Mn form a cosimplicial category M.

For any category £, let us denote by M„<£ the category of functors from Mn to <£.
Deñnition 4.1. Let <£ be a small exact category and 0 a fixed zero object of <B. Let •£„(£
be the full subcategorv of Aín(8, whose objects are the functors Mn —> (£, such that,

(1) for all i, Elti = 0;
(2) for all i < j < k,

^ij ► * Ejtk
is a short exact sequence.

Let us write Sn<E = Ob 5n(£. We shall denote by 5(H or S}<£ the simplicial exact category
U S_n<E, and by S<B or Sl<£ the simplicial set Ob5(S.
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In other words we have:

50 <£

5i<H

52(H

5„(E

{0},
Obi,

{exact sequences of (£},

{sequences of monomorphisms'#0,1 —1* ■E'0,2 —>■■■—*■ £Jo,n
with a choice of quotients

Ei,j = Eqj/Eq¿ >

In particular 5(E is a pointed simplicial set. In the sequel we shall sometimes use the word
space to denote simplicial sets.

For a space C, we shall denote by \C\ its geometric realization.

Proposition 4.2. (Ci. [Lo 2].) There is a homoiopy equivalence

SiS s BQ<£,

where Q denotes Quillen’s Q-construction and B means classifying space. Therefore, for
all i > 0,

AL(<S) = 7r¿+1 (|5.<S| ,0).

(4.2) Let us recall the notion of spectrum from [Th]. For any pointed space C, let us
write EC for the suspensión of C, and QC for the loop space of C. We shall use the same
notation for topological spaces.

Definition 4.3. A prespectrum X is a sequence of pointed spaces Xn for all non-negative
integers n, together with structure maps EXn —► X„+i. These maps can be described by
their adjoint Xn —► ÍLYn+i. A fibrant spectrum is a prespectrum such that all Xn are
fibrant spaces and the structure maps Xn —»■ ÍÍX„4-i are weak equivalences.

The space S<£ is a piece of a prespectrum. To construct the other spaces that form the
prespectrum, we write inductively

5m(S = 55m-1(S,
Sm<B = 55m_1(E.

Then 5m is an exact m-simplicial category and Sm is a m-simplicial set. For a poly-
simplicial set C let diag(C) denote its diagonal space. We shall denote by |C| = |diag(C)|
its geometric realization.

Proposition 4.4. (Cf. [Sch].) There are natural maps

ipm : E5m(H —^ 5m+1(S,

inducing homotopy equivalences

|Sm(S| 9é fi|5m+1(8
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As a consequence of this proposition, if we write S°<£ = QS(£, then the sequence of
spaces diag(Sm(S) is a prespectrum. Moreover, if we replace the above spaces by weakly
equivalent fibrant spaces we shall obtain a fibrant spectrum. For instance, let us denote
by Sing the singular functor (see [B-KJ). Then, if we write

Km(<£) = Sing(|Sm<£|),
the spaces Km form a fibrant spectrum. By Proposition 4.2, the homotopy of this fibrant
spectrum is the K-theory of (£.

(4.3) For example, if X is a smooth complex variety, and we write Sq{X) = S9((B(X)),
then he AT-groups of .Y are

Kl(X) = rt+q(\Sq(X)\,0).

(4.4) Let us associate, to each element of S„<£, an exact metrized n — 1-cube. We shall do
so inductively. For n — 1, we write

Cub^iJjjJo^KjXi) = E0,i.
Assume that we have defined CubJF for all E € Sm(£, with m < n. Let E g Sn(£. Then
Cub E is the n — 1-cube with

ar1Cub£; = ^_2...s11(Fo,1),
d$CubE = Cub(diE),

dr1CubE = Cnb(d0E).
For instance, if n = 2, then Cub ({}o<*<j<2) is the short exact sequence

Eo,i —► Eq¿ —* E\¿-
On the other hand, if n = 3, then Cub ({-E,i,j}o<«<j<3) is the exact square

£o,l * Eot2 * E1^2

•4^ •4*'

Eo,i ► Eq¿ * Eit3

0 ► A?2,3 ► A^2,3
All the faces of the n — 1-cube Cub E can be computed explicitly.

Proposition 4.5. Let E g Sn(£. Then, for i = 1,... , n — 1, the faces of the n — 1 -cube
Cub E are

d{ 1 Cub E = sJj_2 ... s ■ Cub d,+i... dnE,
Cub£ = Cub diE,

d¡ Cub E = ... sj-1 Cub d0 ... di-iE.
By proposition 4.5 and using induction we have,
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Corollary 4.6. The n — 1 -cube CubE is exact.
Therefore we have a map Cub : Sn(£ —► Cn-i<£.

(4.5) Let ZS(E be the homological complex associated with the simplicial set S(S. That is,
ZS„(5 is the free abelian group generated by Sn<£, and the differential d : Z5n(E —> ZSn-i<£
is given by

d = ¿(-íya.
i=0

The map Cub can be extended by linearity to a map

Cub: zs<s[i] —* zce

Note that this map is not a morphism of complexes. However, the map Cub induces a map
also denoted by Cub : ZS(£[1] —► ZC<£. And, since by proposition 4.5,

d Cub E = Cub dE + degenerate elements,

we have:

Corollary 4.8. The. map Cub : ZS(H[1] —► ZC<S is a morphism of complexes.

(4.6) We can obtain analogous maps for all the spaces Sm<£. In particular, we have maps

Cub : Sni ... Snm<E —► Cni-1... Cnm-i<£ —► Cni+...+flm_m(E.
Let us denote by ZSm(S the chain complex that, in degree n, is the free abelian group
generated by

I] sn,...s„me.
niH 1-nm = n

The differential of this complex is the altérnate sum of all the face maps. Note that this
complex is homotopically equivalent to Zdiag(5mí). The induced map

Cub : Z5m(H[m] —> ZC(S

is also a morphism of complexes.

(4.7) We shall denote by ZS^X) the cohomological complex associated to the homological
complex ZS™(X).

Definition 4.9. The Chern character map is the composition

Z5^(.Y)[-ml ^ ZC-(X) A zc;m¡(^) i
p

This map will also be denoted by ch. The Chern character classes are obtained by com-
posing with the Hurewick map:

K,(X) = ir,+m(sm(X))) - x,+m(zsm(X)) ^ ® ^-‘(jr.p).
P
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§5 Beilinson’s regulator.

The aim of this section is to prove that the higher Chern character classes defined in §4
agree with Beilinson’s regulator map.

(5.1) Let us begin by extending the definition of the map ch to the case of simplicial
smooth complex varieties. To this end, we first recall the construction of absolute Hodge
cohomology of X = X. a smooth simplicial complex variety. For each p, the complexes
f)*(Xn,p}form a cosimplicial complex as n varíes. Let Aff)*(X..p) be the associated double
complex and let us denote the simple complex by

fj'(X,p) = s(MV(X.,p)).

Then

ffZ(x.,R(P)) = ]r(fr(x,p)).
For the definition of I\-theory of simplicial schemes we shall follow [Sch]. We shall say

that a smooth simplicial scheme X = X. has finite dimensión if there is an integer m such
that

X = Skm(X),
where Skm(X) is the m-th skeleton of X, that is, the simplicial scheme generated by
■^0 » • • • i Xm ■

Let X = X. be a simplicial scheme of finite dimensión. The family of prespectrums
{S(Xi)}n form a cosimplicial prespectrum S(X.). Let K(X) be a fibrant cosimplicial
fibrant spectrum weakly equivalent to S(X). Then the K groups of X are defined as

Ki(X) = 7r,(TotK(X)).

Since X has finite dimensión, there is a convergent spectral sequence

E™ = K.,(Xr) =* K.,.,(X.).

Observe that for a given simplicial scheme X., of finite dimensión, it is not necessary to
work with the whole spectrum. Let m be such that X = Skm X. Let us choose an integer
q, and let Kg(X.) be a fibrant cosimplicial fibrant space, weakly equivalent to Sq(X.). If
q > m or q > —i, then

Kí(X.) = 7r,-+g(Tot K?(X.)).
For an arbitrary simplicial scheme we write

ÁT(X)=lirnAT(Skm(X.)).
m

Let X be a smooth simplicial complex variety of finite dimensión. Since the map ch
defined in section §4 gives us a morphism of complexes

ch: *vzs;(X)[9] —> ® fl*(Jf,p)[2p],
V
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we can extend the definition of the Chern character to the simplicial case, obtaining map>s:

—® R(P))-
P

If X does not have finite dimensión, taking limits, we have also characteristic classes

ch : K,{X) —> ® Hg’-'íJf.RO.)).
P

Remark. 5.1. All the constructions needed to define the map ch can be extended to the
case of a smooth simplicial scheme over C X. such that each Xn is a (not necessarily finite)
disjoint unión of smooth complex varieties. For instance, by a compactification of X„ we
shall mean a disjoint unión of compactifications of each component of Xn.

(5.2) Beilinson ([Be]) has defined characteristic classes from A-theory to absolute Hodge
cohomology. These classes are a particular case of the characteristic classes defined by
Gillet ([Gi]) to any suitable cohomology theory. In particular, Beilinson’s regulator is the
Chern character in this theory. Let us denote by p Beilinson’s regulator.

Then ch and p are natural transformations between contravariant functors. Both agree
with the classical Chern character on the Kq groups of smooth complex varieties. The aim
of this section is to prove the following theorem.
Theorem 5.2. Let X be a smooth complex variety. Let <r G K¿(X). Then ch(cr) = p(<r).
Proof. Let il = {UQ} be an open covering of X. We shall denote by (£(X,U) the full
subcategory of <B(X) composed by the locally free sheaves on X whose restrictions to all
UQ are free. We shall denote by (£(A, 11) the category of hermitian vector bundles on X
whose restrictions to all Ua are free. Let us write

Ki(X,ü) = tr<+1(5(S(X,U)) = 7r,-+1(SÍ(X,U)).
Then

Ki{X) = KmKi(X,ü).
u

(5.2.1) Following Schechtman ([Sch]) we know that there is a simplicial scheme BP, which is
a classifying space for algebraic A'-theory. More precisely, Schechtman proves the following
result.

Theorem 5.3. (Schechtman) There is a homotopy equivalence

S<£(X,il) 3 HomíJVll. BP),
where Hom is the function space and Níi is the nerve of the covering.

(5.2.2) Let Y = Y. be a smooth simplicial scheme and let f : Y —► BP be a map of
simplicial schemes. Then / defines an element of 7TnHom(y. BP). Let us denote by e/ the
image of this element by the composition of the morphisms

TroHom(Y,BP) —♦ TrnToUHom(Y„.BP) —» tt0 Totn S<£(Yny {Fn}) —> K-\{Y).

21



Remark 5.4. The identity of BP defines an element, denoted by eBP € K-i(BP). More-
over, for / as above, «/ =

(5.2.3) The element eBP is, in some sense, a universal element in AT-theory. Since egp €
K-i, to exploit the universality of this element, we need to relate elements in Kn with
elements in K-\. This can be done using spheres.

Let a € Kn(X). Then there is an open covering U of X, such that a € Kn{X,$l) =
7r,7.4-1 (HomíiVlh BP)). Therefore, since HomliVlh BP) is fibrant, a is represented by an
element

7<T e Hom(5n+1 x NÍX,BP) = Hom(Sn+1, Hom(iVil, BP)),
where Sn+1 is the (pointed) simplicial n + 1-dimensional sphere.
Lemma 5.5. Let Y = Y. be a smooth simplicial complex variety. Then there are natural
decompositions

A--,(S“+1 x Y) = K-,(Y)BI<„(Y),

H%+'(S’'+‘ x r,R(p))= H%+'(Y,E.(P))® H%-n(Y,VL(p))-
Moreover, the maps ch and p are compatible with these decompositions.

Proof. We may assume that Y has finite dimensión because the general case is obtained
taking the limit. Then

I\-i(Sn+1 xY) = 7ro(Tota(TotJa(K(S”+1 x Yp)))).

The spectral sequence associated with Tota has JE?2-term:

EP,q = í ifp = 0,n + l,2 1 0, if p 0, n + 1.

Let us denote by * the simplicial point. Since the spectral sequence of * x Y splits the
spectral sequence of Sn+1 x Y, the above spectral sequence degenerates at the .E^-term,
and the exact sequence obtained from this spectral sequence splits in a natural way.

The same argument works for cohomology. Moreover, since ch and p are natural transfor-
mations, they induce morphisms between the A'-theoretical and the cohomological spectral
sequences, proving the compatibility statement.

Let us denote by pr : K-i(Sn+1 xNíl) —* Kn(Nií) the projection. The precise meaning
of the universality of eep is given by the following result.
Lemma 5.6. In the group Kn(Nii), the equality

Pr(7¿(e*r)) = *

holds.

Proof. By remark 5.4,
Pr(7a(e8P)) = pr(e7J.
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On the other hand, by the definition of 7^, the map

7r0(Hprn(Sn+1 x NU,BP)) -LL ir„+,(Eom(Níl.BP))

sends the class of ■)„ to the class of a. Therefore, since the diagram

7T0(Hprn(5n+1 x NÜ,BP)) ► /v_!(5n+1 x ATI)

pr
•'i'

Trn+l(ñom(Ntt,BP)) ►

is commutative we have that

Pr(7^(eSp)) = <7-

pr

Kn(Nii).

(5.2.4) By Remark 5.1. the map ch is defined for the simplicial scheme BP. Moreover, by
the naturality of ch and p and their compatibility with the map pr, we have

ch(a) = pr^ch^,,))),
p(a) = pr(7¿(p(egp))).

Thus, to prove theorem 5.2, we are led to compaxe ch(eSP) and p(eBP). For this comparison,
we need to understand the cohomology of BP. This cohomology has been computed by
Schechtman ([Sch]). The simplicial scheme BP is the classifying space of a simplicial group
P, where P0 = * and Px = JJn GL{n). Thus it is a bisimplicial scheme B.P.. The edge
homomorphism of the spectral sequence associated to the second índex gives us a morphism

dH : H%+\BP,9.(p)) —. U H%(BGL(n),R(p))-
n>0

Let us denote by A = H^(SpecC, R(*)).
For each i, n let us denote by

ci,n = Ci(En) € H%(BGL(n),R(i)),

the í-th Chern class of the tautological vector bundle over BGL{n). Then we have an
isomorphism

H*h(BGL(n), R(*)) = A[cx,n,..., cn>n],
Let Sk,n € A[ci<n,..., cni„] be the fc-th Newton polynomial in the c,in. That is, s*jn/rc!
is the degree k term of the Chern character of the tautological vector bundle En. Let us
write

Sk = (Sk,o, Sk,i ,...)€ n Hn(BGL(n), R(*)).
n>0
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Proposition 5.7. (Schechtman [Sch]) There exist elementa € H%f+1(BP, R(k)) such
ihat df{(s\) = Sk and,

ff£(SpecC,R(p)) £*

(5.2.5)Since
R, if n = p = 0, or n = 1, p > 0,
0, otherwise,

any element of H^+1{BP, R(&)) can be written as

as\. + decomposable elements,
with a £ R. Moreover, since by the proof of 5.7 ([Sch]) the decomposable elements axe
mapped to 0 by d//, we have
Corollary 5.8. The group Kerdu C ($k H%£+1(BP,R(k)) is generated by decomposable
elements.

(5.2.6) Schechtman computes the groups K+(BP) in a similar way. In particular, there is
also an edge homomorphism

dK : K.,(BP) _ n K0(BGL(n)).
n

Moreover, by the naturality of ch and p, they are compatible with the edge homomorphisms.
In particular

dH(p(egp)) = p(dK(eSP)), and dH(ch(eBP)) = ch(dK(eBP)).

(5.2.7) Our next step will be to compare <¿f/(p(eBP)) with dfj(ch.(eBP)). To this end we
shall see that, since the maps ch and p agree for the Ko groups of smooth complex varieties
then they also agree for the group Ko(BGL(n)).
Proposition 5.9. Let a £ Ko(BGL(n)). Then

ch(ír) = p(cr).

Proof. Let Gr(n, k) be the Grassman manifold of dimensión n linear subspaces of Ck and
let E(n,k) be the rank n tautológica! vector bundle. Let il* = {Ua} be the standard
trivialization of E(n,k). Let us denote by 0 : Ni1* —*• Gr(n,k) the natural map and
by iff. : Nílk —► BGL(n) the classifying map. Since absolute Hodge cohomology can be
computed as the cohomology of a Zariski sheaf, the map

0* : H^(Gr(n,k), R(*)) —- ff£(Mi*,R(*))
is an isomorphism. Moreover, for each i o there is a number ko, such that, for all k > ko
and all i < io the map

*2 : H'n(BGL(n), R(*)) — lí^JVíl*, R(*))
is an isomorphism. But for a £ Ko(BGL(n)) we have

PÍ-(ch(a)) = ch(<pí(a)) = p(<pt{<r)) = <PÍp((v))-
Since this is true for all k we have ch(a) = p(cr).

Combining 5.8 and 5.9 we get:
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Corollary 5.10. The element ch(e8P) — p(eBP) belongs to KerÚh- Therefore it is a sum
of decomposable elementa.

(5.2.8) To exploit the fact that ch(eBP) — p(eBP) is a sum of decomposable elements, we
shall give a different description of how a class in H^(BP, R(*)) determines a map between
K-theory and absolute Hodge cohomology.

For any smooth simplicial scheme over C, X, and integers n, p, the complex

H*(X,n,p) = r<0^*(X,p)[n]
is a negatively graded cohomological complex. Let Tt»(X,n,p) be the associated homolog-
ical complex. Let us denote by )C(X,n,p) the simplicial group obtained by Dold-Puppe
from /H*(X,n,p). Then, for i > 0,

wlIC(X,n,p) = H^-i(X,R(p))-
Let us fix a smooth complex variety X, and il an open covering of X. Let us denote by
the tautological map

V? : iVU x HomíiVIL BP) —► BP.

Given any class x € H^(BP, R(p)), we have a class

<p*(x) € tf£(iVU x Hom(ATü,£P),R(p)) = Homw.(HomíiVlt. BP). ¡C(NÍÍ. n. v)).

For ány i > 0, let us denote by 7r¿(x) the induced map

7r,(x) : Ki-i(X,il) = 7r¿Hom(iVil, BP) —► tr¿/C(iVÜ, n,p) = H^\X, R(p)).

This construction can be extended to the case when X is a simplicial smooth complex
manifold.

We have to show that this description agrees with the previous one. Such an agreement
is guaraníeed by the following result.
Lemma 5.11. For x € H^+1(BP, R(p)) and a € we have

TTi(x)(a) = pr(7^(x)),

where is as in (5.2.3).

Proof. Since the map n*(x) is natural, the same argument as for ch and p shows that

7*i(x)(o) = pr(/y*(7To(x)(egp))).

But the map

w0(x) : K~i(BP,BP) = TrnHom(BP.BP) —* *Ü)C(BP, 2k + 1, k) = H2k+1(BP,R(k)),
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sends the class of / € 7rnHom(PP. BP) to f*{x). Since eBP is represented by the identity
map, we get

(x)(eBP) = Id*(x) = x,

proving the lemma.

(5.2.9) The product structure in absolute Hodge cohomology is given by a morphism of
complexes

H*{X, n,p) <g> H*(X, m, q) -¡4 H*(X,n + m,p + q),
which induces a map of spaces

fC*(X,n,p) x /C*(X,m,q) ^/C*(X,n + m,p-hq).

The spaces ÍC(X, n,p) are naturally pointed by the element 0. Moreover 0Ux = xU0 = 0.
Therefore the above map of spaces factors through:

IC*(X,n,p) x¡C*(X,m,q) —► )C*(X,n,p) A )C*(X,m,q) —> C*(X,n + m,p + q).

Lemma 5.12. Let x € H%(BP,R(p)) and y € R(g)). Then for any i > 0 the
map 7r¿(x U y) = 0.

Proof. Let us write E = HomiiVlí.BP). Then the map 7r(x U y) can be factored as

nt(E) ---l nt(E A P) Xi(IC(NiX,n,p) MC(NU,m,q)) -* Xi(IC(NÍÍ,u + m,p + q)).

But since S' A Sl = S2i and for i > 0, 7r¿52‘ = 0, the map 7r¿(diag) = 0.

(5.2.9) We are ready to prove theorem 5.2. Let i > 0 and a € 7\,-i(J5f,il). By lemma 5.11,
we have that

ch(cr) = 7r¿(ch(esl> ))(<r),
p{a) = 7r,(p(eSP))(a).

Therefore

ch(a) - p(a) = 7r¿(ch(eSP) - p(eBP))(<r).

By corollary 5.10, ch(eep)—p(eBP ) is a sum of decomposable elements. Therefore by lemma
5.12.

ch(<r) = p{a)

concluding the proof of the theorem.

(5.3) The same argument shows that, for a smooth simplicial complex variety X, an integer
i > 0, and an element a € Ki(X) then ch(cr) = p(cr). To prove the same result for i < 0
one can use an analogous argument using BmP ([Sch]), with m > —i.
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§6 Higher Bott-Chern forms.

The higher Bott-Chern forms introduced in §3 are differential forms defined on X x
(P1)*. Nevertheless, the original Bott-Chern forms ([B-C]) and the higher Bott-Chern
forms introduced by Wang in [Wa] are differential forms defined on X. The aim of this
section is to relate both notions of higher Bott-Chern forms, in the case when X is a

proper smooth complex variety. The main tool for this comparison will be an explicit
quasi-isomorphism

b*(x,p)—♦$*(*,?).
To this end we shall first introduce some complexes which compute absolute Hodge homol-
ogy and cohomology.

(6.1) Let us begin by introducing the complex where the simplest Bott-Chern forms are
defined. This complex is a minor modification of the complex used by Wang in [Wa] (see
also [Bu 2]). The use of this complex has been suggested by Deligne in [De]. Let X be a
proper smooth complex variety. We shall write

E¿(X)(p) = (2tri)'££(*).

Definition 6.1. The complex 2U*(.Y,p) is defined by

Mn(X,p)

,£?',W(p-l)n ® Er'-’Xx),
p' + q' =n-1
p'<p, q'<P

' ££(*)(?) n ® £/’«'(*) DKerd,
p'+q' = n

p'>p> q'>p

. 0.

for n < 2p — 1,

for n = 2p,

for n > 2p.

If x € 2Vn(X,p) the differential (Íqjj is given by

{—7r(dx), for n < 2p — 1,—2ddx, for n = 2p — 1,
0, for n = 2p,

where
* : £•(X) —. £J(X)(p - 1) n ® £»'■«'(X),

p' + q' =n-1
p'<p, q‘<p

is the projection.

Proposition 6.2. If X is a proper smooth complex variety, then

H'(W*(X,p)) = HÍ(X,R(p)).
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Proof. Since X is proper,

H$(X,R(p)),
0,

for n < 2p,
for n > 2p,

where H^(X, R(p)), denotes real Deligne cohomology of X. Therefore the result follows
from [Bu 2 §2].

As in [Bu 2], we have morphisms of complexes

0:fT(A»—2T(X,p)

<p:<m*(x,p)-+sj'(x,p)

given by

*!>(<*,/, v)
7r(w),

£?=-/ al,n~‘ + du*-1'"-?*1 + (-l)pdüp-1’n~p+1,
for n < 2p — 1 and
for n > 2p,

and

<p(x)
(dxp 1,n p — dxn p,p 1,2dxp 1,n p,x), for n < 2p — 1 and
(r,.r,0), for n > 2p,

where, if x € Ex, then x = Yh xP'q iS the decomposition of x in terms of puré type. The
morphisms ¡p and ip are homotopy equivalences inverse to each other.

(6.2) In order to make the process of comparison clearer, we need an auxiliaxy complex to
compute absolute Hodge cohomology, which is provided with a graded commutative and
associative product. It can be obtained by means of the Thom-Whitney simple introduced
by Navarro Aznar (see [N 2] for the general definition and properties of the Thom-Whitney
simple).

Let L* be the differential graded commutative R-algebra of algébrale forms over A¿.
Explicitly L\ = R[e] and L\ — R[e]de. Let ¿o : L* —► R (resp. ¿i) be the evaluation at 0
morphism (resp. evaluation at 1).
Definition 6.3. Let X be a smooth complex variety. The Thom-Whitney simple of the
absolute Hodge complex, denoted by f)Tw(X,p), is the subcomplex of

(27n)pW2pE{og(Xh © W2p n Fp £fog(X) © {L\ § Wá,££,(*))

formed by the elements (r, /, u>) such that

w(0) = (¿o © Id)(w) = r,

u(l) = (61®ld)(u) = f.

28



Let E and I be the morphisms of complexes

I

VTW(X,p)^V{X,p)
E

given by

E(r, f, u>) = (r, /, e 0 / + (1 - e) ® r + de ® w),

I(rJ,u) = (r,/, / w),
Jo

where the integration symbol means formal integration with respect to the variable e.
These morphisms are homotopy equivalences (see [N 2]).

We shall denote by I' the composition

f>rw(x, *) -4 sj*(x,.) -t 20*(jr,»),

and by E' the composition

2ü*(X, *) ^ *) %tw{X, *).

The morphisms /' and E' are also homotopy equivalences inverse to each other.
We can define a product

í)tw(X,p) <8> fj™w(X,q) —* f)^Y^{X,p + q),

by
(r,f, u>) U w') = (rAr',/A /', uAu).

This product is associative, graded commutative and satisfies the Leibnitz rule. Therefore

e™(v,.) = ®ev(x,P)
P

is a differential associative graded commutative algebra. Moreover, the R-algebra structure
induced in H^(X, R(p)) by this product coincides with the R-algebra structure introduced
by Beilinson ([Be]).
(6.3) Let us give the homology analogue of the last complex. This is done by means of
currents. For a proper smooth complex variety X, let D*.,(X) be the double chain complex
of complex currents over X, let Dm(X) be the associated single complex, and let Df(X)
be the real subcomplex. We shall write

F„D.(X) = ® Dp,,„
P'<P
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Let r-2pD*(X) be the subcomplex

( Dn(X), if n > 2p,
t-2pDn(X) = < Ker(d), if n = 2p,

(o, if n < 2p.

Since X is proper, the filtration r plays the role of the weight filtration.
Let L\ be the chain complex defined by L\ = L^k (see 6.2). We shall denote by ÓQ and

¿i the evaluation at 0 and 1 as in (6.2).
Definition 6.4. Let $)Jw(X,p) be the subcomplex of

^(27rz)-pr^2pD«(X) © r-2p n Fp D.(X) 0 {L\ ® r^2pD,(X))^
formed by the elements (r, /, u>) such that

w(0) = (¿o <S> Id) (w) = r,

w(l) = (¿i © Id) (u;) = f.

The homology of the complex SjJw(X,p) is the absolute Hodge homology of X.

(6.4) The last complex we introduce is an analogue of ^*(Jf,p), replacing S)*(X,p) by
%tw(X,p)- We shall denote by f)^w(X, p) the double complex given by

^;TW(^p) = ^rw(^x(ip1rn,í>),
with differentials

d — df),

<¡" = E(-dí+><¿;-
Then the double complex f)y^(X,p) is given by

n+1
TW (X,p)j © A sí ,tw+ fóiP ~ 1)^

Finaly let íj^w(X, p) be the associated simple complex. The differential of this complex
will be denoted by d.

Observe that the homotopy equivalences E and I induce homotopy equivalences
I

&Tw(X,p) < {X,p).
E
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(6.5) In order to pulí down forms in X x (P1)" to X, we need some differential forms on
X x (P1)" which will play a role similar to the currents "integration along the standard
simplex”.

Let (x : y) be homogeneous coordinates of P1, and let t = x/y be the absolute coordínate
of P1. Let us write C* = P¿ — {0, oo}. Let

A= ^'(logtt)
1 í dt di dt dt di

, _\
=

^ ( ~t p2y,(e + 1) <8> — + (e - 1) 0 y + de ®\ogtt)
€ SÍtiyÍC*, 1).

Let us consider the open subset (C*)n C X x (P1)”. Let us denote by by : (C*)n —►
C*, i — 1,..., n the projections over the ¿-th factor. Let us write A¿ = p* A.
Definition 6.5. Let Wn € f)j>ly((C* )n, n) be the form defined by

Wn = Ai U---UA„.

(6.6) Since the forms Wn will play a central role, let us present a more explicit description.
Let us write Wn = (W^, W¿, W*). Then

9 a dti
= A t

11=1

Wn = A + ^+(e-l)<g>¿+de<g>logí,í,-
Let ©„ denote the symmetric group. Let us write, for i = 0,..., n,

pi _ j l , dtyji+ í) , A
t*‘1> t<r(n)

and, for i = 1,..., n,

Sn = ^2 (-1)<T1°gí^(l)ííT(l))
2) . ^ít(») . ^tr(i+1)A ••• A

<r£6n

Then we have

C*(2)
A A--- A

di,cr(n)

c<r(n)

i n i

n 2" f-' ¿!(n-i)! n 2" /. r 1W -x, ¿e(8)5;.
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(6.7) We are not as interested in the forms Wn, as in their associated currents. Let
oj € pi^„. Let us denote by [u;] £ .D2n-r((lP1)n) the current defined by

\¿Kl) J(pi)n
If a <g) u € L £(V (n we write

[a <g> a>] = a ® [a;]

In this way we obtain a map

nbvi(rl)",p) — Ü23r((P')”,"-p)
(r,/,u) I—> (M.l/l.M)

This definition can be extended to any locally integrable differential form.
Deñnition 6.6. We shall denote by [W„] the element of ió^'w((P1)n,0) given by

[wn] = aKUKUK))-
The following result exhibits the analogy between the currents “integration along the

standard simplex” and the currents [W„].
Proposition 6.7. The currents \Wn] satisfy the relation

<w = E E (-i)i+>(<ó).[iv»-i].
1=1 jr=0,1

Proof. Formally this proposition is the Leibnitz rule. To prove it we can work component
by component. By a standard residue argument:

d[Wl\ = d A f
1=1

1=1 7=0

By the same argument and taking some care with permutations one sees

<«] = - (» - >)K-il).
k=1j=0

¿Ki = Ki + [pr1] + ¿ ¿(-i)‘+j(<*‘).((¡ - i)K-\] - (»- o(si-.i)-
k=1 7=0

The proposition follows from the above formulas and the explicit description of W\ and
W* given in (6.6).

(6.8) Acting component by component, the currents [Wn] induce morphisms
[Wn] ; P) = &tw(X x (P1)11,^) i fyrpW(X,p).
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Lemma 6.8. The morphisms [Wn] factorize through morphisms

\Wn\ ■ ?)Tw(X,p) ► S)rTXy(X,p).
Proof. Let us denote by the automorphism of (¡P1)” given by

<T*'((Xi : • • • ’ (x‘> : Vi), ■••(!„: yn)) = ((xi : Vi), ■ ■., (y¿ : x¿),... (xn : yn)).
Then (<7,)*[Wn] = — [TVn], for i = 1,..., n. On the other hand, if

n € s¿ (sí£tw(X,p)) © Wi A s, fa$?+1(X,p- 1))
then (cri)*r¡ — rj. Therefore

W.]n = -{°,).{Wn}n = = -[w.to.
Henee [Wn]í? — 0 proving the result.

Definition 6.9. Let Wtw be the morphism

Wtw '• ?)tw(X,p)—> 9)tW(X,p)
given, for 77 6 fe(A’.,p), by

WTw(r¡) = [Wn]ri.
Proposition 6.10. The morphism Wtw m a morphism of complexes. Moreover it is a
quasi-isomorphism.
Proof. The fact that is a morphism of complexes is a consequence of Proposition 6.7.

Let ¿ be the quasi-imorphism defined in Proposition 1.2. Let us write t' = E o 1 o I.
Then 1' is also a quasi-isomorphism. Since Wtw o ¿' = Id we have that Wtw is also a

quasi-isomorphism.

Definition. 6.11. Let us denote by W the morphism
W = I o WTw o E : h*(X,p) —►

Observe that W is also a quasi-isomorphism. Summarizing, we have the following dia-
gram of complexes and quasi-isomorphisms.

w

E

^>Tw(XiP)
Wtw

* V(X,p)
I

* &Tw(X, p)

W*(X,p)

(6.9) The above diagram alow us to define different kinds of higher Bott Cher forms. For
instance let us recover the original definition of higher Bott-Chern forms due to Wang
([Wan]) and the classical Bott-Chern forms.
Definition 6.12. Let ~T be an exact metrized n-cube. We shall also cali the Bott Chern
form of T the form

_ _

chn(E)w = 0 W{ch„(Jr)-H).
One may compute these forms directly using the following result.
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Proposition 6.13. Let T be an emi-n-cube. Then

chn(T)w = ttAt— í cho(tr„(7)) A I'(Wn).
{¿ni) J(pij„

Proof. This result is consequence of the following facts
(1) The morphism V is functorial.
(2) For any smooth complex variety Z, if u £ S)^w{Z,p) and rj £ fij-w(Z*,*), then

I'(u U t)) = I'(u>) A I'(r]) (see [Bu 2]).
(3) I' o E' = Id. Therefore

I'{E[áio(tvn{J))n)) = I\E'{cho(trn(7)))) = ch0(trn(^)).

Up to a normalization factor, the formula given in Proposition 6.13 is the original defi-
nition due to Wang ([Wa]). To see this, let us compute explicitly I’(Wn) £ 22Jn((C*)n,n).
Proposition 6.14.

i=i

Proof. Since Wn € iój'VV((C*)n,n), by (6.1) and (6.2), we have

i'(w») = jt (jf‘ wf),
where the integral svmbol means integration with respect to the variable e, and n is the
projection

71 '• ■®'(c*jn * (2ni)n 1-E’"c.)n>R-
This projection is given by 7r(p = (z + (—l)n-1J)/2. Therefore

nwn) = ¿ jf (s;+■
Butsn = s;-+>.

(-D

Then, joining the terms with S'n, and taking into account that
1M-1 fO (e + 1)*-i(€ _ !)»»-«

{i — l)!(n — ¿)! -£ (i — l)!(n — p!
-de,

we have that

But

n / fi (e + l)—(e-l)»- .

GíVA, (í — l)!(n — i)! deS;j'
(e + p-He -l)n-

= (-l)n+,~12rl
I_ j (¿ — l)!(n — p! n!

proving the result.
The following result is a direct consequence of the definitions.
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Proposition 6.15. Let X be a proper smooth complex variety. Let

£:0—►H—>0

be an exact sequence of locally free sheaves over X. Let us denote by bc(£) the Bott Chern
form of £ as defined by Bismut, Gillet and Soulé f[B-G-S], [G-S]^. Then

chi(£) = — -bc£ mod(Imd + Imd).

(6.10) The use of the Thom-Whitney simple for absolute Hodge cohomology, besides giving
a way to construct the currents Wn, allows us to define a multiplicative theory of Bott-
Chern forms.

Definition 6.16. Let T be an exact metrized n-cube. We shall cali the multiplicative
Bott-Chern form of T the form

cha(J)Tw = WTw(E(chn(J)n)).

In particular, if T is a hermitian locally free sheaf, then

<5io(^)rtv = ^(cho^).

On the other hand, if T is an emi-n-cube, then

chn(^”)TW = í dbo(trn(^"))riv U Wn.
(2m)n J(Fi)n

Definition 6.17. Let T be a metrized exact n-cube and let Q be a metrized exact m-cube.
Then T <8> Q is the metrized exact n + m-cube given by

{J7® Q)il,...,in+m — (Jr)íl,...,i„ <8> (^)in+1 «„+,

with the obvious morphisms and metrics.

Proposition 6.18. Let (resp. Q) be a metrized exact n-cube (resp. m-cube). Then

din+m(F ® Q)tw = din{E)TW U chm{Q)rw-

Proof. We may assume that T and Q are emi-cubes.
Let 7Ti : X x (p1)n+m ► X x (P1)” be the projection over the first n-projective lines

and let tt2 : X x (P1)"+m —> X x (P1)™ be the projection over the last m-projective lines.
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Lemma 6.19. Let J- (resp. Q) be an emi-n-cube (resp. emi-m-cube). Then

trn+m(F <8> Q) = TTi trn(^) ® TTj trm((y).

Proof. By §3, (3.7), it is enough to show that, if m > 1, then

trií-T7 <8> Q) = T 0 trj(O),
and if m = 0, then

tri^®Q) = trrfF) <3 Q.
Since tri is computed in each edge separately, it is enough to prove the case n = 1, m = 0,
but this case follows directly from the definition.

Using lemma 6.19, the multiplicativity and functoriality of the Chern form and the
definition of the forms Wn, we have:

chn+m^ <8> Q)rw
1

(2ni)n 4* m
Z(pl )n + r

ch0(7r* tr„(^) ® trm(G))Tw U Wn+m

ñn;m / < ch0(tr„(J-))Tw U tt* ch0(trm(<?))™ U *'xWn U ^Wnl) Jm)n+m(27T?)- ■ - ^(jpa )

= chn(.7:')TvvUchm((?)'rw'.
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