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1. Introduction

In the present paper, we find explicit solutions to embedding problems given by central
extensions of symmetric groups with kernel a cyclic 2-group, different from those considered
in [4].

We recall that H?*(A,,Com) ~ Z/2Z and H?(S,,Caom) ~ 1/2Z x 1 /21 and so we have
two central extensions of S, by Cym reducing to the non trivial central extension 2™ A4,, of
.‘1n by C2m .

We denote by 25 the double cover of S, in which transpositions lift to elements of
order 4, by s, the corresponding element in H?(S,,C>); by 2™S the central extension
corresponding to j,s;, for j« : H*(S,,C2) — H?*(S,,Cym) the map induced by the em-
bedding j : Cy — Cym; by 2™S7 the second central extension of S, by Cym reducing to
2™ A,, for m > 1. For s} the element in H?(S,,C;) corresponding to 25}, we note that
Jsst = jus;,. By a result of Sonn [10], we know that all central extensions of S, appear
as Galois groups over Q.

In this paper, A will always denote a field of characteristic different from 2, L a Galois
Snp-extension of K. In [1], we obtained an explicit resolution of embedding problems

25% - S, ~ Gal(L|RK)
and in [3].[4],[5], of embedding problems

9™S~ S, ~ Gal(L|K).

Here we deal with embedding problems

2mSt - S, ~ Gal(L|K).

Comparing [4] Proposition 1 and Proposition 1 below, we see that a 2™ S} -field contains
a Cyr-extension whereas a 2™S5 -field does not.

If e: Gk — S, denotes the epimorphism corresponding to the Galois extension L|K,
the obstruction to the solvability of the embedding problem 25} — S, ~ Gal(L|K) is
given by the element e*s? € H%(Gg,C,), which can be computed effectively by means
of a formula of Serre [9, Théoréme 1]. Following Serre, for a Galois Sp-extension L|K,
we denote by E the subfield of L fixed by the isotropy group of one letter, by dg the
discriminant of the extension E|K, by Qg its trace form. For a quadratic form @, we
denote by w(Q) its Hasse-Witt invariant. Serre’s formula reads:

e*(s;’;) =w(QEg)2,dE).
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Let us note that the formula of Serre has been generalized by Frohlich to compute the
obstruction to the solvability of an embedding problem G — G ~ Gal(L|A") with kernel
C,. such that the element in H?(G,C;) corresponding to G is the second Stiefel-W hitney
class sw(p) of an orthogonal representation p of the group G in the orthogonal group of a
quadratic form defined over the field A [6. Theorem 3].

For embedding problems of the type considered by Frohlich. we gave in [2] a method
of explicit resolution.

When dealing with embedding problems 2™St — S, ~ Gal(L|K), for m > 2, we
obtain a criterion for the solvability and a method of computation of the solutions by
reducing to an embedding problem with a kernel of order 2.

We note that the symmetric group Sy is a subgroup of the projective linear group
PGL(2.C) and the groups 2™S] and 2™S; fit in a commutative diagram

omsE ., s,

l !

GL(2.C) —— PGL(2.C).

Embedding problems given by 2™ S over a field & correspond then to liftings of projective
to linear representations of the absolute Galois group Gk of the field K. Using this
correspondence, Quer obtains, in the case k' = @, a criterion for the solvability of the
embedding problem

2mSE o Sy ~ Gal(L|Q)

in terms of local conditions (cf. [7]).

2. Existence of solutions
The next proposition shows that the resolution of the embedding problem considered
can be reduced to the resolution of an embedding problem with kernel C,.

Proposition 1. Given a Galois S,-extension L|K . the embedding problem

(1) 2mS+T - 8, ~ Gal(L|K)

18 solvable if and only if there exists a Galois extension K)|K with Galois group Cym such
that Ky N L = K&/dg) and the central embedding problem (with kernel C;)

(2) ImSF 5 S, xc, Cor ~ Gal(L.K1|K)

18 solvable.

In this case, the set of solutions to (1) is equal to the union of the sets of solutions
to the embedding problems (2) for K{|K running over the extensions satisfying the above
conditions.
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Proof. By taking into account that 24, is contained in 2™S7, we obtain the following
picture of subextensions of a solution field L for the embedding problem (1).

2m 5

From here. it is easy to see that L solution to (1) is equivalent to L solution to ( 2) for
some K satisfying the conditions in the proposition.

Now we obtain easily the following result on the obstruction to solvability of the
embedding problem (2).

Proposition 2. Given a Galois S,-extension L|K, and a Galois Cym-extension Kq|K
such that Ky N L = K/dg), m > 2, the element in H*(Gk,C3) giving the obstruction to
solvability of the embedding problem (2) is equal to the product of the elements giving the
obstructions to solvability of the embedding problems 25, — S, ~ Gal(L|K) , where 25,
can be both 257 or 25, and Cym+r — Cym ~ Gal(K,|K).

Let us note that the elements in H?(S,,C,) corresponding to 25} and 25, differ in
(dg) U (dE), which is trivial in HZ(S,, X, sz,CQ).

3. Solvability in terms of Hilbert symbols

The condition for solvability can be made more explicit if we know a parametrization
of the C';~-extensions of the field K and an explicit expression in terms of Hilbert symbols
of the obstruction to solvability of Com+1 — Cam ~ Gal( K, |K).

In the case of C1¢ — Cjg. the obstruction to solvability has been computed by Swallow
[11]. for Cs-extensions belonging to a parametric family given by Schneps [8]. Following
Swallow, we refer to C's-extensions included in this parametric family as admaissible ezten-
stons and we shall call a field admissible when all its Cg-extensions are admissible. We
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note that the class of admissible fields contains @ and Q(T) (cf. [8]).

Proposition 3. a) Assume K contains a primitive 2™ -root of unity . Then for a Galos
S, -extension L|K, the embedding problem 2™S+T — S, ~ Gal(L|K ). m > 1, is solvable if
and only if w(Qg) = (—2(,dEg).

b) Let I be any field of characteristic different from 2, L|K a Galows S,-extension. Then
the embedding problem 45T — S, ~ Gal(L|K) 1s solvable if and only if (—~1.dg) =1 and
w(QE)=(-1,r) for some r in K.

c) Let K be any field of characteristic different from 2 (resp. an admaissible field). L|K a
Galois S, -extension. Then the embedding problem 85} — S, ~ Gal(L|K) is solvable if
(resp. if and only of) (—1.dg) = (2.dg) = 1 and there exist elements r,s in K such that
(;1,7"‘) ? 1 and w(QEg) = (s(z —w), =1)(rz(z — y), =2)(z(z —w).dg) for dg = 2% + y? =
% = 2w,

Proof. a) In this case, we take K; = K( 3/dg) and apply [6](7.10).
b) Here the condition (—1,dg) = 1 is equivalent to the existence of a Galois C4-extension
K1 |K containing K(/dg) and all such K are of the form

K=K <\/r(d5+y\/d1;) for dg =x% +y% r € K.

The obstruction to solvability of Cs — C4 ~ Gal(A|K) is equal to (2,dg)(—1,r) (see
e.g.[8]).

c¢) The existence of an admissible Cg-extension of A containing K(/dg) is equivalent to
(=1,dg) =(2,dg) =1 and (—1,r) = 1 for some r [8]. Then all such Cg-extensions are:

K, =K (\/L:(z +\/Zi;) <2rdE +v\/rdg +ry\/gg+u\/;dg - ry\/@))

for r = t2 4+ 2, u = tyx — toy — 1y — t22, v = t1x — t2y + {1y + t2x, and we use the
explicit expression for the obstruction to solvability of C;¢ — Cs ~ Gal(K;|K) obtained
by Swallow [11].

4. Construction of the solutions
We can apply to the embedding problem

ZmS;— — Sn X, Cgm >~ Gal(LﬂK) , m > 2,

where L; = L.K, the method of construction of the solutions obtained in [2] whenever
we have an orthogonal representation p of the group S, x¢, C2m such that its second
Stiefel-Withney class sw(p) corresponds to the extension

(3) 2mSt 5 S, x¢, Coym.
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Such a representation p can be obtained as p; L p, for p; an orthogonal representation
of S, such that sw(p;) corresponds to 2S5} — S, (e.g. the embedding of S, in the
orthogonal group O,(Iy) of the identity quadratic form in n variables) or to 257 — S,
(e.g. theinclusion §,, — A, xCy — A, given by s — (s, sg s) followed by the embedding
of 4,45 in the special orthogonal group SO, +2([y) of the identity quadratic form in n + 2
variables) and p; an orthogonal representation of C;= such that sw(pz) corresponds to
Cym+1 — Cym. Such a representation po is known in the cases included in Proposition 3.
Namely, it is given in [6] for case a), in [11] for case ¢) and is obtained by restricting to C}
the embedding of Sy in O4(L) in case b).

Now, given a representation p : S, X, Comn — O(Q) ., as above, we can assume that
it is special (i.e. that its image is contained in the special orthogonal group) and satisfies
spop = 1 for sp the spinor norm in the orthogonal group O(Q) (cf. [2] Proposition 3).
Under these conditions, the embedding problem considered is solvable if and only if the
Hasse-Witt invariants of the quadratic form @) and its twist @, by p are equal. By applying
[2] Theorem 1, we obtain that the set of solutions to the embedding problem considered
are the fields L,(/r7). for r € K* and 4 a nonzero coordinate of the spinor norm of an
adequate element = in the Clifford algebra over L; of the quadratic form @Q,, which can be
given explicitly.

Further. [2] Theorem 2 gives when this element 4 can be given in terms of matrices.
In particular, if the two quadratic forms @ and @, are equivalent, 4 is given by a single
determinant.

5. The case 45
We examine now more closely the embedding problem
48T = S, ~ Gal(L|K).

It is solvable if and only if (—~1.dg) = 1, i.e there exist elements r and y in A such that
dp = 2% + y%, and w(QEg) = (=1,r), for some r € K. If this is the case, its resolution is
reduced to the resolution of the embedding problems

(4) 4S5t — S, xc, Cy ~ Gal(K,.L|K),

where K = K(\ﬁ( dg + y/dg), for r and y as above. We consider the special represen-
tation p = p; L py for p; the orthogonal representation of S, obtained by embedding S,
in the orthogonal group O,(K) of the identity quadratic form in n variables and p, the
orthogonal representation of C'y obtained by restriction of the embedding of Sy in O4(K).

The quadratic form @, is then Trgx(x?) L Trg,x(y?). If the two quadratic forms
@ and Q, are equivalent, let P be a matrix in GL(n + 4, K') such that P'[Q,]P = [@] and
M the matrix in GL(n + 4, L;) given by

(I{) 1<i<n 0
M= 0<ign=1
0 (4 )1<i<s
03,<3



for r; the roots of a polynomial in K[X] of degree n, with decomposition field L, and y;
the elements £+/r(dg + y/dg). We obtain then a solution to the embedding problem (4)
as L = L,(/7). for 7 = det(MP +1I).

In the case i’ = Q, we can determine under which conditions the two quadratic forms
Q and @), are equivalent. By considering () and @, at oo, we obtain that, if the embedding
problem considered is solvable. the elements dg and r must have the same sign and, if they
are both positive, then the two quadratic forms @ and @, are equivalent.

6. Examples

In each example we consider a polynomial F(.X) realizing Sy over Q and let L denote
its decomposition field, E the field obtained by adjoining to Q one root of F. We consider
the embedding problems

(3) 2mSFH - Sy ~ Gal(L|Q)

for m > 1. We recover the results of Quer concerning solvability (c¢f. [7]) and exhibit an
element v generating the set of solutions in our last example.

Example 1.

For F(X)=X*+ X3 -6X%2+ X + 2 we have dg = 15529 = 53 x 293 = 1152 + 482,
w(QE) =1.(2,dg) = —1 in exactly 53 and 293.

By applying [9] Théoréme 1 and Proposition 3, we obtain that the embedding problem
(5) is not solvable for m = 1 and m = 3 and solvable for m = 2. Moreover, (2,dg) # 1
implies that Q4/dg)|Q cannot be included in a Cs-extension and so neither in a Cym-
extension for m > 3 and we obtain then that (5) is not solvable for any m > 3.

We obtain the set of solutions to

4§} — Sy ~ Gal(L|Q)

as the union of the sets of solutions to

45} = Sy X, Cy ~ Gal (L <\/ r(15529 + 48\/15529) |Q)

for r running over the square-free integers which are a sum of 2 squares.

Example 2.

For F(X) = X* 4+ X® —11X? 4 12 we have dg = 2° x 3% x 2969, w(Qg) = —1 in
exactly 2 and 3, (-1.dg) = (2,dg) = 1.

We have then that (5) is not solvable for m = 1. Further, (~1,dg) =1 and w(Qg) =
(—1.3) imply that (5) is solvable for m = 2.

Now (—1,dg) = (2,dg) = 1 imply that Q(/dE) is embeddable in a Cs-extension and
the condition for (5) being solvable for m = 3 is that there exist r,s € Q with (-1,7) =1
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such that (s(z — w).—1)(rz(z — y). =2)(z(z — w).dg) = =1 exactly in 2 and 3, where
r = 36.y =924, = 1800, w = 1092. This is equivalent to (s.—1)}{(r.2) = —1 exactly in
2.59.2969 which fails in 2969. So (5) is not solvable for m = 3.

The condition for Q(/dg) embeddable in a Cj¢-extension is that there exist r.s € Q
with (=1.r) = 1 such that (s(z — w).=1)(rz(z — y),=2)(z(z — w).dg) = 1, which is
equivalent to (s.—1)(r.2) = 1, which fails in 2969. So (3) is not solvable for m > 3.

We obtain the set of solutions to

451’ — S ~ Gal(L|Q)

as the union of the sets of solutions to

48] — Sy x¢, Cy ~ Gal (L (\/1"(2.2969 + 77v2.2969> |Q)
for r running over the square-free integers such that 3r is a sum of 2 squares.

Example 3.

For F(X) = X* + X® —4X? — X + 2 we have dg = 2777, w(Qg) = (~1,dg) =
(2,dg)=1.

We have then that (5) is solvable for m = 1 and m = 2. Now, (—-1,dg) =(2,dg) =1
imply that Q(\/dg) is embeddable in a Cs-extension. The conditions for (5) solvable for
m = 3 and Q\/dg) embeddable in a C¢-extension are both equivalent to the existence of
r,s € Q with (=1,r) = 1 such that (s(z — w), =1)(rz(z — y), =2)(z2(z — w),dg) = 1, for
r =29,y =44,: = 33, w = 4, which is equivalent to (s,—1)(r,2) = —1 exactly in 2 and
2777, which fails in 2777. So (5) is not solvable for m > 3.

We obtain the set of solutions to

4St — Sy ~ Gal(L|Q)

as the union of the sets of solutions to

4SF — Sy x¢, Cy ~ Gal (L (\/ r(27T7 + 44 \/2777> |Q)

for r running over the square-free integers which are a sum of 2 squares.
For r = dp = 2777, an element 4 generating the set of solutions is

v = 3272981289064523539933868006 + 5562840786788949523164832441 r,
—7857424647479352840038038361 22 — 518350656845827969736524653 3
+7600643699302539469685190834 z, + 2280324081956182768636706459 r,x;
—8844713788527631409805787463 222 + 394146949900833831192146099 z3z,
+1940685159241524676959527572 x2 — 2210403079523052949625817486 12
—662278022463578813582064410 x%r2 + 299407062746609413021692831 z3z2
+9846407664804530113585990756 x5 — 8010122436987691214034628162 113
—11999444980137143053727763804 x2r3 + 8730375993903968171520578231 23z,
+7712880420702604369208311568 roxr3; + 49288960210041618585830856 11273
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—7516185875908586411439042817 r2ry25 + 601229248830944139907108740 23 x5 25
—7107698002435360464530660820 223 + 11918011401514653829701289410 r{r2 13
+11085699965441992600927355514 12x2x5 — 11442938176140918403205975802 r3r2 25
+y (877020547103738725470 + 1486993746036323616141 r,
~2101389180427447237485 +2 — 138859064262966573465 3
+2033449398120606798906 1, + 611517893733280442151 1y
—2365767832053607527243 121, + 104544401673634277367 132,
+519408508832688336084 12 — 590634265981313831742 7, r}
—177819416383792695970 x21 + 80201797043721428307 233
+2634313987410770530740 13 — 2143427459163936044586 1, x5
—3209464706321712842820 223 + 2335301399751945044571 £33
+2063293554270949305264 1,73 + 13954094077207075128 1 2573
—2011038940649902656693 r2z2r3 + 160728217206738870876 13x, 73
—1901083573458202228740 x5 + 3188278642452195718170 ryx3zrs
+2964881256785137801458 r2r2r3 — 3060877901617363446594 r3x213)

for ry, xy, r3 three distinct roots of the polynomial F(X) and y a root of the polynomial

902
Xt _a2x24 .“,gh-.

2777
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