2

UNIVERSITAT DE BARCELONA

CONSTRUCTION OF $2^m S_n$ -FIELDS CONTAINING A C_{2^m} -FIELD

by

Teresa Crespo

AMS Subject Classification: 11R32, 11S20, 11Y40

Mathematics Preprint Series No. 228 January 1997 Teresa Crespo

1. Introduction

In the present paper, we find explicit solutions to embedding problems given by central extensions of symmetric groups with kernel a cyclic 2-group, different from those considered in [4].

We recall that $H^2(A_n, C_{2^m}) \simeq \mathbb{Z}/2\mathbb{Z}$ and $H^2(S_n, C_{2^m}) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and so we have two central extensions of S_n by C_{2^m} reducing to the non trivial central extension $2^m A_n$ of A_n by C_{2^m} .

We denote by $2S_n^-$ the double cover of S_n in which transpositions lift to elements of order 4, by s_n^- the corresponding element in $H^2(S_n, C_2)$; by $2^m S_n^-$ the central extension corresponding to $j_*s_n^-$, for $j_*: H^2(S_n, C_2) \to H^2(S_n, C_{2^m})$ the map induced by the embedding $j: C_2 \to C_{2^m}$; by $2^m S_n^+$ the second central extension of S_n by C_{2^m} reducing to $2^m A_n$, for $m \ge 1$. For s_n^+ the element in $H^2(S_n, C_2)$ corresponding to $2S_n^+$, we note that $j_*s_n^+ = j_*s_n^-$. By a result of Sonn [10], we know that all central extensions of S_n appear as Galois groups over \mathbf{Q} .

In this paper, K will always denote a field of characteristic different from 2, L a Galois S_n -extension of K. In [1], we obtained an explicit resolution of embedding problems

$$2S_n^{\pm} \to S_n \simeq \operatorname{Gal}(L|K)$$

and in [3], [4], [5], of embedding problems

$$2^m S_n^- \to S_n \simeq \operatorname{Gal}(L|K).$$

Here we deal with embedding problems

$$2^m S_n^+ \to S_n \simeq \operatorname{Gal}(L|K).$$

Comparing [4] Proposition 1 and Proposition 1 below, we see that a $2^m S_n^+$ -field contains a C_{2^r} -extension whereas a $2^m S_n^-$ -field does not.

If $e: G_K \to S_n$ denotes the epimorphism corresponding to the Galois extension L|K, the obstruction to the solvability of the embedding problem $2S_n^+ \to S_n \simeq \text{Gal}(L|K)$ is given by the element $e^*s_n^+ \in H^2(G_K, C_2)$, which can be computed effectively by means of a formula of Serre [9, Théorème 1]. Following Serre, for a Galois S_n -extension L|K, we denote by E the subfield of L fixed by the isotropy group of one letter, by d_E the discriminant of the extension E|K, by Q_E its trace form. For a quadratic form Q, we denote by w(Q) its Hasse-Witt invariant. Serre's formula reads:

MATEMATIQUE

Let us note that the formula of Serre has been generalized by Fröhlich to compute the obstruction to the solvability of an embedding problem $\widehat{G} \to G \simeq \text{Gal}(L|K)$ with kernel C_2 , such that the element in $H^2(G, C_2)$ corresponding to \widehat{G} is the second Stiefel-Whitney class $\text{sw}(\rho)$ of an orthogonal representation ρ of the group G in the orthogonal group of a quadratic form defined over the field K [6. Theorem 3].

For embedding problems of the type considered by Fröhlich, we gave in [2] a method of explicit resolution.

When dealing with embedding problems $2^m S_n^+ \to S_n \simeq \text{Gal}(L|K)$, for $m \ge 2$, we obtain a criterion for the solvability and a method of computation of the solutions by reducing to an embedding problem with a kernel of order 2.

We note that the symmetric group S_4 is a subgroup of the projective linear group $PGL(2, \mathbb{C})$ and the groups $2^m S_4^+$ and $2^m S_4^-$ fit in a commutative diagram

Embedding problems given by $2^m S_4^{\pm}$ over a field K correspond then to liftings of projective to linear representations of the absolute Galois group G_K of the field K. Using this correspondence, Quer obtains, in the case $K = \mathbf{Q}$, a criterion for the solvability of the embedding problem

$$2^m S_4^{\pm} o S_4 \simeq \operatorname{Gal}(L|\mathbf{Q})$$

in terms of local conditions (cf. [7]).

2. Existence of solutions

The next proposition shows that the resolution of the embedding problem considered can be reduced to the resolution of an embedding problem with kernel C_2 .

Proposition 1. Given a Galois S_n -extension L|K, the embedding problem

(1)
$$2^m S_n^+ \to S_n \simeq \operatorname{Gal}(L|K)$$

is solvable if and only if there exists a Galois extension $K_1|K$ with Galois group C_{2^m} such that $K_1 \cap L = K(\sqrt{d_E})$ and the central embedding problem (with kernel C_2)

(2)
$$2^m S_n^+ \to S_n \times_{C_2} C_{2^r} \simeq \operatorname{Gal}(L.K_1|K)$$

is solvable.

In this case, the set of solutions to (1) is equal to the union of the sets of solutions to the embedding problems (2) for $K_1|K$ running over the extensions satisfying the above conditions.

Proof. By taking into account that $2A_n$ is contained in $2^m S_n^+$, we obtain the following picture of subextensions of a solution field \hat{L} for the embedding problem (1).

From here, it is easy to see that \hat{L} solution to (1) is equivalent to \hat{L} solution to (2) for some K_1 satisfying the conditions in the proposition.

Now we obtain easily the following result on the obstruction to solvability of the embedding problem (2).

Proposition 2. Given a Galois S_n -extension L|K, and a Galois C_{2^m} -extension $K_1|K$ such that $K_1 \cap L = K(\sqrt{d_E})$, $m \ge 2$, the element in $H^2(G_K, C_2)$ giving the obstruction to solvability of the embedding problem (2) is equal to the product of the elements giving the obstructions to solvability of the embedding problems $2S_n \to S_n \simeq \operatorname{Gal}(L|K)$, where $2S_n$ can be both $2S_n^+$ or $2S_n^-$, and $C_{2^{m+1}} \to C_{2^m} \simeq \operatorname{Gal}(K_1|K)$.

Let us note that the elements in $H^2(S_n, C_2)$ corresponding to $2S_n^+$ and $2S_n^-$ differ in $(d_E) \cup (d_E)$, which is trivial in $H^2(S_n \times_{C_2} C_{2^m}, C_2)$.

3. Solvability in terms of Hilbert symbols

The condition for solvability can be made more explicit if we know a parametrization of the C_{2^m} -extensions of the field K and an explicit expression in terms of Hilbert symbols of the obstruction to solvability of $C_{2^{m+1}} \rightarrow C_{2^m} \simeq \text{Gal}(K_1|K)$.

In the case of $C_{16} \rightarrow C_8$, the obstruction to solvability has been computed by Swallow [11], for C_8 -extensions belonging to a parametric family given by Schneps [8]. Following Swallow, we refer to C_8 -extensions included in this parametric family as *admissible extensions* and we shall call a field *admissible* when all its C_8 -extensions are admissible. We

note that the class of admissible fields contains \mathbb{Q} and $\mathbb{Q}(T)$ (cf. [8]).

Proposition 3. a) Assume K contains a primitive 2^m -root of unity ζ . Then for a Galois S_n -extension L|K, the embedding problem $2^m S_n^+ \to S_n \simeq \text{Gal}(L|K)$, $m \ge 1$, is solvable if and only if $w(Q_E) = (-2\zeta, d_E)$.

b) Let K be any field of characteristic different from 2, L|K a Galois S_n -extension. Then the embedding problem $4S_n^+ \to S_n \simeq \text{Gal}(L|K)$ is solvable if and only if $(-1, d_E) = 1$ and $w(Q_E) = (-1, r)$ for some r in K.

c) Let K be any field of characteristic different from 2 (resp. an admissible field). L|K a Galois S_n -extension. Then the embedding problem $8S_n^+ \to S_n \simeq \text{Gal}(L|K)$ is solvable if (resp. if and only if) $(-1, d_E) = (2, d_E) = 1$ and there exist elements r, s in K such that (-1, r) = 1 and $w(Q_E) = (s(z - w), -1)(rz(z - y), -2)(z(z - w), d_E))$ for $d_E = x^2 + y^2 = z^2 - 2w^2$.

Proof. a) In this case, we take $K_1 = K(\sqrt[2^r]{d_E})$ and apply [6](7.10).

b) Here the condition $(-1, d_E) = 1$ is equivalent to the existence of a Galois C_4 -extension $K_1|K$ containing $K(\sqrt{d_E})$ and all such K_1 are of the form

$$K_1 = K\left(\sqrt{r(d_E + y\sqrt{d_E})} \quad \text{for } d_E = x^2 + y^2, r \in K.$$

The obstruction to solvability of $C_8 \to C_4 \simeq \text{Gal}(K_1|K)$ is equal to $(2, d_E)(-1, r)$ (see e.g.[8]).

c) The existence of an admissible C_8 -extension of K containing $K(\sqrt{d_E})$ is equivalent to $(-1, d_E) = (2, d_E) = 1$ and (-1, r) = 1 for some r [8]. Then all such C_8 -extensions are:

$$K_{1} = K\left(\sqrt{s(z + \sqrt{d_{E}})\left(2rd_{E} + v\sqrt{rd_{E} + ry\sqrt{d_{E}}} + u\sqrt{rd_{E} - ry\sqrt{d_{E}}}\right)}\right)$$

for $r = t_1^2 + t_2^2$, $u = t_1x - t_2y - t_1y - t_2x$, $v = t_1x - t_2y + t_1y + t_2x$, and we use the explicit expression for the obstruction to solvability of $C_{16} \to C_8 \simeq \text{Gal}(K_1|K)$ obtained by Swallow [11].

4. Construction of the solutions

We can apply to the embedding problem

$$2^m S_n^+ \to S_n \times_{C_2} C_{2^m} \simeq \operatorname{Gal}(L_1|K) , m \ge 2,$$

where $L_1 = L.K_1$, the method of construction of the solutions obtained in [2] whenever we have an orthogonal representation ρ of the group $S_n \times_{C_2} C_{2^m}$ such that its second Stiefel-Withney class $sw(\rho)$ corresponds to the extension

$$(3) 2^m S_n^+ \to S_n \times_{C_2} C_{2^m}.$$

Such a representation ρ can be obtained as $\rho_1 \perp \rho_2$ for ρ_1 an orthogonal representation of S_n such that $\operatorname{sw}(\rho_1)$ corresponds to $2S_n^+ \to S_n$ (e.g. the embedding of S_n in the orthogonal group $O_n(K)$ of the identity quadratic form in n variables) or to $2S_n^- \to S_n$ (e.g. the inclusion $S_n \hookrightarrow A_n \times C_2 \hookrightarrow A_{n+2}$ given by $s \mapsto (s, \operatorname{sg} s)$ followed by the embedding of A_{n+2} in the special orthogonal group $SO_{n+2}(K)$ of the identity quadratic form in n+2variables) and ρ_2 an orthogonal representation of C_{2^m} such that $\operatorname{sw}(\rho_2)$ corresponds to $C_{2^{m+1}} \to C_{2^m}$. Such a representation ρ_2 is known in the cases included in Proposition 3. Namely, it is given in [6] for case a), in [11] for case c) and is obtained by restricting to C_4 the embedding of S_4 in $O_4(K)$ in case b).

Now, given a representation $\rho: S_n \times_{C_2} C_{2^m} \to O(Q)$, as above, we can assume that it is special (i.e. that its image is contained in the special orthogonal group) and satisfies $\operatorname{sp} \circ \rho = 1$ for sp the spinor norm in the orthogonal group O(Q) (cf. [2] Proposition 3). Under these conditions, the embedding problem considered is solvable if and only if the Hasse-Witt invariants of the quadratic form Q and its twist Q_{ρ} by ρ are equal. By applying [2] Theorem 1, we obtain that the set of solutions to the embedding problem considered are the fields $L_1(\sqrt{r\gamma})$, for $r \in K^*$ and γ a nonzero coordinate of the spinor norm of an adequate element z in the Clifford algebra over L_1 of the quadratic form Q_{ρ} , which can be given explicitly.

Further, [2] Theorem 2 gives when this element γ can be given in terms of matrices. In particular, if the two quadratic forms Q and Q_{ρ} are equivalent, γ is given by a single determinant.

5. The case $4S_n^+$

We examine now more closely the embedding problem

$$4S_n^+ \to S_n \simeq \operatorname{Gal}(L|K).$$

It is solvable if and only if $(-1, d_E) = 1$, i.e there exist elements x and y in K such that $d_E = x^2 + y^2$, and $w(Q_E) = (-1, r)$, for some $r \in K$. If this is the case, its resolution is reduced to the resolution of the embedding problems

(4)
$$4S_n^+ \to S_n \times_{C_2} C_4 \simeq \operatorname{Gal}(K_1.L|K),$$

where $K_1 := K(\sqrt{r(d_E + y\sqrt{d_E})})$, for r and y as above. We consider the special representation $\rho = \rho_1 \perp \rho_2$ for ρ_1 the orthogonal representation of S_n obtained by embedding S_n in the orthogonal group $O_n(K)$ of the identity quadratic form in n variables and ρ_2 the orthogonal representation of C_4 obtained by restriction of the embedding of S_4 in $O_4(K)$.

The quadratic form Q_{ρ} is then $\operatorname{Tr}_{E|K}(x^2) \perp \operatorname{Tr}_{K_1|K}(y^2)$. If the two quadratic forms Q and Q_{ρ} are equivalent, let P be a matrix in $\operatorname{GL}(n+4, K)$ such that $P^t[Q_{\rho}]P = [Q]$ and M the matrix in $\operatorname{GL}(n+4, L_1)$ given by

$$M = \begin{pmatrix} (x_i^j)_{\substack{1 \le i \le n \\ 0 \le j \le n-1 \\ 0 & (y_i^j)_{1 \le i \le 4 \\ 0 \le j \le 3 \\ \end{pmatrix}}$$

for x_i the roots of a polynomial in K[X] of degree *n*, with decomposition field *L*, and y_i the elements $\pm \sqrt{r(d_E \pm y\sqrt{d_E})}$. We obtain then a solution to the embedding problem (4) as $\hat{L} = L_1(\sqrt{\gamma})$, for $\gamma = \det(MP + I)$.

In the case K = Q, we can determine under which conditions the two quadratic forms Q and Q_{ρ} are equivalent. By considering Q and Q_{ρ} at ∞ , we obtain that, if the embedding problem considered is solvable, the elements d_E and r must have the same sign and, if they are both positive, then the two quadratic forms Q and Q_{ρ} are equivalent.

6. Examples

In each example we consider a polynomial F(X) realizing S_4 over \mathbf{Q} and let L denote its decomposition field, E the field obtained by adjoining to \mathbf{Q} one root of F. We consider the embedding problems

(5)
$$2^m S_4^+ \to S_4 \simeq \operatorname{Gal}(L|\mathbf{Q})$$

for $m \ge 1$. We recover the results of Quer concerning solvability (cf. [7]) and exhibit an element γ generating the set of solutions in our last example.

Example 1.

For $F(X) = X^4 + X^3 - 6X^2 + X + 2$ we have $d_E = 15529 = 53 \times 293 = 115^2 + 48^2$, $w(Q_E) = 1, (2, d_E) = -1$ in exactly 53 and 293.

By applying [9] Théorème 1 and Proposition 3, we obtain that the embedding problem (5) is not solvable for m = 1 and m = 3 and solvable for m = 2. Moreover, $(2, d_E) \neq 1$ implies that $\mathbf{Q}(\sqrt{d_E})|\mathbf{Q}$ cannot be included in a C_8 -extension and so neither in a C_{2^m} -extension for $m \geq 3$ and we obtain then that (5) is not solvable for any $m \geq 3$.

We obtain the set of solutions to

$$4S_4^+ \to S_4 \simeq \operatorname{Gal}(L|\mathbf{Q})$$

as the union of the sets of solutions to

$$4S_4^+ \to S_4 \times_{C_2} C_4 \simeq \operatorname{Gal}\left(L\left(\sqrt{r(15529 + 48\sqrt{15529}}\right) |\mathbf{Q}\right)$$

for r running over the square-free integers which are a sum of 2 squares.

Example 2.

For $F(X) = X^4 + X^3 - 11X^2 + 12$ we have $d_E = 2^5 \times 3^2 \times 2969$, $w(Q_E) = -1$ in exactly 2 and 3, $(-1, d_E) = (2, d_E) = 1$.

We have then that (5) is not solvable for m = 1. Further, $(-1, d_E) = 1$ and $w(Q_E) = (-1, 3)$ imply that (5) is solvable for m = 2.

Now $(-1, d_E) = (2, d_E) = 1$ imply that $\mathbb{Q}(\sqrt{d_E})$ is embeddable in a C_8 -extension and the condition for (5) being solvable for m = 3 is that there exist $r, s \in \mathbb{Q}$ with (-1, r) = 1

such that $(s(z - w), -1)(rz(z - y), -2)(z(z - w), d_E) = -1$ exactly in 2 and 3, where x = 36, y = 924, z = 1800, w = 1092. This is equivalent to (s, -1)(r, 2) = -1 exactly in 2,59,2969 which fails in 2969. So (5) is not solvable for m = 3.

The condition for $\mathbb{Q}(\sqrt{d_E})$ embeddable in a C_{16} -extension is that there exist $r, s \in \mathbb{Q}$ with (-1,r) = 1 such that $(s(z-w),-1)(rz(z-y),-2)(z(z-w),d_E) = 1$, which is equivalent to (s,-1)(r,2) = 1, which fails in 2969. So (5) is not solvable for $m \geq 3$.

We obtain the set of solutions to

$$4S_4^+ \to S_4 \simeq \operatorname{Gal}(L|\mathbf{Q})$$

as the union of the sets of solutions to

$$4S_4^+ \to S_4 \times_{C_2} C_4 \simeq \text{Gal}\left(L\left(\sqrt{r(2.2969+77\sqrt{2.2969}}\right)|\mathbf{Q}\right)$$

for r running over the square-free integers such that 3r is a sum of 2 squares.

Example 3.

For $F(X) = X^4 + X^3 - 4X^2 - X + 2$ we have $d_E = 2777$, $w(Q_E) = (-1, d_E) = (2, d_E) = 1$.

We have then that (5) is solvable for m = 1 and m = 2. Now, $(-1, d_E) = (2, d_E) = 1$ imply that $\mathbb{Q}(\sqrt{d_E})$ is embeddable in a C_8 -extension. The conditions for (5) solvable for m = 3 and $\mathbb{Q}(\sqrt{d_E})$ embeddable in a C_{16} -extension are both equivalent to the existence of $r, s \in \mathbb{Q}$ with (-1, r) = 1 such that $(s(z - w), -1)(rz(z - y), -2)(z(z - w), d_E) = 1$, for x = 29, y = 44, z = 53, w = 4, which is equivalent to (s, -1)(r, 2) = -1 exactly in 2 and 2777, which fails in 2777. So (5) is not solvable for $m \ge 3$.

We obtain the set of solutions to

$$4S_4^+ \to S_4 \simeq \operatorname{Gal}(L|\mathbf{Q})$$

as the union of the sets of solutions to

$$4S_4^+ \to S_4 \times_{C_2} C_4 \simeq \operatorname{Gal}\left(L\left(\sqrt{r(2777 + 44\sqrt{2777}}\right) |\mathbf{Q}\right)$$

for r running over the square-free integers which are a sum of 2 squares. For $r = d_E = 2777$, an element γ generating the set of solutions is

$$\begin{split} \gamma &= & 3272981289064523539933868006 + 5562840786788949523164832441 \ x_1 \\ &- & 7857424647479352840038038361 \ x_1^2 - & 518350656845827969736524653 \ x_1^3 \\ &+ & 7600643699302539469685190834 \ x_2 + & 2280324081956182768636706459 \ x_1 x_2 \\ &- & 8844713788527631409805787463 \ x_1^2 x_2 + & 394146949900833831192146099 \ x_1^3 x_2 \\ &+ & 1940685159241524676959527572 \ x_2^2 - & 2210403079523052949625817486 \ x_1 x_2^2 \\ &- & 662278022463578813582064410 \ x_1^2 x_2^2 + & 299407062746609413021692831 \ x_1^3 x_2^2 \\ &+ & 9846407664804530113585990756 \ x_3 - & 8010122436987691214034628162 \ x_1 x_3 \\ &- & 11999444980137143053727763804 \ x_1^2 x_3 + & 8730375993903968171520578231 \ x_1^3 x_3 \\ &+ & 7712880420702604369208311568 \ x_2 x_3 + & 49288960210041618585830856 \ x_1 x_2 x_3 \end{split}$$


```
\begin{array}{l} -7516185875908586411439042817\ x_1^2x_2x_3+601229248830944139907108740\ x_1^3x_2x_3\\ -7107698002435360464530660820\ x_2^2x_3+11918011401514653829701289410\ x_1x_2^2x_3\\ +11085699965441992600927355514\ x_1^2x_2^2x_3-11442938176140918403205975802\ x_1^3x_2^2x_3\\ +y\ (877020547103738725470+1486993746036323616141\ x_1\\ -2101389180427447237485\ x_1^2-138859064262966573465\ x_1^3\\ +2033449398120606798906\ x_2+611517893733280442151\ x_1x_2\\ -2365767832053607527243\ x_1^2x_2+104544401673634277367\ x_1^3x_2\\ +519408508832688336084\ x_2^2-590634265981313831742\ x_1x_2^2\\ -177819416583792695970\ x_1^2x_2^2+80201797043721428307\ x_1^3x_2^2\\ +2634313987410770530740\ x_3-2143427459163936044586\ x_1x_3\\ -3209464706321712842820\ x_1^2x_3+2335301399751945044571\ x_1^3x_3\\ +2063293554270949305264\ x_2x_3+13954094077207075128\ x_1x_2x_3\\ -2011038940649902656693\ x_1^2x_2x_3+160728217206738870876\ x_1^3x_2x_3\\ -1901083573458202228740\ x_2^2x_3+3188278642452195718170\ x_1x_2^2x_3\\ +2964881256785137801458\ x_1^2x_2^2x_3-3060877901617363446594\ x_1^3x_2^2x_3) \end{array}
```

for x_1 , x_2 , x_3 three distinct roots of the polynomial F(X) and y a root of the polynomial $X^4 - 2X^2 + \frac{29^2}{2777}$.

References.

[1] T. Crespo. Explicit construction of $2S_n$ Galois extensions, J. of Algebra 129 (1990), 312-319.

[2] T. Crespo, Explicit solutions to embedding problems associated to orthogonal Galois representations, J. reine angew. Math. 409 (1990), 180-189.

[3] T. Crespo, C_4 -extensions of S_n as Galois groups, Mathematica Scandinavica 76 (1995), 214-220.

[4] T. Crespo, Galois realization of central extensions of the symmetric group with kernel a cyclic 2-group, Acta Arithmetica 70 (1995), 183-192.

[5] T. Crespo, Explicit Galois realization of C_{16} -extensions of A_n and S_n , Recent developments in the Inverse Galois Problem, M.Fried et al. Eds. pp 3-13, Contemporary Mathematics 186, 1995.

[6] A. Fröhlich, Orthogonal representations of Galois groups, Stiefel-Whitney classes and Hasse-Witt invariants, J. reine angew. Math. 360 (1985), 84-123.

[7] J. Quer, Liftings of projective 2-dimensional representations of $Gal(\mathbf{Q}|\mathbf{Q})$ and embedding problems, J. of Algebra 171 (1995), 541-566.

[8] L. Schneps, On cyclic field extensions of degree 8, Math. Scand. 71 (1992), 24-30.

[9] J.-P. Serre, L'invariant de Witt de la forme $Tr(x^2)$, Comm. Math. Helv. 59 (1984), 651-676.

[10] J. Sonn, Central extensions of S_n as Galois groups of regular extensions of Q(T), J. Algebra 140 (1991), 355-359.

[11] J. R. Swallow, *Embedding problems and the* $C_{16} \rightarrow C_8$ obstruction. Recent developments in the Inverse Galois Problem, M.Fried et al. Eds. pp 75-90, Contemporary Mathematics 186, 1995.

Teresa Crespo Departament d'Algebra i Geometria Facultat de Matemàtiques Universitat de Barcelona Gran Via de les Corts Catalanes 585 08007 Barcelona (Spain)

Relació dels últims Preprints publicats:

- 210 On the relationship between α-connections and the asymptotic properties of predictive distributions. J.M. Corcuera and F. Giummolè. AMS 1980 Subjects Classifications: 62F10, 62B10, 62A99. July 1996.
- 211 Global efficiency. J.M. Corcuera and J.M. Oller. AMS 1980 Subjects Classifications: 62F10, 62B10, 62A99. July 1996.
- 212 Intrinsic analysis of the statistical estimation. J.M. Oller and J.M. Corcuera. AMS 1980 Subjects Classifications: 62F10, 62B10, 62A99. July 1996.
- 213 A characterization of monotone and regular divergences. J.M. Corcuera and F. Giummolè. AMS 1980 Subjects Classifications: 62F10, 62B10, 62A99. July 1996.
- 214 On the depth of the fiber cone of filtrations. Teresa Cortadellas and Santiago Zarzuela. AMS Subject Classification: Primary: 13A30. Secondary: 13C14, 13C15. September 1996.
- 215 An extension of Itô's formula for anticipating processes. Elisa Alòs and David Nualart. AMS Subject Classification: 60H05, 60H07. September 1996.
- 216 On the contributions of Helena Rasiowa to Mathematical Logic. Josep Maria Font. AMS 1991 Subject Classification: 03-03,01A60, 03G. October 1996.
- 217 A maximal inequality for the Skorohod integral. Elisa Alòs and David Nualart. AMS Subject Classification: 60H05, 60H07. October 1996.
- 218 A strong completeness theorem for the Gentzen systems associated with finite algebras. Angel J. Gil, Jordi Rebagliato and Ventura Verdú. Mathematics Subject Classification: 03B50, 03F03, 03B22. November 1996.
- 219 Fundamentos de demostración automática de teoremas. Juan Carlos Martínez. Mathematics Subject Classification: 03B05, 03B10, 68T15, 68N17. November 1996.
- 220 Higher Bott Chern forms and Beilinson's regulator. José Ignacio Burgos and Steve Wang. AMS Subject Classification: Primary: 19E20. Secondary: 14G40. November 1996.
- 221 On the Cohen-Macaulayness of diagonal subalgebras of the Rees algebra. Olga Lavila. AMS Subject Classification: 13A30, 13A02, 13D45, 13C14. November 1996.
- 222 Estimation of densities and applications. María Emilia Caballero, Begoña Fernández and David Nualart. AMS Subject Classification: 60H07, 60H15. December 1996.
- 223 Convergence within nonisotropic regions of harmonic functions in Bⁿ. Carme Cascante and Joaquin Ortega. AMS Subject Classification: 32A40, 42B20. December 1996.
- 224 Stochastic evolution equations with random generators. Jorge A. León and David Nualart. AMS Subject Classification: 60H15, 60H07. December 1996.
- 225 Hilbert polynomials over Artinian local rings. Cristina Blancafort and Scott Nollet. 1991 Mathematics Subject Classification: 13D40, 14C05. December 1996.
- 226 Stochastic Volterra equations in the plane: smoothness of the law. C. Rovira and M. Sanz-Solé. AMS Subject Classification: 60H07, 60H10, 60H20. January 1997.
- 227 On the Cohen-Macaulay property of the fiber cone of ideals with reduction number at most one. Teresa Cortadellas and Santiago Zarzuela. AMS Subject Classification: Primary: 13A30 Secondary: 13C14, 13C15. January 1997.

