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1. Introduction
In the present paper, we find explicit Solutions to embedding problems given by central

extensions of symmetrie groups with kernel a cyclic 2-group, difFerent from those considered
in [4].

We recall that H2( A„, C2m) — Z/2Z and i/’2(5n,C2m) ~ Z/2Z x Z/2Z and so we have
two central extensions of Sn by C2™ reducing to the non trivial central extensión 2mAn of
-4n by C2m.

We denote by 2S~ the double cover of Sn in which transpositions lift to elements of
order 4, by s~ the corresponding element in Zf2(5n,C2); by 2mS~ the central extensión
corresponding to j*s~, for j* : if2(5n,C2) —> H2(Sn, C2m) the map induced by the em¬
bedding j : C2 —► C2m; by 2mS+ the second central extensión of Sn by C2m reducing to
2mAn, for m > 1. For the element in H2(Sn, C2) corresponding to 2S+, we note that

By a result of Sonn [10], we know that all central extensions of Sn appear
as Galois groups over Q.

In this paper, K will always denote a field of characteristic difFerent from 2, £ a Galois
-extensión of K. In [1], we obtained an explicit resolution of embedding problems

2Si -► Sn ~ Gal(£|A')
and in [3], [4], [5], of embedding problems

2mS~ -+ Sn ~ Gal(£|A').
Here we deal with embedding problems

2"SÍ S„ ~ Gal( L\K)

Comparing [4] Proposition 1 and Proposition 1 below, we see that a 2mS+-field contains
a C2r-extensión whereas a 2m5“-field does not.

If e : Gk —)> Sn denotes the epimorphism corresponding to the Galois extensión L\K,
the obstruction to the solvability of the embedding problem 2S+ —» Sn ~ Gal(£|lv) is
given by the element e*.s+ £ H2{Gk-C2), which can be computed efFectively by means
of a formula of Serre [9, Théoréme 1], Following Serre, for a Galois Sn-extension L\K,
we denote by E the subfield of L fixed by the isotropy group of one letter, by the
discriminant of the extensión E\K, by Qe its trace form. For a quadratic form Q, we
denote by w(Q) its Hasse-Witt invariant. Serre’s formula reads:

e*(sn) = w(QE)(2,de).
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Let us note that the formula of Serre has been generalized by Frohlich to compute the
obstruction to the solvability of an embedding problem G —► G ~ Gal(£|A') with kernel
C2. such that the element in H2(G,C?) corresponding to G is the second Stiefel-Whitney
class sw(/)) of an orthogonal representation p of the group G in the orthogonal group of a

quadratic form defined over the field K [6. Theorem 3].
For embedding problems of the type considered by Frohlich. we gave in [2] a method

of explicit resolution.
When dealing with embedding problems 2m5+ —>• Sn ~ Gal(£|/v), for m > 2, we

obtain a criterion for the solvability and a method of computation of the Solutions by
reducing to an embedding problem with a kernel of order 2.

We note that the symmetric group 54 is a subgroup of the projective linear group
PGL(2,C) and the groups 2m54" and 2mS± fit in a commutative diagram

2m54± ► 54

GL(2,C) ► PGL(2,C).

Embedding problems given by 2m Sf over a field I\ correspond then to liftings of projective
to linear representations of the absolute Galois group Gk of the field K. Using this
correspondence, Quer obtains, in the case K — Q, a criterion for the solvability of the
embedding problem

2mSf -h. 54 ~ Gal(£|Q)
in terms of local conditions (cf. [7]).

2. Existence of Solutions
The next proposition shows that the resolution of the embedding problem considered

can be reduced to the resolution of an embedding problem with kernel C¿.
Proposition 1. Given a Galois Sn-extension L\K. the embedding problem

(1) 2m5+ -► Sn ~ Gal(£|Á')

is solvable if and only if there exists a Galois extensión K\\K with Galois group C’2m such
that I\i f]L = K(\/d^ü) and the central embedding problem (with kernel C2)

(2) 2m5+ -» Sn xc2 C2r ~ Gal(I.Ah|A')

is solvable.
In this case, the set of Solutions to (1) is equal to the unión of the sets of Solutions

to the embedding problems (2) for Ah|A' running over the extensions satisfying the above
conditions.
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Proof. By taking into account that 2.4n is contained in 2m5+, we obtain the following
picture of subextensions of a solution field L for the embedding problem (1).

From here, it is easy to see that L solution to (1) is equivalent to L solution to (2) for
some A'i satisfying the conditions in the proposition.

Now we obtain easily the following result on the obstruction to solvability of the
embedding problem (2).

Proposition 2. Given a Galois Sn-extension L\K, and a Galois C2™-extensión A'i|A'
such that A'i fl L = A'(\/di;), m > 2, the element in H2(Gk,C2) giving the obstruction to
solvability of the embedding problem (2) is equal to the product of the elements giving the
obstructions to solvability of the embedding problems 2Sn —■y 5n ~ Gal(XlA’) , where 2Sn
can be both 2S^ or 2S~, and C2m+i —> C2m — Gal(Ai|A').
Let us note that the elements in H2(Sn,C2) corresponding to 25^ and 25" differ in
(d/r) U (oí£:), which is trivial in H2(Sn Xc2 C2™, C2).

3. Solvability in terms of Hilbert symbols
The condition for solvability can be made more explicit if we know a parametrization

of the CV^-extensions of the field K and an explicit expression in terms of Hilbert symbols
of the obstruction to solvability of C2m+i —> C2™ — Gal(A’i |A”).

In the case of Cíe —> Cs, the obstruction to solvability has been computed by Swallow
[11], for Cs-extensions belonging to a parametric family given by Schneps [8]. Following
Swallow, we refer to Cs-extensions included in this parametric family as admissible exten-
sions and we shall cali a field admissible when all its Cs-extensions are admissible. We
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note that the class of admissible fields contains Q and Q(T) (cf. [8]).

Proposition 3 .a) Assume K contains a primitive 2 m-root of unity £. Then for a Galois
Sn-extension L\K, the embedding problem 2mS„ —» Sn ~ Gal(Z|A'). m > 1, is solvable if
and only í/w(Qe) = (-2C,¿e).
b) Let I\ be any field of characteristic different from 2. L\K a Galois Sn-extension. Then
the embedding problem 45+ —► Sn ~ Gal(Z|A') is solvable if and only if { — l.ds) = 1 and
w{Qe) = ( —l,r) for some r in K.
c) Let K be any field of characteristic different from 2 (resp. an admissible field). L\K a
Galois Sn-extensión. Then the embedding problem 85+ —► 5n ~ Gal(L|A") is solvable if
(resp. if and only if) ( — I.Óe) = (2. d#) = 1 and there exist elements r.s in K such that
(-l,r) = 1 and w{Qe) = ($(z ~ «0,-l)(rz(z - y), -2)(z(z - w),dE) for dE = x2 + y2 =
z2 — 2w2.

Proof. a) In this case, we take A'i = A'( 2\/^e) and apply [6](7.10).
b) Here the condition ( — 1,c?e) = 1 is equivalent to the existence of a Galois C4-extension
A'i | A' containing K(/cÍe) and all such A'i are of the form

Ai = K r{dE + y for dE = x2 + y2,r £ K.

The obstruction to solvability of C% —► C4 ~ Gal(A'i|A) is equal to (2,d#)( —1, r) (see
e.g.[8]).
c) The existence of an admissible Cs-extension of K containing I\ (J(Íe) is equivalent to
( —1 , d#) = (ZidE) = 1 and ( —l,r) = 1 for some r [8], Then all such CVextensions are:

A'i = K +VdÉ) (zrds + v \JrdE + ryyfdE + u \JrdE - ryy/d^j
for r = t2 + t2, u — tix — ¿22/ — t\y — t2x, v = t\x — ¿2*/ + + ¿2X, and we use the
explicit expression for the obstruction to solvability of Ci6 —> C» — Gal(AT|A”) obtained
by Swallow [11].

4. Construction of the Solutions
We can apply to the embedding problem

2m5+ 5n xC2 C2m ~ Gal(Ai |A) ,m> 2,
where L\ = L.I\\. the method of construction of the Solutions obtained in [2] whenever
we have an orthogonal representation p of the group Sn Xc2 such that its second
Stiefel-Withney class sw(p) corresponds to the extensión

(3) 2mSt ^Sn Xc2 C2"*.
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Such a representaron p can be obtained as p\ _L pi for p\ an orthogonal representation
of Sn such that sw(pi) corresponds to 25+ —> Sn (e.g. the embedding of Sn in the
orthogonal group 0„{K) of the identity quadratic form in n variables) or to 2S~ —> Sn
(e.g. the inclusión Sn '—»• An x C¿ c—> dn+2 given by s i—» (s, sg s) followed by the embedding
of A„+2 in the special orthogonal group SOn+2Í A’) of the identity quadratic form in n + 2
variables) and p2 an orthogonal representation of C'¿m such that sw(p2) corresponds to
CV'. + i —> C-2m- Such a representation p2 is known in the cases included in Proposition 3.
Namely, it is given in [6] for case a), in [11] for case c) and is obtained by restricting to C\
the embedding of 54 in 0\(K) in case b).

Now. given a representation p : Sn Xc2 C*2m —*• 0(Q) , as above, we can assume that
it is special (i.e. that its image is contained in the special orthogonal group) and satisfies
spop = 1 for sp the spinor norm in the orthogonal group O(Q) (cf. [2] Proposition 3).
Under these conditions, the embedding problem considered is solvable if and only if the
Hasse-Witt invariants of the quadratic form Q and its twist Qp by p are equal. By applying
[2] Theorem 1, we obtain that the set of Solutions to the embedding problem considered
are the fields L i (v/ry’). for r G K* and y a nonzero coordínate of the spinor norm of an
adequate element ,r in the Clifford algebra over L\ of the quadratic form Qp, which can be
given explicitly.

Further, [2] Theorem 2 gives when this element y can be given in terms of matrices.
In particular, if the two quadratic forms Q and Qp are equivalent, y is given by a single
determinant.

5. The case 45^
We examine now more closely the embedding problem

45+ - 5„ ~ Gal(£|A”).
It is solvable if and only if ( —Tefe) = 1, i.e there exist elements x and y in K such that
efe = x2 + y2, and w{Qe) — ( —l,r), for some r € K. If this is the case, its resolution is
reduced to the resolution of the embedding problems

(4) 45+ - 5„ xC2 CA ~ Gal(A'i.T|A'),
where K\ K{\/r{ c¡e + yVdÉ), for r and y as above. We consider the special represen¬
tation p = pi J_ p2 for p\ the orthogonal representation of Sn obtained by embedding Sn
in the orthogonal group On{K) of the identity quadratic form in n variables and p2 the
orthogonal representation of C4 obtained by restriction of the embedding of 54 in O4(K).

The quadratic form Qp is then Tr£¡^-(x2) _L Tv^-^^iy2). If the two quadratic forms
Q and Qp are equivalent, let P be a matrix in GL(n + 4, K) such that P*[Qp]P = [Q] and
M the matrix in GL(n + 4,L\) given by

) i<¿<«
n~ 1

0

° )(yj)i<i<4 /
0<j<3/
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for x¿ the roots of a polynomial in K[X] of degree n, with decomposition field L, and
the elements ±\/r(dE ± y \/dE)- We obtain then a solution to the embedding problem (4)
as L — for -y = det(MP + I).

In the case K — Q, we can determine under which conditions the two quadratic forms
Q and Qp are equivalent. By considering Q and Qp at oc, we obtain that, if the embedding
problem considered is solvable, the elements dE and r must have the same sign and, if they
are both positive, then the two quadratic forms Q and Qp are equivalent.

6. Examples
In each example we consider a polynomial F(X) realizing 54 over Q and let L denote

its decomposition field, E the field obtained by adjoining to Q one root of F. We consider
the embedding problems

(5) 2m5+ -► S4 ~ Gal(¿|Q)

for m > 1. We recover the results of Quer concerning solvability (cf. [7]) and exhibit an
element 7 generating the set of Solutions in our last example.

Example 1.
For F(X) = X4 + X3 - 6X2 + X + 2 we have dE = 15529 = 53 x 293 = 1152 + 482,

w(Qe) = (2,dE) = —1 in exactly 53 and 293.
By applying [9] Théoréme 1 and Proposition 3, we obtain that the embedding problem

(5) is not solvable for m = 1 and m = 3 and solvable for m = 2. Moreover, (2,dE) ^ 1
implies that Q(s/í/e)|Q cannot be included in a Cs-extension and so neither in a C2™-
extension for m > 3 and we obtain then that (5) is not solvable for any m > 3.

We obtain the set of Solutions to

45+ -► 54 ~ Gal(Z|Q)
as the unión of the sets of Solutions to

4S} 54 xc¡ C4 ~ Gal [L u/r( 15529 + 48^15529 ) |Q
for r running over the square-free integers which are a sum of 2 squares.

Example 2.
For F(X) = X4 + X3 - UX2 + 12 we have dE = 25 x 32 x 2969, w(QE) = -1 in

exactly 2 and 3, ( — l,dE) = (2,dE) = 1.
We have then that (5) is not solvable for m = 1. Further, ( —1 ,dE) = 1 and w(QE) =

( — 1.3) imply that (5) is solvable for m = 2.
Now ( —1 ,dE) = (2,dE) = 1 imply that Q(n/^e) is embedclable in a Cs-extension and

the conclition for (5) being solvable for m = 3 is that there exist r, s € Q with ( — l,r) = 1
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such that (s(e — te), — 1)(r ~( ~ — y).— 2)(c(r — te),dE) = — 1 exactly in 2 and 3, where
x = 36, y = 924, e = 1800, te = 1092. This is equivalent to (s,— l)(r. 2) = —1 exactly in
2,59,2969 which fails in 2969. So (5) is not solvable for m = 3.

The condition for Q(s/cTe) embeddable in a Ci6-extension is that there exist r,s £ Q
with (— 1, r) = 1 such that (s{z — w).—l)(rz(z — y),—2)(z{z — w),(Ie) = 1, which is
equivalent to (s. — 1)(r. 2) = 1, which fails in 2969. So (5) is not solvable for m > 3.

We obtain the set of Solutions to

45+ 54 ~ Gal(I|Q)

as the unión of the sets of Solutions to

45+ -► 54 xc2 C4 ~ Gal ^/r(2.2969 +77^2.2969^ |Q
for r running over the square-free integers such that 3r is a sum of 2 squares.

Example 3.
For F(X) — A'4 + A3 — 4A'2 — X + 2 we have cIe = 2777, w{Qe) — ( —1 ,c!e) =

(2,dE) = l.
We have then that (5) is solvable for m = 1 and m = 2. Now, ( —l,dE) = (2,dE) = 1

imply that Q(s/íÍe) is embeddable in a Cg-extension. The conditions for (5) solvable for
m= 3 and Q(x/d^) embeddable in a Ci6-extension are both equivalent to the existence of
r,i É Q with ( —l,r) = 1 such that (5(2 — te), — \){rz{z — y),—2)(z(z — te),dE) = 1, for
x = 29, y = 44,^ = 53, te = 4, which is equivalent to (s, — l)(r, 2) = —1 exactly in 2 and
2777, which fails in 2777. So (5) is not solvable for m > 3.

We obtain the set of Solutions to

45+ -> 54 ~ Gal(I|Q)
as the unión of the sets of Solutions to

4St 54 xc2 C4 ~ Gal [L (vr(2777 + 44v/2777 ) |Q j

for r running over the square-free integers which are a sum of 2 squares.
For r = ¿e = 2777, an element 7 generating the set of Solutions is

7 = 3272981289064523539933868006 + 5562840786788949523164832441 xx
-7857424647479352840038038361 x\ - 518350656845827969736524653 xf
+7600643699302539469685190834 x2 +2280324081956182768636706459 xxx2

-8844713788527631409805787463 x\x2 + 394146949900833831192146099 r3r2
+1940685159241524676959527572 x\ - 2210403079523052949625817486 xx x22
-662278022463578813582064410 xjxj + 299407062746609413021692831 x3x2
+9846407664804530113585990756 x3 - 8010122436987691214034628162 xix3

-11999444980137143053727763804 xfx3 + 8730375993903968171520578231 x?x3
+7712880420702604369208311568 x2x3 + 49288960210041618585830856 xíx2x3



-7516185875908586411439042817 x?x2x3 +601229248830944139907108740 x?x2x3
-7107698002435360464530660820 x¡x3 + 11918011401514653829701289410 xxx22x3
+ 11085699965441992600927355514 x'fx^x3 - 11442938176140918403205975802 x?x|x3

+y (877020547103738725470+ 1486993746036323616141 xi
-2101389180427447237485 xj - 138859064262966573465 x?
+2033449398120606798906 x2 + 611517893733280442151 nx2

-2365767832053607527243 x\x2 + 104544401673634277367 x?x2
+519408508832688336084 x\ - 590634265981313831742 xxx\
-177819416583792695970 x\x'\ + 80201797043721428307 x?x|
+2634313987410770530740 x3 - 2143427459163936044586 xtx3

-3209464706321712842820 x?x3 + 2335301399751945044571 x?x3
+2063293554270949305264 x2x3 + 13954094077207075128 xix2x3

-2011038940649902656693 x2x2x3 + 160728217206738870876 xfx2X3
-1901083573458202228740 x|x3 + 3188278642452195718170 xlX¡x3
+2964881256785137801458 x2x?2x3 - 3060877901617363446594

for xi, x2, x3 three distinct roots of the polynomial F(X) and y a root of the polynomial

References.

[1] T. Crespo. Explicit construction of 2Sn Galois extensión», J. of Algebra 129 (1990),
312-319.

[2] T. Crespo, Explicit Solutions to embedding problems associated to orthogonal Galois
representations, J. reine angew. Math. 409 (1990), 180-189.

[3] T. Crespo, C4-extensión» of Sn a,s Galois groups, Mathematica Scandinavica 76 (1995),
214-220.

[4] T. Crespo, Galois realization of central extensións of the symmetric group with kernel
a cychc 2-group, Acta Arithmetica 70 (1995), 183-192.

[5] T. Crespo, Explicit Galois realization of C\§-extensions of An and Sn, Recent devel-
opments in the Inverse Galois Problem, M.Fried et al. Eds. pp 3-13, Contemporary
Mathematics 186, 1995.

[6] A. Fróhlich, Orthogonal representations of Galois groups, Stiefel-Whitney classes and
Hasse-Witt invariants, J. reine angew. Math. 360 (1985), 84-123.

[7] J. Quer, Liftings of projective 2-dimensional representations o/Gal(Q|Q) and embedding
problems, J. of Algebra 171 (1995), 541-566.

[8] L. Schneps, On cyclic field extensións of degree 8, Math. Scand. 71 (1992), 24-30.

8



[9] J.-P. Serre, L'invariant de Witt de la forme Tr(.r2). Comm. Matli. Helv. 39 (1984).
651-676.

Í10l J. Sonn, Central extensións of Sn as Galois qroups of reqular extensions of Q(T), J.
Algebra 140 (1991). 355-359.

[11] J. R. Swallow, Embedding problems and the C\<¡ —► C% obstruction. Recent devel-
opments in the Inverse Galois Problem, M.Fried et al. Eds. pp 75-90, C'ontemporary
Mathematics 186, 1995.

Teresa Crespo
Departament d’Algebra i Geometría
Facultat de Matemátiques
Universitat de Barcelona
Gran Via de les Corts Catalanes 585
08007 Barcelona (Spain)

9



Relació deis últims Preprints publicáis:
— 210 On the relationship between a-connections and the asymptotic propertíes of predictive dis-

tributions. J.M. Corcuera and F. Giummolé. AMS 1980 Subjects Classifications: 62F10,
62B10, 62A99. July 1996.

— 211 Global efficiency. J.M. Corcuera and J.M. Oller. AMS 1980 Subjects Classifications: 62F10,
62B10, 62A99. July 1996.

— 212 Intrinsic analysis of the statistical estimation. J.M. Oller and J.M. Corcuera. AMS 1980
Subjects Classifications: 62F10, 62B10, 62A99. July 1996.

— 213 A characterization of monotone and regular divergences. J.M. Corcuera and F. Giummolé.
AMS 1980 Subjects Classifications: 62F10, 62B10, 62A99. July 1996.

— 214 On the depth of the fiber cone of filtrations. Teresa Cortadellas and Santiago Zarzuela. AMS
Subject Classification: Primary: 13A30. Secondary: 13C14, 13C15. September 1996.

— 215 An extensión of Itó’s formula for anticipating processes. Elisa Alós and David Nualart. AMS
Subject Classification: 60H05, 60H07. September 1996.

— 216 On the contributions of Helena Rasiowa to Mathematical Logic. Josep María Font. AMS
1991 Subject Classification: 03-03,01A60, 03G. October 1996.

— 217 A maximal inequality for the Skorohod integral. Elisa Alós and David Nualart. AMS Subject
Classification: 60H05, 60H07. October 1996.

— 218 A strong completeness theorem for the Gentzen systems associated with finite algebras. Ángel J.
Gil, Jordi Rebagliato and Ventura Verdú. Mathematics Subject Classification: 03B50, 03F03,
03B22. November 1996.

— 219 Fundamentos de demostración automática de teoremas. Juan Carlos Martínez. Mathematics

Subject Classification: 03B05, 03B10, 68T15, 68N17. November 1996.
— 220 Higher Bott Chem forms and Beilinson’s regulator. José Ignacio Burgos and Steve Wang.

AMS Subject Classification: Primary: 19E20. Secondary: 14G40. November 1996.
— 221 On the Cohen-Macaulayness of diagonal subalgebras of the Rees algebra. Olga Lavila. AMS

Subject Classification: 13A30, 13A02, 13D45, 13C14. November 1996.
— 222 Estimation of densities and applications. María Emilia Caballero, Begoña Fernández and

David Nualart. AMS Subject Classification: 60H07, 60H15. December 1996.
— 223 Convergence within nonisotropic regions of harmonio functions in Bn. Carme Cascante and

Joaquín Ortega. AMS Subject Classification: 32A40, 42B20. December 1996.
— 224 Stochastic evolution equations with random generators. Jorge A. León and David Nualart.

AMS Subject Classification: 60H15, 60H07. December 1996.
— 225 Hilbert polynomials over Artinian local rings. Cristina Blancafort and Scott Nollet. 1991

Mathematics Subject Classification: 13D40, 14C05. December 1996.
— 226 Stochastic Volterra equations in the plañe: smoothness of the law. C. Rovira and M. Sanz-

Solé. AMS Subject Classification: 60H07, 60H10, 60H20. January 1997.
— 227 On the Cohén-Macaulay property of the fiber cone of ideáis with reduction number at most

one. Teresa Cortadellas and Santiago Zarzuela. AMS Subject Classification: Primary: 13A30
Secondary: 13C14, 13C15. January 1997.



 


