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Abstract

The paper is devoted to the problem of analytical classiñcation of
conformal maps of the form /:zt-)-z + z2 + ...ina neighborhood of the
degenerate fixed point z = 0. It is shown that the analytical invariants,
constructed in the works of Voronin and Ectille, may be considered as a
measure of the splitting for stable and unstable (semi-)invariant foliations
associated with the fixed point. This splitting appears to be exponentially
small with respect to the distance to the fixed point.

The problem of local classiñcation of analytic morphisms on the complex
plañe (C,0) seems to be solved completely at the present time. The classical
result is that a morphism / : z *-4 Az + ... with A ^ 0 and |A| ^ 1 can be
conjugated with its linear part z Az. The case of a resonant A (there is n £ N,
such that A” = 1) was solved independently by J.Ecalle [1] and S.Voronin [2].
In this case there is a countable number of independent quantities which are
invariant with respect to analytical changes of coordinates.

In the present paper we concéntrate our attention on the case A = 1 and re-

peat the results of [2], using a dynamical system approach to the problem. This
gives us a geometric interpretation of the obstacles for the analytic conjugation,
which are quite similar to the phenomenon of the splitting of separatrices in
2D Hamiltonian Systems. In the latter class of systems the splitting leads to a
chaotic behavior of trajectories. In the case of analytic maps on the complex
plañe it provides obstacles for analyticity only.

In the present paper we give a new method for construction of the basic
Solutions for the Abel equation (see Section 2). This method is based on the
theory of finite-difference equations proposed in [3, 4], In Section 3 the rela-
tion between analytic invariant and dynamics is discussed. And in Section 4
a numerical method for computing the analytic invariant for a given map is
provided.
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1 Analytical classification by Voronin
First we recall some results from the paper [2]. Let / denote a function analytic
at zero,

f : z z + z2 + az3 + 0(z4). (1)
The problem is when for two given functions of this form, / and /, there is a

diffeomorphism h, such that f = h o f o h~x ina neighborhood of z = 0.
Any map / with /'(O) = 1 and /"(O) ^ 0 can be transformed to the form

(1) by a linear h. The coefficient a is invariant with respect to any h, which
can be represented as a (formal) power series in z, h(z) = z + .... There is not
any other formal invariant since an application of the form (1) can be formally
conjugated to the polynomial

m 2 + z2 + az3, (2)

but, of course, the corresponding series diverges in general.
In [2] a complete set of analytic invariants was constructed with the help of

two basic Solutions Ai and A2 of the Abel equation

A(f(z)) = A(z) + 1. (3)

The functions Ai and A2 are analytic respectively in the domains

Si = { |argz| < 7r - ¿} n Dr, S2 = { | arg(-z)| < n - S } n Dr,

where Dr = {|z| < r}. It is assumed that r is sufficiently small. Moreover,

Ak{z)=-l/z + o{l/z) (4)

on their domains. In particular, A* transform a sectorial neighborhood of the
origin into a sectorial neighborhood of the infinity. Consider the function 4>(í) =
A2o Aíl(t). Due to (4) and (3) it is well defined for sufficiently large |Im<| and

$(* + !)= $(<) + !. (5)

Thus, it may be continued into two half-planes II± = {( S C : ±ImC > R}
provided the constant R is sufficiently large. Let

= A2 o Aj 1
n±

(6)

The functions Ai and A2 are defined by (3) and (4) uniquely up to additive
constants. Consequently, the functions <£± are defined up to a substitution
$±(C) = $±(C + ai) + a2, where ai and a2 are arbitrary complex numbers.
This relation provides an equivalence in the set of pairs of analytical functions.
The equivalence class of (<J>+,<Í>_) is said to be an analytical invariant of the
function /.
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Indeed, let h be an analytical function at the origin, h'(0) = 1, and consider
the function / = h o f o h~l. The Solutions of the Abel equation, which corre-

spond to /, are given by A/, — A* o h. The analytical invariant of the function
/, given by

4> = A2 ° Aj"1 = (A2 o h) o (Ai o h)~1 = A2 o Af1 = <J>,
coincides with the analytical invariant of the function /.

Theorem 1 [2]. Two functions of the form (1) are analytically conjugated in
a neighborhood of zero if and only if their analytical invariants coincide.

The equations (5) and (4) imply that the functions $-¡- may be represented
in the form

OO

*±(*) = * + &£ + £ ó±e±2l>fct, (7)
k = 1

where the Fourier series converge and go to zero as |Imf | —¥ 00 in the half-planes
n±, respectively. In [2] it was shown, that for any pair of analytical functions
of the form (7) it is possible to construct a function (1), such that the pair is a
representative of its analytical invariant.

Example. An important example is the function

fo(z) = = z -T z2 + z3 + • • • • (8)

In this case the Abel equation has an obvious globally defined solution

A(z) = -I.
We may choose A+(z) = A-(z) = A(z). Consequently, $(<) = t. That is the
analytic invariant of this function is trivial, in the sense that = 0 for all
k> 1.

In the coordínate t = — I¡z the map /o is a translation í H ¡ + 1. The
trajectories belong to straight lines Im(<) = const. Corning back to the variable
z we see that these lines are transformed into circles, which pass through the
origin, with horizontal tangent on it. These circles are invariant with respect to
the map /o-

An arbitrary map of the form (1) has a similar (local topological) structure
of trajectories since it may be topologically conjugated with /o [5].

2 Construction of inverse Abel functions

Instead of the Abel equation we will study the equation

z(t + l) = f(z(t)) (9)

for the inverse function z = A-1.
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Figure 1: Domains of definition for the inverse Abel functions, Í2_ and fi+.

Lemma 2 The equatíon (9) has a unique formal solution of the form

i + íL^sí+feS^fl. „o)
k—3

where pk stands for a polynomial of degree less than k. In the case of a = 1 all
Pk are of degree zero, i.e., they are constant.

The proof of Lemma 2 is straightforward (see e.g. [1]).

Lemma 3 For any Jo > 0 there is a positive number R, such that the equatíon
(9) has two Solutions, z~(t) and z+(¿), analytic in the sectors ÍI_ = { | arg(z +
R)| > Jo } and ÍI+ = { | arg(z — ií) — n\ > Jo }, respectively, and which have the
asymptotic expansions (10).

The rest of the section contains the proof of Lemma 3. First, we need
some elementary facts on the theory of finite-difference equations, which afford
us to rewrite the finite-difference equatíon (9) as an “integral” one and use a
contraction map principie in properly chosen functional space.

2.1 Linear finite-difference equations
In the present section we study the problem of inverting the linear finite-
difference operator

2
L(w)(t) = w(t -I-1) — w(t) — jw(t).

This operator plays the role of an approximation for the variational equatíon
associated with (9). First, we need a solution of the homogeneous equation
L(wq) = 0. Obviously,

Wo(t + 1) — w0(t).

4



We look for a solution of this equation in the form wo(t) = eu°^\ The substi-
tution into the equation gives

«0(t + 1) - Uo(0 = log ■

The function uo(t) = log((í + 1 )t) satisfies the last equation, and we immedi-
ately get the desired solution for the homogeneous equation:

w0(t) = t(t + 1). (11)

Now we can solve the nonhomogeneous equation

Lw = /,

where / is a known function, which decreases fast enough at infinity. We use
the method of variation of parameters looking for the solution in the form

w(t) = C{t)w0{t).

Substitution into the equation gives

(C(t + 1) — C(t))wo{t + 1) = /(<)•

This equation has two Solutions
“

f(t ~ *)
“»o(< + !-*)’c-(o = E c+(t) - _ y' +

t'ow^t+i+ky
Taking into account (11) we get the final expression for the Solutions of the
nonhomogeneous equation

w (t)

w+(t)

tu + dY *?

_í(í +1) y t*)
(< + 1 + k)(t + 2 + k)fe=o

(12)

(13)

The series converge provided / = 0(td) with d < — 2 for |í| —¥ oo and then
w = 0(td~l). Let T^íl*) denote the Banach space of analytic functions in Q*,
which are continuous in the closure, with the norm

ll/IU = sup|íd/(OI-
n±

It is easy to see that the equations (12) and (13) define two bounded linear
operators L¿ ¿ -> which solve the equation Lw = f in the
corresponding functional spaces.
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2.2 Proof of Lemma 3

We look for the solution of the equation (9) in the form

,±
-o W--J +

(1 - q) logt
í2

+ w(t).

The first two terms in the right-hand side of the last equation satisfy the equation
(9) with an error 0(t~4). Thus, substituting into the equation (9) we get

w(t + 1) = ^1 + w(t) + g(t) + t), (14)
where

g(t) = 0(t-4), /(O, t) = 0, |^(0,0 = 0(r2logí).
Inverting the linear operator we obtain from (14)

MO = (Ld,±a) (<) + ') (*)•
Choosing d = 3 — S, S € (0,1), it is not difficult to prove the existence and
uniqueness of a solution for the last equation by the contraction map principie.
An analogous estímate may be found in [3, 4],

3 Invariant foliations

Considering the images of the lines Imí = const with respect to z±, we obtain
(semi) invariant foliations. We say that z~ defines the unstable foliation, and z+
defines the stable one. Originally, the unstable solution of the equation (9), z~,
is defined on the domain Q_ only. But if the function / is entire, the function
z~ may be analytically continued on the whole complex plañe by iterating the
equation (9). The restriction of the map z~ on Í2_ is one-to-one onto its image,
but, in general, that is not true for the analytical continuation. The case of z+
is different, since one has to continué the function z+ to the left from its original
domain of definition, Í1+ (see Fig. 1). To do that one needs an inverse function
f~1. The map / is invertible in a neighborhood of z = 0, but it may have no
global inverse.

For /(z) = /o(z) = z/(l — z) we have z+(t) = z~(t) — — l/t, and the
invariant foliations consist of circles and cover the whole complex plañe C. Of
course, the stable and unstable foliations coincide in this case.

In general, the stable and unstable foliations do not coincide (Fig. 2): the
lines, leaving a neighborhood of the origin in a regular way, do not come back
in the same way. The difference consists of the phase shift, described by the
constants 6g from (7), and oscillations, governed by the Fourier series. The
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Figure 2: Unstable foliation for the quadratic map z >-> z + z2,lmt goes through
the interval [0.05,3) with the step 0.1.

oscillations are exponentially small with respect to the imaginary part of the
parameter í. The later is approximately the inverse of the diameter of the
corresponding invariant quasi-circle in the plañe of z-variable.

In Figure 3 we present the unstable foliation for the cubic map 2 z+z2+z3.
It is seen that for small valúes of Imí the corresponding lines of unstable foliation
have self intersections due to the passage near the critical point z = (—1+\/2)/3.
The Une, which passes through the critical point has cusps.

The lines, which start in with small valué of |Imí|, may have a compli-
cated continuation as, for example, in Figure 4.

Now we study the splitting of the stable and unstable foliations, i.e., we
compare the lines, which coincide formally. Consider z+(t) and z~(t) for Imí =

tr, o- 1. We assume that the branches of log are chosen in such a way, that
the asymptotic expression (10) gives the same valúes for z+(í) and z~(t) in the
upper half-plane. The last hypothesis makes no restriction, since the change
of the branch is equivalent to a substitution í *->■< + (1 — a)2ink, k £ Z. The
diñerence z+(t) — z"(í) decreases faster than any power of í-1 as Imí —► +oo.
In particular, that implies that the corresponding representative of the analytic
invariant has no constant term:

<Mí) = í + £6+e2-fct. (15)
k=1

The abovementioned construction establishes a natural one-to-one correspon-
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Figure 3: Unstable foliation for the cubic map z z + z2 + z3: Imt £ (1.8,4.8).

Figure 4: Continuation of the line of the unstable foliation for the cubic map
: 2 + z2 + z3, Imí = 1.6.
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dence between the lines of the stable and unstable foliations.

Proposition 4 Let the map f have the following coefficients in the expansión
(15)

6+ = 6+ = ... = 6+_1 = 0, 6+^0,
for some positive mteger n, then for all sufficiently large cr > 0 the lines z+(t)
and z~(t), Imí = a, intersect along 2n trajectories of the map f, and for any
of these trajectories the intersection angle is given by

a = 27m\b+\e-2nna + 0(e-2^n+1)a).

Ifb+ = 0 for all n, then the stable and unstable foliations coincide forlmt > 0.

Note, that the angle has the same valué at all points of a homoclinic trajectory,
because the map / is conformal. The iterates of a homoclinic point accumulate
to the origin, consequently, if 6+ ^ 0 for some n, then the line z~(t) (as well as
z+(í)), Imí = cr 1, is a closed real-analytic line (asymptotically a circle), but
it is not differentiable at the origin.

It is remarkable, that for any map / of the form / : z t-+ z + z2 + ... there
are only two possibilities:

1. the angle is exponentially small with respect to a = Imí and behaves
asymptotically like 27m|6+|e-2,rr*<T,

2. it is identically zero and the stable and unstable foliations coincide.

The splitting of the stable and unstable foliations produces no chaotic be-
havior of trajectories: the map / is topologically conjugated to z ►-* z/( 1 — z).

An analogous study may be done in the Iower half-plane Imí < 0. The type
of the splitting in the Iower half-plane is independent of the behavior in the
upper half-plane, and any combination may appears.

Proof of Proposition 4■ We fix S > 0 and consider the sector S < arg z < n — ó.
We take í = Ai = (z+)-1 as a coordínate in this sector. Then the stable
foliation is given by Imí = <r and the unstable foliation can be represented in
the parametric form í = $+(¿<r + r), r 6 R. The line of the unstable foliation
intersects Imí = a provided

Im ($+(¿cr -(- r)) = cr.

Taking into account (15) we get

Im
OO

e — 2nkcr+2iirkT
.k =n

= o,
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where we used that £>^ = ... = 6+_j = 0. Since 6+ ^ 0 we get

r
arg 6*
2mi

+ ¿+0(e-2-).¿n (16)

Since in the coordínate t the map / acts as t >-»• t + 1, we have 2n distinct
homoclinic trajectories.

Since the line of the stable foliation is horizontal the intersection angle at a
homoclinic point is given by

Im <&+(i<T + r)
tana = :

Re$+(í<7 + r)

where r is given by (16) and the point denotes the derivative with respect to t,

Using again (15) we get
OO

Im ^2b+2inke-2*k‘’+2i*kT
tana = ^ = ±2nn\b¿;\e-2*n° + 0(e~2^n+1^).

1 + Re b^2ÍTrke~2nk,7+2inkT
k=n

Since the map z+ is conformal it preserves angles, and the angle of intersection
of the lines of the stable and unstable foliations is described by the same formula
in both z- and í- variables.

4 Computation of analytical invariants
We investígate numerically the analytical invariants for some maps.

The analytic invariant (6) is given by the function

$(<) = A2 o z~(t).

The functions A2 may be fixed by the following asymptotic condition

A2 = -- 4- (1 - a)logz + a„zn, z ->■ 0, zeS2- (17)
2

n>i

The coefficients an are defined uniquely from the Abel equation (3). If f(z) is
real for real z then these coefficients are real numbers. Comparing this asymp¬
totic with (10) we obtain that = ±(1 — a)n.

The other coefficients bf can not be obtained from these asymptotic ex-
pansions only because the Fourier series in (7) decrease exponentially fast with
respect to |Imf|.
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We note that

(18)$(<) = A2 o f2n 02 (í — n) — n

for all n € N. Here f2n denotes the composition of 2n functions /.
The sequence f2n o z~ (t — n) — fn o z~ (t) goes to zero in the sector S2 as n

goes to infinity provided |Im<| is not too small. Consequently, we can evalúate
the function $(í) in the following way: choose n sufficiently large and calcúlate
z~ (t — n) using a finite part of the sum (10); apply 2n times the map / to the
obtained point; use a finite part of the asymptotic expansión (17) to get the
approximate valué of <í>(¿).

Fourier coefficients in (7) can be evaluated using the usual formula for Fourier
coefficients

¿>± = exp(27T<rfc) í ($± (±i<x + r) — (±i)<7 — r) exp(q=27rikr) dr (19)
Jo

where a > 0 is a fixed number.
In the computations we used the asymptotic formula (17) with the error

term being 0(z4)- The integral in (19) was computed by rectangular formula
with 16 equidistant nodes. This method provides sufficiently high accuracy and
is stable with respect to a and n.

The results of the computation of the first Fourier coefficient for the polyno-
mial map z >->■ z + z2 using different valúes of a and n are given in the following
table.

tT n U+lIC1 1 argcf
3.5 100 22350579.12 2.9733955458
4.5 100 22350589.2 2.9733953515
6.0 100 22350580.22 2.9733953361
3.5 500 22350579.22 2.9733955202

Moreover, we find out numerically that |6^| of the polynomial (2) depends
on a asymptotically as const • exp(—27r2a) for a —► —00.
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