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Abstract

In this paper we show that every locally finite quasivariety of MV-algebras
is finitely generated and finitely based. To see this result we study critical
MV-algebras. We also give axiomatizations of some of these quasivarieties.

Introduction

In [4, 5] C.C.Chang introduced MV-algebras in order to give an algebraic counterpart
of the Lukasiewicz’s many valued propositional calculus. In fact, the class of all
MV-algebras, in a termwise equivalent presentation named Wajsberg algebras, is
the equivalent variety semantics, in the sense of [1], of this calculus (see [17]).

From the equivalence between MV-algebras and many valued Lukasiewicz’s lo-
gic, it is easy to see that finitary extensions of Lukasiewicz’s propositional calculus
correspond to subquasivarieties of MV-algebras, and axioms and rules of the calculus
correspond with equations and quasiequations, respectively. Henee, finite axiomat-
izable finitary extensions of Lukasiewicz’s propositional calculus correspond with
finite axiomatizable quasivarieties of MV-algebras.

In this paper, we study finite axiomatizability of locally finite quasivarieties of
MV-algebras. Concretely, we show, in Section 2, that locally finite quasivarieties
and finitely generated quasivarieties of MV-algebras coincide, Theorem 2.13, and
that they are finitely axiomatizable, Theorem 2.15. To prove these results, we give a
characterization of critical MV-algebras, Theorem 2.11, and we see that any locally
finite quasivariety of MV-algebras is generated by critical MV-algebras, Theorem 2.9.
By using a result of [11], we deduce the finite axiomatizability of these quasivarieties.

In section 3, we give some examples of locally finite quasivarieties of MV-algebras,
and we give an effective axiomatization for each considered quasivariety .

We inelude a preliminary section, Section 1, containing basic definitions, results
and notation used in the paper.

‘This work is partially supported by Grants FI/94-1351 and SGR/96-00052 of D.G.R. of Ge-
neralitat de Catalunya and by Grant PB94-0920 of D.G.I.C.Y.T. of Spain.
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1 Definitions and first properties.
An MV-algebra is an algebra (A, ®, 0) of type (2,1,0) satisfying the following
equations:

MV1. (x © y) © z « x © (y © z)

MV2. x © y « y © x

MV3. x © 0 « x

MV4. ~i(-'x) « x

MV5. x © -'0 ~ ~'0

MV6. ->(-10: © y) © y « -i(x © ->y) © x

By taking y = ->0 in MV6, we deduce:

MV7. x © -ix « -i0.

Therefore, if we set 1 = —>0 and xQy = ~’(-ix©-iy), then (A, ©, ©, -i, 0,1) satisfies all
axioms given in [14, Lemma 2.6], and henee the above definition of MV-algebras is
equivalent to Chang’s definition [4]. We denote by W, the class of all MV-algebras.
W is a variety since it is an equational class.

Given G = (G, A, V, +, —, 0) a lattice ordered abelian group and u e G u > 0,
we define the algebra T(G,u) = ([0, u], ©,->,()) where

- [0, u] = {a € G : 0 < a < tt},
- a (B b = u A (a + b), -<a = u — a and 0 = 0G.

Then T(G, u) is an MV-algebra. In fact any MV-algebra is isomorphic to the unit
segment of some lattice ordered abelian group. Concretely, the category of MV-
algebras is equivalent to the category of lattice ordered abelian groups with strong
unit (See [6],[14]).

The following MV-algebras play an important role in the paper.

• [0,1] = T(R, 1), where R is the totally ordered group of the reais.
k

• [0,1] fl Q = T(Q, 1) = ({— : k < m < w},©, —i, 0), where Q is the totally
771

ordered abelian group of the rationals and uj represents the set of all natural
numbers.

For every 0 < n < w

Ai A¡
• Ln = r(Qn, 1) = {{— : 0 < k < n},©,-i,0), where Qn = {— : k € Z} is a

71 71

subgroup of Q and Z is the set of all integers.
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. L" = r(Q„0Z,(l,O)) = <{(£,*) : (0,0) <(£,*)< (1,0)}, ®, 0), where Z
is the totally ordered group of the integers and Qn 0 Z is the lexicographic
product of Qn and Z.

The following theorem States some well-known results on MV-algebras.( See for
instance [6]).

Theorem 1.1

1. Every simple MV-algebra is isomorphic to a subalgebra of [0,1].
2. Every finite simple MV-algebra is isomorphic to hn for some n£u.

3. Every finite MV-algebra is isomorphic to a direct product of finite simple MV-
algebras.

4. Ln C Lm if and only if n\m. □

If we define Ox = 0 and for each n € u> (n+l)x = x© nx, then

Lemma 1.2 [18, Lemma 2.2.] Ln is embeddable into an MV-algebra A if, and only
if, there is an element a € A such that (n — l)(-|a) = a. Moreover a / Ia. □

We denote by I, H, S, P, Ph and Pu the operators isomorphic image, homo-
morphic image, substructure, direct product, reduced product and ultraproduct res-

pectively. We recall that a class K of algebras is a variety if and only if it is closed
by H, § and P. And a. class K of algebras is a quasivariety if and only if it is closed
by I, S and Pr, or equivalently, by and I, S, P and Pj/. Given a class K of algebras,
the variety generated by K, denoted by V(K), is the least variety containing K.
Similarly, the quasivariety generated by a class K, which we denote by Q(K), is the
least quasivariety containing K. We also recall that a class K of algebras is a variety
if and only if it is an equational class, and K is a quasivariety if and only if it is a

quasi-equational class.

2 Locally finite quasivarieties and critical algebras.
An algebra A is locally finite if and only if every finitely generated subalgebra is
finite. A class K is locally finite if and only if every member of K is locally finite.
A variety, or a quasivariety, is finitely generated if it is generated by a finite set
of finite algebras.
We recall some basic properties of locally finite varieties and quasivarieties.

Theorem 2.1 [3, page 70] Let K be a finite set of finite algebras. Then V(K) is a
locally finite variety. □
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Theorem 2.2 [3, page 69] A variety K is locally finite if and only if

|X| < u implies |Fk(A)| < cj

where Fk(A) is the free algebra with respect K. □

From the above theorem we can deduce:

Theorem 2.3 Let K be a quasivariety. The following conditions are equivalent:

1. K is a locally finite quasivariety

2. V(K) is a locally finite variety.

3. K is contained in a locally finite variety.

Proof : 1 =r> 2 : Assume that K is locally finite. Since K is a quasivariety, we have
that Fv(k)(*^0 6 K. Therefore if |A| < ui then |FV(k)(A)| < u. And by Theorem
2.2 we obtain that V(K) is locally finite.
2 =>■ 3 : It is trivial, since K C V(K).
3 =r> 1 : Since any subclass of a locally finite class of algebras is also locally finite,
from 3 we trivially obtain 1 □

Corollary 2.4 Every finitely generated quasivariety is locally finite. □

We want to obtain all locally finite varieties and quasivarieties of MV-algebras. First
we recall which are the varieties of MV-algebras.

Theorem 2.5 [13, Theorem 4.11] K is a proper subvariety of W if and only if there
exist two disjoint finite subsets I,Jof natural numbers such that

K = V(L¿ i €7,1# jeJ).
From the above we have:

Lemma 2.6 Let K be a variety of MV-algebras. K is a locally finite variety if and
only if K = V(Lni,...L„r) for some ni,... ,nr € u>

Proof : By Theorem 2.1, for every r < u> and any ni,...,nT € u/, V(Ln,,... Lnr) is
a locally finite variety.
If K = W, then, since [0,1] is not locally finite, K is not locally finite. If a proper
variety K is not of the form V(Lni,... LUr) for some ni,..., nr 6«, then by Theorem
2.5 we have that K = V(Lj i € /, j G J) with J ^ 0. Henee there is j e J such
that L“ 6K and, since L" is not locally finite, K is not a locally finite variety. □

From Lemma 2.6 and Theorem 2.3 we can deduce:

Corollary 2.7 A quasivariety of MV-algebras is locally finite if and only if it is a

subquasivariety of a variety of the form V(Lni,... Lnr) for some ni,..., nr € u>. □
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A critical algebra is a finite algebra not belonging to the quasivariety generated by
all its proper subalgebras. In order to study critical algebras we need to recall a

general result of Model Theory.

Theorem 2.8 [3, page 213] Every algebra is embeddable into an ultraproduct of its
finitely generated subalgebras. □

The interest of critical algebras is given by the following result, which is mentioned
in [10, page 128], but no proof is given.

Theorem 2.9 Every locally finite quasivariety is generated by its critical algebras.

Proof : Let K be a locally finite quasivariety and let A 6 K. By Theorem 2.8, if
T = {B C A : B is finitely generated}, then A € ISPt/(.F). Since K is locally finite
we have that A 6 I§Pt/({B C A : B is finite}) C Q(Kf¿n), where K/¿n is the class
of all finite algebras in K. Henee K = Q(K/¿n).
Let A € Kfin then we claim that Q(A) = Q({B C A : B is critical }). To prove the
claim we proceed by induction over the cardinal of A. If |A| = 1, then A is already
critical and we trivially have that Q(A) = Q({B C A : B is critical }).
Assume ¡A| = n. If A is critical, then Q(A) = Q({B C A : B is critical }).
In other case, we have that Q(A) = Q({B C A : B / A}). Since for B C A,
|B| < n, by inductive hypothesis we have that Q(B) = Q({C C B : C is critical }).
Típticp

Q(A) = Q({B:BQA})
= Q({C C B : C is critical and B £ A})
= Q({B C A : B is critical }).

and the claim is proved. Thus we have that

K = Q(K/in) C Q({B C A : B is critical and A € K/¿n}) = Q(Kcrit) C K

where Kcrít is the class of all critical algebras in K. □
Our next purpose is to characterize critical MV-algebras. We need a previous result.

Lemma 2.10 If Lno x •

{ruj : j E J} is finite then

x Ln,_1 is embeddable into JJ Lmj where the set
jeJ

1. For every i <1 there exists j € J such that n^m^.
2. For every j € J there exists i < l such that ni\mj.

Proof : 1) If Lno x • • • x Lni l is embeddable into ímj, then
j£J

Lni x • • • x Ln( € V(H Lm.) = V({Lm.; j € J}).
jeJ
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Henee, for every i < l, Ln< <E V({Lmj;j € J}). Since {rrij : j G J} is finite,
from a result due to Jónsson [3, page 149], we deduce that the class subdirectly
irreducible members of V({Lmj; j € J}) is K({Ln : 3j € J Ln C Lm;}). Since Lni is
simple, therefore subdirectly irreducible, for every i < l there exists j € J such that
Ijni Q Lmj., and by 4 of Theorem 1.1 n%\rrij.
2) For each j € J consider the natural projection: irj : n írrij * Lrrij ■ Let

jeJ

7: Lno x • • • x Lnj_j —*■ hmj be an embedding, then for every j G J 7¿ =^07 is
an homomorphism from Lno x • ■ • x í¡ni-i to Lmj. Henee

t<no x • • • ^ íin¡_1 /Ker^j) = 7j(L„0 x • • ■ x C Lm^

So, Lno x • • • x Ln[_1/Ker('yj) is simple, and by [6, Theorem 4.1.19] we have that
Ker('jj) is a maximal congruence relation of Lno x • • • x Ln¡_1. From [7, Lemma 2.3]
(see also [16]) and the fact that all Ln’s are simple, it can be deduced that there is
k < l such that

Ker('lj) = 14 x ' • • x x ALnfc x L*fc+1 x ••• x I4_r
Henee, for every j 6 J there exists k < l such that

t'no * " ‘' * Bn¡_j/ÍCer(7j) — i'nfc ^

Thus nfc|mj. □
Finally we give a characterization of all critica! MV-algebras.

Theorem 2.11 An MV-algebra A is critical if and only if A is isomorphic to a

finite MV-algebra Lno x • • ■ x Ln,_1 satisfying the following conditions:
1. For every i,j<l, i ^ j implies ni ^ n¿.

2. Consider the correspondence D : uj —* V(uj): n 1-* D(n) = {d < u> : d|n}.
Then there is at most one n¿, i < l, such that |£>(n¿) fl {nj : j < 1}| > 1.

Proof : Assume that A = Lno x • • • x Lnj l satisfies conditions 1) and 2). First,
we will show the following:
Claim: Every proper subalgebra of A is embeddáble into a subalgebra of A of the
forra x • • • x Ld(_j, where dt|n, for each i < l and there exists j < l such that
dj -f- nj.
Proof of the claim: Let B be a proper subalgebra of A. Since A is finite B is
also finite and by Theorem 1.1, B is isomorphic to x • • • x LPr_1. For each i < l
consider the natural projection: 7r¿ : A —► Ln<) if for allí < l, we write 7¿ = 7r¿ fe,
then we can assume that B is embeddáble into 7o(B) x • • • x 7;_i(B). Moreover,
since 7í(B) C Ln., we have 7¿(B) = for some d,|n¿.
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Assume that 7¿(B) = Lni for each i < l. Then, for every i < l, B/ATer(7¿) = Ln,
and since Lni is simple, Ker{^i) is a maximal congruence relation of B. From [7,
Lemma 2.3] (see also [16]) and the fact that all Ln’s are simple, it can be deduced
that there is k < r such that

Ker^i) = Lj, x • ■ • x Lj^ x ALpfc x L?fc+1 x • • • x Ljr_r
Henee, for every i < l there exists k < r such that LPi = LUi. By condition (1),
i j implies n¿ ^ rij , so l < r and

B = lino X • • • X Ln¡_j x hm¡ x • • x hm,— i = A x Lm¡ x • • • x Lmr_ i

that implies |A| < |B|, which contradicts that B is a proper subalgebra of A. And
the claim is proved.
Suppose that A € Q({B £ A}), then

A e ISPP(/({Ld0 x • • • x : Vi di\rn; 3k dk ± n*¡}).
Since {Ld,, x ••• x L¿ll ■ Vi d¿|rij; 3k dk ^ njk} is a finite set of finite MV-
algebras, we have that A € ISP^L^ x • • • x L: Vi di|n¿; 3/c dk # n*}). Thus
Lno x • • • x Lis embeddable into (L^ fc x • • • x L¿t_hk)ak where

k<n

{Ldo fc x • • • x Ldl_lk ■■ k < n} C {L^ x • • • x Ld,_1 : Vi d¿|n¿; 3A: dk ¿ nk}.
Since the set {dt k : t < i, k < n} is finite, we can apply Lemma 2.10.
If there exists i,j < l such that i ^ j and n¿|nj, then by conditions 1) and 2), rij is
unique. By Lemma 2.10, there exists m such that nj\dt,m- That is, there exists

I'do.m x • • x € {L^q x ••• x : Vi d%\ni\ 3k dk ^ nk}
such that nj\dtfTn for some t < l. By condition 2), nj does not divide any other
than itself. Therefore, since dt m is a divisor of nt, we have that nt = dtim = nj and
by 1), t = j. Since

^do,m x • • • x € {Ljíq x • • • x : Vi d¿|íii; 3k dk ^
there exists r ^ j < l such that dr^m\nT and dr>m ^ nr. By 2) of Lemma 2.10, there
exists s,r < l such that s ^ r < l and ns|dr)m. Thus ns|nr, nj]nj, r ^ s, i ^ j and
r j, which contradicts condition 2).
If for all 1 < i,j < l such that i ^ j, ni /rij, then the same argument follows by
taking any nj, j <1.
Since A is finite and A 0 Q({B £ A}), A is critical.
Conversely, if A is a critical MV-algebra, then A is finite and by Theorem 1.1, we
can suppose, without loss of generality, that

A = Lno”10 X • • • X lnk-ímk-1
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for some no, • • •, njk_i, mo,..., m^-i G ui and n¿ ^ rij when i ^ j. If not all m^s are
equal to 1, then the correspondence

mo rrik-i

a: (a(0),..., a(k - 1)) h-> a(a) = ((a(0),..., a(0)),..., (a{k - 1a(k- 1)))
defines an isomorphism from Lno x • • • x Lrifc_1 onto a proper subalgebra of A. Let
m = max{mo,..., then the correspondence

/3: Lnom° x • • • x -> x • • • x

such that for every r < k,

m—mr

/3({b(0),..., b(k — l)))(r) = (6(r)(l),..., b{r)(mT), 6(r)(l),..., 6(r)(l)),

gives an embedding from A into Lnom x • • • x Lnfc_jm = (Lno x • • • x Lnfc_1)m. Thus
A € Q(Lno x • • • x Lnfc_1). Since A is critical, we have mo,..., rrik-i = 1. Henee
it satisfies condition 1). Suppose condition 2) fails, then there exist j < r < k such
that

|D(rij) fl {nm : m < k}\ > 1 and \D(nr) fl {nm : m < A:}| > 1.
Thus there exist i ^ j and sjír such that n¿|nj, ns\nr and j / r. Since n,|nj, we
have that the correspondence that maps

(a(0),. • •, a(j — 1), a(j + 1a(k- 1))

to

(a(0),.. •, a(j - 1), a(i),a(j + 1),..., a(k - 1)).
defines an isomorphism from L„0 x • • • x Lní_x x Lnj+1 x • • • x Lnfc_j onto a proper
subalgebra of A.
Similarly the algebra Lno x • • • x Lnr_1 x L„r+1 x • • • x Lnfc_j is isomorphic to a proper
subalgebra of A. Finally, observe that x • • • x Lnjc_1 is embeddable into

Lni x • •• x Lnj._j2 x hn. x Ln¿+12 x ••• x LUr_x2 x Lnr x L„r+12 x • • ■ x Lnjfc2,
by means of the correspondence 6 defined as:

í(a(0),...,a(t-l))(¿) = {^W>a(¡)) if i # j, r
if i = j,r'

Therefore
A € Q(Iin0 X • • X íinj-i X I<nj+i X • • • X £¿nfc_i, i<no X • ■ • X linr_1 X £/nr+1 X
in contradiction with the fact that A is critical.

• • xLnfc_x)
□
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Corollary 2.12 The number of non isomorphic critical MV-algebras in a proper

variety of MV-algebras is finite. □

Proof : If K is a proper variety of MV-algebras, then it is shown in [13] and [6] that
K contains a finite number of Ln's. Let M = {n 6 ai : Ln G K}, clearly \M\ < vj.
By Theorem 2.11, all critical algebras in K are:

K({Lni x • • • x Ln, : satisfying (1) and (2) of Theorem 2.11 and n* € M}).

Since \M\ is finite we have that the number of non isomorphic critical MV-algebras
in K is finite. □

From the above result we deduce :

Theorem 2.13 A quasivariety of MV-algebras is locally finite if and only if it is
finitely generated.

Proof : Let K be a locally finite quasivariety of MV-algebras, by Corollary 2.7,
V(K) is a proper subvariety of W, thus, applying Corollary 2.12 the number of non

isomorphic critical MV-algebras in K is finite. By Theorem 2.9, K is generated by
its critical algebras, therefore, since a quasivariety is closed under the operation of
isomorphic images, K is finitely generated.
The converse is given by Corollary 2.4 □
In general locally finite quasivarieties are not finitely axiomatizable, not even finitely
generated quasivarieties are finitely axiomatizable. For instance: Let K = Q(A)
where A = ({0,1,2}, /, g) is of type (1,1) with / and g defined by /(O) = 1, #(0) = 2
and f{x) = g(x) = x for x / 0. Due to Gorbunov [12], K is not finitely axiomati¬
zable while it is finitely generated.(see also [8, page 149]).
We will show that locally finite quasivarieties of MV-algebras are finitely axiomati¬
zable. For this we need the following result.

Lemma 2.14 [11, Lemma 4.2] Let M be a locally finite quasivariety of finite type,
then for a quasivariety K contained in M the following conditions are equivalent:

1. K is not finitely axiomatizable relative to M.

2. There exists an infinite sequence Ai, A2, A3,... of finite algebras of M satis-
fying:

(a) \Ai\ < |.Aj+i| for all i;
(b) Ai £ K for all i;
(c) Every proper subalgebra of every A¿ belongs to K. □

From the above result and Corollary 2.12 we deduce:

Theorem 2.15 Every locally finite quasivariety of MV-algebras is finitely axiomat¬
izable.
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Proof : Let K be a locally finite quasivariety of MV-algebras, by Corollary 2.7,
V(K) is a proper locally finite subvariety of W. Observe that any finite MV-algebra
A G V(K) satisfying conditions (b) and (c) is critical. It follows from Corollary 2.12
that the number of non isomorphic critical MV-algebras in V(K) is finite. Therefore
it is impossible to obtain an infinite sequence of finite MV-algebras of V(K) satisfying
conditions (a), (b) and (c). Thus, by Lemma 2.14, K is finitely axiomatizable relative
to V(K). And since any variety of MV-algebras is finitely axiomatizable (see for
instance [13], [6] and [9]), we have that K is finitely axiomatizable. □

3 Applications to axiomatization of concrete samples.
It is well known that every subvariety of MV-algebras is finitely axiomatizable. In
fact, some eífective axiomatizations are given in [9] and in [15]. To our concern, we
only need to axiomatize locally finite varieties of MV-algebras. In [18] it is proved
that the variety generated by Ln is finitely axiomatizable and it is axiomatized by
MV1,...,MV6 plus a single axiom of the form tp(x) « 1, denoted by vn(x) « 1.
Moreover, for every m,..., nr < ui, V(Lni,..., Lnr.) is the subvariety of W defined
by the equation vni (x) V • • • V vnr(x) » 1 [18, Theorem 1.8]. Where V is defined by
x V y = © y) © y.
Given a quasivariety K of MV-algebras, we define the following class

K : L„ = {A G K : L„ ft IS(A)}.

From Lemma 1.2, the quasiequation (n — l)(-ix) « x =» x « 1 holds in an MV-
algebra A if and only if A does not contain Ln. Therefore K : Ln is axiomatized
by:

{axioms of K} U {(n — l)(->x) « x =► x « 1}.
Therefore, since it is a quasiequational class it is a quasivariety. It is easy to see
that the following properties hold

3.1 (K : Ln) : Lm = (K : Lm) : Ln — K : Ln D K : Lm — K : Ln, Lm.

3.2 K : Ln = K if and only if Ln & K.

Our first example is to identify all quasivarieties contained in V(Lp, Lq), where p
and q are two distinct prime natural numbers. Since the only divisors of p and q
are 1 ,p,q, by the characterization given in Theorem 2.11, we have that all critical
MV-algebras contained in V(LP,I»9) are

Lp, Lq, Li x Lp, Li X hq,Lp x t,}).
All subquasivarieties of V(LP,L<7) are sketched in figure 1.
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Figure 1: Lattice of all quasivarieties contained in V(Lp, Lg).

{p; 9}

{ni,..., ni\mi,... ,mk} stands for Q(Lni x • • • x i'nj > limi X •• X ) •

We want to give an effective axiomatization of all subquasivarieties of V(LP,L9).
We know that the subvarieties are V(LP, Lq), V(LP), V(Lq) and V(Li), which can
be axiomatized by MV1,...,MV6 plus vp(x) V vq(x) « 1, vp(x) ~ 1, vq(x) « 1 and
vi (x) ~ 1 respectively. In order to give axiomatizations for the other quasivarieties
we state:

Theorem 3.3 The following equalities hold:

1. Q({Lp,LpxL9})=V({Lp,L9}):L<?.
2. QUL^Lp x Lq}) = V({LP, Lq}) : Lp.
3. Q(LP x L9) = V({Lp,Lg}) : Lp,Lq.

I Q(Li x Lp) = V(LP) : Lp.
5. Q(Li x Lq) = V(L9) : L,.

Proof : 1) Since Lq is not contained in Lp and Lp x L9, then Q({LP, Lp x Lg}) C
V({Lp,Lg}) : Lq. By 3.2, V({Lp,Lg}) : Lg isa proper subquasivarietyofV({Lp,Lg})
and it is a locally finite subquasivariety. Henee, it suffices to show that all critica!
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MV-algebras of V({LP, Lq}) not containing L9 belong to Q({LP, Lp x Lq}). The only
critical MV-algebras of V({LP, Lg}) not containing Lg, up to isomorphism, are

{Li,Lp,Li x Lp, Li x Lq,Lp x Lq} C Q({LP,LP x Lq})

2) can be obtained as 1).
3) follows from 1), 2) and 3.1.
4) Since Li x Lp € V(Lp) and {Li, Li x Lp} are, up to isomorphism, the only critical
MV-algebras in V(Lp) which do not contain Lp, we have Q(Li x Lp) = V(LP) : Lp.
5) is obtained as 4). □

Using the above theorem and Lemma 1.2, we can obtain an effective axiomat-
ization of all quasivarieties Usted above. We still have three subquasivarieties of
V(Lp,Lq) without an effective axiomatization. Next result takes care of that.
Theorem 3.4 Ifr = max{p, q}, then

1. Q(Lp,L! x Lq) is axiomatized by the axioms o/V(Lp, Lg) : L9 and

rx « 1 & r(-<x) « 1 =>• vp(y) « 1.

2. Q(L9,Li x Lp) is axiomatized by the axioms o/V(Lp, Lg) : Lp and

rx « 1 & r(-<x) « 1 =>■ vq(y) ~ 1.

3. Q(Li x Lp, Li x L9) is axiomatized by the axioms o/V(Lp,L9) : Lq, Lp and

rx « 1 &: r(-<x) « 1 => x « 1.

Proof : 1) Since Lp,Li x hq do not contain Lq, then they satisfy all axioms of
V(LP, Lq) : Lq. Moreover, since for any o € Li x Lq,

ra = (1,1) impHes r(-ia) ^ (1,1),

the quasiequation
rx fu 1 Se r(-<x) « 1 vp(y) ~ 1

is valid in Li x Lq. Since vp(y) w 1 is valid in Lp, then Lp is also model of

rx « 1 Se r(-<x) » 1 => vp(y) & 1.

Therefore, all members of Q(LP, Li x Lq) are models of the above quasiequation.
Since the class of all models of the quasiequation

rx fa 1 Se r(-ix) « 1 => vp(y) « 1
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in V(Lp,Lq) : Lg is a locally finite quasivariety of MV-algebras, it suíñces to show
that all critical MV-algebras of V(Lp, Lg) : Lq satisfying the quasiequation are
included in Q(Lp, Li x Lg). The critical MV-algebras of V(Lp,Lg) : Lq are iso-
morphic to {Li,Lp,Li x Lp,Li x Lg, Lp x Lg}. Observe that they all satisfy the
quasiequation, but Lp x L?. Take for instance x = y = (- , - ). And since

{Li,Lp,Li x Lp, Li x Lg} C Q(Lp,Li x Lq), 1) is proved.
2) is proved as 1).
3) Since L\ x Lp, Li x Lq G V(LP, Lg) : Lq, Lp and there is no element a in Li x Lp
or in Li x Lg which satisfies ra = (1,1) and r(->a) = (1,1), then Li x Lp, Li x Lq
satisfy the axioms.
Using a similar argument as in 1), we can show that {Li,Li x Lp,Li x Lg} are, up
to isomorphism, the only critical MV-algebras in V(Lp,Lg) : Lg,Lp satisfying the
quasiequation

rx « 1 &¿ r(->x) w 1 => x w 1,
since they belong to Q({Li x Lp, Li x Lg}), 3) is proved. □

Our second example are all quasivarieties contained in V(Lpr), where p is a prime
natural number and r is a natural number.

Theorem 3.5 The class of all critical algebras in V(Lpr) is

I^{LP« : s < r} U {Lpr> x Lpm : n < m < r}j.
Proof : Since Lp» with s < r and Lpn x Lpm with n < m <r belong to V(Lpr) and
they satisfy conditions given in Theorem 2.11, they are critical.
To prove the other inclusión, consider A € V(Lpr) a critical MV-algebra. All divisors
of pr are p3 with s < r, henee, by condition 1) of Theorem 2.11, A is isomorphic to

Lpiii x • * x Lpitk
such that ni < if i < j and ni <r for all 1 < i < k.
If k > 2, then A does not satisfy condition 2) of Theorem 2.11, therefore it would
not be critical. Henee k = 1 or k = 2. □

From 2.10 we deduce the following properties:

Lemma 3.6 Let ni,..., n* < w and. mi,,..., n* < uj such that n* < mi for every
\<i<k.

1. Lpni x Lpm¡ C Lp*j x Lpmj if and only if ni < nj and m,i < mj.

2. Lpnt x Lpni C Lps x Lp> if and only if mi < s.

3. Lp* C Lpnj x Lpmj if and only if s <nj. □
Theorem 3.7 Every subquasivariety o/V(Lpr) is of type:
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1. Q(LP») = V(Lp») where s <r.

2. Q(Lpnt x Lp"»!,... ,Lp"fc x Lpmfc) such that i%i < < r, for every 1 < i < k
and ni < nj and m,i > mj if i < j.

3. Q(Lp"i x Lpmi,..., Lp"* x Lpmfc, Lp») such that ni < s < mi < n, for every
1 < i < k and n{ < nj and mj > m,j if i < j.

Proof : Let K be a subquasivariety of V(Lpr), by Theorem 2.13, K is finitely
generated by critical MV-algebras, say K = Q(Ai,..., Afc). By Theorem 3.5, for
every 1 < i < k

Ai = Lp» with s <r or A¿ = Lpn x Lpm with n < m < r.

Therefore K = Q({Lp»i,..., Lp»j, Lpnj+i x hpmi+l,..., Lp"fc x Lp”>fc}). Let
@5 = {Lp»i,..., Lp»j, Lp«j+1 x Lpmí+1,..., Lpnfc x Lp^^ }.

We give a recursive procedure to find a subfamily of generators satisfying our con-
ditions and generating K:
First step: Let m[ — max{si,..., Sj, mJ+i,..., m^}. If m'x = s¡ for some 1 < l < j
then, by Lemma 3.6 and Theorem 1.1,

p»i,..., Lp»3, Lp",+i x Lp"»,+1,..., Lpnfc x Lp"** } C Q(Lp»i).
Therefore K = Q(Lp»i) = V(Lp»i).
Second step: If mx / s¡ for every 1 < l < j, let n\ = max{n¿ : m, = rn\).
Consider = {Lp» € 0 : s > n^} U {Lpn x Lpm € 0 : n > nx}. Observe that
if Lp» € 0i, then n[ < s < m[ and that if Lpn X Lpm € 0i, then n[ < n and
m <m\. Thus, by Lemma 3.6, 0 \ 0i C Q(L^n/ x L^m/). Therefore

K = Q({L n» xLm;}U 0i) = Q(L „/ xLm/)V Q(0i).p * p i p i p i

Since L^n'i x L^ € 0 \ 0i, then |0i| < |0|.
At this point, we come back to first step, but using 0i instead of 0. And we proceed
recursively.
This algorithm ends because 0 is finite. At the end, we will have a finite sequence
L „/ x L m/,..., L „/ x L m/ and probably L m> such that they satisfy conditions
pipi p l p l p J + l

given in the statement of this theorem. □
Finally, we give an axiomatization for each subquasivariety of V(Lpr).

Theorem 3.8

1. V(LP») with s <r, is axiomatized by
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(a) MV1,...,MV6 and
(b) vps(x) « 1.

2. Q(Lpn! x Lpir*!,..., Lpn* x Lpmfc) such that < mi < n, for every 1 < i < k
and ni < nj and m¿ > mj if i < j, is axiomatized by:

(a) MV1,...,MV6,
(b) üpmj (x) fü 1,
(c) (pnfe+1 — l)(->x) ríi^i«1 and
(d) (pni-1+1 — l)(-ix) « x =>• vpmj(y) « 1 for every 2 < j < k.

3. Q(Lpni x Iipmi j 11 < j hpnfe x jÍíprnk) Iip®) such that nj ^ *s ^ mí ^ Tij for every
1 < i < k and ni < nj and m,i> mj if i < j, is axiomatized by:

(a) MV1,...,MV6,
(b) Vpmi(x) « 1,
(c) (ps+1 — 1)(-1^) ~ X => X « 1,
(d) (pni~1+l — l)(-ix) « x =>• vp">j (y) « 1 /or every 2 < j < k and
(e) (pnfe+1 - l)(-ix) « x =» ty(j/) « 1.

Proof : 1) It is obvious by the remark given at the beginning of this section.
2) Since 0 = {Lpnj x L^,..., Lp«fc x Lpmfc } C V(Lpm1), the members of Q(0) are
models of (a) and (6).
Moreover, Lpnfc+i A for each A € 0, henee 0 C V(Lpr) : Lpnfc+i and every algebra
in 0 is a model of (c).
By Lemma 1.2, if A E 0 and it does not contain then it is a model of
(d). On the other hand, if A € 0 is such that ípnj_1+i C A, then it belongs to the
variety generated by ly^, therefore it also satisfies (d).
Since every member in 0 is a model of the equations and quasiequations (a), (6), (c)
and (d), each member of <Q>(0) is also a model of (a), (b), (c) and (d).
To see the other inclusión, observe that (a) and (6) axiomatize V(Lpm1), henee the
class of all models of (a), (6), (c) and (d) is a subquasivariety of V(Lpmj). Thus, it
is a locally finite quasivariety of MV-algebras. By Theorem 2.9, it suffices to show
that every critical MV-algebra in V(Lpmi) satisfying (c) and (d) belongs to Q(0).
Let A € V(Lpmi) be a critical MV-algebra, by Theorem 3.5,

A = Lp» with s < mi or A = Lpn x Lpm with n < m < m\.

If A satisfies (c), then Lpnfc+i g A. Henee
A = tp» with s < rife or A = Lpn x Lpm with n <m <m\ and n < n*.
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A = Lpj, with s < nfc, implies Lp» C Lpnfc x Lp™k. Thus A G Q(0).
If A = Lpn x Lpm, with n <m <m\ and n < rife, we have several possibilities:
- n < ni: since m < mi, by Lemma 3.6, we have LpTl X IjpTíl X , Henee,
A € Q(0).
- ni < n < nfct there is a unique 2 < j < k such that rij-1 < n < rij. Henee,

j_!+1 C A. Since A is a model of (d) and Lp";-i+i Q A, we have that A is a
model of the equation upmj(y) « 1. Thus A € V(Lp^ ) and m < Moreover,
n < rij so, by Lemma 3.6, Lpn x Lpm C Lp^ x Lp"*,- and A G Q(0).
3) can be proved similarly to 2). □
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