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Locally finite quasivarieties of MV-algebras.*

BY
JOAN GISPERT AND ANTONI TORRENS

Abstract

In this paper we show that every locally finite quasivariety of MV-algebras
is finitely generated and finitely based. To see this result we study critical
MV-algebras. We also give axiomatizations of some of these quasivarieties.

Introduction

In [4, 5] C.C.Chang introduced MV-algebras in order to give an algebraic counterpart
of the Lukasiewicz’s many valued propositional calculus. In fact, the class of all
MV-algebras, in a termwise equivalent presentation named Wajsberg algebras, is
the equivalent variety semantics, in the sense of [1], of this calculus (see [17]).

From the equivalence between MV-algebras and many valued Lukasiewicz’s lo-
gic, it is easy to see that finitary extensions of Lukasiewicz’s propositional calculus
correspond to subquasivarieties of MV-algebras, and axioms and rules of the calculus
correspond with equations and quasiequations, respectively. Hence, finite axiomat-
izable finitary extensions of Lukasiewicz’s propositional calculus correspond with
finite axiomatizable quasivarieties of MV-algebras.

In this paper, we study finite axiomatizability of locally finite quasivarieties of
MV-algebras. Concretely, we show, in Section 2, that locally finite quasivarieties
and finitely generated quasivarieties of MV-algebras coincide, Theorem 2.13, and
that they are finitely axiomatizable, Theorem 2.15. To prove these results, we give a
characterization of critical MV-algebras, Theorem 2.11, and we see that any locally
finite quasivariety of MV-algebras is generated by critical MV-algebras, Theorem 2.9.
By using a result of [11], we deduce the finite axiomatizability of these quasivarieties.

In section 3, we give some examples of locally finite quasivarieties of MV-algebras,
and we give an effective axiomatization for each considered quasivariety .

We include a preliminary section, Section 1, containing basic definitions, results
and notation used in the paper.

*This work is partially supported by Grants FI/94-1351 and SGR/96-00052 of D.G.R. of Ge-
neralitat de Catalunya and by Grant PB94-0920 of D.G.I.C.Y.T. of Spain.
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1 Definitions and first properties.

An MV-algebra is an algebra (A, ®,,0) of type (2, 1,0) satisfying the following
equations:

MV1. (z0y)®z~z® (y® 2)

MV2. 29y~ ydzx

MV38. 290~z

MV4. ~(-z)~z

MV5. 2@ -0~ -0

MV6. ~(-z@y)dy~(zd ) bz
By taking y = -0 in MV6, we deduce:

MV7. & -z~ 0.

Therefore, if we set 1 = =0 and 2Oy = ~(-z®-y), then (4, ®, ®, -, 0, 1) satisfies all
axioms given in [14, Lemma 2.6], and hence the above definition of MV-algebras is
equivalent to Chang’s definition [4]. We denote by W, the class of all MV-algebras.
W is a variety since it is an equational class.

Given G = (G,A,V, +,—,0) a lattice ordered abelian group and u € G u > 0,
we define the algebra I'(G,u) = ([0, u], ®, -, 0) where

- [0,u]={a€eG:0<a< u},
-a®b=uA(a+b), a=u—aand0=0C.

Then I'(G, u) is an MV-algebra. In fact any MV-algebra is isomorphic to the unit
segment of some lattice ordered abelian group. Concretely, the category of MV-
algebras is equivalent to the category of lattice ordered abelian groups with strong
unit (See [6],[14]).

The following MV-algebras play an important role in the paper.

e [0,1] =T(R,1), where R is the totally ordered group of the reals.
e [0,1]NnQ =T(Q,1) = ({% tk £ m < w},®,,0), where Q is the totally

ordered abelian group of the rationals and w represents the set of all natural
numbers.

Forevery 0 < n < w

k k
e L, =T(Q,,1) = ({;; :0 < k < n},®,~,0), where Q, = {g tk€Z}isa
subgroup of Q and Z is the set of all integers.
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k k
e L7 =T(Qn®2,(1,0) = {{(-,9) : (0,0) < (~,i) < (1,0)},®,~,0), where Z
is the totally ordered group of the integers and Q, ® Z is the lexicographic
product of Q, and Z.

The following theorem states some well-known results on MV-algebras.( See for
instance [6]).

Theorem 1.1
1. Every simple MV-algebra is isomorphic to a subalgebra of [0,1].
2. Every finite simple MV-algebra is isomorphic to L, for some n € w.

8. Every finite MV-algebra is isomorphic to a direct product of finite simple MV-
algebras.

4. Ly, C Ly, if and only if njm. a
If we define Oz = 0 and for each n € w (n + 1)z = z & nz, then

Lemma 1.2 [18, Lemma 2.2.] L, is embeddable into an MV-algebra A if, and only
if, there is an element a € A such that (n — 1)(—a) = a. Moreover a # 14, o

We denote by I, H, S, P, Pgr and Py the operators isomorphic image, homo-
morphic image, substructure, direct product, reduced product and ultraproduct res-
pectively. We recall that a class K of algebras is a variety if and only if it is closed
by H, S and P. And a.class K of algebras is a quasivariety if and only if it is closed
by I, S and PR, or equivalently, by and I, S, P and Py. Given a class K of algebras,
the variety generated by K, denoted by V(K), is the least variety containing K.
Similarly, the quasivariety generated by a class K, which we denote by Q(K), is the
least quasivariety containing K. We also recall that a class K of algebras is a variety
if and only if it is an equational class, and K is a quasivariety if and only if it is a
quasi-equational class.

2 Locally finite quasivarieties and critical algebras.

An algebra A is locally finite if and only if every finitely generated subalgebra is
finite. A class K is locally finite if and only if every member of K is locally finite.
A variety, or a quasivariety, is finitely generated if it is generated by a finite set
of finite algebras.

We recall some basic properties of locally finite varieties and quasivarieties.

Theorem 2.1 [3, page 70] Let K be a finite set of finite algebras. Then V(K) is a
locally finite variety. a



Theorem 2.2 [3, page 69] A variety K is locally finite if and only if

|X| < w implies |Fg(X)| < w

where Fg(X) is the free algebra with respect K. a

From the above theorem we can deduce:
Theorem 2.3 Let K be a quasivariety. The following conditions are equivalent:
1. K is a locally finite quasivariety
2. V(K) is a locally finite variety.
3. K is contained in a locally finite variety.

Proof : 1 = 2: Assume that K is locally finite. Since K is a quasivariety, we have
that FV(K)(X ) € K. Therefore if |X| < w then |Fy)(X)| < w. And by Theorem
2.2 we obtain that V(K) is locally finite.

2 = 3: It is trivial, since K C V(K).

3 = 1 : Since any subclass of a locally finite class of algebras is also locally finite,
from 3 we trivially obtain 1 a

Corollary 2.4 FEvery finitely generated quasivariety is locally finite. |

We want to obtain all locally finite varieties and quasivarieties of MV-algebras. First
we recall which are the varieties of MV-algebras.

Theorem 2.5 [13, Theorem 4.11] K is a proper subvariety of W if and only if there
ezist two disjoint finite subsets I, J of natural numbers such that

K=V(¥L;ie,L j € J).
From the above we have:

Lemma 2.6 Let K be a variety of MV-algebras. K is a locally finite variety if and
only if K=V(Ly,,,...Ly, ) for somen;,...,n, €w

Proof : By Theorem 2.1, for every r < w and any ny,...,n, € w, V(L,,,...Ly,) is

a locally finite variety.

If K = W, then, since [0, 1] is not locally finite, K is not locally finite. If a proper

variety K is not of the form V(L,,,...Ly,) for some ny,...,n, € w, then by Theorem

2.5 we have that K = V(L; i € I, L} j € J) with J # (). Hence there is j € J such

that L € K and, since L}’ is not locally finite, K is not a locally finite variety. O
From Lemma 2.6 and Theorem 2.3 we can deduce:

Corollary 2.7 A guasivariety of MV-algebras is locally finite if and only if it is a
subquasivariety of a variety of the form V(L,,,...L,.) for some n;,...,n, € w. O
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A critical algebra is a finite algebra not belonging to the quasivariety generated by
all its proper subalgebras. In order to study critical algebras we need to recall a
general result of Model Theory.

Theorem 2.8 [3, page 213] Every algebra is embeddable into an ultraproduct of its
finitely generated subalgebras. ]

The interest of critical algebras is given by the following result, which is mentioned
in 10, page 128], but no proof is given.

Theorem 2.9 Every locally finite quasivariety is generated by its critical algebras.

Proof : Let K be a locally finite quasivariety and let A € K. By Theorem 2.8, if
F = {B C A : B is finitely generated}, then A € ISPy (F). Since K is locally finite
we have that A € ISPy({B C A : B is finite}) C Q(Ky;), where K¢y, is the class
of all finite algebras in K. Hence K = Q(Kin).

Let A € Ky;p, then we claim that Q(A) = Q({B C A : B is critical }). To prove the
claim we proceed by induction over the cardinal of A. If |A] = 1, then A is already
critical and we trivially have that Q(A) = Q({B C A : B is critical }).

Assume |A| = n. If A is critical, then Q(A) = Q({B C A : B is critical }).

In other case, we have that Q(A) = Q({B C A : B # A}). Since for B C A,
|B| < n, by inductive hypothesis we have that Q(B) = Q({C C B : C is critical }).
Hence,

Q(A)

I

Q({B:B G A})
Q({C € B : Cis critical and B C A})
= Q({B C A : B is critical }).

and the claim is proved. Thus we have that

K = Q(Kfin) C Q({B C A : Biscritical and A € K¢in}) = Q(Kegriz) C K

where K¢ is the class of all critical algebras in K. |
Our next purpose is to characterize critical MV-aigebras. We need a previous result.

Lemma 2.10 If Ly, X -+ X Ly,_, is embeddable into HLmJ. where the set
{m; : j € J} is finite then e

1. For every i <l there ezists j € J such that ni|m;.

2. For every j € J there erists i <1 such that n;|jm;.

Proof : 1) If By X -+ X ky,_, is embeddable into [] Em;, then
Jjed

Lnl XX Lnl € V(HLm3) =V({Lm1;j € J})'
jeJ



Hence, for every ¢ < [, Ly, € V({Lm,;j € J}). Since {m; : j € J} is finite,
from a result due to Jénsson (3, page 149], we deduce that the class subdirectly
irreducible members of V({Lm;j € J}) is I{({En : 3j € J L, C Ly, }). Since Ly, is
simple, therefore subdirectly irreducible, for every i < [ there exists j € J such that
Ly, € Ly, and by 4 of Theorem 1.1 n;|m;.

2) For each j € J consider the natural projection: =; : H Ly, — Lp,. Let

jeJ
Yilpy X x Ly, — H L, be an embedding, then for every j € J v; =m0 is
J€d
an homomorphism from Lp, X -+ X by,_, to Lny;. Hence

Eng X - X L, /Ker(y;) 2 vj(bng X -+ - X Ln,_,) C Ly,

So, Epy X -+ X En,_, /Ker(v;) is simple, and by [6, Theorem 4.1.19] we have that
Ker(v;) is a maximal congruence relation of Ly X - - X Ly,_,. From [7, Lemma 2.3]
(see also [16]) and the fact that all E,’s are simple, it can be deduced that there is
k <l such that

Ker(yj) =L x - x L2

Nk—1

xAL%xL2 X -+ x E2

Nk+1 n-1"

Hence, for every j € J there exists k < [ such that
Lno X« X Lnl—l/KeT(’YJ) g Lnk g LmJ.

Thus ng|m;. m]
Finally we give a characterization of all critical MV-algebras.

Theorem 2.11 An MV-algebra A is critical if and only if A is isomorphic to a
finite MV-algebra Liny X -+ - X Lip,_, satisfying the following conditions:

1. For every i,j <1, i # j implies n; # n;.

2. Consider the correspondence D : w — P(w):n— D(n) = {d < w : d|n}.
Then there is at most one n;, 1 < I, such that |D(n;) N {n; : j <1} > 1.

Proof : Assume that A = Ly, x -+ X Ly,_, satisfies conditions 1) and 2). First,
we will show the following:

Claim: Every proper subalgebra of A is embeddable into a subalgebra of A of the
form Lgy x -+ x Ly,_,, where dijn; for each i < | and there exists j < | such that
dj 75 nj.

Proof of the claim: Let B be a proper subalgebra of A. Since A is finite B is
also finite and by Theorem 1.1, B is isomorphic to Lp, x - -+ X Ly, _,. For each ¢ < {
consider the natural projection: m; : A — Ly, if for all 7 < [, we write v; = m; [B,
then we can assume that B is embeddable into v(B) x -+ x y,-1(B). Moreover,
since v;(B) C L,,, we have v;(B) = Ly, for some d;|n;.
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Assume that v;(B) = Ly, for each i < I. Then, for every i < |, B/Ker(v;) = Ly,
and since L, is simple, Ker(y;) is a maximal congruence relation of B. From {7,
Lemma 2.3] (see also [16]) and the fact that all L,’s are simple, it can be deduced
that there is k < r such that

KeT(’Yi)=L12,OX---xL2 xAka xL2 x...xL2

Pk-1 Pk+1 Pr-1°

Hence, for every ¢+ < [ there exists k < r such that L, = L,,. By condition (1),
i # j implies n; # n; ,sol < r and

B=L, X - XLp_ XLy X - xXLkyn | =A XLy X+ XLy _,

that implies |A| < |B|, which contradicts that B is a proper subalgebra of A. And
the claim is proved.
Suppose that A € Q({B ¢ A}), then

Ae IIS]PIP’U({L,;O X o+XLbg ,: ¥V dilng; Ik di # ne}).

Since {Lg, x --- X Lyg,_, : Vi di|ni; 3k dx # ni} is a finite set of finite MV-
algebras, we have that A € ISP({Eg, X - x Lq,_, : Vi di|ni; 3k di # ni}). Thus
En, X -+ x Ly,_, is embeddable into H(Ldo,k X+ X Lgy_, ,)** where

k<n

{Ldo,k X oo X Ldl—l,k tk<n} C{Lg x X Lg_,: Vi di|ni; Ik di # ne}-

Since the set {dyx : t < l;k < n} is finite, we can apply Lemma 2.10.
If there exists ¢,j < I such that i # j and n;|n;, then by conditions 1) and 2), n; is
unique. By Lemma 2.10, there exists Lg, ,, such that n;|d:m. That is, there exists

Lo X *o* XLy, € {Lgy X -+ X Lg_, : Vid;|n;; Ik dy # Tk}

such that nj|ds, for some t < [. By condition 2), n; does not divide any n; other
than itself. Therefore, since d;, is a divisor of n;, we have that n; = dy,» = n; and
by 1), t = j. Since

Ldo.m X oo X Ldl-l,m € {Ldo X e X Ld(_l : Vi d,’l’n,’; 3k dj 7& nk},

there exists r # j < [ such that d, m|n, and dr;m # ny. By 2) of Lemma 2.10, there
exists s,7 < ! such that s # r <! and ng|dym. Thus njn,, nijn;, r #s, 1 # j and
r # j, which contradicts condition 2).

If for all 1 < 4,5 <l such that i # j, n; fn;, then the same argument follows by
taking any n;, j < I.

Since A is finite and A € Q({B ¢ A}), A is critical.

Conversely, if A is a critical MV-algebra, then A is finite and by Theorem 1.1, we
can suppose, without loss of generality, that

A=Ep™ X X Ly, _ ™1
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for some no, ..., ng-1,Mo, ..., Mg_1 € w and n; # n; when i # j. If not all m;’s are
equal to 1, then the correspondence

Mo Mi_1

N

"

e i, ”
a: (a(0),. -, a(k = 1)) = (@) = ((a(0), - -,a(0)), .., (alk = 1),..., alk - 1))

defines an isomorphism from L, x -+ x Ly,_, onto a proper subalgebra of A. Let
m = maz{myg, ..., Mk-1}, then the correspondence

. m My — m m
B:Eng™0 X o X L™ > B x - X B

such that for every r < k,
BUB(O), .. . b(k — D))(r) = (B(r)(D), .., b(r)(me), HOND), - s B (D)),

gives an embedding from A into L™ X -+ X Ep, ™ 2 (Epg X - X Ep, _,)™. Thus
A € Q(lp, X --- X Ly, _,). Since A is critical, we have my,...,mg_; = 1. Hence
it satisfies condition 1). Suppose condition 2) fails, then there exist j < r < k such
that

ID(n;) N {nm :m < k}| > 1 and |D(n,) N {nm:m <k} > 1.
Thus there exist ¢ # j and s # r such that n;|n;, ns|n, and j # r. Since ni|n;, we

have that the correspondence that maps

(a(0),...,a(j —1),a(j +1),...,a(k - 1))
to
(a(0),...,a(j — 1),a(i),a(j + 1),...,a(k — 1)).

defines an isomorphism from Ly, x -+ - x LEn;_, X Ln;,, X -+- X Ln,_, onto a proper

subalgebra of A.

Similarly the algebra L, x - - XEp,_; XLEn ., X+ - XLy, _, is isomorphic to a proper

subalgebra of A. Finally, observe that Ly, X - - x Ly, _, is embeddable into
En? X X En, 2 X Ep, xBp 2% oo X B, 2 X Ep, X B,y 2 X0 x B 2

N

by means of the correspondence § defined as:

6(a(0),...,a(k — 1))(5) = {(a(i),a(i)) if i # j,r

a(1) ifi=j,r’
Therefore
Ac Q(Lno Xoees XL"-j—l XLnj+1 Xoes XLnk—-l’ Lno Xoees XLnr—x XLnr+l Xoees XLnk~1)
in contradiction with the fact that A is critical. a



Corollary 2.12 The number of non isomorphic critical MV-algebras in a proper
variety of MV-algebras is finite. m]

Proof : If K is a proper variety of MV-algebras, then it is shown in [13} and [6] that
K contains a finite number of L,'s. Let M = {n € w : L, € K}, clearly |[M| < w.
By Theorem 2.11, all critical algebras in K are:

I({En, x -+ x Ly, : satisfying (1) and (2) of Theorem 2.11 and n; € M}).

Since | M| is finite we have that the number of non isomorphic critical MV-algebras
in K is finite. a
From the above result we deduce :

Theorem 2.13 A quastvariety of MV-algebras is locally finite if and only if it is
finitely generated.

Proof : Let K be a locally finite quasivariety of MV-algebras, by Corollary 2.7,
V(K) is a proper subvariety of W, thus, applying Corollary 2.12 the number of non
isomorphic critical MV-algebras in K is finite. By Theorem 2.9, K is generated by
its critical algebras, therefore, since a quasivariety is closed under the operation of
isomorphic images, K is finitely generated.

The converse is given by Corollary 2.4 a
In general locally finite quasivarieties are not finitely axiomatizable, not even finitely
generated quasivarieties are finitely axiomatizable. For instance: Let K = Q(A)
where A = ({0, 1,2}, f, g) is of type (1,1) with f and g defined by f(0) = 1,9(0) =2
and f(z) = g(z) = « for z # 0. Due to Gorbunov [12], K is not finitely axiomati-
zable while it is finitely generated.(see also [8, page 149]).

We will show that locally finite quasivarieties of MV-algebras are finitely axiomati-
zable. For this we need the following result.

Lemma 2.14 (11, Lemma 4.2] Let M be a locally finite quasivariety of finite type,
then for a quasivariety K contained in M the following conditions are equivalent:

1. K is not finitely aziomatizable relative to M.

2. There ezists an infinite sequence Ay, Ag, A3, ... of finite algebras of M satis-
fying:
(a) |A,| < |A¢+1| fO'l" all i;
(b) A; €K for all i;
(c) Every proper subalgebra of every A; belongs to K. O

From the above result and Corollary 2.12 we deduce:

Theorem 2.15 Every locally finite quasivariety of MV-algebras is finitely aziomat-
izable.




Proof : Let K be a locally finite quasivariety of MV-algebras, by Corollary 2.7,
V(K) is a proper locally finite subvariety of W. Observe that any finite MV-algebra
A e V(K) satisfying conditions (b) and (c) is critical. It follows from Corollary 2.12
that the number of non isomorphic critical MV-algebras in V(K) is finite. Therefore
it is impossible to obtain an infinite sequence of finite MV-algebras of V(K) satisfying
conditions (a), (b) and (c¢). Thus, by Lemma 2.14, K is finitely axiomatizable relative
to V(K). And since any variety of MV-algebras is finitely axiomatizable (see for
instance [13], [6] and [{9]), we have that K is finitely axiomatizable. a

3 Applications to axiomatization of concrete samples.

It is well known that every subvariety of MV-algebras is finitely axiomatizable. In
fact, some effective axiomatizations are given in [9] and in {15]. To our concern, we
only need to axiomatize locally finite varieties of MV-algebras. In [18] it is proved
that the variety generated by L, is finitely axiomatizable and it is axiomatized by
MV1,..,.MV6 plus a single axiom of the form ¢(z) =~ 1, denoted by wva(z) =~ 1.
Moreover, for every ni,...,ny < w,V(Ly,,..., Ly ) is the subvariety of W defined
by the equation vp, () V --- V vp,(z) = 1 [18, Theorem 1.8]. Where V is defined by
zVy=-(-zdy) dy.

Given a quasivariety K of MV-algebras, we define the following class

K:L,={A€K:L, gIS(A)}.

From Lemma 1.2, the quasiequation (n — 1)(-z) = z = z =~ 1 holds in an MV-
algebra A if and only if A does not contain L. Therefore K : L, is axiomatized
by:

{axioms of K} U {(n — 1)(-z) = z = z =~ 1}.

Therefore, since it is a quasiequational class it is a quasivariety. It is easy to see
that the following properties hold

31 (K:Lp):Lp,=(K:Lp):Ly=K:L,NK:L,=K:Lyp,Lyp,.
3.2 K:L, =K if and only if L, € K.

Our first example is to identify all quasivarieties contained in V(Lp, L;), where p
and g are two distinct prime natural numbers. Since the only divisors of p and ¢
are 1,p, g, by the characterization given in Theorem 2.11, we have that all critical
MV-algebras contained in V(L,, £,) are

I({E1,Lp, b, b1 x Ep, Ly x By, Ep x E4¢}).

All subquasivarieties of V(Ly, Lg) are sketched in figure 1.
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Figure 1: Lattice of all quasivarieties contained in V(Ly, Lg).

{p;q}

{p;p,q} {¢;p,q}

{r;1,q} {g:1,p}

{p}

{1}

{n1,...,n;mi1,...,mi} stands for Q(En, X -+ X Ly, bimy X - X Ly, ).

We want to give an effective axiomatization of all subquasivarieties of V(Lp, Lg).
We know that the subvarieties are V(Lp, Lq), V(L;), V(L) and V(L;), which can
be axiomatized by MV1,...,MV6 plus vp(z) V v4(z) = 1, vp(x) = 1, vg(z) = 1 and
vi1(z) ~ 1 respectively. In order to give axiomatizations for the other quasivarieties
we state:

Theorem 3.3 The following equalities hold:
1. Q({Ep, Lp x Lg}) = V({Lip, £ }) : Ly
2. Q({kq, Ep x kq}) = V({Lp, Lg}) : Lyp.
3. Q(Ep x Bg) = V({Lp, Lq}) : Ep, Ly
4. QL1 x Lp) = V(L) : Lp.
5. QL1 x Ly) =V(Lg) : L.

Proof : 1) Since L, is not contained in L, and L, x Lg, then Q({L,,Ep x E4}) C
V({Lp, Lq}) : Lq. By 3.2, V({Ly, L4}) : L is a proper subquasivariety of V({L;, L,})
and it is a locally finite subquasivariety. Hence, it suffices to show that all critical
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MV-algebras of V({Ly, L, }) not containing L, belong to Q({Lp, Ly x £4}). The only
critical MV-algebras of V({Lp,L4}) not containing L4, up to isomorphism, are

{Ll,Lp,Ll X Lp, Ll X Lq,Lp X Lq} C Q({LP7LP X Lq})

2) can be obtained as 1).

3) follows from 1), 2) and 3.1.

4) Since Ly x Ly € V(L,) and {E1, L1 x L} are, up to isomorphism, the only critical

MV-algebras in V(L,) which do not contain L, we have Q(L; x Lp) = V(L) : L.

5) is obtained as 4). 0
Using the above theorem and Lemma 1.2, we can obtain an effective axiomat-

ization of all quasivarieties listed above. We still have three subquasivarieties of

V(Lp, L,) without an effective axiomatization. Next result takes care of that.

Theorem 3.4 If r = max{p, q}, then
1. Q(Lp, Ly x Ly) is aziomatized by the axioms of V(Lyp, Lg) : L4 and

rex1&r(-z)~1=vp(y) = 1.

2. Q(Lq, Ly x Ly) is aziomatized by the azioms of V(Ly, Lg) : Ly and

rexl&r(~z) = 1= 9(y)~1.

3. Q(Ly x Lp, Ly x Ly) is ariomatized by the azioms of V(Lp, Lq) : Lq, Ly and

rexl&r(-r)xl=>zr 1

Proof : 1) Since Ly, E; x Ly do not contain Ly, then they satisfy all axioms of
V(Lp, Lg) : Lq. Moreover, since for any a € Ly x Lg,

ra = (1,1) implies r(-a) # (1,1),

the quasiequation
rexel&r(-z)xr1=>v(y) =1

is valid in £y x Lg. Since v,(y) ~ 1 is valid in L,, then L, is also model of
rex1&r(-z)~1=v(y) ~ 1

Therefore, all members of Q(Ly, L1 x L) are models of the above quasiequation.
Since the class of all models of the quasiequation

reml&r(-z)r1=20(y) =1
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in V(Lp, Lyg) : Lyg is a locally finite quasivariety of MV-algebras, it suffices to show

that all critical MV-algebras of V(L,, L) : L, satisfying the quasiequation are

included in Q(Lp,L; x Lg). The critical MV-algebras of V(L,,Lq) : L, are iso-

morphic to {L1,Ep, E1 X Ep, By X Ly, Ep x Ly}, Observe that they all satisfy the
1

quasiequation, but L, x L4. Take for instance z = y = (-—- q———) And since

p
{L1,Ep, 1 x £, B x L4} C Q(Lp, Ly x L), 1) is proved.

2) is proved as 1).

3) Since Ly x Lp, Ly x Ly € V(Lyp, Ly) : Ly, Ly and there is no element a in L; x L,
or in L; x L, which satisfies ra = (1,1) and r(—a) = (1,1), then Ly x Lp, Ly x L,
satisfy the axioms.

Using a similar argument as in 1), we can show that {L;, L x Lp, Ly x L4} are, up
to isomorphism, the only critical MV-algebras in V(Lyp, Lg) : Lq, L, satisfying the
quasiequation

rexl&r(-r)=l=>z=1,

since they belong to Q({E£1 x Lp, L X Lg4}), 3) is proved. m]
Our second example are all quasivarieties contained in V(L ), where p is a prime
natural number and r is a natural number.

Theorem 3.5 The class of all critical algebras in V(Lpr) is
]I({Lpa 8 <r}U{bpn xEpm :n<m < r})

Proof : Since Lys with s <7 and Ly x Eym with n < m < r belong to V(L,r) and
they satisfy conditions given in Theorem 2.11, they are critical.

To prove the other inclusion, consider A € V(L,-) a critical MV-algebra. All divisors
of p" are p® with s < r, hence, by condition 1) of Theorem 2.11, A is isomorphic to

Lpnl X oo X Lpnk

such that n; <n; ifi<j andn; <r foralll1 <i<k.

If £ > 2, then A does not satisfy condition 2) of Theorem 2.11, therefore it would

not be critical. Hence k =1 or k = 2. ]
From 2.10 we deduce the following properties:

Lemma 3.6 Let ny,...,nx < w and my,,...,ng < w such that n; < m; for every
1<i<k.

1. Lpni x Lpmi CL pni X Bpmi if and only if ny < nj and m; < mj.
2. Lpni X Lpmi C© Lps X Lyps if and only if m; < s.
3. bpe C Lpn; X bym; if and only if s < n;. o

Theorem 3.7 Every subquasivariety of V(Lyr) is of type:

13



1. Q(Lps) = V(Lps) where s < 7.

2. Q(Epm X Epmy, ... Epne X Lpme ) such that ny < m; <7, for every 1 <i < k
and n; < nj and m; > m; if i < j.

3. Q(Epn1 X Epmy, ... Epne X Lpme, Lips) such that n; < s < m; < n, for every
1<i<kandn; <n; and m; > m; if 1 < j.

Proof : Let K be a subquasivariety of V(Ly), by Theorem 2.13, K is finitely
generated by critical MV-algebras, say K = Q(A4,...,Ag). By Theorem 3.5, for
every 1 <i<k

Ai=Ly withs<r or A;2Lp Xk withn<m<r
Therefore K = Q({Lpsl yoon ,Lp3j s Lp"j+1 X mej+1 g ,Lpnk X mek }) Let
6= {Lpsl gooo ,Lpsj s Lpﬂj+1 X mej+1 yoeeoy Lp"k X mek }

We give a recursive procedure to find a subfamily of generators satisfying our con-
ditions and generating K:

First step: Let m} = max{s1,...,8j,mj+1,...,mg}. If m} = s; forsome 1 <1< j
then, by Lemma 3.6 and Theorem 1.1,

{Lp-n yooo ,Lpaj s Lp"j+1 X mej+1 gy Lpﬂk X mek} - Q(Lp«u )

Therefore K = Q(Lps) = V(Lpu).

Second step: If m| # s for every 1 < I < j, let n} = max{n; : m; = mi{}.
Consider &1 = {Lps € & : s > nj} U {Epn x Epm € & : n > n)}. Observe that
if Lys € @1, then n] < s < m] and that if Eyn x Eym € &1, then n} < n and
m < m}. Thus, by Lemma 3.6, & \ &; C Q(Lp"’l X Lp""l ). Therefore

K= Q({Lp"ll X me/l} U @1) = Q(Lp",l X mell) A% Q(@l)

Since Lp,,:l X mell € & \ &, then |8,| < |8].

At this point, we come back to first step, but using &, instead of &. And we proceed
recursively.

This algorithm ends because & is finite. At the end, we will have a finite sequence

Lp,,:l X Lp,,,:l yees ’Lp"i X me; and probably me;+1 such that they satisfy conditions

given in the statement of this theorem. a
Finally, we give an axiomatization for each subquasivariety of V(Lpr).

Theorem 3.8

1. V(Lps) with s < r, is aziomatized by

14



(a) MV1,...,MV6 and
(b) vps(z) 1.
2. Q(Epm x Epmy, ... Lpne X Lipme ) such that n; < m; < n, for every1 <i <k

and n; < n; and m; > m; if i < j, is ariomatized by:

(a) MV1,... MV6,

(b) vpm(z) = 1,

(c) (p** —1)(~z)~z=>z~1 and

(d) (pH-1+! —1)(~z) =z = v,m (y) & 1 for every2< j < k.

3. Q(Epn1 X Egmi, ... Epne X Lipmi, Lpe) such that n; < s < m; < n, for every
1<i<k andn; <n; and m; > m; if i < j, is aviomatized by:

(a) MV1,... MV,

() vpmi (2) ~ 1,

(c) (P = D(~z) mz =z,

(d) (pr-1t -1)(-1)~ T => vpmi(y) = 1 for every 2 < j < k and
() (P™*! —1)(~z) ~z = vpe(y) = 1.

Proof : 1) It is obvious by the remark given at the beginning of this section.

2) Since & = {Lpm X Epmi,...,Lpni X Bpmi } C V(Lpm1), the members of Q(&) are
models of (a) and (b).

Moreover, Ejn,+1 & A for each A € &, hence & C V(L) : L,n.+1 and every algebra
in & is a model of (c).

By Lemma 1.2, if A € ® and it does not contain Lpnj_.1+1, then it is a model of
(d). On the other hand, if A € & is such that L it © A then it belongs to the
variety generated by L,m;, therefore it also satisfies (d).

Since every member in & is a model of the equations and quasiequations (a), (b), (¢)
and (d), each member of Q(®) is also a model of (a), (b), (c) and (d).

To see the other inclusion, observe that (a) and (b) axiomatize V(L,m: ), hence the
class of all models of (a), (), (c) and (d) is a subquasivariety of V(Eym:). Thus, it
is a locally finite quasivariety of MV-algebras. By Theorem 2.9, it suffices to show
that every critical MV-algebra in V(Lpm,) satisfying (c) and (d) belongs to Q(®).
Let A € V(Lpm1) be a critical MV-algebra, by Theorem 3.5,

A=Lp withs<m; or A=EL;mxEm withn<m<m;.
If A satisfies (c), then L1 € A. Hence

A=Lp withs<ny or ALy xLym withn<m<m and n < ng.
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A = L, with s < ng, implies Lps € Lpnie X Lpmi. Thus A € Q(8).

If A= Lpn x Lym, with n < m < m; and n < ng, we have several possibilities:

- n < np: since m < my, by Lemma 3.6, we have Lyn X Lym C Egni X Epm; . Hence,
A € Q(8).

-n1 < n < ng: there is a unique 2 < j < k such that n;_; < n < n;. Hence,
Ejn-1+1 € A. Since Ais a model of (d) and Ln_1+1 © A, we have that A is a
model of the equation v,m;(y) = 1. Thus A € V(L,=;) and m < m;. Moreover,
n < nj so, by Lemma 3.6, Lyn X Lym C Eynj X Lym; and A € Q(8).

p 7
3) can be proved similarly to 2). O
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