Chkiyh 1802

UNIVERSITAT DE BARCELONA

DEVELOPMENT OF THE DENSITY:
A WIENER-CHAOS APPROACH

by

David Marquez—Carreras and Marta Sanz—-Solé

AMS Subject Classification: 60H07, 60H10, 60H15

BIBLIOTECA DE LA Lil\i?ﬁl‘ﬁim(i!.w
0701570865

Mathematics Preprint Series No. 231 N
February 1997







Development of the density:
A Wiener-Chaos approach

by

,

DavID MARQUEZ-CARRERAS and MARTA SANZ-SOLE
Facultat de Matematiques
Universitat de Barcelona

Gran Via, 585

08007 BARCELONA, Spain

This work has been partially supported by the grant PB 930052 from the DGICYT and

the grant CT060075/EU of the European Union.

T ,
2on/ taare®?
Oyyg 30






1 Introduction

Let (T.7.u) be an atomless measure space with a o-finite measure p. Set
H = L*(T.T.p)and let W = {Wj. h € H} be a Gaussian zero-mean process
with E(W), Wy) = (h.h')x defined on some probability space (2. Q. P).
Let F be the o-field generated by W. We consider a measurable mapping
F : Q — R? belonging to L?(Q.F.P) with Wiener-Chaos decomposition
F=E(F)+352, In(fa). Let {F¢, z € (0.1]} be defined by F* = E(F) +

> ~Nn

o=y €M [ (fn). We assume that the probability law of each F* is absolutely
continuous with respect to the Lebesgue measure on R%. The purpose of this
paper is to study the Taylor expansion of the density p*(y) of F* at ¢ = 0,
where y = E(F) = E(F®). A similar problem has been widely studied for
diffusion processes ([2]. [4], [3]. etc.) for the family F*. = € (0. 1] obtained
by changing the time ¢ into £¢. In this case. due to the scaling property
of the Brownian motion, we obtain by probabilistic methods the behaviour
of the density p:(y) of the diffusion X; for small ¢. For general families of
Wiener functionals the problem has been addressed in [14] and [13].

Our main goal is to give a pr-cise description of the coefficients of the
development using the Wiener-Chaos decomposition of F' and the particular
structure of the family {F*, ¢ € (0,1]}. They correspond to densities of
completely explicit Radon measures. First we prove differentiability of the
mapping ¢ — F* on appropriate derivation spaces related with the Sobolev
spaces DV2 of Malliavin Calculus. The derivatives are expressed in terms of
the multiple integrals I (fn). Then, using the approach of (7], [8] we obtain
in Theorem 2.4 the Taylor expansion for the density via the development of
f(F*#), for smooth f, and integration by parts. As for diffusions, the odd
order coeflicients of the expansion vanish and the non-null ones belong to a
finite Wiener-Chaos.

The paper is divided into two sections. The first one is devoted to the
proof of the main result described before; the second one contains two exam-
ples of hyperbolic stochastic partial differential equations where this results
can be applied. As usually, all constants will be denoted by C independently
of its value.

2 Development of the density

Let F be a R%valued random vector defined on the abstract Wiener space
(Q.H, P), belonging to L?(Q). Let F = Y2, I,(fn) be its Wiener-chaos



representation. For any ¢ € (0.1] we define Fe(w) = Y7 o =" I(fn).
Clearly. the series defining F*(w) converges in L?(£2). The purpose of this
section is to obtain an asymptotic development of the density of F*. p*(y) at
y = E(F) = E(F*®), whenever it exists. We will follow some ideas introduced
in 7] (see also [8]). The first result establishes the smoothness of F* with
respect to z. To this end we first introduce some derivation spaces. which
are related to the classical Sobolev spaces D*® of the Malliavin Calculus.
For any j € Z*, set

x

= (FelL*n Z(

k=j

) kI3 < o<}

where || fill2 denotes the norm of fi in L3(T*). Notice that A%? = L2(Q)
and AJ? decreases as j increases.
In the next Proposition d = 1. For d > 1 the result applies componentwise.

Jj+1.2

Proposition 2.1 Fizj > 1, and assume F € A There exists a version

of {F*. < € (0,1)} which is of class C?. Moreover,

dJF =

7 In(fi) -

Proof. Consider first the case 7 = 1. For 2. with 0 < z+ & < zp < 1 we
have

Fet8 — F* _ ke S (k) e € L)

= A + € 43°. 2.1
5 § 1 f 2 ( )
with -
AL =) ke L)
k=1
. x k-2 k ‘ .
A=y ( ) 2 L(fe)
k=2 i=0

Since F € A2, the series defining Af converges in L2(). In addition,

sup [45°] < O X,
¢



‘ o\ 172 .. :
with X, = (chzz kQ(k—-l)z(Ik(fk))z) . Indeed. by Schwarz’s inequality.

x k-2 s (e _ o
FRESDY (" L. 2) R T A

k=2 i=0
<33 k=1 +OF LG
k=2
<5 (L ere™) (2 Rk - 12m02)
k=0 k=2
1 1
Ssaoagm

Fte ~ F*
lim = A, as
£~0 3 :
Let 7 > 1 and assume the statement holds for any k € {1..... j — 1}. Set
di~1F* > k! ke
s = - = — LR,
_]—1
Then.
: =Bi+¢B;
§
with
B =Y L i g
= £ k\Jk
! k=j (k-])'

fo'e) k—j—1 .
k! k—g+1\ . .
R P
The series defining B converges in L2(Q2), because F € AJ2. As for A5°,
we have 1

c 1
B:.E S Ao
S T

Xj,



L\ N2 o
with X; = (ch:jﬂ (ﬁ?) (Ik(fk))z) . This random variable is

finite a.s.. since F € AJT12, Therefore

&2~ di_
%Lné __]_1_5__‘]_1 = Bi:‘ a.s.

and the proof is complete. O .
Remark. For j € Z*. the Sobolev spaces IV'? can be characterized as follows.

D2 = {F e L}(Q): i ((k f!].) !)2 (k=) I3 < .

k=j

Using the quotient criterium for comparison of series, one easily checks that
D%2 = AJ2, Vj € Z*. Hence. the preceding Proposition can be formulated
in a more handly way, as follows.

Corollary 2.2 Let F € N2, DJ2. There exist a version of {F*. = € (0.1)}
which is C* in < and

®
o
S

oy 477 Ln(fi) - (

J € Z*, where the series in (2.2) corverges in L%(().

In the proof of the main result of this section we deal with the random vector

O<=<1l.

(&)

Corollary 2.2 yields the following

Corollary 2.3 Let F' € N2, DJ2.  There exists a version of {F<. = €
(0,1)} which is C*® in e and

dEE & (k-1! 4 G+
— = —_— T I.(fi), 2.3
d’ F* . dFT
Jo |y = lzlﬁ)l e I Liv1(fi+1) (2.4)

j € Z*. In particular, setting F® = lim, o F*. we have FO = ILi(fy).



Formula (2.3) can be checked by induction. using the same arguments as in
the proof of Proposition 2.1.
Let f: RY — R be a C* function with compact support. Leibniz formula
vields. for j > 1

d] R (7) . 3 5 7

o (FE)) = (VA (B Wh oo OO Froe(25)

where the symbol Z(j ) is a shorthand for

Z Z Z ci(B1, ... k)

=1 I+ +3=j ae{l,...d}*
31.. 3k>l a=(ay,.., ag)

and the coefficients ¢;(3;. ..., . 3k ) are obtained recurrently. as follows.
k
(B B) =) cjm1(Br.. .. 3i—1.....5)
i=1

with o)1) = Lifor §; =land i < k.cj—1(B1.....8: = 1...., . 3%) = 0: and
for By =1, ¢;-1 (B, ... B = 1) = ¢c;1(B1, - - Bk 1)

In the sequel we denote by I'¢ the Malliavin matrix of a Wiener functional
G:Q — R% Let @ € D®(RY) with detI';' € N>y LP. ¥ € D*™: for a
multiindex a € {1...., cd}*, o= (a1,.... k). k> 1, we define H,(®.T)
recurrently, as follows,

Ho(®,9) = H(ak) (<I> Hia,,

where 6 denotes the Skorohod integral.
This notation is appropriate to state the following version of the integration
by parts formula

E[(VE g) (2)¥] = E[g(®) Ha(®. T)]. (2.7)

where g is any smooth function defined in R%.
A slight modification of Proposition 3.2.2 [9] yields the following estimate:
For any k € N, p € [1, oc) the exist, k'.b,b' € (1,), d.d’ € N such that

| Ha(®, ©)llkp < C(k,p.a) (IT5 i (1 @llas [ ¥law)- (2.8)

The family of R%-valued random vectors {F*. ¢ € (0,1]} is said to be uni-
formly non-degenerate if the next two conditions are satisfied:



(i) FfeD>. |TF|p<C:=2 for any ¢ € (0.1]. p € [l.x)

(i) o2 := det (Cov(Il(fl))> >0

We now give the main result of this section.

Theorem 2.4 Let {F*. = € (0.1]} be uniformly non-degenerate. The den-
sity p*(y). for y = E(F*) = E(F), has the Taylor expansion

\T
c 1 1 L N+ s:
py) = -d {(27r)d/20 +]§~1 S 1 pjte PN+1}~ (2.9)

The coefficients p; are null for odd j. For even j € {1.2..... N}.
p; = E(L{ni)>0) P)). (2.10)
with P; belonging to v3] +d Hi, Hi being the k-th Wiener chaos. and
P, = Z H...op (L(f). Ha(Li(f1). H 51 (£550))) - (211)

In addition, if for any j € Z*, k € N. p€ [1l.x)

&,
o g P

<C. (2.12)

then, supe¢ (.1 |PR+1/ is finite.
Remarks.

(1) The identities (2.10), (2.11) express the fact that p;. j =1..... N.
are the densities at x = 0 of the Radon measures defined by

()
g— E(g(L(f1)) iH (L(f). H ! T340 (£550)) ) -

>

for any smooth g (see, for instance, Corollary 3.2.1 [9]).

(2) As will become clear from the proof of Theorem 2.4, p5,, is also the
density of a Radon measure depending on . The last assertion of the
Theorem gives a sufficient condition ensuring the uniform boundedness
of this density. In this case, the last term in the development (2.9) is
O(=N*Yass | 0.



Proof of Theorem 2.4. Let p° denote the density of F* = F—_F—(Q Clearly
ply) = 715 p%(0). Therefore we will find an expansion for p° (0). Let f:
k< — R be a C* function with bounded support. The mapping = — f(Ff)
is C>*. a.s., therefore

) n el .
fES)= f(F )+Z1 ¢ 3 (f (F*))|__
]:
N N+1 .
+€N+1 /0 (1 ZVt!) dan+1 <f (Fn>)|r)=ts dt.

Next. we take expectations in both sides of the preceding equality, we use
(2.5). (2.4) and the integration by parts formula (2.7) to obtain

E(f(F%)) = E(f(Li())

k

N
+y i.s { (Ii(f1)) ZH (II f1). H o! I3,41 f3z+l))}

; 1 (1—t)N (N+1) k dﬁz FU~CY[
eV /0 i E{f(E) Y. H P T S| ) b
(2.13)

The assumptions of the theorem ensure that the Radon measures defined

by E(F(F%). E(f(L(f)). E(f(L(7) @} j = L.... N. E{f(F*)
QY1) with

._
=
n

/—\

)
Q=) Ha <11 (f1), H Be! 1'3[+1(f32+1)>

=t (2.14)
(N+1) '

QV+ls= S H, (F:t H d_d:% Fnae’qzst)

b

possess C* densities. Moreover, a new integration by parts in (2.13) yields
(see Corollary 3.2.1 [9])

N
. 1 — 1 N
p(0) = (2m)d/2 o * Z 37 ¢ E{l{fl(f1)>0} P} += i

S
<1'1

N+1-



with

=Y
Pis1 = /O TE{l{F“>O}

dd;; P ))Jaes)

We prove in Lemma 2.5 that, for any odd number j € {1.2..... N}

Qy(w) = =Q;(~w). (2.16)

with Q; defined in (2.14).
This shows E(f (Iy(f1)) Qj) = 0 for any smooth and symmetric function f

and hence p; = 0. Indeed, assume (2.16) holds. The Wiener measure P is
invariant under the transformation Z(«w) = —w. Thus

E[f(L(f1)Qs)=E[(f((f)) Q) o Z] = -E[f (I(f1) Q)]

The fact that P; has a finite Wiener Chaos decomposition. more precisely.
P; € Jsj4d = @2J=+d Hy, follows from Lemma 2.6. Indeed. for any k& €
{1..... it ¥ = lier Be! Ig+1(f5)y,) € Joj. since B+ ... + 3 = .
Consequently Q; € J3;, because the lenght of o is k. Finally, since P; =

..... ¢ (I1(f1), Q;), Lemma 2.6 yields P; € J3j14.
We want now to give a uniform bound for p3;,; (see (2.15)). Set G* =

. 3 I, .
s, dingez F#. Clearly, it suffices to show

sup E{|Hq. g (F°. Ha(F® G9)|} <C. (2.17)

ocecy LT e

foranya € {1,...,d}*, Bi+...+5 =N+1, k=1,...,N+1, and

some finite C > 0. The estimate (2.8) yields, for some k,b,b € (1, ) and
d.d €N,

Therefore, the non-degeneracy condition [Tz, < C=72, ¥p € (1.x) to-
gether with condition (2.12) yields (2.17). This finishes the proof of the
theorem. O



Lemma 2.5 Let j be an odd natural number, Q; the random vector defined
by (2.14) and Z the transformation defined on the Wiener space by Z(w) =
—w. Then

Q; = —-Q;0Z.
Proof. Fix k € {1....,j}. 31..... S > 1with 314+ ...+ 3, = Jj and a
multiindex a = (a;. .. .. ax) € {1.....d}*. We will prove
Qjk=—=Qjro0Z.
with .
Qjk = Ha(ll(fl)s eHl Bl I, (f?fH))-
Since

J
Q= Y > (B B) Qjk>
k=1 3

Lt +3e=i ae{1...q)k
S1 B2l a=(ay...ap)

this is enough for our purposes.
Let (a)1<; j<q be the inverse of the covariance matrix of the Gaussian
random vector I;(f;). For any ¥ € D>,

Hy (L(£). ¥) = 3 6(% a¥ fi())

J=1

d
=Y @ (n(f) - [ D,wR(ryary. (2.18)
i=1 T

Consequently, for ¥ = Hle Be! 13,41 (f;‘+1), it holds
VoZ=(-1)"* ¥, (D, ¥)0Z=(-1)*1p .
and therefore,

Hyy (L (f1), ) 0 2 = (1) g0 (1 (£1), 0). (2.19)



The recurrent formula (2.6). (2.18) and (2.19) show

P

Ho(L(f1). H ! Ige1 (£51) 0 2

k
= (=17 x Ho (Li(f1). T 8! Isenr (£550)

=1
k

= (.71 f1). H P41 f3£+1))

Therefore the lemma is proved. O

Lemma 2.6 Let ® be a non-degenerate d-dimensional Gaussian random
vector. ¥ € J;, £ > 0. For any multiindez o = (ney.... ar) € {1..... d}’".
the random variable H,(®. V) belongs to Jyyr.

Proof. We will proceed by induction on the lenght of . Set (b*7); j=lond =
(Cov ®)~! and & = I;(f). Then, for any i € {1,....d}

d
Hiy(2,9) = b76(8f) € Toa -
j=1
Assume the statement holds for any multiindex of lenght r — 1. Let a =
(ag..... )€ {1,....d}". By (2.6)

Ho(®,9) = Hig, ( b §(Ff).

n'Ma

with U e Jesr—1- Thus Ho(®, V) € Jp.r and the proof is complete. O

Remark. Let ®(h) = E(F)+ Y021 [rn fa(s1,-.., $n) dhs, ... dhs,. h € H.
Notice that, the series defining ®(h) is absolutely convergent, due to condi-
tion 3", n! ||fzll3 < +oc. Assume there exist a sequence {w". n € N} C
H such that P —limp_» ®(w") = F and. moreover. for any h € H. n € N.
there exists an absolutely continuous transformation T : @ — Q such that
P —limpoo Fo TP = ®(h). If, in addition F* € D* and ||det T2}, <
+ 00, Vp € (1,20), Theorem 3.41 in [1] establishes the following characteri-
zation for the points of positive density for F*:

{(p°ly) >0} ={y:3heH:P(h)=y and DIP(h) surjective}.

10



Assume the family {F*. = € (0,1]} possess the aproximating property de-
scribed before and is uniformly non-degenerate. Then. for y = E(F). p*(y) >
0. Indeed. ®(0) = E(F) = y and, for any k € H,

®(0) (k) = [ fuls) k(s) duts).
Thus. since ¢? := det (Cov([l(fl))) > 0, D ®(h) is surjective.

3 Applications

We devote this section to study two examples where Theorem 2.4 can be
applied

3.1 A hyperbolic stochastic partial differential equation

Let T = [0. 1]? and {Wsy, (s.t) € T} be a Wiener sheet. Consider the
hyperbolic stochastic partial differential equation

Xt

00Xt
ds Ot ot

. X
= a3(Xst, s.t) Wy +ag( Xy s.t) +ai(s. t) aSS.t +as(s. t)
(3.1.1)
with deterministic initial condition Xy = ¢ if (s.t) € T. s-t = 0. We refer
to [6], and specially to [11] for results on this equation used in this section.
Here we will deal with the particular situation made precise in the following

set of assumptions

(H1) a; : T — R, i = 1,2 are differentiable and bounded with bounded first
partial derivatives.

(H2) a; : R x T — R, i = 3,4 are linear in the space variable, that means

a;(z, s,t) = a;1(s,t)x + a;a(s. t).

In addition, a3, ass.a41 and a4o are supposed to be continuous.
A solution of (3.1.1) is a stochastic process {Xs¢, (s,t) € T} satisfying

Xst=x0+ /R Yot (w:v) {03 (Xuws 4, 0) dWyy + ag( Xy, u,v)dudv}.
3,t
(3.1.2)

11




where Rs; denotes the rectangle [0.s] x [0.¢] and ~s,(u.v) is the Green
function associated with the second order differential operator

2f(s. . 9 f(s.
£hioty = TLED g5 2L gy 4y 210

Here are some properties of the Green function: their proofs are given in [11]:

Boundedness:

sup  sup |vse(w.v)] < C.
(s.t)ET (u.v)<(s.t)

Lipschitz property:

Sl;p |64 (T,T) = vst(u,v)| S C{lT—u|+|T—v|}. (T7), (u.v) < (s.1).
(s.t)eT

sup |vsi(wv) = vse(u.v)| S C{js—s| + 1T —t]}. (5.7). (5. 1) > (u.v).
(u.v)eT

Positivity:
t
~s.t(8, V) = exp / ar(s.wydw ), 0<v<t.
v

§
i =en  ['nvw). 2<use

Theorem 2.1 in [11] proves the existence and uniqueness of a continuous and
adapted process {Xs, (s,t) € T} bounded in L?, for any p > 2. Moreover.
X5t € D™, VY(s.t) € T. For any ¢ € (0, 1] set

Xio= oot [ (o) {5 0s(Xd e 0,0) dWoo + 0a(XE o uev) dudo)

8,t
(3.1.3)
and, for any h € H, the Cameron-Martin space associated to {Ws,.(s.t) €
T},

St =zo+ /R ¥s,t (U, V) {‘13(534}’ w.v) dhyy + ag(St,, u,v) dudv} .
8,t

12



Proposition 3.1.1 Assume (H1) and (H2). Foranyz € T. z = (s.t). st #
0. let

x<
X.=EX.+ Z In(fn)
n=1
be the Wiener-Chaos decomposition of the solution of (3.1.2) at = = (s.t).
Then. for any z € (0.1],

x

=EX:+ Y "L(fn).

n=1
Proof: By a result proved in 12}, fo{a) = # E(D!}X.). a={(a1..... an).
Thus. if X: = EX:+ 3.2, I,(f). it suffices to prove E X, = E XZ and
EDlX:)=:"E(D}X:). n2>1.
Taking expectations in (3.1.2). (3.1.3) by uniqueness of solution we imme-
diately obtain

X

o

EX.=EX:=S52.

Fix ¥V € N, a;,.... an € R.. Denote by o the vector (oq..... ax): set
al = (a1, .. Qi_1. Qigl, ... aN), N 22, supa =00 V... Vay. The
particular form of the coefficients a;. ¢ = 3.4 and the rules of Malliavin

Calculus yield the following expressions for N > 2.

N
DY X. =Y asi{ai)y:(ai) DY X,
i=1
+ (1) las1 (n) DY Xy dWy + aqs (n) DY Xy dn].

(sup a.z]
N
DY X: =Y caza(a)yz(es) DYH XE,
=1

s [ slmleass (n) DY X3, +au (n) DY X;dal.
[sup a.2] 2
Let Uc;_V(z). N > 1, be the solution of the equation
UNG) =1+ [ ) aaaln) U () dn.
- [sup 2]

Then. clearly

N

E(DY X.)= (3 asa(e) a(es) B(DYE Xa))UR (2).

i=1 -

13



N
E(DY x%) = (3 zasi(a) () E(DYT XU (2). (3.1.4)

=1

For N =1.
E (Do X:) =7:(a)laz1(a) EXa +as2(a)] Us (2).
E(Dy X3) = cv:(a) lazi(a) EXS +aza(a)] UL(z).

Thus, E (Do XZ) = £ E(Dy X)), because E X, = E X. This fact and (3.1.4)
allow to finish the proof using a recurrent argument. O
In the sequel we fix z € T not belonging to the axes. The following notation
will be used. Set

. dr ..

oo XIS . & . .
X = —— *,Xj(z):d—gX;.X}(z)zd__}X;,jeN.

By Corollary 2.2 applied to F' = X. we know that these derivatives exist.
One easily checks

Xi(2) = / v:(m) ((as.1(n) X5+ as2(n)) dWy + zaza(n) Xi(n) 1T,
+ aq.(n) Xi(n)dn),
(3.1.5)
Xi(2) = /R v:(m) (Gasa(n) X;_1(n)dWy + zas.1(n) X;(n)d W,

+as1(n) X;(mdn), j=2.
(3.1.6)

Let X}Q(z) = limejp X5(2), j 2 1. Then X?(z) satisfies the following
stochastic differential equations

X0) = [ 9a(n) ((@0a(n) S3+asa(m)) dWy+asa(n) Xom) dn) . (3.0.7)

2z

X0 = [ ) (joaatn) X3, AWy +asa(n) Xom)dn). (3.08)

z

Lemma 3.1.2 We assume (H1) and (H2). Then

. 1 1 ) .
X5(2) = 5 K@ +e [[1-0*) X &) (309)

j € Z*, where, by convention, Xg(z) = Xf

14



Proof: For j = 0 the identity (3.1.9) follows from a Taylor development of
X around ¢ = 0. taking into account that X7 = SY. An easy recurrent
argument establishes (3.1.9) for any j > 1. U

In the next Proposition we check assumption (2.12) of Theorem 2.4 for
" = XE.

Remark. We know that there exists a version of {XJ'(:) z € T} which is
continuous in £. From the previous Lemma and (2.4) we obtain

XO
IATSEE S

Proposition 3.1.3 Suppose (H1) and (H2) are satisfied. For any j €
Z*. keN. pe(l.x).

sup | X:

0<z<1 ’ld‘] 'l =C.

Proof: Due to (3.1.9) the proof follows from the following facts:

sup 1X2(2)lkp < C. (3.1.10)
sup sup E(|X;(2)P) <C, (3.1.11)
0<e<l zeT
sup sup  sup (}D’” )Py <C. (3.1.12)

0<:s<1 z€T a:sup g<z

for any j, k € N, p € (1,oc) and some positive constant C.
From the remark following Lemma 3.1.2 one clearly gets X ;-) (2) € H;j. for
any j € N. This yields (3.1.10).
We know (see [11])

sup sup E(|XI|P)<C. pe(l.x).

0<e<l z€T
Then, the standard arguments based on Burkholder’s, Holder's and Gron-
wall’s inequalities applied to the equations (3.1.5) and (3.1.6) yield (3.1.11)
by a recurrent argument.
Finally, for the proof of (3.1.12) we first write the equations satisfied by
Dk X3(z), j € N; this can be done using (3.1.5). (3.1.6) and the rules of
Malhavm Calculus. Then we proceed as for the proof of (3.1.11). This
estimate allows to use the recurrent argument which is needed. O

We finish the study of this example by checking the uniform non-degeneracy
property. We need the following additional assumptions on the coefficients.

15



(H3) las; (s.8) — a5, (/) < C {]s = &'| + [t = ¢]}.
j=1.2. (s.t).(s.t)eT.

(H4) supyepo.y) lagj(s.t) —agi (8" )| < Cls—=s'|. j=12. (s.s)eT
supsger 10F asj(s. ) < C. j=1.2.

(H5) a31(0.t)z0 +a32(0.t) #0, ¢ #0.

(H6) a31(0,v)zo + az2(0.v) =0. Yov € (0.¢].
A1 az1(0.t) 2o + 9y az2(0.t) + a31(0.t) f§ 7o (0.w) (ag (0.w) zo
+ay (0. w))dw # 0.

for some positive constant C' and where 9; means the derivative with respect
to the variable s.

Proposition 3.5 in [11] establishes X+ € D> under (H1) and (H2). for any
(s.t) € T. Thus X, also belongs to D>, for every = € (0.1]. (s.t) € T.

Proposition 3.1.4 Let z = (s,t) € T, st # 0 be fixed. One of the following
set of conditions implies ||I‘;<1 p < C=72, for some positive constant C' and
every = € (0.1], p € (1, )

(a) (H1) to (H3) and (H5),

(b) (H1) to (H4) and (H6).

Proof. It suffices to check that the inverse of the random wvariable
=2 r. 1Da X:|?da has moments of any order. Consider the stochastic
differential equation

Yi(a) = v:(a)+ v2(n) Yy () {eaz1(n) dWy+tasa(n)dn}, 0<a<cz.

i (2]

Then, Dy XI =ea3(X:, ) Y (a). Consequently we need to show

P{[ (a(Xs0) ¥i(@) da<n} <,

for any p € (1,o¢) and n < ny.

This has been proved in Propositions 3.6 and 3.7 in [11]. We point out
that, although assumptions (H3) and (H4) in this reference are stronger.
they can be relaxed to the situation of our statement. O
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Proposition 3.1.5 Suppose (Hl)‘ to (H3) are satisfied. Either under (H5)
or (H4) and (H6), E(|XY(2)|*) >0, forany z=(s.t) € T. s-t#0.

Proof. We will show ', = [ |Da X9(2) |2da > 0. Since X?(z) is Gaussian

this is equivalent to the statement. For any 0 < a < z, let

T.(a) = 7(a) + / 2(n) as(n) Jy(a)dy.

(a.z]

Then. Dy X9(2) = Lia<z) a3(S%. a) J.(a). Forany =. 3.6 > Oset C54(z) =
(0.27) x (t—2%,t), anda = (r,w).
Assume (H5) and define

B (z) =/ a3(zo, 0.t)% vee(r.t)drduw.
Ci.)

2
By(z) = /C o (as(SrO.w-'"-w)Js.z(T~w) - a3(f€0.0~,t)“/s.:(7”-,t)) drdw.
11l
Clearly
Bi(g) — Ba(=). (3.1.13)

Since ~54(r.t) > 0. Bj(g) > Cz% The following properties can be easily
checked:

sup 1S% < C, (3.1.14)
2T
S0, — x| < Cls- ¢, (3.1.15)

sup sup | J3(a)| < C,
zeT a<lz

|J:(a) = v2(a)| S C<b.  a€ Ci42). (3.1.16)
for some positive constant C'. Then, (H2), (H3) and (3.1.14) yield
|3 (S0 w) Jse(r,w) = a3 (20,0, 8) vs.(r.1)|
< C{|Jselr,w) = vse(r,t) | + SRy — ol + |7 + |t — w| }.

Therefore, by (3.1.15), (3.1.16) and the Lipschitz property of v, we obtain
Bs(g) < C£4. Thus, from (3.1.13), T, > C (2 — %) > 0, for ¢ small enough.
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In the sequel we assume (H4) and (H6). For any =. 3.6 > 0 set

1 2
Bi(s.3.6) == (ﬂ/z(r.w) a3(S%,.r. w)) drduw .

2 Jeg 09 ,
Ba(z. 3.5) :/ (058207 w) (Jo(row) = s(row))) drdu.

C3.6(2)

ClearlyI'; > Bi(s.3.6)—Ba(z. 3,6) and, by (3.1.14) and (3.1.16). By(=. 3.6) <
C€'3+35.

Let
Bll(f. 3 (5) =

312(5. 3, 6) =

We have Bi(c.3.6) > Bi1(e. 8.6) — Bia(z. 3, 9).
The Lipschitz property of ~ yields

Bia(z,8.6) < C P+38 (3.1.17)
Taylor’s formula implies, for some 7 € (0,7),
as1(r,w) 8P, + as2(r, w) = az1 (0, w) §9, + a3z (0, w)

1 A .
+ (01031(0,w) S2,, + Braza(0.w))r + 5 (0Fasy(F.w) S, + ORas (7. w)) r2.

Thus, by (H6)
agi(r.w) 7y + aza(r, w) = a51(0,w) (8%, ~ 20) + 7 A1z (0.w) (S, - 7o)
+ r(81a31(0, w)zo + 61a32(0,w)) + % r? (8%(131(?, w)Sgw + Bfa;;g(i w)).
In addition,
a31(0,w)(SP,, — xo) = a3 (0, w) /Or /Ow Yraw(u, v)aqg (82 . u, v)du dv
= a31(0, w) T/Ow 70.4(0, v) ay(zo, 0, v )dv
+ a31(0, w) /Or /Ow (A/,.w(u, v)ag(S2,. u.v)

= 70.t(0,v)aq(zg, u, v ))du dv.
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Let a3(S2, rw) = Y3, LI, with

Lrl".w = Cl31(0, w) Ar /Ow {'?’r.w(w 'U) <a41(u. L')ng + CL;Q(U. l))
= 70.4(0.v) <a41(0- v)zo + agn(0. v)) }du du.

L7, =781 azi(0.w)(S?, — o).

1 p J2Y —
L?.w = 3 r? (8% as1 (7. w) Sgw + df asza(F. w))
L} = r<81a31(0, w) 2o + drasza (0. w)

+a31(0. w) /Ow ~0.¢(0. U)(a41(0- v)xo + ag(0. U))d@) :

Bin(3.8)= [ rt) (Li,)drdw.
CZ

3‘,5(5)
Biia(.3.6) = /cz ( )*/:Q(r., t) {(L,%_w)2 +(L2,)? + (Lfew)z}dr dw .
3.6\

Then 8 By, (=, 8,6) > Bii(c. 8.6) —8By19(z. 3, 6). Moreover, B;
Bi111(s. 8.8) — Biiia(z, 3, 6) where
) A/;Z(rf t) 7'2{81@31 (0. t)zo + 81&32(0. t)

(.3.6) >

1
Bin(s,.3.6) = 5 Jo
: . ,
+a31(0,t)/ 1/0,t(0.v)a4(a:0,0,v)dv} drdw,
0

Bii12(e.8,6) = /z )‘/3(77 t) "2{(31@31(0- w) — A1a31(0.t) )z

5.6(e

+ (31(132(0, w) — O1a32(0, t))

+(a31(0, w) — (a3 (0, t))/ow 70.6(0.v) ay(x0.0.v) dv

t

2
+a3; (0, t)/ Y0.£(0, v) a4(z0,0.v)dv} dr dw .

w

Property (3.1.14) and assumptions (H2). (H4) ensure
Yraw(u, v) (041(% v)Se., + as(u, U)) — 70.¢(0, U)(a41(0-, v)To + ay2(0, U))?

< C{Irl+ 1t~ wl + Jul +152, - 20/ }.
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Thus, (3.1.15) yields

L. L) drdw < O (9755 4 %)
C3.4()

and

/ ~2(r.t) r? 8y az1(0.w)?(SY, — zo)’drdw < C ¥9+8.
C36(2)

By (H4) and (3.1.14).

/ N2(rt) (L3 ,)? drdw < C 259+,
ijé(s)

Consequently. (3.1.18) to (3.1.20) give
Biia(z. 3.6) < C (333 4 £33+
By (H6) and the positivity of ~s.(u.t)
Biyii(s.3.6) > C £27%°.
Finally, by (H2) to (H4)

33+36

(Y

31112(5,,3, (5) < C 7‘2 It — w[2dr dw < C
C36le)

(3.1.18)

(3.1.19)

(3.1.20)

(3.1.23)

Therefore, putting together the estimate for By(e, 3.6). (3.1.17) and (3.1.21)

to (3.1.23), we obtain

T, > C 30+ _ ¢ (9+30 30436 | [53+6)

This clearly yields I'; > 0 by choosing = small enough and 3 < 6. The proof

of the Proposition is complete. [

Propositions 3.1.1, 3.1.3, 3.1.4, 3.1.5 establish all the necessary ingredients
-to apply Theorem 2.4 to the family {X:, = € (0,1]} defined by (3.1.3) with

z=(s,t)eT, s-t#0.
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3.2 An It6 equation on the plane
Consider a one-dimensional Wiener process {1V (s.t) € T}. T = [0.1]%
vector flelds A(z) = (2) Ao(z) = (7) and the stochastic differential equa-

tion on R?,

Z. = +/ (A(Z,)dW, + Ao(Z,)dn]. =€T. (3.2.1)

R.

with initial condition zg = ((1)) Let {Z:. z € T} be the solution of
Zi=z0+ [ [ A(Z5) AW, + Aol Z5) doi
and {¥(z). z € T} be given by

¥(z) = xo0 + /R Ao(¥(n))dn.
In the sequel z will be a fixed point in T not on the axis. The analogue
of Proposition 3.1.1 for the solution of (3.2.1) can be proved by the same
arguments, due to the linearity of the coefficients A and Agp. Thus.

where Z, = EZ,; + .22, In(fn) is the Wiener-Chaos decomposition of the
LQ-ft{nctiongl Z,.

Let Z; = Z’_s‘p(:). Following the ideas of the proof of Proposition 3.1.3 we
obtain

|2

a= %

sup
0<e<1

forany j€ Z*, k€N, pe (1.x).

In [10] we have proved Z, € D* and ||F2||p < C, for any p € [1.x).

By considering the coefficient A instead of A we also have ZZ € D> and

”FZ p < C.. p€[l.oc), for some constant C- depending on = € (0. 1].

<C,
k.p

Proposition 3.2.1 Let I;(f1) be the gaussian component in the Wiener-
Chaos decomposition of Z,. Then, 02 := det (Cov(ll(fl) )) > 0.
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Proof. Since Z. € D>*. fi(a) = E(Dy Z.). o < z. So we will first give an
explicit expression for E (D, Z.).
Consider the continuous functions defined on T given by the series

St 2k+1

)= =Y 2k+ I (3.2.2)

i=o ((2K))7 k=0

3]
[

= (s.t).
Set Z. = (X.;.Y;). The mean vector {E Z,. z € T} satisfies the determin-
istic equation

EX;:I-I—/ EY,d,

R,

EY, =/ E X, dy
R

Consequently,

EX2=1+// E X,, dn, dn,
R, /R

EY, =/, [1+/R EY,, dip| dn

m

and therefore, £ X, = m(z), EY, = n{z).
The Malliavin derivative of Z, satisfies the stochastic differential equation

Do Z, = A(Z +/ (VA (Z0) Do 2y diW, + 9 40(2;) Do Zy ). (323
Consequently,
E (Do X;) =m(a)+ E(D,Yy)dn

(a.2] 3.2.4
E(D,Y:) =n(a)+/ E(Dq Xp)dn ( )

From (3.2.4) we easily obtain

E (D4 X,;) =m(a) m(z —a) +n(a) n(z — a)
E(D,Y.) =n(a) m(z-a)+m(a) n(z —a).

where z —a = (s — a1, t — ag) for 2 = (s.t), a = (a1, az). Therefore,
fila) = <m(a) m(z —a)+n(a) n(z—a), n(a) m(z—a)+m(a) n(z — a))
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and

[V

X (n(a) m(z — a) + m(a) n(z - a))da) .

Assume o2 = 0. Schwarz’s inequality yields the existence of A € R : fi(a) =
A fZ(a). for any o € R,. This leads to contradiction. Indeed, assume for
simplicity z = (1.1). For a = (% %) we have m(a) = m(z — a). n(a) =

n{z — a). therefore

o101 11 11 11 _
On the other hand, n(% 1) = (%, %) m(%,l) = m(%. %) m((l.1) —
(i,l)) =1. n((1.1) ——(% 1)) = 0. Consequently

11 11

(3.2.5) and (3.2.6) ensure m (%, %) =n (% %) which is impossible. In fact.

from (3.2.2) we clearly have n(% ) < m(é %) g

We close this section checking “sz lp <Ce2foranyze€ (0.1]. pe (1.x)
and some positive constant C. Clearly, it suffices to show

sup E(|det+ 1)< C. pe(l.,x),
£€(0,1]

with 4. = ¢ 72T zg- This property will follow from the following fact

sup sup P{v*y.v<n} <C(p)n°, (3.2.7)
£€(0.1] |v]=1

for any p € (1, 20) and n small enough.
Using (3.2.3) we easily obtain

7,;1'9‘:/3 €4 (zr) AN(ZE) €7 (2.7) A¥ (Z8)dr. 1<ij<2.
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where {€(2.7). 0 < r < z} is a R? ® R%-valued process solution to the
stochastic differential equation

E(zr)y=1+ ] {EVA(Z;;) &En.r)dW, + VAO(Zf;) &(n.rydn}.
Then. as in [10], the proof of (3.2.7) is reduced to that of

s A

sup sup P{/ o AN(ZE,) P do <n} < Clp) P
£€(0.1] |r|=1 0

Let D = {A. Ay A}. Clearly the span of D at zg = ((1)) is R2. Consequently.

there exists R > 0. ¢ > 0 such that

. 2
Z (vi Vl(y)) >c. (3.2.8)
VeD
for any |v] = 1 and y € Bgr(xo).
Let ¢ =inf{o >0 :supecor<t |25, — To| = R} As. Then

Se . R ) .
P{/O [vi AN(Z5)1 do < n} < pi(n) + p3(n) + p3(n)
with

s =P [ maZz0Pdo <n, [ (4T 4 (23017 do <
S > nﬁ},

pi(n) = P{§° <}, .

pim = P{ [ w4250 do <n. [ (AT AF (Z5)P do 2 v},

where 0 < < a< 1.

Property (3.2.8) and the choice of 3, a yields pj(n) = 0 for n sufficiently
small. Chebychev’s inequality and Burkholder’s and Hoélder’s inequalities
ensure sup.¢(o,;; p2(n) < C1P9/2. The term p5(n) demands a careful analy-
sis. This has been done in {10] (pg. 15) and corresponds to the term A, is

this reference with V = A4, X,. = Z;, emU-D = N, a= m’Z(Z)l). As a hint

for the reader, we point out that span (A(:ro), AY A(:zo)) = R? implies
the validity of assumption (H2) of Theorem 2.2 in [10]. Indeed. using the
notation in this article,

A(zo) = Al(zo), AY A(zo) = [/Ol(Ao x A) (1. l)d'r] (zo) .
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Since all the estimates in the above mentioned proof can be obtained uni-
formly in the paramater . we conclude. O
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