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Abstract

In this paper we prove the following negative result: Product Logic
[9] does not have the Deduction Theorem, that is, there is no binary
defined connective in the language of Product Logic such that the De-
duction Theorem is satisfied with respect to it. We prove this theorem
mainly by using algebraic methods: we prove that Product Logic is
algebraizable, that the variety of Product Algebras is its equivalent
quasivariety semantics and that this variety has no equationally defin-
able principal congruences.

1 Introduction

Product Logic [9] (IIL, for short) arises in the context of the studies of fuzzy
logics (in the narrow sense), in other words, in the context of the studies of
logical systems appropriate for a formalization of approximate reasoning (8].
It is defined semantically by interpreting the connectives of the language on
the unit interval [0, 1] in the following way: conjunction is interpreted by the
ordinary product of real numbers, implication is interpreted as the residuated
implication with respect to product, and the constant is interpreted by the
real number 0. Product logic is one of the three logics based on the main
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Action n. 15 (European Commission) and Grant 1995GR-00045 from Generalitat de
Catalunya.
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t-norms (see for example [12] and [13]): Lukasiewicz’s t-norm (t(z,y) =
max(0,z +y — 1)), Gédel’s t-norm (t(z,y) = min(z,y)) and Product t-norm
(tz,y) =z -y).

A complete axiom system for Product Logic has been obtained in [9],
where the quasivariety of Product Algebras is mainly studied with regard to
the completeness result.

In this paper we show that the class of Product Algebras is a variety
of residuated lattices (Definition 4) and is also a variety of bounded hoops
(Theorem 7). This variety is generated by the unit interval Product algebra
{Theorem 10). This is similar to the case of the variety of MV-algebras,
which is generated by the unit interval MV-algebra.

Product algebras have a very strong link to Product Logic: the variety
of Product algebras is the equivalent quasivariety semantics of Product logic
(Corollary 12). This means, roughly speaking, that there is an interpreta-
tion of the formulas of Product Logic as equations and an interpretation of
equations as formulas such that they are essentially inverse to each other.

The main result of this paper is that Product Logic does not have the
Deduction Theorem (Theorem 17), that is, there is no binary defined con-
nective 7 (z,y) in the language of Product Logic such that the following
equivalence holds:

For allT' C Fm and ¢,9 € F'm,

Tiornr v © Thar n(e,v)

This means, roughly speaking, that the deduction relation ¢ bz
cannot be "recorded” by using a formula in two variables 7(z,y). This is
similar to the case of the infinite-valued Lukasiewicz Logic, which does not
possess the Deduction Theorem either.

2 Preliminaries

This section contains the basic known definitions and results about deductive
systems which will be used in this paper. We use papers [2] and [4] as the
main references.

By a propositional language we mean a set £ of propositional connectives.
The L-formulas are built in the usual way from the propositional variables
by using the connectives of £. We denote by Fmthe set of all L-formulas.

A deductive system S over L is a pair § = (£,Fg) where F-g is a finitary
consequence relation over F'm,. That is, g is a relation between subsets of
Fm, and elements of F'm that satisfies the following conditions for all T,
A C Fmg and ¢, ¢ € Fmg:



(i) ¢ € I implies I' kg ¢,
(ii) ['ts ¢ and I' C A implies A g ¢,
(iii) I'Fg ¢ and A g 9 for every ¢ € I implies A g ¢.
In addition, g is finitary in the sense
(iv) T g ¢ implies IV kg ¢ for some finite IV C T,
and it is structural in the sense
(v) T'Fs ¢ implies o (T') s o (¢) for every substitution ¢ : Fm — Fm.

A set of axioms and inference rules over L defines a deductive system S in
the usual way: for ' C Fm, and ¢ € Fmg, I' bg @ iff ¢ is contained in the
smallest set of L-formulas that includes I, together with all the substitution
instances of the axioms of S, and is closed under direct derivability by the
inference rules of S.

Let A be an L-algebra and FF C A. The Leibniz congruence QaF' is
defined by: ([2, Definition 1.4])
QuaF = {(a,b) € A?: oA (a,coy.yCr_1) € F & A (b,coy ...y ck_1) € F
for all ¢ (p,qo, .-, qx-1) € Fm and all ¢, ...,ck-1 € A }

. QAF can be characterized as the largest congruence of A compatible
with F (i.e., the largest congruence 8 such that a € F and (a,b) € 0 imply
be F, for all a,b € A). The function 4 with domain the set of all subsets
of A is called the Leibniz operator on A.

Let S be a deductive system. A matrix model of S is a pair (A, F'), where
A is an L-algebra, F C A and if I" g ¢, then, for every h € Hom (Fmg, A),
h(I') C F implies h(p) € F. Then we say that F is an S-filter. Thus F
is an S-filter iff F' contains all the interpretations of the logical axioms of S
and is closed under each inference rule of S.

Let S be a deductive system and K a class of L-algebras. K is an equiv-
alent algebraic semantics for S (in the sense of [2]) with defining equations
{6i (p) = € (p) : i < n} and equivalence formulas {A; (p,q) : j < m} iff:

(i) For every I'U {9} C Fmg,
Frspe {{6iW) ~ea(@):i<n}: Y el Eg {6 (¢) e (p) i <n}
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(ii) For every ¢ ~ ¥ € FmZ,
o~ vk BloB) ~ eilph) i <, § <}
As a consequence of (¢) and (iz), it follows that (see [2, Corollary 2.9]):
(iii) For every TU {¢ =~ ¢} C Fm?,
IFEcpmy e {{An:E=nel}ts Ay,
(iv) For every ¥ € Fmg, 9 kg 6(9)Ae(V).

A deductive system is said to be algebraizable if it has an equivalent
algebraic semantics. For an algebraizable deductive system there is a unique
equivalent quasivariety semantics. It is called the equivalent quasivariety
semantics of the system (see [2, Theorem 2.15]).

The following theorem is a very useful characterization of the equivalent
quasivariety semantics of an algebraizable deductive system.

Theorem 1 ([2, Theorem 5.1]) Let S be a deductive system and K a
quasivariety. The following are equivalent:

(i) S is algebraizable with equivalent algebraic semantics K.

(ii) For every algebra A the Leibniz operator 5 is an isomorphism be-
tween the lattices of S-filters and K-congruences of A (8 is a K-con-
gruence if A/ € K).

A deductive system S = (£,}g) has the deduction-detachment theorem
(DDT, for short) (see [4]) if there exists a finite set E (p,q) = {70 (p,9),- - -,
Nm—1 (p, q)} of formulas in two variables such that, for all TU{p, v} C Fm,,
we have

TU{p}tsv iff Ths E(p,9).

Here I' g E (p,%) is an abbreviation for the conjunction of the assertions
T ks ni(p,¥), © <m. If S has the DDT with respect to E (¢, %), we call
E (¢,%) a deduction-detachment set for S. We can see the finite set E (i, ¢)
as collectively behaving as an implication connective.

A quasivariety K of L-algebras has equationally definable principal rela-
tive congruences (EDPRC, for short) (see (4] and (5]) if there are 4-ary terms
(i.e., L-formulas)

M0 (P0, P1,90,91) » 15,1 (P0,P1,90,91) 5 & <M,
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such that, for all A € K and all a,b,¢,d € A,
c=d (Oa (a,b)) = n{%(a,b,c,d) = n{',"l (a,b,¢,d), 1 <m,

where ©4 (a, b) denotes the principal K-congruence of A generated by the
pair (a, b).
There is the following connection between EDPRC and the DDT.

Theorem 2 ([4, Theorem VI.1.3]) Let S be an algebraizable deductive
system with equivalent quasivariety semantics K. Then S has the DDT iff
K has EDPRC.

3 Residuated lattices, Product algebras and bounded
hoops

In this section we will define the variety of Product algebras (Definition 4)
as a variety of residuated lattices and prove that Product algebras can also
be defined as a variety of bounded hoops (Theorem 7).

Let us recall the definition of a residuated lattice.

A residuated lattice is an algebra A =(A4,0,—,A,V,0,1) of type
(2,2,2,2,0,0) such that:

(i) (A,A,V,0,1) is a bounded lattice, where 1 and 0 are the maximum
and minimum elements, respectively, that is; for all z,y,z € A,

rll. zAhy=yAzx

rl2. zVy=yVz

rl3. zA(yAz)=(xAy)Az
rld. zV(yVvz)=(zVy)Vz
rl5. z=zA(zVy)

rl6. z=zV(TzAy)

ri7. zAl=¢c

rl8. zA0=0

(i1) (A, ®,1) is a commutative monoid, that is; for all z,y,z € A,
rl9. zQY)Oz=z0(yO=2)
rll0. zQy=yQzx
rlll. 10z ==z

(i1i) Residuation, that is, for all for all z,y, z € A,

rll12. z - (y—2)=(xQy) — =2



Residuated lattices have been studied by many authors authors, see for
example Krull [11], Dilworth and Ward [6], Ward [16], Pavelka [14] and
Zlatos [17).

In this section we will deal with the special class of residuated lattices
" where the meet A and join V are defined by means of ® and — in the
following way:

zhy = zO(z—oy),
zVy = (z—-y)-y)r(y—2z)—>=z)
Let us recall the definition of Product algebras.

A Product algebra ([9, Definition 2]) is an algebra A = (A, ®,—,0) of
type (2,2, 0) such that if we define the binary operations A and V, the unary
operation — and the constant 1 in the following way -

1 = 0—-0, -
-z = z-—0,

Ay = z0O(z—y),

zVy = (z—-y)-yA((y—2)—2),

then for all z,y, z € A the following conditions are satisfied:

e (A,AV,0,1) is a bounded lattice (z < yiffcAy=zifcVy=y), 1
and 0 are the maximum and minimum elements, respectively, that is:
zAl=zandzA0=0.

e (A,G,1) is a commutative monoid, that is:

. (zQyY)O2z2=z0((@y0z2)
2. TQYy=yOz
3. 10z==xz
e (®,—) is an adjoint couple on A, that is:

1. z<yimplies (z®2) < (yO2)
2. z <yimplies (y — 2) < (z — 2)
3. z<yimplies (z —z) < (2—>y)
4. z<(y—2) f (z0y) <z

c@oyVE—o)=1
¢« (-20((z02) - (¥02) = (z—y) =1

e zAN-xz=0



e @OyVz) - (z0Y) V(z02) =1
e (z0Y) A @02) = (2O A) =1

The next theorem shows that the definition of Product algebra can be
simplified.

Theorem 3 Let A =(A,0,—,A,V,0,1) be a residuated lattice such that
the binary operations A and V are defined in the following way

tVy = ((z=y) -y A((y—z)—>2a),

then the following properties hold:
N z<yiffcroy=1
(2) z <y implies (O 2) < (YO 2) -

3) = <y implies (y — 2) < (z - 2)

(5) z—yvy—z)=1

6) (z0(yVv2)—~((z0y)V(zo2) =1

)
)
(3)
(4) z <y implies (2 = z) < (2 — y)
)
)
)

(
(7) (oY) A (z02) = (zO(YA2) =1
Proof.

The results (1), (2), (3) and (4) are well known for arbitrary residuated
lattices (see for example [17]).

1) z<yifloz<yiffl<z—oyiffr—oy=1

(2) From y ©® z £ y ® z by applying the property (r{12) we have y < z —
(yOz). Iz <ythenz <z — (y®z), by using the property (rl12)
weobtainz®2<y0® 2.

(3) If z <y then by using (2) and the definition of A we obtain (y — 2z) ®
z < (y — 2)®Oy < z and by applying (rl12) we have (y — z) < (z — 2)

(4) By using the definition of A we have (z > z)®2 < z. f z < y
then (z —» z) ® z < y and by applying the property (rl12) we have
(z - z) < (2 — ).



(5) By applying the property (r/12) and the definition of A we obtain z <
(x — y) — z and by using the property (3) we have ((z — y) — z) —
y < r — y. Moreover, by using the property (r/12) and the definition
of A we have z — y < ((z — y) — ) — z. Hence, ((z > y) - z) —
y < ((z—-y)—z) — z. By using the property (ri12) we have
(x> y) =) —y)©((z — y) — z) <z, and applying the commu-
tativity of A we obtain (y — ((z — y) — z))Qy < z, by (rl12) we have
(y = ((z = y) = z)) £y — z, by (rl12) and commutativity of © we
obtain ((z — y) — (y = 2)) Sy — z, that is ((z — y) = (y - z)) —
(y — ) = 1. Hence, by the definition of V, we get (x — y)V(y — =) =
1.

(6) FromzOy < (zQy)V(z © z) and 20z < (z O y)V(z © 2) by applying
the property (rl12) we have y <z — ((zQy)V(z©®z2)) and 2 <z —
((z®y)V(z ®z)). Hence, we obtainyVz <z — ((zQy) V(z O 2))
and by using (rl12), we get (z ® (y V2)) = ((zQy) V(z O 2)) =1

(7) By the property (5) we have (z Qy) A (z @ 2z) =((z QYY) A (20 2)) O
((y — 2z) V(2 — y)) and by using (6) we obtain (zOy) A (zOz2) =
(oY A (z02) 0@l —2) V((z0Y) A(z02)0(z —>y)). By
the definition of A we have (zQyY) A (z®2) < (zQYC(y—2))V
(0z20(z—y)) <zO(yAz). So((zOY)A (20 2) = (2O (yA2)) =
1. a

Next we give an equivalent definition of Product algebras.

Definition 4 A Product algebra is an algebra A = (A,0,—,0) of type
(2,2,0) such that if we define two binary operations A and V as in The-
orem 8, a unary operation ~ as ~z =x — 0 and a constant 1 as 1 =0— 0,
then (A,®,—,A,V,0,1) is a residuated lattice which satisfies the following
equations:

e (~z0@0z—yY02) ~(zoy)=1

e zAN-z=0

By using Theorem 3 it is clear that Definition 4 is equivalent to the defi-
nition of Product Algebra given above, where Product Algebras are defined
by means of a set of equations and quasiequations. As a consequence of our
definition we have that Product Algebras are an equationally definable class,
and so they form a variety.

We will show in Theorem 7 that the variety of Product algebras is also
a variety of bounded hoops.



Let us recall the definition of hoop [5]. Let A = (4, ®, —,1) be an algebra
of type (2,2,0), A is a hoop if for all z,y, z € A the following equations are
satisfied [5]:

(i) l1oz=z0l==z

(it) zQy=yO«r

(i) (z—>y)Oz=(y—>z)0y
(iv) (zOy) —2z=2—(y— 2)
(v) z—ozxz=1

Hoops can also be defined as algebras A = (4, ®, —) of type (2,2) sat-
isfying the following equations, for all z,y, z € A:

(H1) (y—y)0z=z0(y—y)=z2
(H2) zQy=yOcz

(H3) (z—y)0z=(y—1)0y
(H4) (z0Qy)—z=z—(y— 2)
(H5) z—orz=y—y

It is easy to check that hoops in this sense are definitionally equivalent
to hoops in the sense of [5].

A hoop is n-potent [5] if it satisfles the identity 2™ = z"~! for some
n, 0 < n < w, where z¥ is defined recursively in the standard way: z* =
rOxk 1

A bounded hoop is an algebra A = (A4, ®, —, 0) of type (2, 2,0) such that
(A,®,—) is a hoop and for all z,y € A the following equation is satisfied’

(H6) 0—z=y—-y
i.e., 0 is the lower bound of A.

Now we will show that the class of Product algebras (4,®,—,0) is a
variety of bounded hoops. To prove this result we will use the following
lemmas.

Lemma 5 Let A = (A,®,—,0) be a Product algebra, then A is a bounded
hoop.

Proof.

The properties (H1)-(H6) follow immediately from Definition 4 and The-
orem3. O



Lemma 6 (Cf. [7]) Let (A, ®,—,0) be a bounded hoop. Define the opera-

tions A,V andthe constantl asin Definition 4. Then A ={A,0,—,A,V,0,1) is

a residuated lattice iff the operation V is associative.
Proof.

i) Obviously if A is a residuated lattice, then V is associative.

ii) Suppose that V is associative, we only have to show that A is the
" infimum operation and V is the supremum operation.

As hoops are left-commutative monoids [5], then by [5, Lemma 1.3],
we have that A is the infimum.

Let us show that V is the supremum operation. We first show z V y
is an upper bound of z,y. By applying that A is the infimum and the
definition of V, we have that zVy = ((z = y) = Y)A((y — z) = z) <
(z—y)—oy Soz—(zVvy)<z—((t—y) —»y)=(z0(z—y)) -
y, and by applying (H2), (H4) and (H5) we have z — (zVy) <
(z—-y)0z)my=(xz—>y) - (x—>y)=1 Sor <z Vy. It can be
obtained that ¥y < z V¥ in a similar way.

Now we have to show that z V y is the least upper bound of z,y, let
z€Asuchthat z < zandy < z

Let us start by showing the following property: for all z,y € A,
r < yiff tVy = y. By the definition of V we have z Vy =
((z—y)—y)A(y—z)—oz) Ifz <y, thatisz —» y = 1, then
zVy = (1 = y)A((y — ) — z). By using (H1) and the definition of A
weobtainzVy=(101 - y))A((ly—=z)—z)=yA((y = z) — )
and by applying the definition of A and the property (H4) we have
tVy=yO0y—((y—z)—12) =y0(y0(y—>2))—>2). By
using the definition of A and that it is the infimum we have z Vy =
y©O((y AN z) — z) = y©O1. Hence, by applying (H1) we obtain zVy = y.

Ifrz < z2thenwehavezVz =z2andyVy =y. Thus zVvVy =
(z Vz)V(yVy). By using the associativity and commutativity of vV
we obtain zVy = (z Vy) V(2 Vy). Hence, by using that V is an upper
bound we have z Vy < zVy, and if y < z we have zVy < 2. So
zVy<z 0O

Let us show that the class of Product algebras is also a variety of bounded
hoops.
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Theorem 7 Let A =(A,©,—,0) be an algebra of type (2,2,0). Then A
is a Product algebra iff A is a bounded hoop which satisfies the following
equations (where the new operations are defined as in Definition 4):

(i) zV(yVvz)=(zVy Vs
(i1) (20 (z0z—-y02) - (z—y)=1,
(iti) z AN~z =0.

Proof.

a) If A is a Product algebra, then by Lemma 5, A is a bounded hoop,
and by Definition 4, A satisfies the properties (i), (i7) and (4i7).

b) Suppose that A is a bounded hoop which satisfies the properties (i) —
(zi1), then by Lemma 6 (A,®,—,A,V,0,1) is a residuated lattice, so
as it satisfies the properties (i7) and (iii), it is a Product algebra. O

According with Theorem 7, we give below a set of axioms for Product
algebras (where the new operations are defined as in Definition 4). Product
algebras (A, ®, —,0) can be defined as a variety of bounded hoops by means
of the following equations: . '

II1. 190z=z01 =z,

2. z0y=yQo=x,

3. z -z =1,

4. (z - y)Qz=(y—2)0y,

5. (zQy)—z=z— (y — 2),

6. 0 -z =1,

7. (zVy)Vz=zV(yVz),

8. (-—20((z02) > (¥02) »(z—y) =1,

119. z A~z =0,

We will finish this section by applying some of the results of (9] to show
that the variety of Product algebras is generated by the unit interval Product
algebra.

11




Recall that the unit interval Product algebra is the algebra ([0, 1], ®, —, 0)
of type (2,2,0) where [0,1] C R and the connectives ©, — are defined as
follows:

xOQy= z-y
_ y/z, Hy<z
rToy= {1, ifz<y

for any z,y € [0,1], where - denotes the product of real numbers and /
denotes the quotient of real numbers.

Theorem 8 ([9, Corollary 4]) Each Product algebra is a subdirect prod-
uct of linearly ordered Product algebras.

Theorem 9 ([9, Theorem 3]) If an identity T = o, in the language of
Product algebras, is valid in the unit interval algebra then it is valid in all
linearly ordered product algebras.

Now we are ready to prove the following result.

Theorem 10 The variety of Product algebras is generated by the unit in-
terval Product algebra.

Proof.

The variety generated by the unit interval Product algebra is the class
of L-algebras satisfying the equations which are valid in the unit interval
Product algebra. By theorems 8 and 9 every Product algebra belongs to this
class. As the unit interval algebra is a Product algebra, every algebra in this
class is a Product algebra. 0O

4 Product logic and the Deduction Theorem

Let £ = {®,-,0} be a propositional language of type (2,2,0). Define the
new connectives A,V and - in the following way:

-z = z—0
Ay = z0(T—>y)
tVy = ((z—y)—=yA(y—z)—>2z)

The Product logic IIL ([9, Definition 1]) is the deductive system over
L defined by the axioms:

(Al) o=@ —-0)

12



(0= ¥) = (= x) = (¢ — X))
0—¢

(pOY) = (YOO

(poWox)— (¢0Y)OX)
(pO¥Y)Ox) = (PO (¥OX))
((p@¥) = x) = (= ¥ —x))
(p—=@W—x)— (¢OY) = x)

(¢ =) = ((pOx) » (¥ OX))
X = (¢ ©x) = (¥ Ox)) = (¢ = ¥))
(x =) = ((x = ¥) = (x = (eAY)))
(p—=x) = (¥ —x)—= (VYY) —x))
(= Y) V¥ —y)

(pA=p)—0

and the modus ponens rule:

o, oYY

Recall the following theorems of IIL [9, lemmas 3 and 4]:

(1)
(t2)
(£3)
(t4)

p—p

(=)= ((x—=7—-((pOx) = (¥0O7))
¢ —(1Oyp)

(pOY) =

(g ¥)0p) = (¥~ )OY)

eV VX)) - {(eVY)Vx)
((eVY)Vx) = (¢ V(¥ VX))

(p =) = ((x = ¢) = (x = ¥)),

13



where %) w, X Y € Fmﬁ-

Now we will show that the variety of Product algebras is the equivalent
quasivariety semantics for Product Logic. The proof follows the lines of
the proof that the variety of Wajsberg algebras (or MV-algebras) is the
equivalent quasivariety semantics for the infinite-valued Lukasiewicz logic
(15].

Let A be an arbitrary algebra of type (2,2,0). Denote by Fpj the family
of all ITL-filters of A, and by Conp (A) the family of all product congruence
relations of A (i.e. the congruence relations 6 of A such that the quotient
A /9 is a Product algebra). Then we have

Theorem 11 Let A =(A,®,—,0) be an algebra of type (2,2,0). The map

@A:]:n — COTLn(A)
F — @AF={(a,b)€A2:a—+b,b—+a€F}

is an order isomorphism, whose inverse is:

HA:COHH(A) — .7:r1
§ +——> Hp0={a€A:(a,a—a)cb}

Proof.

Let F be a IIL-filter of A. By using (t1), (A2), (¢8) and modus ponens,
then it is easy to see that ©4 F is an equivalence relation on A. By using
(A2) and (t8) it is easy to check that © 5 F' satisfies that substitution property
relative to —, and by using (¢2) it is easy to check that © F' satisfies that
substitution property relative to ®. Thus @4 F' is a congruence of A.

Now we will show that A/©4 F' is a Product algebra, that is, it satisfies
the equations II1 — I19, stated in Section 3 as an axiomatization of Product
algebras. If a, b € F then, by (A1) and modus ponens we have: (a,b) € ©5 F.
Ifa € Fandb ¢ F, then by modus ponensa — b ¢ F,so (a,b) ¢ ©oF. Thus
F is an equivalence class and (a — a) /@ F = F, so the equation II3 holds.
It is easy to check that equation II2 holds by using axiom (A4), equation
I11 by using theorems (t3) and (t4), equation II5 by using axioms (A7) and
(AB), equation II6 by using axiom (A3), equation II7 by using theorems
(t6) and (t7), equation II8 by using axiom (A10) and equation II9 by using
axiom (Al4). So A/OAF is a Product algebra and thus @4 F € Conp (A).
It is easy to see that if F' and F’ are IIL-filters of A and F C F', then
OAF COpF.

Let 8 € Conyp (A), then by using the properties of Product algebras it
is easy to see that Ha0 is a IIL-filter of A. Moreover, if , 8 € Conp (A),
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then 8 C & implies Ho0 C Hp#'. Moreover, (a,b) € ©p (Hp0) iff a —
b,b—ac(Hpf)iffa/ =b/0iff (a,b) € 8,50 Oa (Ha0) = 6. On the other
hand it is easy to see that Ha (@4 F) = F. Thus both Hs and ©4 are one
to one and order preserving and so they are order isomorphisms. 0O

Corollary 12 For any algebra A = (A, ®,—,0) of type (2,2,0), the Leibniz
operator Qa is an isomorphism from Fny onto Cong (A). Hence the Product
logic is algebraizable and the variety of Product algebras is its equivalent
quastvariety semantics.

Proof.

For any F € Fi, ©AF is defined elementarily over the matrix (A, F)
without equality, is a congruence on A and is compatible with F, so by [2,
Theorem 1.6}, ©A F = Q4 (F). Thus by [2, Theorem 5.1) and Theorem 11
we have that the Product logic is algebraizable with equivalent quasivariety
semantics the variety of Product algebras. a

Now we will show that the deduction-detachment theorem fails for IIL.
Recall that the deduction theorem with respect to the connective — fails
for IIL [9], in other words, the set E (p,q) = {p — ¢} is not a deduction-
detachment set for I1L.

Recall also that IIL satisfies the following weak version of the deduction
theorem {9}:
Let T'U {p, ¥} € Fmg. Then,

n times

TU{p}trar ¢ iff Thpre ®--- ® p— 9 for some natural number n.

This weak version of the deduction theorem is called the ”local deduction
theorem” in [3].

To show that the deduction-detachment theorem fails for IIL we will use
the followings results.

Theorem 13 The variety of Product algebras is not n-potent.

Proof.

As the variety of Product algebras is generated by the unit interval alge-
bra, the result follows from the fact that the unit interval Product algebra
does not satisfy any identity of the form : z" = 2"~ 1. ]
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Theorem 14 [5, Corollary 5.5/ A variety of hoops has EDPRC iff it is
n-potent for some n.

Theorem 15 A variety of bounded hoops has EDPRC iff its is n-potent for
some n.

Proof.

As bounded hoops are hoops with normal multiplicative operators (5, pg.
559, it is easy to see that a proof completely analogous to that of Theorem
14 applies. u|

Theorem 16 The variety of Product algebras does not have EDPRC.

Proof.
As the class of Product algebras is a variety of bounded hoops, this result
follows from Theorems 15, and 13. a

Theorem 17 Product logic IIL does not have the deduction-detachment the-
orem (DDT).

Proof.

IfIIL had the DDT then as the class of Product algebras is its equivalent
variety semantics, then by Theorem 2 this variety would have EDPRC, a
contradiction. a .
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