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Abstract 

In this paper we prove the following negative result: Product Logic 
[9] does not have the Deduction Theorem, that is,_ there is no binary 
defined connective in the language of Product Logic such that the De­
d uction Theorem is satisfied with respect to it. We prove this theorem 
mainly by using algebraic methods: we prove that Product Logic is 
algebraizable, that the variety of Product Algebras is its equivalent 
quasivariety semantics and that this variety has no equationally defin­
able principal congruences. 

1 Introduction 

Product Logic [9] (IIL, for short) arises in the context of the studies of fuzzy 
logics ( in the narrow sense), in other words, in the context of the stud.ies of 
logical systems appropriate for a formalization of approximate reasoning [8]. 
It is defined semantically by interpreting the connectives of the language on 
the l.UÚt interval [O, 1] in the following way: conjunction is interpreted by the 
ordinary product of real numbers, implication is interpreted as the residuated 
implication with respect to product, and the constant is interpreted by the 
real number O. Product logic is one of the three logics based on the main 

*Work partially supported by Grant PB94-0920 from the Spanish DGICYT, COST 
Action n. 15 (European Commission) and Grant 1995GR-00045 from Generalitat de 
Catalunya. 
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t-norms (see for example [12] and [13]): Lukasiewicz's t-norm (t(x, y) 
max(O, x + y-1)), Godel's t-norm (t(x, y)= min(x, y)) and Product t-norm 
(t(x, y)= X· y). 

A complete axiom system for Product Logic has been obtained in [9], 
where the quasivariety of Product Algebras is mainly studied with regard to 
the completeness result. 

In this paper we show that the class of Product Algebras is a variety 
of residuated lattices (Definition 4) and is also a variety of bounded hoops 
(Theorem 7). This variety is generated by the unit interval Product algebra 
(Theorem 10). This is similar to the case of the variety of MV-algebras, 
which is generated by the unit interval MV-algebra. 

Product algebras have a very strong link to Product Logic: the variety 
of Product algebras is the equivalent quasivariety semantics of Product logic 
(Corollary 12). This means, roughly speaking, that there is an interpreta­
tion of the formulas of Product Logic as equations and an interpretation of 
equations as formulas such that they are essentially inverse_ to each other. 

The main result of this paper is that Product Logic <loes not have the 
Deduction Theorem (Theorem 17), that is, there is no binary defined con­
nective r¡ ( x, y) in the language of Product Logic such that the following 
equivalence holds: 

For all r ~ Fm and <p, 'ljJ E Fm, 

r, <p f--rrL '1/J ~ r f--rrL r¡( <p, '1/J) 

Tlús means, roughly speaking, that the deduction relation <p f--rrL 'ljJ 
cannot be "recorded" by using a formula in two variables r¡(x, y). Tlús is 
similar to the case of the infinite-valued Lukasiewicz Logic, wlúch does not 
possess the Deduction Theorem either. 

2 Preliminaries 

Tlús section contains the basic known definitions and results about deductive 
systems which will be used in tlús paper. We use papers [2] and [4] as the 
main references. 

By a propositional language we mean a set l, of propositional connectives. 
The C-formulas are built in the usual way from the propositional variables 
by using the connectives of C. We denote by Fm.cthe set of all C-formulas. 

A deductive system S over C is a pair S = (C, f--s) where f--s is a finitary 
consequence relation over Fm_c. That is, f--s is a relation between subsets of 
Fm.c and elements of Fm.c that satisfi.es the following conditions for ali r, 
~ ~ Fmc. and <p, 1jJ E Fmc.: 
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(i) <p E f implies f 1--s <p, 

(ii) r 1--s <p and r ~ A implies A 1--s <p, 

(íii) r 1--s <p and A 1--s 'ljJ for every '1/J E r implies A 1--s <p. 

In addition, 1--s is finitary in the sense 

(iv) r 1--s <p implies r' 1--s <p for sorne finite f' ~ r, 

and it is structural in the sense 

(v) r 1--s <p implies cr (f) 1--s cr (<p) for every substitution cr: Fm-+ Fm. 

A set of axioms and inference rules over .C defines a deductive system S in 
the usual way: for r ~ Fmc, and <p E Fmc,, r 1--s <p iff <pis contained in the 
smallest set of .C-formulas that includes r, together with all the substitution 
instances of the axioms of S, and is closed under direct de~ivability by the 
inference rules of S. 

Let A be an .C-algebra and F ~ A. The Leibniz congruence OAF is 
defined by: ([2, Definition 1.4]) 

nAF = { (a, b) E A2 : <pA (a, co, ... , Ck-1) E F ~ <pA (b, CO, ... , ck_¡) E F 

for all <p (p, qo, ... , qk-1) E Fmc, and ali co, ... , ck-1 E A} 

OAF can be characterized as the largest congruence of A compatible 
with F (i.e., the largest congruence 0 such that a E F and (a, b) E 0 imply 
b E F, for all a, b E A). The function nA with domain the set of ali subsets 
of A is called the Leibniz operator on A. 

Let S be a deductive system. A matrix model of Sis a pair {A, F), where 
A is an .C-algebra, F ~ A and if r 1--s <.p, then, for every h E Hom (Fmc,, A), 
h (r) ~ F implies h ( <.p) E F. Then we say that F is an S-filter. Thus F 
is an S-filter iff F contains ali the interpretations of the logical axioms of S 
and is closed under each inf erence rule of S. 

Let S be a deductive system and K a class of .C-algebras. K is an equiv­
alent algebraic semantics for S (in the sense of [2]) with defining equations 
{ Ói (p) ~ Ei (p) : i < n} and equivalence formulas { Aj (p, q) : j < m} iff: 

(i) For every r U { <.p} ~ Fmc,, 

f 1--S <.p ~ { { Ói ( '1/J) ~ Ei ( 'lp) : i < n} : 'lp E f} I= K { Ói ( <.p) ~ Ei ( <.p) : i < n} 

3 



(ii) For every i.p ~ 'I/J E Fmt 

'P ~ 'I/J=H=K {ói('PAj'I/J) ~ Ei('PAj'I/J): i < n, j < n} 

As a consequence of (i) and (ii), it follows that (see [2, Corollary 2.9]): 

(iii) For every r U { 'P ~ 'ljJ} ~ Fmt 

r FK 'P ~ 'ljJ {:} {eAr¡: e~ r¡ E r} f-s <pA'I/J, 

(iv) For every 19 E Fm¡:,, 19 -+s ó(l?)AE(l?). 

A deductive system is said to be algebraizable if it has an equivalent 
algebraic semantics. For an algebraizable deductive system there is a unique 
equivalent quasivariety semantics. It is called the equivalent quasivariety 
semantics of the system (see [2, Theorem 2.15]). 

The following theorem is a very useful characterization of the equivalent 
quasivariety semantics of an algebraizable deductive system. 

Theorem 1 (/2, Theorem 5.1]} Let S be a deductive system and K a 
quasivariety. The following are equivalent: 

(i) S is algebraizable with equivalent algebraic semantics K. 

{ii) For every algebra A the Leibniz operator nA is an isomorphism be­
tween the lattíces of S-filters and K-congruences of A (0 is a K-con­
gruence if A/0 E K). 

A deductive system S = (.C, f-s) has the deduction-detachment theorem 
(DDT, for short) (see [4]) if there exists a finite set E (p, q) = {TJo (p, q), ... , 
T/m-l (p, q)} of formulas in two variables such that, for ali ru{ip, 'ljJ} ~ Fmc, 
we have 

ru{ip}f-s'I/J iff rf-sE(ip,'I/J). 

Here r f- s E ( <p, 'ljJ) is an abbreviation for the conjunction of the assertions 
r f-s T/í (ip, 'I/J), i < m. If S has the DDT with respect to E (ip, 'I/J), we call 
E ( <p, 'ljJ) a deduction-detachment set for S. We can see the finite set E ( <p, 'ljJ) 
as collectively behaving as an implication connective. 

A quasivariety K of .C-algebras has equationally definable principal rela­
tive congruences (EDPRC, for short) (see [4j and [5]) if there are 4-ary terms 
(i.e., .C-formulas) 

T/i,o (po,PI, qo, q1), T/i,I (po,P1, qo, q1), i < m, 
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such that, for all A E K and all a, b, e, d E A, 

e= d (0A (a, b)) {=;> r¡fo (a, b, e, d) = r¡f'i (a, b, e, d), i < m, 
' ' 

where 0A (a, b) denotes the principal K-congruence of A generated by the 
pair (a, b). 

There is the following connection between EDPRC and the DDT. 

Theorem 2 (/4, Theorem Vl.1.3}) Let S be an algebraizable deductive 
system with equ'ivalent quasivariety semantics K. Then S has the DDT iff 
K has EDPRC. 

3 Residuated lattices, Product algebras and bounded 
hoops 

In this section we will define the variety of Product algebras (Definition 4) 
as a variety of residuated lattices and prove that Product algebras can also 
be defined as a variety of bounded hoops (Theorern 7). 

Let us recall the definition of a residuated lattice. 
A residuated lattice is an algebra A = (A, 0, -, /\,V, O, 1) of type 

(2, 2, 2, 2, O, O) such that: 

( i) (A, A, V, O, 1) is a bounded lattice, where 1 and O are the rnaximurn 
and minirnurn elernents, respectively, that is; for ali x, y, z E A, 

rll. x /\ y = y/\ x 
rl2. x V y = y V x 
rl3. xl\(yl\z)=(xl\y)l\z 
rl4. x V (y V z) = (x V y) V z 
rl5. x=xl\(xVy) 
rl6. x=xV(xl\y) 
rl7. x /\ l = x 
rl8. x /\O= O 

(ii) (A, 0, 1) is a cornrnutative rnonoid, that is; for all x, y, z E A, 

rl9. (x0y)0z=x0(y0z) 
rllO. x0y = y0x 
rlll. l 0x = x 

(iii) Residuation, that is, for all for all x, y, z E A, 

rll2. x ___.(y___. z) = (x 0 y)___. z 
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Residuated lattices have been studied by many authors authors, see for 
example Krull [11], Dilworth and Ward [6], Ward [16], Pavelka [14] and 
Zlatos [17]. 

In this section we will deal with the special class of residuated lattices 
where the meet /\ and join V are defined by means of 0 and -+ in the 
following way: 

x/\y = x0(x-+y), 
x V y = ((x-+ y) -+y)/\ ((y-+ x)-+ x) 

Let us recall the definition of Product algebras. 

A Product algebra ([9, Definition 2]) is an algebra A= (A, 0, -+, O) of 
type (2, 2, O) such that if we define the binary operations /\ and V, the unary 
operation -, and the constant 1 in the following way 

1 O-+ o, 
-,x X-+ 0, 

x/\y - x0(x-+y), 
x V y - ((x-+ y)-+ y)/\ ((y-+ x)-+ x), 

then for all x, y, z E A the following conditions are satisfied: 

• (A,/\, V, O, 1) is a bounded lattice (x s Y. iff x /\y= x iff x V y= y), 1 
and O are the maximum and minimum elements, respectively, that is: 
x /\ 1 = x and x /\ O = O. 

• (A, 0, 1) is a commutative monoid, that is: 

l. (x0y)0z=x0(y0z) 
2. x0y = y0x 
3. l 0x = X 

• (0, -+) is an adjoint couple on A, that is: 

l. x S y implies (x0z) S (y0z) 
2. x S y implies (y-+ z) s (x-+ z) 
3. x S y implies (z-+ x) S (z-+ y) 
4. xs(y-+z) iff (x0y) sz 

• (x-+ y) V (y-+ x) = 1 

• (,,z0 ((x0 z)-+ (y0z)))-+ (x-+ y)= 1 

• X/\ •X= Ü 
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• (x0(yV z))--* ((x0y) V(x0z)) = 1 

• ((x0y) /\ (x0z))--* (x0(y/\z)) = 1 

The next theorem shows that the definition of Product algebra can be 
simplified. 

Theorem 3 Let A= (A, 0, --*,/\,V, O, 1) be a residuated lattice such that 
the binary operations /\ and V are defined in the followíng way 

x/\y = x0(X--*Y), 
x V y = ((x--* y)--* y)/\ ((y--* x)--* x), 

then the following properties hold: 

( 1) X S y ijf X --* Y = 1 

(2) x S y implíes (x 0 z) S (y 0 z) 

(3) x S y implies (y--* z) S (x--* z) 

(4) x S y implies (z--* x) S (z--* y) 

(5) (x - y) V (y - x) = 1 

(6) (x0(yVz))--*((x0y)V(x0z))=l 

(7) ((x0y) J\(x0z))-(x0(yJ\z)) = 1 

Proof. 
The results (1), (2), (3) and (4) are well known for arbitrary residuated 

la ttices ( see for example [ 17]). 

( 1) X S y iff 1 0 X S y iff 1 S X --* y iff X --* y = 1 

(2) From y 0 z S y 0 z by applying the property (rl12) we have y S z--* 
(y 0 z). If x S y then x S z--* (y 0 z), by using the property (rl12) 
we obtain x 0 z S y 0 z. 

(3) If x S y then by using (2) and the definition of J\ we obtain (y--* z) 0 
x S (y--* z)0y S z and by applying (rll2) we have (y--* z) S (x--* z) 

(4) By using the definition of J\ we have (z--* x) 0 z S x. If x S y 
then (z--* x) 0 z S y and by applying the property (rl12) we have 
(z--* x) S (z--* y). 
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(5) By applying the property (rl12) and the definition of /\ we obtain x ~ 
(x-+ y)-+ x and by using the property (3) we have ((x-+ y)-+ x) -+ 
y~ x-+ y. Moreover, by using the property (rl12) and the definition 
of /\ we have x-+ y ~ ((x-+ y)-+ x) -+ x. Hence, ((x-+ y)-+ x) -+ 

y ~ ((x-+ y)-+ x) -+ x. By using the property (rl12) we have 
(((x-+ y) -+ x)-+ y) 0 ((x-+ y) -+ x) ~ x, and applying the commu­
tativity of /\ we obtain (y-+ ((x-+ y)-+ x))0y ~ x, by (rl12) we have 
(y-+ ((x-+ y) -+·x)) ~y-+ x, by (rl12) and commutativity of 0 we 
obtain ((x-+ y)-+ (y-+ x)) ~y-+ x, that is ((x-+ y)-+ (y-+ x))-+ 
(y-+ x) = l. Hence, by the definition of V, we get (x-+ y)V(y-+ x) = 
l. 

(6) From x0y ~ (x 0 y)V(x 0 z) and x0z ~ (x 0y)V(x 0 z) by applying 
the property (rl12) we have y~ x-+ ((x 0 y) V (x 0 z)) and z ~ x-+ 
((x 0 y) V (x 0 z)). Hence, we obtain y V z ~ x-+ ((x 0y) V (x 0 z)) 
and by using (rl12), we get (x 0 (y V z))-+ ((x 0 y) V (x 0 z)) = l. 

( 7) By the property ( 5) we have ( x 0 y) /\ ( x 0 z) = ( ( x 0 y) /\ ( x 0 z)) 0 
((y-+ z) V (z-+ y)) and by using (6) we obtain (x 0 y) /\ (x 0 z) = 
( ( ( X 0 y) /\ ( X 0 Z)) 0 (y -+ Z)) V ( ( ( X 0 y) /\ ( X 0 Z)) 0 ( Z -+ y)). By 
the definition of /\ we have (x 0 y) /\ (x 0 z) ~ (x 0 y 0 (y-+ z)) V 

(x 0 z 0 (z-+ y))~ x0(y /\ z). So ((x 0y) /\ (x-0 z))-+ (x 0 (y/\ z)) = 
l. o 

Next we give an equivalent definition of Product algebras. 

Definition 4 A Product algebra is an algebra A = (A, 0, -+, O) of type 
(2, 2, O) such that if we define two binary operations /\ and V as in The­
orem 3, a unary operatíon-, as ,x = x-+ O anda constant l as l =O-+ O, 
then (A, 0, -+, A, V, O, 1) is a residuated lattice which satisfies the following 
equations: 

• (,,z0(x0z-+y0z))-+(x-+y)=l 

• X/\ •X= 0 

By using Theorem 3 it is clear that Definition 4 is equivalent to the defi­
nition of Product Algebra given above, where Product Algebras are defined 
by means of a set of equations and quasiequations. As a consequence of our 
definition we have that Product Algebras are an equationally definable class, 
and so they form a variety. 

We will show in Theorem 7 that the variety of Product algebras is also 
a variety of bounded hoops. 
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Let us recall the definition of hoop [5]. Let A= (A, 0, -, 1} be an algebra 
of type (2, 2, O), A is a hoop if for all x, y, z E A the following equations are 
satisfied [5]: 

(i) 10x=x0l=x 
(ii) x0y=y0x 
(iii) (x - y) 0 x = (y - x) 0 y 
(iv) (x 0 y) - z = x - (y - z) 
(v; x-x=l 

Hoops can also be defined as algebras A= (A, 0, -) of type (2, 2) sat-
isfying the following equations, for all x, y, z E A: 

(Hl) (y - y) 0 x = x 0 (y - y)= x 
(H2) x 0 y= y 0 x 
(H3) (x -y) 0x = (y- x) 0y 
(H4) (x 0 y) - z = x - (y - z) 
( H5) x - x = y - y 

It is easy to check that hoops in this sense are definitionally equivalent 
to hoops in the sense of [5]. 

A hoop is n-potent [5] if it satisfies the identity xn = xn-l for sorne 
n, O < n < w, where xk is defined recursively in the· standard way: xk = 
X 0xk-l. 

A bounded hoop is an algebra A = (A, 0, -, O} of type (2, 2, O) such that 
(A, 0, -) is a hoop and for all x, y E A the following equation is satisfied' 

( H6) O - x = y - y 

i.e., O is the lower bound of A. 

Now we will show that the class of Product algebras (A, 0, -, O) is a 
variety of bounded hoops. To prove this result we will use the following 
lemmas. 

Lemma 5 Let A = (A, 0, -, O) be a Product algebra, then A is a bounded 
hoop. 

Proof. 
The properties (Hl)-(H6) follow immediately from Definition 4 and The-

orem 3. O 
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Lemma 6 (Cf. /7}) Let (A, 0, ---+, O) be a bounded hoop. Define the opera-
tions /\, V and the constant 1 as in Definition 4. Then A= (A, 0, ---+, A, V, O, 1) is 
a residuated lattice iff the operation V is associative. 

Proof. 

i) Obviously if A is a residuated lattice, then V is associative. 

ii) Suppose that V is associative, we only have to show that /\ is the 
infimum operation and V is the supremum operation. 

As hoops are left-commutative monoids [5], then by [5, Lemma 1.3], 
we have that /\ is the infimum. 

Let us show that V is the supremum operation. We first show x V y 
is an upper bound of x, y. By applying that /\ is the infimum and the 
definition of V, we have that xVy = ((x---+ y)---+ y) /\((y- x)---+ x) ~ 
( X ---+ y) ---+ y. So X ---+ ( X V y) ~ X ---+ ( ( X ---+ y) ---+ y) = ( X 0 ( X ---+ y)) ---+ 
y, and by applying (H2), (H4) and (H5) we have x ---+ (x V y) ::; 
((x---+ y) 0 x)---+ y= (x---+ y)---+ (x---+ y)= l. So x ~ x Vy. It can be 
obtained that y ::; x V y in a similar way. 

N ow we have to show that x V y is the least upper bound of x, y, let 
z E A such that x ~ z and y ~ z 

Let us start by showing the following property: for all x, y E A, 
x ::; y iff x V y = y. By the definition of V we have x V y = 
((x---+ y)---+ y) /\((y---+ x)---+ x). If x ::; y, that is x ---+ y = 1, then 
xVy = (1---+ y)A((y---+ x) - x). By using (Hl) and the defi.nition of /\ 
we obtain xVy = (10 (1---+ y))/\ ((y---+ x)---+ x) = y/\ ((y--+ x) - x) 
and by applying the definition of /\ and the property (H4) we have 
xVy = y0(y---+((y---+x)---+x)) = y0((y0(y---+x))-x). By 
using the definition of /\ and that it is the infimum we have x V y = 
y0((y /\ x)---+ x) = y01. Hence, by applying (Hl) we obtain xVy = y. 

If x ::; z then we have x V z = z and y V y = y. Thus z V y = 
(x V z) V (y V y). By using the associativity and commutativity of V 

we obtain z Vy = (x V y) V (z V y). Hence, by using that V is an upper 
bound we have x V y ~ z V y, and if y ~ z we have z V y ~ z. So 
X V y::; z. • 

Let us show that the class of Product algebras is also a variety of bounded 
hoops. 
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Theorem 7 Let A= (A, 0, -, O) be an algebra of type (2, 2, O). Then A 
is a Product algebra iff A is a bounded hoop which satisfies the following 
equations (where the new operations are defined as in Definitíon 4): 

(i) xV(yVz)=(xVy)Vz, 

(ii) (,,z 0 (x 0 z-+ y 0 z))-+ (x-+ y)= 1, 

( iii) X A •X= Ü. 

Proof. 

a) If A is a Product algebra, then by Lemma 5, A is a bounded hoop, 
and by Definition 4, A satisfies the properties (i), (ii) and (iii). 

b) Suppose that A is a bounded hoop which satisfies the properties ( i) -
(iii), then by Lemma 6 (A, 0, -, A, V, O, 1) is a residuated lattice, so 
as it satisfies the properties ( ii) and ( iii), it is a Product algebra. O 

According with Theorem 7, we give below a set of rudoms for Product 
algebras (where the new operations are defined as in Definition 4). Product 
algebras (A, 0, -, O) can be defined as a variety of bounded hoops by means 
of the following equations: 

Ill. 10 x = x 01 = x, 

IT2. x 0 y = y 0 x, 

IT3. x - x = 1, 

IT4. (x-+ y) 0 x =(y-+ x) 0 y, 

IT5. (x0y)-+z=x-+(y-+z), 

IT6. O - x = l, 
IT7. ( x V y) V z = x V (y V z) , 

ns. (,,z 0 ((x 0 z) - (y 0 z)))-+ (x-+ y)= 1, 

IT9. x A •X = o, 

vVe will finish this section by applying sorne of the results of [9] to show 
that the variety of Product algebras is generated by the unit interval Product 
algebra. 
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Recall that the unit interval Product algebra is the algebra ([O, 1], 0, --+, O) 
of type (2, 2, O) where [O, 1] e IR and the connectives 0, --+ are defined as 
follows: 

X0y= X·y 

X-+ y= { y/x, 
1, 

if y< X 

ifx::;y 

for any x, y E [O, 1], where · denotes the product of real numbers and / 
denotes the quotient of real numbers. 

Theorem 8 ([9, Corollary 4/) Each Product algebra is a subdirect prod­
uct of linearly ordere,d Product algebms. 

Theorem 9 ([9, Theorem 3/) If an identity r = O', in the language of 
Product algebras, is valid in the unit interval algebra then it is valid in all 
linearly ordered product algebras. 

Now we are ready to prove the following result. 

Theorem 10 The variety of Product algebras is generated by the unit in­
terval Product algebra. 

Proof. 
The variety generated by the unit interval Product algebra is the class 

of L'.-algebras satisfying the equations which are valid in the unit interval 
Product algebra. By theorems 8 and 9 every Product algebra belongs to this 
class. As the unit interval algebra is a Product algebra, every algebra in this 
class is a Product algebra. • 

4 Product logic and the Deduction Theorem 

Let L'. = { 0, -, O} be a propositional language of type (2, 2, O). Define the 
new connectives A, V and -, in the following way: 

,x = x--+O 
xl\y - x0(x--+y) 
x V y = ((x--+ y) --+ y) I\ ((y - x) - x) 

The Product logic IIL ([9, Definition 1]) is the deductive system over 
L'. defined by the axioms: 

(Al) <p - ('1/J - <p) 
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(A2) (cp -1/J) - ((1/J - x) - (ip - x)) 

(A3) o- 'P 

(A4) (cp01/,1)- (1/;0cp) 

(A5) (cp0(1J;0x))-((cp01J;)0x) 

(A6) ((cp01/J) 0x)- (cp0(1P0x)) 

(A7) ((cp 01/J) - x) - (cp - (1/J - x)) 

(A8) (cp - (1/J- x)) - ((cp01/J) - x) 

(A9) (cp -1/J) - ((cp0 x) - (1/J 0x)) 

(Alü) -,-,x - (((cp 0 x) - (1/J 0 x)) - (cp -1/J)) 

(A11) (x - cp) - ((x -1/J) - (x - (cp A 1/J))) 

(A12) (cp - x) - ((1/J - x) - ((cp v 1/J) - x)) 

(A13) (cp -1/J) V (1/; - cp) 

(A14) ( 'P /\ -icp) - o 

and the modus ponens rule: 

Recall the following theorems of ITL [9, lemmas 3 and 4]: 

(tl) 'P - 'P 

(t2) ( 'P - 1P) - ( (x - 'Y) - ( ( cp 0 x) - ( 1P 0 'Y))) 

(t3) cp-(10cp) 

(t4) (cp01/J)-1/J 

(t5) ((cp -1/J) 0 cp) - (('lf - cp) 0 'lf) 

(t6) (cp V (1/; V x)) - ((cp V 'lf) V x) 

(t7) ((cp V 1/;) V x) - (cp V (1P V x)) 

(t8) (cp -1/J) - ((x - cp) - (x -1/J)), 
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where <p, -¡/), X, 1 E Fm¡:,. 

Now we will show that the variety of Product algebras is the equivalent 
quasivariety semantics for Product Logic. The proof follows the lines of 
the proof that the variety of Wajsberg algebras (or MV-algebras) is the 
equivalent quasivariety semantics for the infinite-valued Lukasiewicz logic 
[15]. 

Let A be an arbitrary algebra of type (2, 2, O). Denote by Fn the farnily 
of ali ITL-filters of A, and by Conn (A) the farnily of all product congruence 
relations of A (i.e. the congruence relations 0 of A such that the quotient 
A/0 is a Product algebra). Then we have 

Theorem 11 Let A= (A, 0, .-, O) be an algebra of type (2, 2, O). The map 

0A:Fn -
F f---, 

Conn (A) 
0AF = {(a,b) E A 2

: a.- b, b .- a E F} 

ís an order ísomorphism, whose inverse ís: 

HA: Conn (A) 
0 

Proof. 

- Fn 
f-4 HA0={aEA:(a,a.-a)E0} 

Let F be a ITL-filter of A. By using (tl), (A2), (t8) and modus ponens, 
then it is easy to see that E) AF is an equivalence relation on A. By using 
(A2) and (t8) it is easy to check that 0AF satisfies that substitution property 
relative to.-, and by using (t2) it is easy to check that 0AF satisfies that 
substitution property relative to 0. Thus 0 AF is a congruence of A. 

Now we will show that A/0 AF is a Product algebra, that is, it satisfies 
the equations Ill - I19, stated in Section 3 as an axiomatization of Product 
algebras. If a, b E F then, by (Al) and modus ponens we have: (a, b) E 0AF. 
If a E F and b (J. F, then by modus ponens a.- b (J. F, so (a, b) (J. 0AF. Thus 
F is an equivalence class and (a.- a) /0AF = F, so the equation I13 holds. 
It is easy to check that equation I12 holds by using axiom (A4), equation 
Ill by using theorems (t3) and (t4), equation I15 by using axioms (A7) and 
(A8), equation I16 by using axiom (A3), equation II7 by using theorems 
(t6) and (t7), equation I18 by using axiom (AlO) and equation II9 by using 
axiom (A14). So A/0AF is a Product algebra and thus 0AF E Conn (A). 
It is easy to see that if F and F' are IIL-filters of A and F ~ F', then 
eAF ~ eAF'. 

Let 0 E Conn (A), then by using the properties of Product algebras it 
is easy to see that HA0 is a IIL-filter of A. Moreover, if 0, 01 E Conn (A), 
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then 0 ~ 0' implies HA0 ~ HA0'. Moreover, (a, b) E 0A (HA0) iff a ---+ 

b, b---+ a E (HA0) iff a/0 = b/0 iff (a, b) E 0, so 0A (HA0) = 0. On the other 
hand it is easy to see that HA (0AF) = F. Thus both HA and 0A are one 
to one and order preserving and so they are order isomorphisms. • 

Corollary 12 Far any algebra A= (A, 0, ---+, O) a/ type (2, 2, O), the Leibniz 
aperator OA is an isamarphism from Fn anta Conn (A). Hence the Product 
lagic is algebraizable and the variety af Praduct algebras is its equivalent 
quasivariety semantics. 

Proof. 
For any F E Fn, 0AF is defined elementarily over the matrix (A, F) 

without equality, is a congruence on A and is compatible with F, so by [2, 
Theorem 1.6], 0AF = nA (F). Thus by [2, Theorem 5.1] and Theorem 11 
we have that the Product logic is algebraizable with equivalent quasivariety 
semantics the variety of Product algebras. O 

Now we will show that the deduction-detachment theorem fails for IIL. 
Recall that the deduction theorem with respect to the connective ---+ fails 
for IIL [9], in other words, the set E (p, q) = {p---+ q} is not a deduction­
detachment set for IIL. 

Recall also that IIL satisfies the following weak version of the deduction 
theorem [9]: 

Let r U { <p, 7jJ} ~ Fme,. Then, 

n times 

r U { <p} f-nL 7jJ iff r f-nL~- 7jJ for sorne natural number n. 

This weak version of the deduction theorem is called the "local deduction 
theorem" in [3]. 

To show that the deduction-detachment theorem fails for IIL we will use 
the followings results. 

Theorem 13 The variety of Product algebras is not n-potent. 

Proof. 
As the variety of Product algebras is generated by the unit interval alge­

bra, the result follows from the fact that the unit interval Product algebra 
does not satisfy any identity of the form : xn = xn-l. • 
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Theorem 14 (5, Corollary 5.5] A variety of hoops has EDPRC iff it is 
n-potent f or sorne n. 

Theorem 15 A variety of bounded hoops has EDPRC iff its is n-potent far 
sornen. 

Proof. 
As bounded hoops are hoops with normal multiplicative operators [5, pg. 

559], it is easy to see that a proof completely analogous to that of Theorem 
14 applies. O 

Theorem 16 The variety of Product algebras does not have EDPRC. 

Proof. 
As the class of Product algebras is a variety of bounded hoops, this result 

follows from Theorems 15, and 13. • 

Theorem 17 Product logic IIL does not have the deduction-detachment the­
orern (DDT). 

Proof. 
If IIL had the DDT then as the class of Product algebras is its equivalent 

variety semantics, then by Theorem 2 this variety would have EDPRC, a 
contradiction. O 
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