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-Ama usted el mar, capitán. 

-¡Sí! ¡Lo amo! ¡El mar es todo! Cubre las siete décimas partes del globo terrestre. Su 
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Summary  

 

All marine ecosystems in the Mediterranean Sea are highly threatened by anthropogenic 

stressors that can alter their structure and function, especially in rocky shores. Moreover, 

extreme climate events are becoming more frequent and intense in our times. To detect 

the potential impacts and the vulnerability of any ecosystem, the combination of 

experimental and observational studies in the field is vital. In addition, long-term 

monitoring programs carried out simultaneously on human-protected and human-

impacted environments may be crucial to discern the nature of the impacts.  

 

Macroalgal beds dominate the shallow benthic Mediterranean habitats where they play 

a pivotal role. Among them, the canopy-forming Cystoseira sensu lato species represent 

the highest structural complexity level and provide unique habitats with ecological 

services comparable to terrestrial forests. Canopy-forming algae are in decline in many 

coastal areas where, among other impacts, overgrazing by herbivorous can lead to the 

loss of these diverse habitats shifting towards degraded sea urchin barren grounds. 

Conservation tools such as marine reserves or No-take zones (NTZs) have the potential 

to reduce some of the anthropogenic threats and to restore benthic habitats through 

trophic cascade effects caused by the major abundance of predator. Besides, active 

ecosystem restoration strategies may speed up the recovery of impacted ecosystems. 

Nevertheless, there is an important lack of continuous and long-term studies providing 

robust ecological data of the natural dynamic and vulnerability of macroalgal 

assemblages while integrating the role of marine conservation. 

 

In this dissertation, different methodological approaches were combined to explore the 

long-term dynamics of macroalgal communities and the role of different conservation 

strategies (NTZs and active restoration) in the Montgrí, Medes Islands, and Baix Ter 

(MIMBT) Natural Park (NW Mediterranean Sea). In the first two chapters, the analysis of 

long-term monitoring datasets provided essential information to understand how 

macroalgal assemblages and sea urchin populations respond to natural fluctuations and 

anthropogenic disturbances, mainly overfishing. In the third chapter, field monitoring 

and sampling were combined with genetic analyses to increase the ecological 

knowledge of the canopy-forming alga Treptacantha elegans as well as to describe their 

recent expansion. In the fourth and last chapter, active restoration actions as seeding 

experiments were conducted in aquaria and in the field to optimize restoration 

techniques to recover degraded shallow ecosystems. In addition, different restoration 
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strategies were combined in the field inside and outside the Medes Islands NTZ to 

evaluate the role of marine protection on restoration activities. 

 

The results of this thesis showed that the abundance and structure of the main 

macroalgal assemblages in the MIMBT Natural Park were stable at large over the last 

fifteen years. Overall, any effect of marine protection was observed on the most 

representative species of this habitat but we found a higher abundance of canopy-

forming algae inside the NTZ than in unprotected areas. Contrarily, sea urchin 

populations were deeply affected by a severe storm in 2008 which caused the almost 

depletion of its populations in all the studied areas. Although similar trajectories of sea 

urchin abundance have been observed over the years between both protection regimes 

due to the large stability of the sea urchin high-density state, clear differences in the 

recovery of sea urchin populations were found after the storm linked to marine 

protection. The sea urchin populations inside the NTZ recovered slowly than the 

populations outside the NTZ inside due to the higher predatory fish abundance inside 

the NTZ. 

 

In contrast to the global widespread decline of canopy-forming macroalgal assemblages 

across many regions during the last decades, Treptacantha elegans has increased their 

distributional range and has shown an extraordinary expansion along the Catalan 

northern coast over the last two decades. The results of this thesis contributed to 

explaining this geographical and depth range extension, which could be linked to some 

ecological attributes such as their relative fast-growing dynamics, early fertile maturity, 

and high turnover rate. Besides, the molecular analyses have shown that all the 

populations of T. elegans in the Catalan coast constitute a single genetic group that 

could be originated in the MIMBT Natural Park under the marine protection benefit. 

Given the fast and stable population dynamics of T. elegans, this species was selected 

as a potential species to actively restore degraded shallow rocky ecosystems (e.g., sea 

urchin barren grounds) turning them into productive marine forests. In this way, the 

effectiveness of active restoration actions combined with passive strategies such as 

marine protection (e.g., NTZs) was experimentally demonstrated.  

 

This thesis addressed marine vegetation changes in the shallow rocky shores of the 

MIMBT Natural Park integrating the macroalgal and sea urchin dynamics in front of 

natural and human-related impacts, and the role and effectiveness of Marine Protected 

Areas and restoration actions as conservation tools at lower trophic levels.  
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Besides, since most of this thesis is based on long-term monitoring data, a valuable 

baseline of the algal community’s structure and functioning was provided here which 

could be vital to predict and detect ecological changes that could jeopardize the 

preservation of marine forests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Resum 
 

4 
 

Resum 

 

Els ecosistemes bentònics mediterranis es troben fortament amenaçats per pressions, 

tant a nivell local com global, que poden alterar la seva estructura i funcionament, 

especialment en els fons rocosos litorals. A més, els episodis climàtics extrems 

esdevenen cada vegada més freqüents i intensos. Per a detectar els possibles impactes 

sobre qualsevol ecosistema així com la seva vulnerabilitat, la combinació d’estudis 

observacionals i experimentals al camp és primordial. En aquest sentit, els estudis a llarg 

termini realitzats simultàniament en zones impactades i en zones protegides de l’acció 

humana, poden ser crucials per a identificar la naturalesa dels impactes. 

Al mar Mediterrani, les comunitats de macroalgues dominen els hàbitats bentònics 

soms, on tenen un paper primordial. D’entre elles, les algues de tipus arborescent del 

gènere Cystoseira representen el nivell més elevat de complexitat estructural i 

proporcionen hàbitats amb serveis comparables als boscos terrestres. Aquestes algues 

es troben en declivi en diverses zones costaneres. És aquí on, entre altres impactes, la 

sobrepastura dels herbívors pot portar a la pèrdua d’aquests hàbitats rics i diversos i la 

seva transició cap a fons degradats dominats pels eriçons. Les eines de conservació, així 

com ara les reserves marines o les àrees on està prohibida completament l’extracció 

(NTZs), tenen el potencial de reduir algunes de les amenaces derivades de l’acció 

humana i de restaurar els hàbitats bentònics gràcies als efectes dels depredadors a 

través de les cascades tròfiques. A més de la restauració passiva a través de la creació 

d’aquestes àrees protegides, la restauració activa dels ecosistemes impactats pot 

accelerar la seva recuperació. No obstant això, hi ha una manca important d’estudis 

continuats i a llarg termini que proporcionin dades ecològiques robustes sobre la 

dinàmica natural i la vulnerabilitat dels hàbitats de macroalgues i que alhora integrin el 

paper de les diferents eines de conservació marina. 

En aquesta tesi, s’han combinat diferents metodologies per explorar la dinàmica de les 

comunitats de macroalgues juntament amb el paper de diferents estratègies de 

conservació (NTZs i restauració activa) al Parc Natural del Montgrí, les Illes Medes i el 

Baix Ter (MIMBT), situat al Nord-oest del mar Mediterrani. En els primers dos capítols, 

les anàlisis de dades d’estudis a llarg termini han proporcionat informació essencial per 

millorar la nostra comprensió sobre com les comunitats de macroalgues i les poblacions 

d’eriçons responen a les fluctuacions naturals i a les pertorbacions d’origen antròpic, 

principalment, la sobrepesca. En el tercer capítol, mostrejos en el camp s’han combinat 

amb anàlisis genètics per augmentar el coneixement ecològic de l’alga arborescent 
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Treptacantha elegans i per descriure la seva recent expansió. Al quart i últim capítol, 

s’han realitzat accions de restauració activa, com ara experiments de sembra en aquaris 

i al camp per optimitzar les tècniques de restauració dels ecosistemes poc profunds 

degradats. A més, s’han combinat diferents estratègies de restauració a camp, dins i fora 

de la NTZ de les Illes Medes, per avaluar el paper de la protecció en les activitats de 

restauració. 

Els resultats d’aquesta tesi mostren que la abundància i la composició de les principals 

comunitats algals del Parc Natural del MIMBT s’han mantingut estables al llarg dels 

darrers quinze anys. En general, no es va observar cap efecte de la protecció en les 

espècies d’algues més representatives, tot i que si que es van trobar abundàncies més 

elevades de l’alga T. elegans a dins de la NTZ que a les zones no protegides de l’acció 

humana. Al contrari, les poblacions d’eriçons es van veure profundament afectades per 

una forta tempesta l’any 2008, el que va provocar el declivi gairebé total d’aquestes 

poblacions a les zones estudiades. Tot i que s’havien observat trajectòries similars en 

l’abundància d’eriçons al llarg del temps, tant a dins com a fora de la NTZ, degut a la 

gran estabilitat de les poblacions d’eriçons quan les poblacions presenten elevades 

densitats, en aquesta tesi es van trobar clares diferències en la recuperació d’aquestes 

poblacions després de la tempesta que estarien vinculades a l’efecte de la protecció 

marina. Les poblacions d’eriçons a dins de la NTZ es van recuperar més lentament que 

les de les zones no protegides degut a la major abundància de peixos depredadors a 

dins de la NTZ.  

Davant de la davallada generalitzada de les macroalgues arborescents que s’ha pogut 

observar a moltes regions al llarg de les darreres dècades, l’alga Treptacantha elegans 

ha demostrat una extraordinària expansió a la costa nord catalana al llarg de les dues 

darreres dècades, augmentat considerablement la seva distribució. Els resultats 

d'aquesta tesi contribueixen a explicar aquesta expansió, tant en fondària com a nivell 

geogràfic, que podria estar relacionada amb alguns trets ecològics, com ara la seva 

dinàmica de creixement relativament ràpid, la maduresa reproductiva precoç i la seva 

elevada taxa de renovació poblacional. A més, les anàlisis moleculars mostren que totes 

les poblacions de T. elegans a la costa catalana constitueixen un únic grup genètic que 

podria tenir el seu origen al Parc Natural del MIMBT com a conseqüència de la protecció 

marina. Atesa la dinàmica ràpida i estable de les poblacions de T. elegans, es va 

seleccionar aquesta com a potencial espècie per restaurar activament els ecosistemes 

rocosos poc profunds degradats (els blancalls originats per la sobrepastura d’eriçons) 

convertint-los en productius boscos marins. Gràcies a això, també s’ha demostrat 
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experimentalment l’èxit de combinar accions de restauració activa amb estratègies 

passives com la protecció marina (p.e. NTZs). 

Aquesta tesi aborda els canvis de vegetació marina als fons soms i rocosos del Parc 

Natural del MIMBT integrant la dinàmica de les macroalgues i els eriçons enfront dels 

impactes naturals i humans, i, el paper i l’eficàcia de les zones marines protegides i de 

les accions de restauració com a eines de conservació per als nivells tròfics més basals. 

A més, atès que la major part d’aquesta tesi es basa en dades d’estudis a llarg termini, 

aquesta tesi proporciona una valuosa referència de la dinàmica i de l’estat actual de les 

comunitats infralitorals dominades per algues, el que podria ser vital per predir i 

detectar canvis ecològics que puguin posar en perill la preservació dels boscos marins. 
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Introduction 

 

Long-term studies to understand changes in marine environments 

  

There is no doubt that humans have 

deeply altered all major ecosystems on 

Earth but understand how the structure 

and functioning of these ecosystems 

have changed is challenging. 

 

The scale, frequency, and nature of the 

threats determine their potential 

impacts on ecosystems. Some threats 

act at global, regional, or local scales 

(e.g., climate change vs. land 

degradation). Ecosystems resistance 

and recovery times can be modulated 

by the frequency and intensity of the threats, which can occur naturally (e.g., volcano 

eruption) or as a result of the human activities (e.g., water pollution). 

 

Long-term ecological studies provide core ecological data fundamental to establish 

baselines from which we could assess the signature of ecosystem changes (Magurran et 

al., 2010; Navarrete et al., 2010) and design effective ecosystem management 

(Lindenmayer et al., 2012). Most of long-term datasets were initiated to answer 

ecological questions, which places long-term studies as old as ecology itself (May and 

McLean, 2007). To achieve a robust understanding of the ecosystems, communities or 

populations dynamics, the studies should comprise and continue beyond the life spans 

of dominant organisms (Strayer, 1996).  

 

There is not a single marine ecosystem unthreatened by anthropogenic stressors 

(Halpern et al., 2007) with the hard-bottom coastal areas and rocky reefs being the 

highest impacted (Halpern et al., 2008; 2019). Nevertheless, ecological field studies 

conducted systematically over many years to detect the vulnerability of the ecosystems 

represent an outstanding challenge in marine environments (Vitousek et al., 1997). 

Hence, long-term monitoring programs have commonly focused on single species or 

populations, such as corals, seagrasses, sea urchins or kelp species among others, while 

the vulnerability of the ecosystem functioning have been usually assessed by short-term 
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‘snapshot’ studies or ‘before-after’ studies (e.g., Kirkman and Kirkman, 2000; Steneck et 

al., 2002; Babcock et al., 2010; Gross and Edmuns, 2015). 

 

In aims to give some real numbers on the priority topics of ecological long-term studies, 

I did a systematic review on Web of Science using the keywords (“Temporal patterns” or 

“Temporal distribution” or “Multi-year monitoring” or “Long-term monitoring” or 

“Temporal variation” and “Community ecology” and “Population ecology”) and a deep 

search on GoogleScholar selecting the 198 references published during the last decade. 

I found 64 relevant studies (S1) of long-term ecological studies (> 5 years) and classified 

them according to its studied target (plants, animals, or both animals and plants 

together) and to their environment (freshwater, marine or terrestrial) (Fig. 1). 

 

Figure 1. Grey bars represent the percentage of long-term studies (> 5 years) classified by their 

environmental realm (freshwater, marine, or terrestrial). Pie charts inside the bars represent the frequency 

of the main ecological targets in these studies (purple color: animals, green color: plants, yellow color: 

both). Total number of studies: 65. 

 

Although simultaneous long-term monitoring on human-protected and human-

impacted environments may be fundamental to distinguish between natural and 

anthropogenic changes (Navarrete et al., 2010), less than one-third of the reviewed 

studies took place in environments where some kind of protection exists (e.g., natural 

parks, marine reserves, etc.). It was also remarkable that, in marine ecosystems, less than 

one-fourth of the reviewed long-term studies focused their attention on plants (Fig. 1) 

and they usually do when considering ecological interactions between them and other 



Introduction 
 

11 
 

emblematic species such as charismatic corals or commercial fishes. In other words, 

there is an important lack of continuous and long-term studies that integrate marine 

vegetation changes together with their long-term dynamics and with the conservation 

role, which is one of the purposes of this thesis. 

 

Macroalgal ecosystems  

 

Macroalgae (or seaweeds) are ecologically key species in temperate coastal ecosystems 

worldwide, where they are one of the dominant primary producers with a key role on 

the ecosystem functioning (Jones et al., 1994; Duarte and Cebrian, 1996; Teagle et al., 

2017). Seaweeds represent an important source of carbon sequestration (Krause-Jensen 

and Duarte, 2016) and provide invaluable ecosystem services in many shallow coastal 

systems (Blamey and Bolton, 2018). Consequently, changes in macroalgal composition 

may sway in the whole coastal ecosystem (Lotze et al., 2006; Mineur et al., 2015). 

 

In temperate coastal ecosystems, kelps (Laminariales) and fucoids (Fucales) are the large 

canopy-forming algae in the intertidal and subtidal zones. These brown algae create 

structurally complex habitats and play a key role in facilitating biodiversity and driving 

food webs (Dayton, 1985; Steneck et al., 2002; Schiel and Foster, 2006). Under their 

canopy many associated species find food and shelter contributing to the ecosystems 

functioning and increasing the biodiversity of wide trophic levels (Boudouresque et al., 

2017). In addition, their three-dimensional structure has a nursery value for early life 

stages of many species (Cheminée et al., 2013). Thus, canopy-forming algae provide 

unique habitats with services comparable to terrestrial forests (Fig. 2) (Dayton, 1985; 

Graham, 2004; Ballesteros et al., 2009; Wernberg et al., 2011a). 
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Figure 2. Schematic representation of the main ecosystem services provided by terrestrial and seaweed 

forests. Images source: IAN Symbols Library, University of Maryland 

  

Kelps and fucoids are closely related taxa inhabit mainly on rocky bottoms from the 

intertidal zone down to the photic limit worldwide. Despite these and other shared 

characteristics, they can display different biological and ecological traits, outstanding 

here the potential scale of dispersion (Schiel and Foster, 2006). Fucoids have large and 

easily sinking propagules (zygots) while kelps have smaller ones (spores). Because of 

this, kelps have the potential to disperse at hundreds of meters while the dispersal ability 

of fucoids generally not exceeds scarce meters (Gianni et al., 2013; Capdevila et al., 

2018). This may be an explanatory factor behind the limited recovery of fucoid 

populations when impacted (Jenkin et al., 2004; Mangialajo et al., 2012). 

 

Marine forests are influenced by several environmental factors such as light, turbulence, 

nutrients, and temperature (Schiel and Foster, 2006). Notwithstanding the natural 

threats, coastal pollution, overfishing, ocean warming, and other human disturbances 

are causing the widespread decline of canopy-forming algae (Steneck et al., 2002; 

Wernberg et al., 2011a; Campbell et al., 2014), with the consequent loss of ecosystem 

functioning (Lorentsen et al., 2010; Mineur et al., 2015). 

 

Macroalgal beds and sea urchin barrens as alternative states  

 

All ecosystems are subjected to natural or anthropogenic changes. The state of the 

ecosystems may responds in a different way when changes are gradual or abrupt 

(Scheffer et al., 2001). Some states may recover to their original state when restoring the 

disturbance to levels before the change but it could be insufficient when the ecosystem 

has two alternative stable states for certain level of disturbance (Fig. 3). Transitions 

between alternative stable states are also known as ‘regime shifts’ or ‘phase shifts’. The 
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magnitude of disturbance that a system can suffer before it shifts into a different state 

is known as resilience (Folke et al., 2004; Filbee-Dexter and Scheibling, 2014). The 

presence of different states can be characterized by hysteresis, which occurs when 

various feedback mechanisms maintain the alternative state and inhibit the return to the 

pre-disturbed state even if the critical parameters changed (Filbee-Dexter and 

Scheibling, 2014; Melis et al., 2019). The presence of alternative stable states has 

profound implications in the response of the ecosystems to environmental changes. 

 

The most important herbivores feeding on macroalgal forests are sea urchins. Not all 

urchins have this ability, but most temperate areas have at least one species in this 

category (Tegner and Dayton, 2000). Sea urchin outbreaks can boost overgrazing and 

cause one of the most widespread and abrupt catastrophic shifts in nature, the transition 

from productive marine forests toward low productive habitats such as turf-forming 

algae or sea urchin barren grounds (Fig. 3) (Pinnegar et al., 2000, Airoldi and Beck, 2007; 

Ling et al., 2015; Maggi et al., 2018; Filbee-Dexter and Wernberg, 2018). 

 

Figure 3. Macroalgal forests and sea urchin barrens as alternative stable states. Adapted from Filbee-

Dexter and Scheibling, 2014. 
 

Probably, although consequences of sea urchins overgrazing were already known (e.g., 

Paine and Vadas, 1969), the most famous observation of this catastrophic shift was 

described by Estes and Palmisano (1974). In this classic study, Ester and Palmisano 

identified that increased sea urchin overgrazing resulted from the reduction of their 

predator populations. In other words, top-down control of sea urchins is key in the 
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maintenance of canopy-forming forests. Sea urchin populations follow natural 

fluctuations that can lead to gradual increases in abundance. However, abrupt increases 

(i.e., sea urchin outbreaks) are usually related to trophic changes (i.e., decrease of their 

main predators due to direct effects of overfishing) and environmental changes which 

can facilitate large recruitment events (Steneck, 1998; Guidetti and Dulcic, 2007; Ling et 

al., 2009; 2019).  

 

Overgrazing by sea urchin outbreaks can then result in sea urchin barren grounds (Fig. 

3). Once established, they represent an alternative and stable state maintained by 

several feedback mechanisms that increase the hysteresis and prevent the recovery of 

macroalgal forests (Fig. 4). Recruitment variability, spatial refuge availability, escaping 

behavior, and adult-juvenile associations can maintain dense sea urchin populations 

even when predatory fishes are abundant (Nishizaki and Ackerman, 2004; Zhang et al., 

2011; Bonaviri et al., 2012; Oliva et al., 2016). On the other side, the physical structure 

provided by the macroalgae, the wave-induced sweeping, and the local supply of 

macroalgal propagules are some of the feedbacks than maintain the macroalgal 

dominant state (Fig. 4) (Konar and Estes, 2003; Hoey and Bellwood, 2011; Mangialajo et 

al., 2012). 

Understanding macroagal beds/sea urchin barrens regime shift is important not only 

for ecology but also for considering appropriate marine management strategies to 

preserve macroalgal states. Given the high ecological hysteresis of this regime shift 

between alternative stable states, management strategies to reduce the sea urchin 

abundance or to restore macroalgal forests following sea urchin overgrazing are 

challenging (Filbee-Dexter and Scheibling, 2014; Ling et al., 2015). 
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Figure 4. Stabilizing feedback mechanisms of sea urchin barren grounds and macroalgal beds extracted 

from Filbee-Dexter and Scheibling, 2014. Blue lines represent positive feedbacks and red dashed lines 

represent negative ones. 

 

Conservation tools 

 

Classical conservation management actions such as Marine Protected Areas have been 

recognized as a tool to protect and restore marine ecosystems around the world. The 

term ‘marine protected area’ (MPA) refers to areas in which human activities that cause 

reductions in populations either directly through exploitation or indirectly through 

habitat alteration are eliminated or greatly reduced (Carr, 2000). The Convention on 

Biological Diversity (CBD) calls for 10% of coastal and marine areas to be conserved by 

2020 through effectively managed, ecologically representative, and well-connected 

systems of MPAs (Strategic Plan for Biodiversity 2011-2020, CBD, 2010). To date (ending 

the year 2019), only 4.8% of the world’s oceans are protected in implemented and 

properly managed MPAs and approximately half of them (2.2%), are highly protected in 

No-Take marine reserves (Fig. 5). 
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Figure 5. Map of updated global MPAs extracted from MPAtlas as of October 2019 

(http://www.mpatlas.org/map/mpas/). 

 

No-Take marine reserves or No-Take Zones (NTZs) are the MPAs with the stronger 

protection, where no extractive activity is allowed (Sala and Giakoumi, 2017). NTZs 

prevent the overexploitation of key structural species, allowing for the reduction or 

removal of associated impacts, maintaining and restoring ecosystem functioning, with 

the subsequent improvement of trophic regulation on populations of consumers (i.e., 

trophic cascades). However, not much evidence supports NTZs as effective enough to 

restore degraded ecosystems (Huntington et al., 2011; Sangil et al., 2012; Toth et al., 

2014; Cox et al., 2017). The natural variability on species dynamics and ecological 

interactions limit recovery benefits only after long term periods (i.e., decades Babcock 

et al., 2010; Strain et al., 2019).  

 

A more suitable tool for recovery in the shorter term is ecosystem restoration, which 

involves the active assistance in the recovery of a degraded, damaged, or destroyed 

habitat (SER 2004). Active restoration allows for accelerated ecosystem recovery by 

implementing management techniques (e.g., transplanting) (Perrow and Davy, 2002; 

Holl and Aide, 2011; Bayraktarov et al., 2016). Combining well-designed active and 

passive restoration practices have become indispensable to reverse widespread 

ecosystem degradation (Lotze et al., 2006; Mitsch, 2014; Possingham et al., 2015).  

Given the existence of sea urchin barrens, several control measures to reduce sea urchin 

abundance and restore kelp and fucoid forests have been described such as sea urchin 

http://www.mpatlas.org/map/mpas/
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eradication (Leighton et al., 1966; Watanuki et al., 2010; Sangil et al., 2012; Piazzi and 

Ceccherelli, 2019) and algal transplantation (Carney et al., 2005; Whitaker et al., 2010). 

Despite these efforts, attempts to recover macroalgal forests from sea urchin barren 

grounds remain challenging due to the high hysteresis of stable barren state and the 

difficulty of reestablishing populations of natural predators and consequent trophic 

cascades (i.e., in old and well-enforced NTZs) that help reduce pervasive sea urchin 

overgrazing (Ling et al., 2015; 2019). Therefore, the combination of active (i.e. algal 

transplantation and sea urchin removal) and passive restoration (i.e., establishment of 

marine protected areas) in priority sites for restoration (i.e., NTZs, Gianni et al., 2013), 

provide a unique yet largely unexplored opportunity for successful forestation from sea 

urchin barren grounds. 

 

Restoration actions of kelp and fucoid forests have mostly considered transplanting 

individuals (Vasquez and Tala, 1995; Falace et al., 2006; Campbell et al., 2014). 

Notwithstanding that, the different algal reproductive strategies and the feedbacks 

preventing the recovery of healthy ecosystems have been taken also into account to 

design and implement local restoration actions. Recently, non-destructive restoration 

techniques such as the enhancement of recruitment potential (Gianni et al., 2013; Falace 

et al., 2018; Verdura et al., 2018) or the ex situ outplanting (De La Fuente et al., 2019) 

has been also proposed to restore marine forests. 

 

Macroalgal communities in the Mediterranean Sea 

 

The Mediterranean Basin is the largest quasi‐enclosed sea, considered a hotspot of 

marine biodiversity (Bosc et al., 2004; Coll et al., 2010). Mediterranean waters are 

considered oligotrophic in general although there are important regional and seasonal 

variations (Bosc et al., 2004). Mediterranean coasts support high levels of anthropogenic 

influence, not only by the dense population inhabiting but also due to overexploitation 

and habitat destruction (Lotze et al., 2011; Sala et al., 2012). 

 

Macroalgal communities dominate the shallow benthic habitats in the Mediterranean 

Sea (Zabala and Ballesteros, 1989; Sala et al., 2012). There, the highest level of structural 

complexity is represented by canopies of fucoid algae, mostly species of Cystoseira 

sensu lato genus, which form extensive beds on exposed or sheltered rocky shores from 

the upper infralittoral zone down to the photic limit (Sales and Ballesteros, 2009; Mariani 

et al., 2019). The Cystoseira genus is considered polyphyletic with high morphological 

similarity between species (Draisma et al., 2010; de Sousa et al., 2019). A recent study 
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resolves that species of the Cystoseira genus were included in three genera: 

Carpodesmia, Cystoseira, and Treptacantha (Orellana et al., 2019). Cystoseira sensu lato 

is currently constituted by 46 species, most of them endemic from the Mediterranean 

Sea (Giaconne, 1991; Orellana et al., 2019). Cystoseira (sensu lato) fucoids are 

characterized by a single or several main axes attached to the substratum which can 

conform arborescent and dense canopies (Gómez-Garreta et al., 2001; Cormaci et al., 

2012). They are considered late successional species and tend to dominate the low 

impacted rocky coastal habitats (Ballesteros et al., 2007). All Cystoseira (sensu lato) 

fucoids except C. compressa have been listed under Annex II of the Barcelona 

convention (2010) among those species that are considered threatened or endangered 

and need protection measures (Gianni et al., 2013). Mediterranean fucoid forests 

suffered a global decline in the last century due to a multiple direct and indirect human 

impacts such as water pollution, herbivores overgrazing or coastal development 

(Thibaut et al., 2005; Mangialajo et al., 2008; Perkol-Finkel and Airoldi, 2010; Thibaut et 

al., 2015; Mineur et al., 2015; Blanfuné et al., 2016). 

 

In the NW Mediterranean Sea, the sea urchin Paracentrotus lividus (Lamark) is 

considered the most abundant and important local herbivore feeding on fleshy algae of 

the shallow reefs. The sea urchin Arbacia lixula (Linnaeus) (Fig. 6) may also have large 

consequences for macroalgal communities. A. lixula preferentially graze on encrusting 

coralline algae (Privitera et al., 2008), having an important role in the maintenance of 

sea urchin barrens once they are established (Agnetta et al., 2015). Although the role of 

the herbivorous fish Sarpa salpa (Fig. 6) (Sala and Zabala, 1996; Sala and Boudouresque, 

1997; Hereu, 2005) has been often overlooked (Gianni et al., 2017), their effects on 

macroalgal beds are weaker than the sea urchins ones due to their feeding preference 

and behavior (Hereu, 2006; Hereu et al., 2008; Ahmed et al., 2014). 
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Figure 6. Images of the herbivores in the NW Mediterranean Sea. A) The sea urchin Paracentrotus lividus, 

B) The sea urchin Arbacia lixula, and C) The herbivore fish Sarpa salpa. 
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Objectives 

 

The objectives of this thesis are twofold. The first goal is to contribute to the 

understanding of the dynamic of macroalgal communities and their main herbivores. 

The second goal is to enlarge the knowledge of the ecology and conservation of human-

impacted macroalgal forests in the Northwestern Mediterranean enhancing the 

effectiveness of management and restoration actions.  

 

Different methodological approaches were combined here to explore the ecological 

dynamic of algal communities in The Montgrí, Illes Medes and Baix Ter Natural Park (Box 

1). A large and valuable number of monitoring and research programs have been 

performed in this Natural Park before and after the establishment of the marine reserve 

in 1983, which constitutes an excellent framework to study how human impacts could 

shape the benthic communities. Human impacts (mainly fishing consequences) over the 

long-term monitoring were evaluated here. Apart from anthropogenic impacts, benthic 

communities suffered severe damages owing to an extraordinary storm observed over 

the course of this long-term monitoring, in 2009. Therefore, impacts on benthic 

communities by human-related and natural threats were included in this thesis.  

 

Although recent studies have reported an important decline of several canopy-forming 

Cystoseira sensu lato populations, Treptacantha elegans (Box 2 and Box 3) has shown 

an exceptional expansion of its distribution in the studied area. Because of this, we 

considered T. elegans as the model species in this thesis. 
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 BOX 1 Study site: the Montgrí, Illes Medes, and Baix Ter Natural Park  

The Montgrí, Illes Medes and Baix Ter Natural Park covers a marine area of 2.037 ha and 

has its core in the no-take zone (NTZ) of the Medes Islands (Fig. 7), which comprises the 

Archipelago of the Medes Islands (93 ha), where all fishing and harvesting activities have 

been prohibited since 1983 (García-Rubies and Zabala, 1990). Outside the NTZ, the 

nearby Montgrí coast is divided into a peripheral zone (Fig. 7), a contiguous beltway 

zone to the Medes Islands that was established in 1990 where artisanal fishing and 

recreational angling are allowed under restriction, and a no reserve zone (Fig. 7), where 

artisanal, recreational and spearfishing are allowed. 

 

Figure 7. Map of the Montgrí, Illes Medes and Baix Ter Natural Park in the NW Mediterranean Sea. The 

perimeter of the Medes Islands NTZ is delimited by the yellow polygon; the peripheral zone is delimited 

by the green polygon; and the no reserve zone, by the dark blue polygon. 
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 BOX 2 The model species: Treptacantha elegans 

Among Cystoseira sensu lato algae, Treptacantha elegans is a Mediterranean endemic 

alga recently assigned to Treptacantha genera by Orella et al. (2019). Its original 

description (as Cystoseira elegans by Sauvageau 1912, pp. 292) was located in Banyuls-

sur-Mer (South-Eastern France), where they made extensive meadows at the innermost 

areas of the coves and other sites with medium to low water movement, down to 2–3 

m depth (Feldmann, 1937).  

The canopy-forming branches of Treptacantha elegans grow in spring, reaching the 

maximum development and the fertile maturity in early summer when larger specimens 

could exceed fifty centimeters height (Barceló et al., 2001), although main axis is 

relatively short (8 cm maximum length). Specimens are attached to the substrate 

perennially by a robust basal disc. Their deciduous branches are always cylindrical, 

without aerocysts, and show spiny appendages. Tophules could be spiny or verrucous 

(Cormaci et al., 2012; Mariani et al., 2019). 
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BOX 3 Treptacantha elegans in the study area 

Although Treptacantha elegans typically inhabits shallow and shelter littoral 

environments, the occurrence for the species on infralittoral habitats (down to 5 m 

depth) was reported in the Medes Islands NTZ for first time by Sala (1996). The 

specimens found by these authors were originally assigned to Cystoseira spinosa (today 

accepted as Treptacantha ballesterosii) because of similar morphological characters and 

their depth range distribution (E. Sala, personal communication). These T. elegans 

specimens thriving in more exposed and deeper environments presented thicker 

branches and bear more abundant and rigid spiny appendages than those described for 

this species (Mariani et al., 2019; Box 2). 

An exceptional expansion of deeper T. elegans specimens has been observed in the 

Medes Island Marine Reserve and nearby areas (Catalonia coast) in the last decades. 
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The present thesis has been structured in 4 chapters detailed below. In the first two 

chapters, the analysis of long-term monitoring datasets provided essential information 

to understand how macroalgal assemblages and sea urchin populations respond to 

natural fluctuations and anthropogenic disturbances, mainly overfishing. In the third 

chapter, field monitoring and sampling were combined with molecular analyses to 

increase the ecological knowledge on the canopy-forming algae Treptacantha elegans 

as well as to describe their recent expansion. In the fourth and last chapter, seeding 

experiments were parallelly conducted in aquaria and in the field to optimize restoration 

techniques for degraded shallow ecosystems. Besides, different restoration techniques 

were tested in the field which involved a large experimental effort. 

 

 

Specific objectives: 

 

Chapter I: Benthic shallow-rocky habitats in the Northwestern Mediterranean Sea are 

mostly represented by photophilic algae communities of small and erect algae and 

calcareous algae formations. The aim of this chapter is to describe the temporal 

dynamics of the macroalgal communities considering their main drivers and 

environmental stressors and to evaluate the effect of protection in macroalgal beds over 

time in the Montgrí, Illes Medes and Baix Ter Natural Park. To do this, I analyzed a long-

term monitoring dataset of the infralittoral macroalgal communities, annually 

monitored inside and outside the NTZ of Medes Islands during the last 15 years. 

 

Chapter II: In the Montgrí, Illes Medes and Baix Ter Natural Park, sea urchins and, in 

particular, the purple sea urchin Paracentrotus lividus, are considered the most 

important herbivores controlling the macroalgal dynamics on the shallow reefs. Due to 

their key role in structuring the infralittoral seaweed communities, understanding how 

fully protected areas can shape their population structure and dynamics may be crucial 

for enhancing the effectiveness of conservation actions for temperate benthic 

communities. Here, I analyzed a long-term monitoring dataset (nearly three decades) of 

sea urchin populations inside and outside the NTZ of Medes Islands to describe the role 

of marine protected areas on the sea urchins populations facing human-related and 

natural threats.  
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Chapter III: Mediterranean Cystoseira (sensu lato) forests are experiencing a global 

decline, driving to a reduction of the habitat complexity, with important consequences 

for biodiversity and ecosystem functioning. Against all odds, the fast-growing 

Treptacantha elegans (Box 2 and 3) has increased their distributional range and has 

shown an extraordinary expansion in the North Catalan coast over the last two decades. 

Here, I recreated their temporal and spatial spread and untangled their ecological 

attributes such as population dynamics and population connectivity to provide a 

baseline of their actual status. 

 

Chapter IV: In light of the global decline of canopy-forming macroalgal forests, 

forestation of sea urchin barren grounds is encouraged in this chapter as a tool to shift 

from low productive and structurally poor barren grounds to high productive and 

diverse marine forests. Following the results of the chapter 3, the expanding and fast-

growing alga Treptacantha elegans (Box 2 and 3) is proposed here as model species to 

promote the forestation of barren grounds. A three-step forestation protocol was 

assessed combining the active control of sea urchin populations and the T. elegans 

forestation. In addition, forestation success was assessed inside and outside the Medes 

Islands NTZ to evaluate the potential of active (restoration), passive (NTZs), and 

combined active with passive (NTZ + restoration) conservation strategies. 
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Chapter I 

 

 

Long-term monitoring of temperate macroalgal 

assemblages inside and outside a No-Take marine 

reserve 
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Abstract 

 

Macroalgal communities have an essential role in the shallow benthic 

habitats of temperate seas, where changes in their composition can resonate 

through entire coastal ecosystems. As all major ecosystems on Earth, algal 

beds have already been affected by multiple disturbances. Passive 

conservation tools, such as marine protected areas or No-take zones, have 

the potential to reduce some of the anthropogenic impacts by limiting 

human activity. However, without a good knowledge of the natural 

community dynamics, it is not easy to discern between changes fruit of the 

intrinsic variability of biological communities and the ones caused by 

human-related stressors. In this study, we evaluated the natural variability of 

macroalgal communities’ composition inside and outside a Mediterranean 

No-Take marine reserve during 15 years. We described their temporal 

dynamics considering their main drivers and we tested the effect of 

protection in seaweed beds. We did not find differences either in the 

composition of the macroalgal assemblages or the total algal cover between 

protected and non-protected locations over the fifteen years of study. 

Nevertheless, we observed a positive effect of the protection increasing the 

cover of some specific species, such as the canopy-forming Treptacantha 

elegans. Our results highlight the importance of obtaining long-term data 

in ecological studies to better understand the natural variability of marine 

communities. Accordingly, a robust understanding of the community 

dynamics would help us to avoid misinterpretations between ‘impacted’ or 

‘in-recovery’ communities when recovery times are longer than the study 

periods. 
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1. Introduction 

Global and local human disturbances have affected all major ecosystems on Earth, 

including coastal algal communities (Halpern et al., 2007; Gianni et al., 2017), the 

dominant primary producers in the coastal zone (Krause-Jensen and Duarte, 2016). 

Overfishing, global warming, and exceptional storms further contribute to transforming 

rocky infralittoral algal habitats (Ling et al., 2009; Smale and Vance, 2016; Wernberg et 

al., 2016; Maggi et al., 2018).  Conservation tools such as Marine Reserves or No-Take 

Zones (NTZ) have the potential to reduce some of these anthropogenic disturbances 

(i.e, banning fishery activities) and to restore benthic habitats through trophic cascade 

effects (Shears and Babcock, 2002; Guidetti, 2006; Babcock et al., 2010).  

Macroalgae play a key role in the structure of temperate benthic ecosystems (Jones et 

al., 1994; Duarte and Cebrian, 1996; Teagle et al., 2017), representing an important 

source of carbon sequestration (Krause-Jensen and Duarte, 2016) and providing 

invaluable ecosystem services in many shallow coastal systems (Blamey and Bolton, 

2018). Consequently, changes in macroalgal communities may sway in the whole coastal 

ecosystem (Mineur et al., 2015). In the Mediterranean Sea, algal communities dominate 

the shallow benthic habitats (Zabala and Ballesteros, 1989). There, the highest level of 

structural complexity is represented by canopies of fucoid algae, mostly Cystoseira 

sensu lato populations, providing habitat, shelter, and food to many associated 

organisms and harboring a high diversity and productivity (Ballesteros et al., 1998; 

Mangialajo et al., 2008; Sala et al., 2012; Cheminée et al., 2013). Water pollution, 

modifications of natural rocky coastline, and sea urchin overgrazing as a consequence 

of overfishing are the major drivers of the loss of fucoids in the Mediterranean Sea 

(Airoldi and Beck, 2007; Mineur et al., 2015). Consequently, severe declines of macroalgal 

forests (i.e., Cystoseira spp.) have been documented, with the consequent changes in 

the associated species, and effects cascading up to higher trophic levels (Ling et al., 

2015; Cheminée et al., 2013). 

Long-term ecological studies observing natural communities dynamics under the 

human influence are essential to understand the operation of natural systems, and most 

especially, to know the communities' baseline before describing pressures or impacts. 

Changes in marine benthic communities and conservation effects are usually reported 

in ‘before-after’ studies or with ‘snapshots’ of the protected area vs. the unprotected 

one, while long-term monitoring programs are focused on specific species or 

populations, such as corals, seagrasses, sea urchins or kelp species among others (e.g. 

Kirkman and Kirkman, 2000; Steneck et al., 2002; Babcock et al., 2010; Gross and Edmuns, 
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2015). Despite the essential role of macroalgal beds in benthic communities, there is an 

important lack of continuous and long-term studies that integrate community changes 

together with their long-term dynamics and with the conservation role, without which 

we can misinterpret communities alterations. 

In this study, we annually monitored infralittoral macroalgal communities inside and 

outside a NTZ located in the North-Western Mediterranean Sea during 15 years. Benthic 

shallow-rocky habitats in the study area are mostly represented by photophilic algal 

communities of small and erect algae (e.g., Dyctiota spp.) and calcareous algal 

formations (Ballesteros, 1991). The sea urchin Paracentrotus lividus is the main 

herbivorous species that control algal biomass (Hereu et al., 2012a; Medrano et al., 

2019a). Abundance and temporal trends on sea urchin populations were similar inside 

and outside the studied NTZ (Hereu et al., 2012a) until an exceptionally violent storm 

occurred in 2008 that drastically reduced sea urchin densities. After that, the populations 

of the sea urchin P. lividus outside the NTZ recovered faster than the population inside 

the NTZ (Medrano et al., 2019a). The present study aims to describe the temporal 

dynamics of the macroalgal communities considering their main drivers and 

environmental stressors and to evaluate the effect of protection in macroalgal beds over 

time by analyzing long-term monitoring data. 

2. Materials and Methods 

2.1 Monitoring and study area 

 

Shallow rocky infralittoral macroalgal communities were monitored at eight localities in 

the Montgrí, the Illes Medes and the Baix Ter Natural Park, located in the North-Western 

Mediterranean Sea (Fig. 1). Within the Natural Park, four out of the eight sampled 

localities were placed inside the Medes Islands No-Take Zone (NTZ) and, the other four, 

outside the boundaries of the NTZ (Fig. 1). 
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Figure 1. Map of the study sites in the Montgrí, Illes Medes, and Baix Ter Natural Park (NW Mediterranean 

Sea). Orange dots represent the long-term monitoring sites: four are located outside the NTZ, and four 

more are inside the Medes Islands NTZ. The perimeter of the Medes Islands NTZ is delimited by the green 

polygon. Unprotected zone is outside the green polygon. 

 

To monitor macroalgal communities, we annually sampled the algal assemblage 

structure based on the main seaweed species (Table 1) from 2001 to 2016, excluding 

the years 2006, 2007, 2011 and 2015. The algal percent cover was visually quantified 

using 50x50 cm quadrats divided into 25 subquadrats of 10x10 cm (Hereu et al., 2008). 

Twenty replicate quadrats were randomly counted at each location at depths between 

5 and 10 m by SCUBA divers. At each quadrat, each species percentage cover was 

estimated as the percentage of the numbers of subquadrats where the species was 

present relative to the total number of subquadrats sampled (as described in Sala and 

Ballesteros, 1997 and Hereu et al., 2008). To avoid the effect of seasonality, sampling 

was always performed at the end of May, when the most representative macroalgae 

(perennial and seasonal species) reach the maximum biomass in the study area (Sala 

and Boudouresque, 1997).  
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Table 1. List of the main macroalgal species present in the study area and included in the anual 

monitoring: full names, abbreviations, and authorities. The species in bold represent about 90% of total 

algal cover and were considered here as the fourteen major species. 

 

Rhodophyta     

Amphiroa rigida Amphiroa Lamouroux 
 

Asparagopsis armata Asparagopsis Harvey 
 

Bonnemaisonia asparagoides Bonnemaisonia (Woodward) C. Agardh 

Ceramium ciliatum Ceramium Ducluzeau 
 

Corallina elongata Corallina Ellis and Solander (also accepted as Ellisolandia 

elongata) 

Gelidium spinosum Gelidium (Gmelin) Silva 

Jania rubens Jania (Linnaeus) Lamouroux 

Laurencia obtusa Laurencia (Hudson) Lamouroux 

Liagora viscida Liagora (Forsskal) C. Argardh 

Lithophyllum incrustans L.incrustans Philippi 
 

Mesophyllum alternans M.alternans (Foslie) Cabioch and Mendoza 

Peyssonnelia bornetii Peysonnelia Bourderesque and Denizot 

Sphaerococcus coronopifolius Sphaerococcus (Goodenough and Woodward) Stackhouse 

Wrangelia penicillata Wrangelia C. Agardh 
 

Phaeophyta     

Cladostephus spongiosus Cladostephus (Hudson) C. Agardh 

Colpomenia sinuosa Colpomenia (Mertens ex Roth) Derbès and Solier 

Cystoseira compressa C.compressa (Esper) Gerloff and Nizamuddin 

Treptacantha elegans T.elegans Sauvageau 
 

Dictyota spp Dictyota 
  

Halopteris scoparia Halopteris (Linneaus) Sauvageau 

Padina pavonica Padina (Linneaus) Thivy 

Zanardinia typus Zanardinia (Nardo) Furnari 

Chlorophyta     

Acetabularia acetabulum Acetabularia (Linnaeus) Silva 

Codium bursa C.bursa (Linnaeus) C. Agardh 

Codium effusum C.effusum (Rafinesque) Delle Chiaje 

Codium vermilara C.vermilara (Olivi) Delle Chiaje 

Flabellia petiolata Flabellia (Turra) Nizamuddin 

Halimeda tuna Halimeda (Ellis and Solander) Lamouroux 

Ulva rigida Ulva C. Agardh   
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2.2 Environmental drivers and stressors determining algal assemblage structure  

 

To investigate the relation between the composition of the macroalgal assemblages and 

the effect of the environmental drivers inside and outside the NTZ, we used Redundancy 

Analysis (RDA) (Van Den Wollenberg, 1977) on fourth-root transformed percentage 

cover data of all the monitored macroalgal species (Table 1). The RDA is a multivariate 

analysis technique which allows to introduce explanatory (environmental) variables 

considering multiple regressions to determine linear combinations of these variables 

with the dependent variables (seaweeds). Water nutrients, sea-surface temperature, sea 

urchin abundance, and level of protection (as categorical variable) were included as 

environmental variables (adapted from Hereu et al., 2008). 

 

Specifically, Chlorophyll-a (Chl-a) levels are a good proxy for nutrient levels in coastal 

waters (Brodie et al., 2007). Therefore, Chl-a data from the MODIS-Aqua sensor were 

extracted for the monitored area with a 4 km resolution from NASA Giovanni 

(MODISA_L3m_CHL_v2018; https://giovanni.gsfc.nasa.gov/giovanni/) from 2002 

(starting date of this time-series) to 2016. In order to relate the nutrient concentration 

with the sampled algae cover, the average concentration of Chl-a (mg/m3) was 

calculated for the spring season of each sampled year (March to May).  

 

Sea-surface temperature (SST) data were obtained from the L’Estartit Meteorological 

Station (http://meteolestartit.cat/mar/temperatura/), where temperature has been 

measured 1.7 km offshore of the Medes Islands NTZ (the northwestern Mediterranean, 

42°03’N 3°15’15’’E) since 1974. Like Chl-a, we have considered here the mean SST of the 

spring season (March to May) for each year from 2001 to 2016. We used the same 

physical environmental variables (Chla- and SST) for locations inside and outside the 

NTZ, given that the average distance between the locations is lower than the spatial 

resolution of the described physical environmental variables (2 km). 

 

The effect of protection on fish communities and the sea urchin abundance inside and 

outside the Medes Islands NTZ over the studied period were obtained from the long-

term monitoring program of the Montgrí, Illes Medes and Baix Ter Natural Park 

(Medrano et al., 2019a). Sea urchins missing data of the years 2006, 2007, 2014 and 2015 

were linearly interpolated from the known values in the time-series. It is important to 

note that higher fish abundance and biomass of the main sea urchin predator species 

have remained significantly larger inside the NTZ than outside (García-Rubies and 

Zabala 1990; Sala 1997; Hereu et al., 2005; Sala et al., 2012), with higher predation rates 
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of sea urchins observed inside the NTZ over the last years (Sala, 1997; Hereu et al., 2005; 

2012). Contrarily, no clear effect of protection on the unique herbivorous fish in the area, 

Sarpa salpa, on rocky bottoms was observed (García-Rubies, 1990; Macpherson et al, 

2004; Hereu et al. non pub. data). 

 

The collinearity of the four variables was checked. Although the maximum correlation 

was found between the variables Sea urchin abundance and Protection level (Spearman 

correlation: -0.7), we considered and included all four variables as reasonably 

explanatory in this study. 

 

2.3 Long-term trends of the main macroalgal species inside and outside the NTZ 

 

The fourteen most representative algal species (representing a total cover of 89 ± 0.06 

% (Mean ± SD) in the studied monitoring period, Table 1 bolded species) were selected 

to describe the temporal patterns of the macroalgal dynamics across protection levels 

and time. To show a clearer global view rare species were excluded. First, kite diagrams 

of the percentage of the main algal cover were plotted to visualize the changes of these 

algal assemblages over the studied period inside and outside the NTZ. Second, to assess 

the abundance variability throughout the studied period inside and outside the NTZ, we 

calculated the coefficient of variation (CV) of the algal relative abundance in each 

location. CVs of the fourteen most representative macroalgae were estimated as the 

mean CV of each species between the monitoring sites and CVs of the assemblages 

between protection levels were estimated with the fourteen CVs mean of each site. To 

test pairwise comparisons among CV, we used Tukey’s Honestly Significant Differences 

(HSD) test in each pair of means (inside/outside NTZ). Finally, to test for differences in 

overall macroalgal assemblage structure among protection and time, we used 

multivariate generalized linear models implemented in the manyglm function of the 

mvabund R package (Wang et al., 2017). The macroalgal abundance in each monitored 

site was fitted as the response variable with a negative binomial distribution after visually 

checked the most likely distribution of the data. The variables protection (inside/outside 

NTZ) and time (years) were included as main fixed effects in the model. We then ran a 

univariate analysis of variance to test the significance of the effects in every algal species 

(Wang et al. 2017).  

 

All statistical analysis and plots were run with the software R 3.3.3 (R Core Team, 2017). 

Multivariate analyses were performed with the R package ‘vegan’ (Oksanen et al., 2017) 

and R Package ‘mvabund’ (Wang et al., 2017).  
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3. Results 

3.1 Environmental drivers and stressors determining algal assemblage strucure  

 

The first two axes of the RDA explained the 68 % of the species-environment relationship 

(Fig. 2A RDA, Table 2). The four biotic and abiotic variables were significantly correlated 

with the RDA axes. Protection and Sea urchins were strongly correlated with the first 

axis, while environmental variables related to seasonality (SST and Chl-a) were significant 

correlated with the second axis (Table 3). 

 

Table 2. Results of redundancy analysis (RDA) on fourth-root transformed data. 

Axes RDA 1 RDA 2 RDA 3 RDA 4 

Eigenvalues 2.8765 1.4672 1.2062 0.8398 

Cumulative percentage variance 
  

      of species data 9.92 14.98 19.14 22.03 

      of species-environment relation 45.02 67.98 86.86 100 

Along the first axis, species positioned at the far right end were more abundant in 

protected sites with low abundance of sea urchins (e.g., Asparagopsis armata and 

Treptacantha elegans). These species were separated from those most commonly 

observed in non-protected sites, which were correlated with higher abundances of sea 

urchins (e.g., Wrangelia penicillata, Lithophyllum incrustans, Peyssonnelia bornetii). In 

line with that, the species identified as canopy-forming (Cystoseira sensu lato species) 

were positioned in the right side of the axis, while the encrusting coralline algae were 

on the left side (e.g, Lithophyllum incrustans and M. alternans). Along the second axis, 

the macroalgal seasonal species (spring-growing) related to the spring nutrient peak 

and cold waters were positioned in the top of the RDA biplot (e.g., Dictyota spp., 

Bonnemaisonia asparagoides, and Ulva rigida). Despite being a seasonal growing alga, 

since Laurencia obtusa biomass peak takes place during the late spring-early summer, 

it was mostly related to warm waters as well as the perennial Codium species (Fig. 2A).  

 

Macroalgal assemblages inside and outside the NTZ shifted towards the same 

ordination space over time, highlighting inter-annual variability of the assemblage, and 

homogeneous patterns of change in both protection levels (Fig. 2B). Despite this 

observed variability, the last dot (representing 2016 data) was located close to the origin 

dot (representing 2003 data), indicating that no major shifts in the algal assemblages 

occurred over this long-term study (Fig. 2B). 
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Table 3. Biplot scores for environmental variables, the coefficient of determination (R2), and their 

significance using 999 permutations on the RDA results. 
 

Variable RDA 1 RDA 2 R2 p(>r) 

Protection  0.97570 -0.21911 0.7393 0.001 

Sea-urchins -0.93935 -0.34297 0.4598 0.001 

SST -0.62272 -0.78244 0.2954 0.001 

Chl-a 0.58762 0.80913 0.0859 0.043 

SST:Surface Seawater Temperature. Chl-a: Chlorophyll-a as proxy of nutrients 
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Figure 2. (A) Redundancy Analysis ordination for macroalgal cover data over time. Blue dots are sampling 

sites inside the NTZ and grey dots, outside the NTZ. Species code in Table 1. (B) Biplot of the Redundancy 

Analysis connecting the monitored years with grey lines within the protection levels. Font colors indicate 

the protection level (Blue=inside the NTZ, Grey=outside the NTZ). 

 

3.2 Long-term trends of the main macroalgal species inside and outside the NTZ 
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The cover of the main macroalgal communities was homogeneous between the 

protected and the non-protected locations (inside/outside NTZ) (Fig. 3). The seasonal 

species of the genus Dictyota and the perennial Corallina elongata (today also accepted 

as Ellisolandia elongata) were the dominant seaweed in the study area during Spring, 

with a mean cover of 60 ± 15 % and 52 ± 17.3 % (Mean ± SD), respectively, across the 

eight monitored sites over time (Fig. 3). High stability of seaweeds cover over the fifteen 

years was found in most of the species in both protection levels. Annual changes in the 

species cover were detected simultaneously throughout the fifteen years in the 

protected NTZ and unprotected zones, suggesting the same variability on algal 

community drivers and the similar impact of stressors in both levels of protection (Fig. 

3). 

Figure 3. Kite diagram representing the cover of the fourteen most representative macroalgal species in 

the study area over the fifteen years. Left panel corresponds to the percentage cover within NTZ localities 

and right panel to the percentage cover of the localities outside the NTZ. Percentage cover was scaled to 

the maximum value of 50 and the colored diagrams show spectral values from 0 to 50 for each species. 

Color code indicates the corresponding macroalgae phyllum (Rhodophyta: red, Phaeophyta: yellow, and 

Chlorophyta: green). 
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The coefficient of variation showed a consistency of the total macroalgal cover estimates 

over time in both protection levels (Fig. 4A). For the particular species A. armata, 

Halopteris scoparia, W. penicillata, and M. alternans, CV pairwise comparisons showed 

differences within levels of protection being A. armata and H. scoparia more variable 

outside the NTZ while the abundances of W. pencillata and M. alternans were more 

variable inside the protected area (Fig. 4B, Table 1 S2). Among all the most abundant 

species, the canopy-forming species Treptacantha elegans showed the highest 

variability (Fig. 4B).  

 

Short-term changes in macroalgal abundance such as the observed after the 2008 

extraordinary storm occurred in the studied period (Fig. 3), but these were not significant 

over all the multi-year monitoring for the majority of the species (Table 4). Only three 

of the fourteen dominant species showed differences in their cover across protection 

levels (Table 4). In spite of the very low cover, the seasonal growing naturalized alga A. 

armata and the perennial canopy-forming T. elegans were more abundant inside the 

NTZ than outside. In contrast, the seasonal growing species W. penicillata was the most 

characteristic species outside the NTZ (Fig. 3, Table 4). While L. obtusa increased its 

relative cover over the study period (Fig. 3, Table 4) the calcareous algae C. elongata 

and Jania rubens decreased over the study period but only outside the NTZ (Fig. 3, Table 

4). 
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Figure 4. Coefficients of Variation (CVs) over time. Blue color represents the values inside the NTZ and 

grey color the values outside the NTZ. (A) Boxplot showing within-protection CVs in total macroalgae 

cover (inside/outside the NTZ). (B) Boxplot showing CVs in the cover of the fourteen main macroalgae 

species within protection levels. ‘*’ indicates significance differences (p<0.05) in pair means using Tukey 

pairwise comparison. Species code in Table 1. 
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Table 4. Generalized Linear Model manyglm results (Deviation test statistic, p-value) of macroalgal cover 

(Percentage/0.25m2) Df: degrees of freedom. Bold indicates p < 0.05. ':' indicates interaction. Species code 

in Table 1. 

 
 

Source Df Asparagopsis Dictyota T. elegans C. vermilara C. bursa 

Protection 1 25.093, 0.001 2.45, 0.596 23.324, 0.001 5.545, 0.209 2.26, 0.607 

Time 10 31.461, 0.343 30.58, 0.343 25.542, 0.547 26.429, 0.531 39.415, 0.112 

Protection:Time 9 17.314, 0.088 16.605, 0.088 16.276, 0.088 28.503, 0.020 6.463, 0.088 

       
Source Df Halopteris Laurencia Padina Sphaerococcus Wrangelia 

Protection 1 0.001, 0.993 0.14, 0.993 0.108, 0.993 0.089, 0.993 14.214, 0.006 

Time 10 29.86, 0.354 47.096,0.010 27.475, 0.489 26.928, 0.510 40.56, 0.112 

Protection:Time 9 18.854, 0.061 13.157, 0.088 19.008, 0.061 13.115, 0.088 11.207, 0.088 

       
Source Df Coralina Jania L. Incrustans M. Alternans  
Protection 1 0.933, 0.889 1.62, 0.744 8.749, 0.052 3.736, 0.391  
Time 10 34.044, 0.228 21.578, 0.547 33.851, 0.228 35.31, 0.169  
Protection:Time 9 26.231, 0.025 24.497, 0.025 18.032, 0.077 15.289, 0.088  

 

 

4. Discussion 

Our results revealed that the coastal macroalgal assemblages of the Montgrí, the Illes 

Medes and the Baix Ter Natural Park were stable and similar in total algal cover inside 

and outside the protected NTZ over the fifteen years of study with no species 

replacement, although some variability were observed between years. The communities 

were dominated by the perennial species C. elongata and the seasonal Dictyota species. 

Corallina elongata has been previously described as predominant species subjected to 

moderate pollution (Díez et al., 1999; Soltan et al., 2001). Species related to high-quality 

environmental requirements, such as Cystoseira sensu lato species. (Thibaut et al., 2005; 

Mangialajo et al., 2008) were less abundant in the study area. In addition to 

environmental quality, bottom-up (herbivorous control) and top-down (resources 

control) processes interactively influence the structure of macroalgal benthic 

communities (Korpinen et al., 2007; Smith et al., 2010). As we expected, bottom-up 

forces such as spring nutrient concentration and the ordination of the majority of 

seasonal algal species were associated to water temperature, in which herbivory showed 

the weakest influence (except for A. armata and W. penicillata). Contrarily, top-down 

forces may play a role in determining the abundance of fucoids such as the canopy-

forming Cystoseira sensu lato species and the encrusting coralline algae species. It has 
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been extensively documented that increased abundance of grazers feeding on algal 

beds can significantly change the structure of shallow benthic communities (Airoldi and 

Beck, 2007; Filbee-Dexter et al., 2014; Mineur et al., 2015).  

The sea urchin Paracentrotus lividus is the most important herbivore in the study area, 

playing an important role in structuring algal communities (Sala and Zabala, 1996; 

Palacín et al., 1998; Hereu et al., 2008). As P. lividus preferentially graze on fleshy algae 

(Privitera et al., 2008), encrusting algae showed a positive relationship to the presence 

of sea urchins. Although many studies have been demonstrate that herbivorous fishes 

may also influence the structure of the benthic assemblages (Vergés et al., 2009; Gianni 

et al., 2017), we did not consider them because there are not evidences of the effect of 

protection on the abundance of the unique herbivore fish in this area, Sarpa salpa (Prado 

et al. 2007). Moreover, their effects on macroalgal beds in the studied area are weaker 

than the sea urchins one (Hereu, 2006; Hereu et al. 2008). This could be explained by 

the feeding preference and behavior of Sarpa salpa, the only strictly herbivorous fish in 

this area (Sala and Boudouresque, 1997). S. salpa has shown preference for high 

palatable plants such as seagrasses or fleshy algae (Vergés et al., 2009; Ali et al., 2017). 

In addition, fishes feeding behavior differ from the sea urchins as fishes bite the leaf 

while sea urchins graze the entire thalli which could deplet large algal extensions (Hereu, 

2006; Jadot et al., 2006).    

No-take marine reserves can indirectly restore the original trophic cascades recovering 

the abundance of herbivores’ predators (Sala and Giakoumi, 2017) and controlling the 

herbivore populations (Medrano et al., 2019a). Results of this study go one step further 

in the trophic cascade of the studied area and also demostrate that No-Take marine 

reserves can influence the abundance of the canopy-forming Cystoseira sensu lato 

species, being more abundant in protected areas (as reported for the same studied NTZ 

in Sala et al., 2012). Without losing sight of the large variability observed in the cover of 

perennial canopy-forming T. elegans over time suggesting a high influence of local 

conditions on this species, this results reinforces the usefulness of marine reserves as 

conservation tools also at lower trophic levels, which is particularly relevant when 

considering the global decline of Cystoseira sensu lato species in the Mediterranean Sea 

(Thibaut et al., 2005; 2014a). Despite Cystoseira sensu lato species were not the 

dominant species in the macroalgal beds of the Natural Park, their loss or replacement 

could have major consequences for many associate organisms (e.g., lowering fish 

recruitment, Cheminée et al., 2013). On the other hand, Codium vermilara showed 

completely opposite ordination relative to the main drivers and stressors than Cystoseira 

spp. This result support the hypothesis of C. vermilara could have been replaced by 
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Cystoseira sensu lato species assemblages after their historical decline in the NW 

Mediterranean Sea (Ricart et al., 2018).Regarding the less abundant species, our study 

confirms the effect of protection for A. armata, which was already suggested by Sala and 

Boudouresque (1997). This unpalatable red alga was practically absent outside the NTZ, 

but showed a high variability over the fifteen years. The reverse pattern was observed 

for W. penicillata species, more abundant and less variable outside the NTZ. We did not 

detect the influence of any of the studied drivers in the filamentous turf forming 

Ceramium ciliatum, probably because of their short life cycle (Bologa et al., 1995).  

Extreme climate events such as severe storms have been also considered as potential 

drivers eroding macroalgal beds (Navarro et al., 2011; Borja et al., 2018; Capdevila et al., 

2019a). An exceptionally storm with drastic consequences on benthic communities 

occurred in the study area in 2008 (Mateo and Garcia-Rubies, 2012; Sanchez-Vidal et al., 

2012), where we observed a short-term effect in the macroalgal communities exerted 

by the storm like those previously reported in other studies (Navarro et al., 2011; Michelli 

et al., 2016; Maggi et al., 2018). Benefiting from the available space that resulted from 

the storm, a rapid increase of highly seasonal Dictyota species were observed right after 

the storm (the year 2009), while most of the perennial species decreased. Over the 

following years, the abundance and structure of the main macroalgal assemblages 

recovered swiftly to pre-storm values and no long-term impacts were observed, 

indicating that impacts of a single extraordinary storm on rocky-shallow algal 

communities may be reversed relatively quickly. However, we should consider that an 

increase in the intensity and frequency of extreme climatic events, such as extraordinary 

storms, has been observed since 1950 and is expected to increase in the future (IPCC, 

2014; Reguero et al., 2019), especially in the Mediterranean, which has been highlighted 

as a hotspot of ongoing climate change (IPCC, 2014, Cramer et al., 2018). Our results 

stress the importance of increasing spatial and temporal scales to better understand the 

natural variability of the marine communities and do not misunderstand the changes 

observed in algal assemblages (Lindenmayer et al., 2012). If the same dataset of this 

study would have been used to describe the consequences of this extraordinary storm 

right after the impact, notable differences could have been described. 

Despite the relevance of monitoring algal communities, it is important to highlight some 

limitations of this study. In order to effectively document long-term changes of the 

macroalgal assemblages structure over time, we prioritize a broad view of the 

community by monitoring the algal cover of the main species in our study area and 

missing the minority species. This methodology allows to maintain long-term 

monitoring programs, involving different observers due to the easy identification of a 
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reduced number of species but it is not the optimal ecological design in order to analyze 

other community indexes such as biodiversity or richness. Many studies pool species 

into functional groups, as a way to predict algal community composition (Steneck and 

Dethier, 1994). This reduction of species-specific information is generally accepted at 

the expense of a broader view of the changes in community structure. However, it is 

important to stress that this approach hinders to detect some important changes at the 

species level because different algal species have different responses to herbivores and 

other perturbations independently on their functional group (Hereu et al., 2008). Most 

of the results exposed here would have been lost or misinterpreted working with 

functional groups such as the high variability of T. elegans, which would have been 

pooled in the erect algae group.  

A major insight of this study is the absence of major shifts in species replacement and 

abundance and the null effect of protection in the most important macroalgal 

communities in the rocky-shallow infralittoral zone of the studied area. Differences only 

regard the less abundant species, among them the canopy-forming Treptacantha 

elegans which took preference inside the protected NTZ. These results provide a current 

baseline of algal communities and contribute to the literature on the role of NTZs marine 

reserves in the benthic communities. 
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Abstract 

 

Understanding how no-take zones (NTZs) shape the population dynamics 

of key herbivores is crucial for the conservation and management of 

temperate benthic communities. Here, we examine the recovery patterns of 

sea urchin populations following a high-intensity storm under contrasting 

protection regimes in the NW Mediterranean Sea. We found significant 

differences in the recovery trends of Paracentrotus lividus abundance and 

biomass in the five years following the storm. The P. lividus populations 

outside the NTZ recovered faster than the populations inside the NTZ, 

revealing that predation was the main factor controlling the sea urchin 

populations inside the NTZ during the study period. Arbacia lixula reached 

the highest abundance and biomass values ever observed outside the NTZ 

in 2016. Our findings reveal that predation can control the establishment of 

new sea urchin populations and emphasize top-down control in NTZs, 

confirming the important role of fully protected areas in the structure of 

benthic communities 
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1. Introduction 

Within marine protected areas, No-Take Zones (NTZs), where the exploitation of 

marine resources is not allowed, provide large-scale controlled areas for 

examining trophic interactions and cascade effects compared to natural 

ecosystems (Pinnegar et al., 2000; Guidetti, 2006). Previous empirical and 

observational studies within NTZs have demonstrated the role of herbivores, such 

as sea urchins, and their predators as major structuring forces in marine 

temperate benthic communities (Castilla and Durán, 1985; Shears and Babcock, 

2002). As a result of prohibiting extractive activities, predation and top-down 

control increases as lower trophic levels decline, including sea urchins (Guidetti, 

2006; Barrett et al., 2009; but see also Halpern, 2003). 

Beyond the top-down control of predatory fishes, many processes, such as 

recruitment variability, spatial refuge availability and their escaping behaviour, 

influence sea urchin abundances (Sala and Zabala, 1996; Nishizaki and Ackerman, 

2004; Hereu et al., 2012a; Oliva et al., 2016). Moreover, when sea urchin 

populations are established, adult individuals can also facilitate juvenile survival 

by reducing micro-predator abundance (Bonaviri et al., 2012) and offering refuge 

under their spine canopy for avoiding predation (Tegner and Dayton, 1977; Zhang 

et al., 2011; Hereu et al., 2012a). 

A favorable combination of such processes can maintain dense sea urchin 

populations, even when they coexist with abundant fish predators within NTZs; 

this provides evidence of the existence of strong feed-back processes that 

provide resilience for sea urchin populations once they are established (Bonaviri 

et al., 2012; Ling and Johnson, 2012). In addition to biological interactions, other 

factors, such as hydrodynamic forces (Micheli et al., 2016), extraordinary storms 

(Sanchez-Vidal et al., 2012), sea urchin diseases (Girard et al., 2012; Clemente et 

al., 2014), or even human harvesting (Pais et al., 2011), can also determine the 

abundance of sea urchins at local scales. 

To date, several studies have examined the long-term natural trends of 

established sea urchin populations (Lessios et al., 1984; Sala et al., 1998; Hereu et 

al., 2012a), where all of the processes affecting their dynamics occur together. 

Nevertheless, few studies have reported the rebuilding capacity of collapsed sea 

urchin stocks after extraordinary mass mortalities (Edmuns and Carpenter, 2001; 

Miller et al., 2003; Girard et al., 2012; Clemente et al., 2014; Lessios, 2016). Hence, 

little is known about the underlying mechanisms that drive their recovery and 
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how conservation tools such as NTZs can influence and modulate these processes 

(Hunte and Younglao, 1988; Guidetti, 2006; Hamilton and Caselle, 2015). 

To investigate the underlying mechanisms behind the recovery sea urchin 

populations and the role of fully protected areas in such recovery patterns, we 

used long-term monitoring data (nearly three decades) of sea urchin populations 

inside and outside the NTZ of the Montgrí, Illes Medes and Baix Ter Natural Park 

in the NW Mediterranean Sea. 

 

In this area, the purple sea urchin, Paracentrotus lividus (Lamark), is the most 

abundant species and is considered the most important herbivore controlling the 

macroalgal dynamics on the shallow reefs (Sala and Zabala, 1996; McClanahan 

and Sala, 1997; Bulleri et al., 1999; Hereu, 2005). Although the black sea urchin, 

Arbacia lixula (Linnaeus), is also common, it is approximately one order 

magnitude less abundant than P. lividus on the Catalan coast (Hereu et al., 2012a). 

Despite its low density, A. lixula is considered a thermophilic species (Privitera et 

al., 2011; Wangensteen et al., 2013), and it has been suggested that climate 

change can increase its abundance and distribution (Francour et al., 1994; 

Wangensteen et al., 2012). Nevertheless, there is little quantitative evidence of 

these increasing patterns in the field to date. The abundance of both species did 

not show significant differences between contrasting protection levels from 1991 

to 2010 (Hereu et al., 2012a). In December 2008, when an extraordinary storm 

occurred in this area (Mateo and Garcia-Rubies, 2012) that had drastic effects on 

the benthic communities (Sanchez-Vidal et al., 2012), a sea urchin population 

mass mortality event occurred (Hereu et al., 2012b; Pagès et al., 2013). The main 

goal of this study was to examine the recovery patterns of the devastated sea 

urchin populations under contrasting protection regimes. We hypothesize that 

top-down control could play a major role restricting the recovery of depleted sea 

urchin populations within the NTZ, while a fast recovery was expected outside the 

NTZ where the predation pressure is lower (García-Rubies et al., 2013). Since 

almost all of the adult individuals were lost after the storm, we anticipated that 

the population recovery would rely on recruitment and juvenile survival. 

 

Due to the key role of sea urchins in structuring sublittoral communities in the 

Mediterranean Sea, understanding how fully protected areas can shape their 

population dynamics may be crucial for enhancing the effectiveness of 

conservation actions for temperate benthic communities. 
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2.  Material and methods 

 

2.1. Study site 

The Montgrí, Illes Medes and Baix Ter Natural Park is located on the north-eastern 

coast of Catalonia, Spain (NW Mediterranean Sea, Fig. 1), covering a marine area 

of 2.037 ha. The park has its core in the No-Take Zone (NTZ) of the Medes Islands, 

which comprises the Archipelago of the Medes Islands (93 ha), where all fishing 

and harvesting activities have been prohibited since 1983 (García-Rubies and 

Zabala, 1990). Outside the NTZ, the nearby Montgrí coast is divided into a 

peripheral zone, a contiguous beltway zone to the Medes Islands that was 

established in 1990 where artisanal fishing and recreational angling are allowed 

under restriction, and a no reserve zone, where artisanal, recreational and 

spearfishing are allowed (Fig. 1). The total fish biomass and abundance of the 

apex predators and carnivores have remained significantly higher in the NTZ than 

in the two areas where some type of fishing is allowed, with no differences 

between them (Sala et al., 2012; García-Rubies et al., 2013; Hereu et al., 2017). 

Because there were no differences in the fish abundance and biomass between 

the peripheral zone and the no-reserve zone, both of the areas were considered 

outside the NTZ in this study. Accordingly, a higher fish biomass of the main sea 

urchin predatory species (Table 1) and higher sea urchin predation rates have 

been observed inside the NTZ in recent years (Sala, 1997; Hereu et al., 2005, 

2012a). 
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Figure 1. Map of the study 

locations in the Montgrí, Illes 

Medes and Baix Ter Natural Park in 

the NW Mediterranean Sea. Orange 

dots represent the long-term 

monitoring sites: two are located 

outside the NTZ, and two more are 

inside the NTZ. The perimeter of 

the Medes Islands NTZ is delimited 

by the green polygon, and the 

peripheral zone (PZ) is delimited by 

the blue polygon. No reserve zone 

is outside the green and blue 

polygons. 

 

 

 

 

 

 

 

 

Table 1. Density and biomass (Mean ± SE) of the main P. lividus predators vulnerable to fisheries 

inside and outside the Medes Islands NTZ from 2009 to 2016 (Hereu et al., 2017). 

 

Species Density (Ind/500m2) Biomass (kg wet mass/500m2) 

 
NTZ No reserve NTZ No reserve 

Spariadae 
    

Diplodus sargus* 12.4  ± 1.7 7.9  ± 1.9 3.1  ± 0.5 1.5  ± 0.4 

*main predator of 

juveniles and adult sea urchins 

(>10mm)  (Sala and Zabala, 

1996; Sala, 1997; Hereu et al., 

2005)  

  

  

Diplodus vulgaris 29.9  ± 6.2 17.2  ± 3.7 3.6  ± 0.9 1.3  ± 0.4 

 

2.2. Long-term monitoring 

 

We monitored four sea urchin populations inhabiting extensive reef areas (150 

m2) with the same topography that is dominated by large limestone boulders in 

the natural park yearly beginning in 1991  (Fig. 1). Two of the four studied 

populations were located in the Medes Islands NTZ (sites coordinates: 42°2.497′N; 

3°13.629′E and 42°2.658′N; 3°13.479′E), and the other two were located outside 
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the NTZ in the nearby coast: one located inside the peripheral zone (42°3.313′N; 

3°12.721′E) and one in the no-reserve zone (42°3.952′N; 3°12.591′E). 

 

During the first monitoring years, the sea urchin population densities remained 

similar inside and outside the NTZ despite the higher fish abundances observed 

in the NTZ throughout the study period (Hereu et al., 2012a). In December 2008, 

an extraordinary storm struck the Catalan coast, with maximum wind speeds up 

to 20 m/s, significant wave heights as great as 8 m, record maximum wave heights 

in excess of 14 m, and wave periods up to 14 s. This storm was categorized as a 

highly extreme event with a return period of more than 100 years (Sanchez-Vidal 

et al., 2012). Substantial negative effects on the benthic populations and 

communities inhabiting soft and hard bottoms (e.g., macroalgae, gorgonians, 

seagrass meadows and sea urchins) from shallow to deep waters were 

documented after the storm (Mateo and García-Rubies, 2012; Sanchez-Vidal et 

al., 2012; Pagès et al., 2013). The impact of these forces on the sea urchin 

populations rendered a more than 80% loss of individuals and 90% of the biomass 

and levelled the sea urchin populations between the areas inside and outside the 

NTZ. The larger specimens of P. lividus were the most affected, with consequent 

changes in their size frequency distribution (Hereu et al., 2012a; b). 

 

2.3. Sampling methodology 

 

To describe the medium-term (5 yrs) recovery patterns of sea urchin populations 

inside and outside the NTZ after the 2008 mass mortality event on the P. lividus 

and A. lixula populations under different protection regimes, we extended the 

annual monitoring until 2016. Although the abundances of Arbacia lixula were 

very low in our study area for the duration of the monitoring, we also evaluated 

their temporal trend to detect any clear pattern in this species. 

 

The sea urchin species, abundance and size were recorded in three 50 m2 

transects at 6 m depth in each study site. As described in Hereu et al. (2012a), 

transects were divided into five 10 m2 sub-transects, and within each transect, we 

counted and measured the diameter of all the present sea urchins. The sea urchin 

biomass was calculated using the allometric length-weight relationship, W = 

a(TD)b, where W is the wet weight (in g) and TD (in cm) is the measured sea urchin 

test diameter. Biomass of P. lividus was estimated as W = 0.00319(TD)2.479(Ling et 

al., 2015) and, A. lixula biomass was estimated as W = 0.8467(TD)2.6042 (Ballesteros, 

1981). 
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2.4. Data analysis 

 

To detect potential structural changes in the P. lividus populations due to the 

2008 storm, the mean abundance per year was fitted into sequential linear 

regressions. Every potential change point in the data series was assessed by 

computing the residuals of the linear models and analysing the F statistics using 

the R package ‘strucchange’ for R (Zeileis et al., 2003). 

 

We used generalized linear mixed models (GLMMs) to determine differences in 

the medium-term (5 yrs) recovery patterns of the sea urchin populations between 

the NTZ and the non-protected area. The P. lividus densities and biomass in the 

five subsequent years (2009–2013) were fitted as the dependent variables. The 

explanatory variables time (years) and protection level (inside/outside the NTZ) 

were included as fixed effects, and the sample sites nested to the protection level 

were a random effect. The data distribution was visually inspected by fitting the 

response variable to the most likely distribution (Fig. 1, S3), and the negative 

binomial GLMMs with a logarithm link function were conducted using the 

package ‘lme4’ for R (Bates et al., 2015). 

 

Because of the low abundance and biomass of Arbacia lixula, which were an order 

of magnitude lower than those of P. lividus, we did not statistically examine the 

recovery patterns of this species. 

All the statistical analyses were performed with R version 3.3.3 (R Core Team, 

2017). 

3.  Results 

The abundance and biomass of P. lividus reached the lowest values ever recorded 

after the storm of 2008 (Figs. 2 and 3). Despite the short-term effects of the 

mortality event, we found significant differences in the recovery trends of the P. 

lividus abundance and biomass over the following five years under the different 

protection regimes (Table 2 and Fig. 3). Sequential F tests and the critical F values 

identified a shift in the P. lividus populations inside the NTZ after the 2008 storm, 

resulting in a significant reduction in the population abundance from that time 

on (Fig. 2). 
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Figure 2. Paracentrotus lividus abundance over time. Blue lines represent the values inside the 

NTZ, and orange lines represent the values outside the NTZ. (a) The density of P. lividus per 10 m2 

(Mean ± SE) since 1990. (b) Mean values of the P. lividus density before (average density from 

1991 to 2008) and after the extraordinary storm (average density from 2010 to 2016). (c–d) 

Change-point analysis by sequential F tests with the proper critical F levels. (c) Identified change 

point after the 2008 storm inside the NTZ, and (d) the absence of a change point after the storm 

outside the NTZ. 

 

 

 



Chapter II 

  

56 
 

Table 2. Results of the generalized linear mixed models (GLMMs) testing differences in the P. 

lividus density and biomass between different protection levels (inside and outside the NTZ) and 

in the five subsequent years after the storm (2009–2013). To select the maximum likelihood model, 

we used Akaike's information criteria (AIC). According to Burnham and Anderson (2003), the 

model with the lowest AIC value was considered the most appropriate, which is indicated in bold. 

 

 

In contrast, outside the NTZ, both the P. lividus abundance and biomass started 

to recover one year after the mortality caused by the storm, and the biomass 

increased fourfold in two years, from the lowest value of 119.7 ± 28.3 g/10 m2 in 

2009 to 445.6 ± 83.7 g/10 m2 (mean ± SE) in 2011 (Fig. 3). The non-protected 

populations displayed a fast recovery in density in 2010 (Fig. 3), which was 

consistent with the high recruitment peak observed that year (61.6% of the 

population, Fig. 4). From these new sea urchins, the non-protected populations 

began to grow, reaching a similar size structure as that before the storm in 2013 

(Fig. 4). 

 

 

 

 

 

 

Models Variables Coefficients AICs 

Estimate Std. 

Error 

z 

value 

p 

Density ~ 

Protection*Years + 

(1|Protection:Site) 

Intercept 3.7138 0.5421 6.851 <0.001 2104.3 

Protection 

(MPA) 

-2.0464 0.7673 -2.667 0.0076 

Year 0.6540 0.0842 7.768 <0.001 

Protection*Year -0.3182 0.1132 -2.811 0.0049 

Density ~ (1|Protection: 

Site) 

Intercept 2.8035 0.6739 4.16 <0.001 2169.3 

Biomass ~  

Protection*Years + 

(1|Protection:Site) 

Intercept 5.9833 0.259 23.101 <0.001 3447.3 

Protection 

(MPA) 

-1.6393 0.3645 -4.497 <0.001 

Year 0.9989 0.1103 9.057 <0.001 

Protection*Year -0.7008 0.1454 -4.820 <0.001 

Biomass ~  

(1|Protection:Site) 

Intercept 5.3857 0.5519 9.759 <0.001 3520.8 
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Figure 3. Recovery patterns of Paracentrotus lividus in abundance (a) and biomass (b). Black 

points correspond to the mean, and the colored areas correspond to the SE. The blue colour 

represents the values inside the NTZ, and orange represents the values outside the NTZ. 

In 2016, eight years after the storm, the P. lividus abundance and biomass in the 

non-protected sites were higher than the pre-storm values in 2008 and higher 

than those observed inside the NTZ (Figs. 2 and 3). 

In contrast, inside the NTZ, the P. lividus abundance and biomass continued 

decreasing for some of the years after the 2008 mass mortality event, reaching 

the lowest biomass values three years after the storm (40.8 ± 15 g/10 m2 in 2011). 

The sea urchin biomass in the NTZ started to recover in 2013 (255.2 ± 59.6 g/10 

m2), and 5 years after the storm, the biomass and density values were far from the 

pre-storm year values (Fig. 2). No recruitment peak was observed inside the NTZ 

until 2011, when the populations were dominated by small individuals (> 80% of 

the sea urchins were < 4 cm in diameter, Fig. 4). 

 

The abundance of the Arbacia lixula populations was lower than that of P. lividus, 

but it also dropped as a consequence of the 2008 storm. Nevertheless, the A. 



Chapter II 

  

58 
 

lixula populations did not show significant contrasting short-term recovery 

patterns under different protection regimes, which was observed in P. lividus. The 

abundance and biomass of A. lixula outside the NTZ reached the highest values 

ever observed in this area in 2016. In contrast, inside the NTZ, the recovery was 

slower, and in 2016, the density values were similar to those observed before the 

mass mortality event (Fig. 5a–b). 

Figure 4. Size class distribution of Paracentrotus lividus before the extraordinary storm (2008) and 

in the years following the storm (2009–2016). The blue colour represents the frequency 

distribution inside the NTZ, and orange represents the frequency distribution outside the NTZ. 
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Figure 5. Arbacia lixula abundance (a) and biomass (b) since 1995. Coloured dots represent the 

mean per 10 m2, and bars represent the SE. The blue colour represents the values inside the NTZ, 

and orange represents the values outside the NTZ. 

 

4. Discussion 

In this study, we tested the effects of a NTZ on the recovery process of a key 

herbivore following a high-intensity storm in a temperate benthic community. We 

conclude that the sea urchin Paracentrotus lividus populations outside the NTZ 

recovered faster than the populations inside the NTZ, revealing that predation is 

the main factor controlling the recovery of sea urchin populations in the NTZ. This 

is consistent with many studies that also demonstrated the role of top-down 

control as a major structuring force in benthic communities in other temperate 

systems (Shears and Babcock, 2002; Guidetti, 2006; Halpern et al., 2006; Clemente 

et al., 2011). 
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After the almost complete depletion of adult P. lividus populations due to the 

dramatic storm in 2008 and given that the foundation and recovery of benthic 

populations relies on the interaction between settlement and post-settlement 

mortality, we expected differences in one or both of the processes between the 

protected and non-protected areas to fully understand the contrasting recovery 

patterns observed. 

The settlement of P. lividus is decoupled from local populations and can be highly 

variable at small scales given the long planktonic stage of sea urchin larvae (Hereu 

et al., 2004, 2012a). Therefore, the arrival of new individuals is not expected to 

explain the differences between the protected and non-protected areas, 

suggesting a key role of post-settlement mortality to fully understand the 

contrasting recovery patterns observed between the different protection levels. 

In fact, the high juvenile predation rate (Hereu et al., 2005) and the absence of 

adult individuals that facilitate juvenile survival inside the NTZ may explain the 

slow sea urchin population recovery within the fully protected area. After the 

depletion of sea urchin populations in 2008, the size structure of the P. lividus 

populations inside and outside the NTZ changed dramatically. When the recovery 

began, unimodal size distributions dominated by small sizes were observed in 

both areas because of recruitment pulses. Although the settlement episodes were 

simultaneous both inside and outside the NTZ, the recruitment peak observed in 

2010 outside the NTZ was not observed in the NTZ, suggesting high predation 

control within the NTZ. After the 2010 recruitment peak, the sea urchin 

populations outside the NTZ began to recover, showing immediate increases in 

their abundance, size and biomass according to the reported growth rates for this 

species (Turon et al., 1995; Ouréns et al., 2013). In addition, the annual arrival of 

new settlers and the low predation rate maintained the smallest size class as the 

most frequent class outside the NTZ over time (Sala and Zabala, 1996; Hereu et 

al., 2012a). Inside the NTZ, the recovery of adult individuals was slower, as it was 

determined by the lower survival of juveniles. 

Adult P. lividus specimens were established in populations in both protection 

regimes, i.e., inside and outside the NTZ, at different times: in 2013 outside the 

NTZ and in 2016 inside the NTZ. In 2016, the population structures were 

characterized by a bimodal distribution, with one mode in the adult sea urchin 

size class in both areas and another in the juvenile size class, which is typical of 

sea urchin populations under a certain degree of predation pressure (Sala and 
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Zabala, 1996), but with the majority of the smallest size classes in the non-

protected area due to the highest post-settlement mortality inside the NTZ. These 

observed patterns support that top-down control is crucial for determining the 

sea urchin population structure within the NTZ and reaffirm the importance of 

adults in maintaining sea urchin populations. When sea urchins reach the refuge 

size from their predators (Sala and Zabala, 1996), they facilitate post-settlement 

survival by conferring protection from predation (Tegner and Dayton, 1977; 

Ouréns et al., 2014), eliminating micropredator grazing (Bonaviri et al., 2012), and 

protecting them from environmental and hydrodynamic forces (Nishizaki and 

Ackerman, 2004). 

Before the extraordinary storm, the similar abundance and biomass trajectories 

observed over the years between the sea urchin populations of both protection 

regimes reinforce that factors other than top-down control can be important over 

large scales, as was also revealed in Guidetti and Dulčić (2007) and in Bonaviri et 

al. (2012). 

In 2008, the P. lividus densities reached the lowest values inside the NTZ 

throughout the long-term monitoring until the storm. This together with the time 

scale could be crucial in the observed responses of long-term studies (Babcock et 

al., 2010), and we think that predation could have become the major controlling 

force of sea urchin populations in- side the NTZ regardless of the storm on a 

timescale longer than the one studied. 

The Arbacia lixula populations showed a similar recovery pattern to that of the P. 

lividus populations, as the density and biomass values outside the NTZ increased 

in 2012. In addition, A. lixula reached densities and biomasses never observed in 

this area outside the NTZ in 2016. A. lixula is a thermophilic species that is more 

abundant in the southern and eastern areas of the Mediterranean Sea. Thus, such 

an upward trend seems to be linked to the warming trends observed on the 

Catalan coast in recent decades, where the temperature has increased 0.26 ± 0.08 

°C/decade from 1985 to 2015 (Vargas-Yáñez et al., 2017), and is probably 

enhanced by the lack of predation pressure when fishing is allowed. In addition, 

the preliminary results on the A. lixula growth rate (Barrera, 2018) have shown the 

faster growth of newborn A. lixula compared with P. lividus, which is suggested 

as a win-win strategy for A. lixula under expected global change conditions. 

The coexisting sea urchins P. lividus and A. lixula have different diets and foraging 

activities (Wangensteen et al., 2011; Agnetta et al., 2013), and it has been 
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described that P. lividus has a preference for fleshy algae and that A. lixula 

preferentially graze on encrusting coralline algae (Privitera et al., 2008), having an 

important role in the maintenance of sea urchin barrens once they are established 

(Agnetta et al., 2015). In addition, a wider area can be impacted by A. lixula grazing 

activity than by P. lividus activity due to its higher mobility on barren zones 

(Bonaviri et al., 2011). Therefore, the increase of this species may have large 

consequences for macrophyte-dominated communities. 

Physical disturbances and interactions among multiple stressors acting at local 

and global scales can drive important changes in the structure and function of 

marine populations and communities. Several studies to date have demonstrated 

that severe storms and extreme waves can trigger mass mortalities in sea urchins 

populations (Scheibling and Lauzon-Guay, 2010; Scheibling et al., 2010) and have 

important effects on rocky shore communities in general (Denny et al., 2009; 

Micheli et al., 2016; Borja et al., 2018). An increase in the intensity and frequency 

of extreme climatic events, such as extraordinary storms (as observed in our 

study), has been observed since 1950 and is expected to increase in the future 

(IPCC, 2014; Reguero et al., 2019), especially in the Mediterranean, which has been 

highlighted as a hot- spot of ongoing climate change (IPCC, 2014; Cramer et al., 

2018). 

Our findings reveal that predation can control the establishment of new sea 

urchin populations and emphasize top-down control in NTZs. These results 

confirm the important potential role of protected zones, those areas fully 

protected from fishing, in the structure of benthic communities (Sangil et al., 

2012a; Sala and Giakoumi, 2017). Additionally, the contrasting patterns regarding 

different levels of protection observed in this study highlight the relevance of 

well-designed long-term monitoring to better understand the natural variability 

of sea urchin populations and to discern the underlying mechanisms when mass 

mortality events occur. Long-term monitoring also provides useful insights into 

the management and conservation of algal-dominated benthic ecosystems. 
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Abstract 

 

Widespread decline of canopy-forming macroalgal assemblages has 

been documented in many regions during the last decades. This pattern 

is often followed by the replacement of structurally complex algal 

canopies by more simplified habitats (e.g., sea urchin barren grounds). 

Against all odds, the fucoid Treptacantha elegans, a large Mediterranean 

brown macroalga, has broadened its distributional range and displayed 

an unexpected expansion along the northern coast of Catalonia over the 

last two decades. Here, we reconstructed its temporal and spatial spread 

and unraveled ecological traits mostly unknown such as population 

dynamics and genetic patterns to provide a comprehensive and 

integrated view of the current status and geographical expansion for this 

species. Fast-growing dynamics, early fertile maturity, and high turnover 

rate are the main competitive advantages that allow deep T. elegans 

populations to colonize available substrata and maintain dense and 

patchy populations. Besides, we also provided evidence that deep T. 

elegans populations across the Catalan coast constitute a single genetic 

group with little differentiation of populations. This may support the idea 

of a unique source of spread in the last decades from the Medes Islands 

No-Take Zone towards both southern and northern waters. 
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1. Introduction 

How marine populations persist, evolve, and change their geographical 

distributions as a response to global change is one of the main questions in 

contemporary ecology (Koehn et al., 2011; Munday et al., 2013). Species may 

redistribute to keep their preferred environmental conditions (Perry et al., 2005; 

Wernberg et al., 2011b; Poloczanska et al., 2013; Pecl et al., 2017) or adapt their 

physiology as a response to global and local stressors (Harley et al., 2012; 

Poloczanska et al., 2013). Seaweeds are dominant primary producers in benthic 

habitats with a key role in ecosystem functioning (Wernberg et al., 2011a; Wahl 

et al., 2015). As a response to global change, they may show both geographical 

expansions, when species colonize new habitats, or contractions, when 

populations disappear from areas previously inside their distributional range 

(Wernberg et al., 2011b; Bates et al., 2014).  

In the Mediterranean Sea, Cystoseira sensu lato fucoids (here used to designate 

Atlantic-Mediterranean fucoid species of Cystoseira sensu stricto, Carpodesmia 

and Treptacantha, Orellana et al., 2019) are late successional species and among 

the major canopy-forming seaweeds. They provide three-dimensional structure, 

food, and shelter to many associated species (Cheminée et al., 2013; Blanfuné et 

al., 2016). Decline of these species may drive a decrease in habitat complexity with 

important consequences for benthic biodiversity and ecosystem functioning 

(Thibaut et al., 2005, Mangialajo et al., 2008; Thibaut et al., 2015; Mineur et al., 

2015; Blanfuné et al., 2016). All Cystoseira species, except C. compressa, appear in 

the Annex II of the Barcelona convention (2010) among those taxa that are 

considered threatened or endangered and need protection measures (Gianni et 

al., 2013). Cystoseira sensu lato show limited dispersal abilities (Gianni et al., 2013; 

Capdevila et al., 2018), which support the existence of monospecific stands near 

the parent populations (Mangialajo et al., 2012). This characteristic and the 

influence of other environmental factors may explain why many populations of 

these macroalgae are so poorly connected in many areas of the Mediteranean 

Sea (Buonomo et al., 2018; Mariani et al., 2019) a trait that seriously jeopardizes 

their conservation. Nonetheless, the few studies on population genetics suggest 

that water currents play a significant role in long-distance dispersal for Cystoseira 

sensu lato populations (Susini et al., 2006; Thibaut et al., 2016a; Buonomo et al., 

2017). Thus, despite the well-documented general decline of local populations 
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(Thibaut et al., 2005; 2014a; 2015) evidences for stability and expansion have been 

also reported in some areas (Thibaut et al., 2014a; 2016b; Iveša et al., 2016).  

The Mediterranean endemic Cystoseira elegans (Sauvageau) Orellana & Sansón 

has very recently assigned to the genus Treptacantha (Orellana et al. 2019). It was 

first described by Sauvageau (1912; pp. 292) for Banyuls-sur-Mer (South-Eastern 

France) where the species formed extensive stands at the innermost rocky 

bottoms of coves and other shallow environments characterized by low to 

medium water movements (Feldmann, 1937). Although recent studies have 

reported important regression in shallow environments (Thibaut et al., 2005; 2015; 

Mariani et al., 2019), an exceptional expansion of T. elegans (identification by M. 

Verlaque, personal communication) has been observed in the Medes Islands No-

Take Zone (NTZ) and in nearby areas (North-Western Mediterranean Sea) across 

deeper habitats (between 5-20 m depth). As a result, there is strong evidence that 

T. elegans has been spreading along the coast of Catalonia in the last decades, 

clearly benefitting from some unknown environmental factor or a possible 

change in its fitness. 

Here we aim at describing this recent spread throughout the North Catalan coast. 

Concretely, our goals are: (1) provide insights about the main traits of deep T. 

elegans specimens and the species population ecology; (2) assess the species 

historical and current distribution in the Catalan coast; and (3) provide an estimate 

of the patterns of genetic diversity and differentiation among populations 

including the ancient and recent expansion zones. 

2. Materials and Methods 

2.1 Phenology and demographic data 

To untangle their population dynamics, three deep Treptacantha elegans 

populations from the Medes Islands NTZ were annually surveyed in early summer 

during the seaweed maximum development period. All sites were selected to 

show physical and biological characteristics as similar as possible. Two permanent 

plots of 1 and 1.5 m2 were placed between 5 and 10 m depth at each site. A total 

of 684 specimens were mapped and individually monitored yearly from 2017 to 

2019. 

To accurately describe the reproductive period, 20 T. elegans individuals covering 

a wide size range (2-23 cm) were monthly sampled from Medes Islands NTZ for 
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one year to determine the presence and maturity of receptacles of the alga in the 

laboratory. We categorized the maturity status within three stages: 1) immature 

individuals without receptacles; 2) individuals beginning their reproductive 

period, showing receptacles but still immature; 3) fertile and reproductive 

individuals. 

Measurement of the main axis was reported as a good indicator in morphometric 

studies of other Cystoseira species (Ballesteros et al., 2009). However, as T. elegans 

is characterized by a tiny main axis (1-3 cm height, Cormaci et al., 2012), this trait 

hinders accurate measurements in situ unless invasive techniques are applied. To 

discern the best size indicator for in situ measurements, we collected 27 

specimens and measured several morphometric parameters. Correlation analyses 

between the parameters were done (Table 1 S4) and the maximum height of the 

longest axis was selected as the best parameter. Then, all specimens inside the 

plots were measured using a caliper by SCUBA divers. We calculated population 

density and size structure pooling the individuals in 1 cm size intervals (Ballesteros 

et al., 2009; Capdevila et al., 2015; Verdura et al., 2018). Yearly transition measures 

within the studied period were used to estimate the mortality and recruitment 

rates. Recruits were identified as new individuals appearing in the permanent 

plots regardless of their size. Mortality rates for each size class were compared 

using a generalized linear model (GLM) fitted with a negative binomial 

distribution and a logarithm link function after visually checking the most likely 

distribution of the data and residuals (McCullagh and Nelder 1989). GLM analyses 

were conducted using the package “MASS” for R software (Venables and Ripley 

2002) with R version 3.3.3 (R Core Team, 2017). 

2.2 Spatial and temporal distribution  

Past and present distribution of shallow and sheltered Treptacantha elegans in 

the Catalan coast has been recently reported by Mariani et al. (2019). Although 

descriptive studies have been carried out in the studied shorelines since the 

seventies (Ballesteros et al., 1984a; b), T. elegans was not reported for deeper and 

more exposed environments until the nineties. The first occurrence for the species 

(as Cystoseira spinosa; see Mariani et al. 2019) on infralittoral habitats from 

Catalonia was reported for the Medes Islands by Sala (1996). All available 

information about the spatial and temporal distribution of this species along the 

Catalan coast is reported in Table 1. 
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Table 1. Details of historical information on T. elegans compiled for the present study. 

Locality 

Distance 

from 

Medes 

Islands 

(Km) 

GPS 

coordinat

es 

Year of 

first 

observ

ation 

Referenc

e 

Type of 

document 

Previous 

studies 

in the 

area? 

Current 

distributio

n 

Ferranelles 0 
42.04195; 

3.22577 
1996 Sala, 1996 Article Yes Present 

Tascons 0 
42.0416 ; 

3.2268 
1996 Sala, 1996 Article Yes Present 

Freueto 0 
42.0446 ; 

3.2241 
1996 Sala, 1996 Article Yes Present 

Falaguer 2 
42.0659 ; 

3.2096 
1996 Sala, 1996 Article Yes Present 

Cova de la 

Reina 
0 

42.0464 ; 

3.2244 
1998 

Hereu et al., 

2008 
Article Yes Present 

Sant Estiu 0 
42.0428 ; 

3.2253 
1998 

Hereu et al., 

2008 
Article Yes Present 

Raco 

Portitxol 
0 

42.0434 ; 

3.2241 
1998 

Hereu et al., 

2008 
Article Yes Present 

Salpatxot 0 
42.0492; 

3.2226 
2001 

Medrano et 

al., 2019b 
Article Yes Present 

P.Deu 0 
42.0507 ; 

3.2245 
2001 

Medrano et 

al., 2019b 
Article Yes Present 

Molinet 1 
42.0555 ; 

3.2120 
2001 

Medrano et 

al., 2019b 
Article Yes Present 

Arquets 1.2 
42.0582 ; 

3.2125 
2001 

Medrano et 

al., 2019b 
Article Yes Present 

Dui 1.7 
42.0635 ; 

3.2113 
2002 

Medrano et 

al., 2019b 
Article Yes Present 

Embarcado

r 
0 

42.0466 ; 

3.2201 
2003 CEAB* Report Yes Present 

Aiguafreda, 

Begur 
9 

41.9641 ; 

3.2277 
2010 CEAB* Report Yes Present 

Messina, 

Cap de 

Creus 

29 
42.2912 ; 

3.3083 
2011 CEAB* Report Yes Present 

Baix de 

Cols 
7.5 

42.1001 ; 

3.1861 
2011 CEAB* Report Yes Present 

Llosa, 

Palamós 
25 

41.8461 ; 

3.1482 
2012 CEAB* Report Yes Present 

(*) CEAB (Centre d'Estudis Avançats de Blanes; CSIC). Data have been collected since 1992 by the 

Macroalgae and invasive species monitoring group. 
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2.3 Molecular analysis 

We collected twenty Treptacantha elegans samples in each of 3 locations along 

the Catalan coast, covering its range of distribution in the area (Fig. 1, locations: 

1 Medes Islands NTZ, 2 Messina, and 3 Begur). The samples were dried in silica 

gel for DNA extraction and kept in separated bags for molecular analysis. 

Figure 1. Geographical distribution of deep Treptacantha elegans over the studied years in the 

Catalan coast. Colored dots indicate the temporal sequence of their first report and circled 

numbers identify the populations where molecular analyses were conducted. 

Genomic DNA for the three T. elegans populations was extracted from the dried 

samples using the NucleoSpin® Plant II kit (Macherey-Nagel Duren, Germany) 

according to the manufacturer’s protocol. Eight unpublished microsatellite loci 

previously developed for Cystoseira baccata were used for genotyping. 

Polymerase chain reactions (PCRs) were performed in 15 µL total volume 

containing 1· GoTaq® Flexi buffer (Promega, Madison, WI, USA), 1.5 mm MgCl2, 

0.07 mm each dNTP, 0.4 µM of labelled (FAM, ATT0-550, ATT0-565 or HEX) 

forward primers, 0.4 µM of reverse primers, 1U GoTaq Flexi DNA Polymerase 

(Promega), and 5 µL of 1:100 diluted DNA template. In all PCRs, an initial 

denaturation step (95ºC, 2 min) was followed by 30 cycles of 95ºC for 30 s, a 

primer specific annealing temperature (Ta) for 30 s and 72ºC for 30 s, ending with 
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a final elongation step at 72ºC for 5 min. Amplified fragments were separated 

using an ABI PRISM 3130 xl (Applied Biosystems, CCMAR, Portugal) automated 

capillary sequencer. Alleles were manually scored in STRand (Toonen and Hughes, 

2001) using the GeneScan 500 LIZ dye size standard (Applied Biosystems).  

Estimates of genetic diversity were calculated for each locus and population using 

GENETIX software v. 4.05 (Belkhir et al., 1996-2004). This included the mean 

number of alleles per locus (allelic richness), non-biased expected heterozygosity 

(HE), observed heterozygosity (HO), number of private alleles, and inbreeding 

coefficient (FIS).Pair-wise differentiation, as assessed with FST (Weir and 

Cockerham, 1984), were calculated. Analyses of molecular variance components 

(AMOVA) were conducted using ARLEQUIN v3.1 (Excoffier et al., 2005).  

Population structure was inferred using STRUCTURE v2.444 (Pritchard et al., 2000) 

considering admixture and no a priori population assignments. The correlated 

allele frequency model was run with a burning time of 250,000 repetitions, 

1,000,000 iterations and considering a range of genetic clusters (K) from 1 to 5. 

The model was run 14 times for each K to check the consistency. The best K was 

estimated using the program Structure Harvester (Earl et al., 2012). All individuals 

with missing data at three or more loci were excluded (4 individuals). 

3. Results 

3.1 Phenological and ecological traits 

Branches of Treptacantha elegans from deep habitats (5-15 m depth) begin to 

grow from the perennial basal disc (or holdfast) in early spring when sea water 

temperature starts to rise (Fig. 2). The branches are overall thicker and longer than 

those observed in specimens from shallow and sheltered environments (see 

Mariani et al., 2019 and Authors’ personal observations). The receptacles located 

at the base of each spiny branch begin to mature progressively as branches 

approach their maximum development. Larger specimens may exceed 50 cm in 

height like in shallower specimens (Barceló et al., 2001). The reproductive period 

spans from the end of May to August, being fertile mainly when water 

temperature rises above 18ºC. In June and July, 90% of the sampled individuals 

showed receptacles (Fig. 2). The minimum size of fertile sampled individuals was 

4.5 cm height. Like in the shallow T. elegans specimens, those from deeper 

habitats shed their branches after the reproductive period and remained attached 
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to the substrate through the perennial holdfast until the following spring (Fig. 2) 

(Gómez-Garreta et al., 2001; Rodriguez-Prieto et al., 2013). 

Figure 2. Monthly frequency of fertile Treptacantha elegans individuals observed during a year. 

Light blue bars represent the percentage of immature individuals, without the presence of 

reproductive structures. Medium-blue bars represent the percentage of the individuals beginning 

the reproductive stage, with reproductive receptacles in the maturing process. Dark blue bars 

represent the percentage of fertile and reproductive individuals. The red line shows the mean 

monthly temperature at 5 m depth. Pictures at the top illustrate the monthly canopy-forming 

branches development stage. 

Similar high densities (51.3 ± 4.26 ind/ m2, Mean ± SE) were observed over the 

three years in the monitored populations. These dense populations were usually 

dominated by large individuals of more than 15 cm length (except in 2017, Fig. 

3). Some specimens of Treptacantha elegans can reach large sizes within their first 

year of life, with an observed maximum annual growth of 28 cm/year in May for 

an individual recruited the previous spring. New recruits that yearly appeared in 

the permanent plots were about one-third of the total counts (33.7 % ± 7.9, Mean 

± SE), 82 % of which exceeded the fertile minimum size. The mean annual 

mortality rate within the 3 populations was about 36 % (35.9 % ± 9.8, Mean ± SE). 

Small specimens showed higher annual mortality rates than the larger ones (Fig. 

4, Table 2).  
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Figure 3. Size-class distribution of the length of the longest axis (cm) ofTreptacantha elegans 

populations across the three studied years. Relative frequency of size-classes was estimated on 

1cm intervals. 

 

Table 2. Results of the generalized linear model (GLM) testing differences in the T. elegans 

mortality rates between the size classes.  

 

 

 

 

 

 

 

 

 

 

 

 

Variables Coefficients AIC  

  Estimate Std. 

Error 

z value p  

Mortality rate 

~ Size Class 

Intercept 0.7753 0.0843 9.190 <0.001 -9.236 

Size Class 

(cm) 

-0.0344 0.0089 -3.835 <0.001 
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Figure 4. Relationship between the mortality rate and the size of the T. elegans stands. The blue 

line represented the generalized linear model fitted between the response variable and the 

predictor fitted to the most likely distribution (negative binomial). 
 

3.2 Spatial and temporal distribution 

Since their first observation in the Medes Islands NTZ by Sala and Boudouresque 

(1996), deep T. elegans populations have progressively expanded to other areas 

of the coast of Catalonia (Fig. 1). The farthest populations were detected 30 km 

away from the Medes Islands in 2011 and 2012 (Table 1). All the 17 populations 

detected over the last two decades were still present in 2018 on rocky, exposed 

bottoms between 5 and 15 m depth.  

3.3 Population genetic structure and diversity 

The 8 microsatellite loci showed moderate polymorphism, ranging from 3 to 14 

total alleles per locus (64 in total). Allelic richness was higher in the Medes Islands 

NTZ population and lowest in the northern population (Messina) (Table 3). 

Although it showed the lowest number of private alleles, marginally higher 

genetic diversity was also observed in Medes Islands NTZ (Table 3). All 

populations showed positive inbreeding coefficients (FIS) resulting from 

heterozygote deficiency (Table 3). Mean FST across all populations and loci was 

0.07.  
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Table 3. Multilocus genetic diversity estimates for T. elegans populations (n= 20) across Catalan 

coast based on 8 microsatellite loci. For A, He, and Ho values are mean ± SE over all 8 loci. He 

corresponds to unbiased expected heterozygosity (Nei 1978). 

Location Map code 

Allelic 

richness 

(A) 

Expected 

hetero-

zygisity 

(He) 

Observed 

hetero-

zygosity 

(Ho) 

Inbreading 

coefficient 

(FIS) 

Number 

of private 

alleles 

Mesina 2 4.5 ± 0.5 0.7 ± 0.03 0.39 ± 0.09 0.34 6 

Medes Islands 1 6 ± 1.2 0.74 ± 0.05 0.56 ± 0.1 0.11 4 

Begur 3 5.6 ± 0.8 0.70 ± 0.06 0.46 ± 0.1 0.29 8 

 

Table 4. Pairwise FST estimates between the three populations over 8 loci. Asterisks indicate 

significant values of F-statistics (P < 0.05) for 1023 permutations 

  FST Distances (km) 

Populations Medes Islands Begur Medes Islands Begur 

Mesina 0.073* 0.099* 29 37 

Medes Islands   0.030  9 

 

 

The analyses of Molecular Variance (AMOVA) revealed that most genetic variation 

occurred within populations (93%, Table 2 S4). Pairwise FST estimates revealed no 

differentiation between the Medes Islands and Begur (separated only by 9 km, 

Fig.1 locations 1 and 3). Pairwise estimates between the Medes Islands with 

Messina and Messina with Begur were significant (Table 4). According to Structure 

Harvester the best K was 3. Structure results showed negligible population 

differentiation within T. elegans populations across the Catalan coast, i.e., 

revealed a genetically homogeneous region (Fig. 5). 
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Figure 5. Genetic subdivision of Treptacantha elegans populations based on STRUCTURE, 

assuming 3 genetic clusters. Each vertical bar represents the proportion of genome assigned to 

each cluster for each individual. Vertical black lines separate different populations. Note the 

absence of any population differentiation. 

4. Discussion 

Most species Cystoseira sensu lato gather many typical traits of less competitive 

species (sensu McKinney and Lockwood, 1999): they are often considered late 

successional species, are especially sensitive to environmental and man-induced 

stressors (Ballesteros et al., 2007) and show limited dispersal abilities (Mangialajo 

et al., 2012; Gianni et al., 2013). This is why the results of this study are surprising. 

Despite its decline in shallow and sheltered environments in neighboring areas 

(Thibaut et al., 2005; 2015), in contrast, the brown alga Treptacantha elegans has 

remarkably increased both its depth range and spatial distribution over the last 

two decades along the Catalan coast. 

In the Medes Islands NTZ, T. elegans forests showed fast-growing dynamics, and 

their stands were capable to reach the largest sizes and fertile maturity at 1 year 

old. These uncommon traits among species of the same genus clearly represent 

an advantage for colonizing new available substrate. In addition, no differences 

were observed between algal annual mortality rates and the percentage of new 

individuals observed within the same year, which might also represents a major 

advantage for T. elegans populations.  

Increased tolerance and adaptation, and/or migration to different locations within 

their specific niche, are the possible responses to environmental changes in 

macroalgae (Harley et al., 2012). Morphological variation has been observed 

between T. elegans populations from shallow to deep waters (Mariani et al., 2019) 

and the presence of thicker and spinier branches is most likely a plastic response 

(acclimation rather than adaptation) to more exposed and deeper environments 
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as no evidence for genetic differences has been detected in preliminary assays of 

these morphotypes (João Neiva pers.comm. = cox1 sequences). 

Our molecular analyses of the three T. elegans populations across the Catalan 

coast showed a great homogeneity despite relatively high intra-population 

variation and inbreeding. The first deep T. elegans population was detected in the 

Medes Islands NTZ and its origin is believed to be related to the protection effect 

(Sala et al., 2012). This population also exhibited the highest allelic richness, so it 

may represent the focus of the geographical expansion across the Catalan coast. 

These results may suggest a common a common ancestral gene pool but loosely 

connected populations, as has been reported for other Cystoseira sensu lato 

species (Susini et al., 2007; Buonomo et al., 2017; 2018). This could be explained 

by the patchy distribution of T. elegans populations which has been related to the 

presence of rocky and suitable habitats and limited dispersal range of fucoid 

gametes (Sales and Ballesteros, 2009; Mariani et al., 2014; 2019). Unfortunately, 

our data are not sufficient to determine a correlation between distance and 

genetic differentiation within populations.  

Limited range dispersal has been proposed for most fucoid species because of 

their large sized and fast sinking zygotes (Gianni et al., 2013). Although gametic 

dispersal distance of T. elegans is less than 10 m from source populations 

(Authors, manuscript under review; chapter 4), here we show the existence of two 

populations 30 km away from the Medes Islands NTZ. This may be explained by 

the fact that this species, as other fucoids, is capable to disperse through 

detached or drifting fertile parts of mature plants (Deysher and Norton, 1982; 

Mangialajo et al., 2012; Thibaut et al., 2014b) or by animals (Gianni et al., 2013). 

This may explain the southern spreading through the Northern Current, which 

flows with a permanent southwestward circulation in the Northwestern 

Mediterranean basin (Calvo et al., 2011). Since a spread in the opposite direction 

is unlikely (i.e. from the Medes Islands to the northern study area), T. elegans 

populations from the north of Catalonia may have arrived from the original 

population in Banyuls-sur-Mer (France) where this species was described for the 

first time (Sauvageau, 1912) or from shallow populations in the same area (see 

Mariani et al., 2019).  

Several environmental drivers and the interaction of some favorable conditions 

may have promoted the spreading of this species. Seawater eutrophication is one 

of the major causes for the disappearance of Cystoseira sensu lato populations in 
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the Mediterranean Sea (Sales et al., 2011; Iveša et al., 2016). Evidence of the 

improvement in coastal water quality in the Catalan coast, particularly during the 

1990s (Pinedo et al., 2013), has been related to the recovery of Cystoseira sensu 

lato species (Ricart et al., 2018). The Medes Islands NTZ might have worked as a 

refuge for T. elegans populations until environmental conditions had improved, 

probably favored by the predatory fish control on their main grazers (Medrano et 

al., 2019a). 

Our results shed new light on the capacity of Cystoseira sensu lato species to 

persist or even widen their geographical distributions under global change 

scenarios. Given its fast and stable population dynamics, T. elegans may represent 

an ideal organism to conduct habitat restoration actions in previously degraded 

systems such as sea urchin barrens or turf-dominated habitats. Due to its high 

genetic diversity, and the potential source for new populations, Medes Islands 

NTZ population may be the ideal source of T. elegans individuals or propagules 

for restoration actions.   
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Chapter IV 

 

 

From marine deserts to algal forests: Cystoseira 

forestation to reverse stable degraded ecosystems 

inside and outside a No-Take marine reserve 
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Abstract 

 

Canopy-forming algae are in decline in many coastal areas, where 

overgrazing by herbivorous can lead to the loss of these highly structured 

and diverse habitats towards less complex sea urchin barren grounds. 

Once established, low productive barren grounds are considered stable 

states maintained by several positive feedback mechanisms that prevent 

the recovery of marine forests. To revert this global decline, restoration 

efforts and measures are being encouraged by EU regulations and local 

actions. Here, we tested the success of active forestation techniques as a 

tool to promote functional and productive Cystoseira forests in sea 

urchin barren grounds under different restoration strategies (active, and 

combined active with passive strategies). Active forestation was 

performed in 6 barren grounds, 3 located inside a Mediterranean No-

Take marine reserve (active and passive strategy) and 3 outside (active 

strategy alone), following a three-step protocol: 1) sea urchin population 

eradication, 2) seeding with Treptacantha elegans, and 3) enhancement 

of T. elegans recruitment. Forestation success was assessed one year later 

in the 6 barren grounds. Successful forestation was only achieved after 

combining active with passive restoration strategies, which significantly 

improved both the associated benthic community and the cover of T. 

elegans. Our results encourage forestation of barren grounds to shift 

from less productive habitats to complex Cystoseira forests, highlight the 

potential of the combined passive and active restoration strategies, as 

well as the important role of marine reserves not only in conservation but 

also in ecological restoration.  
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1. Introducció 

Macroalgae are ecologically pivotal species in temperate coastal ecosystems 

worldwide, where they are one of the dominant primary producers with a key role 

in the ecosystem functioning (Jones et al., 1994; Duarte and Cebrian, 1996; Teagle 

et al., 2017). In temperate ecosystems, kelps (Laminariales) and fucoids (Fucales) 

are the large canopy-forming macroalgae in the intertidal and subtidal zones, 

creating structurally complex habitats that provide food and shelter for many 

species and harbor high diversity and productivity (Dayton, 1985; Steneck et al., 

2002; Schiel and Foster, 2006). Canopy-forming macroalgal species provide 

unique habitats with services comparable to terrestrial forests (Dayton, 1985; 

Graham, 2004; Ballesteros et al., 2009; Wernberg et al., 2011a). However, coastal 

pollution, overfishing, ocean warming, and other disturbances are causing the 

widespread decline of macroalgal species (Steneck et al., 2002; Wernberg et al., 

2011a; Campbell et al., 2014), affecting the provision of habitat services for the 

associated flora and fauna, and the consequent loss of ecosystem functioning 

(Lorentsen et al., 2010; Cheminée et al., 2013; Mineur et al., 2015). 

Increased sea urchin overgrazing resulting from the reduction of predator 

populations is one of the main causes for the global loss of marine macroalgal 

forests. Sea urchin populations follow natural fluctuations that can lead to gradual 

increases in abundance, but abrupt increases (i.e., outbreaks) are possible usually 

due to indirect effects of overfishing such as overfishing of their natural predators 

(Steneck, 1998; Guidetti and Dulcic, 2007; Medrano et al., 2019a) or destructive 

fisheries of benthic communities, such as the case of mussels (Guidetti et al., 2003; 

Guidetti, 2011). Sea urchin outbreaks can boost overgrazing and cause a shift 

toward low productive habitats such as turf-forming algae or sea urchin barren 

grounds (Pinnegar et al., 2000; Airoldi and Beck, 2007; Ling et al., 2015; Maggi et 

al., 2018; Filbee-Dexter and Wernberg, 2018). Once established, these barren 

grounds are considered stable alternate states maintained by several feedback 

mechanisms that prevent the recovery of macroalgal forests. These hysteresis 

loops affect both sea urchin populations by increasing the probability of 

recruitment and juvenile survival as more sea urchin adults are found, and algal 

establishment by reducing the supply of propagules as neighbor algae 

populations become more scarce (Filbee-Dexter and Scheibling, 2014; Ling et al., 

2015). 

In the North-Western Mediterranean, the two described ecosystem stable states 

are found in shallow rocky bottoms in the form of overgrazed communities 
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represented by barren grounds with high abundance of sea urchins and low algal 

biomass, and highly complex and diverse macroalgal-dominated communities 

(McClanahan and Sala, 1997; Pinnegar et al., 2000). The highest level of 

macroalgal complexity in the NW Mediterranean Sea is represented by canopy-

forming Cystoseira sensu lato species (Fucales). These iconic and fragile 

Mediterranean Cystoseira forests are currently facing a decline, with important 

losses of the three-dimensional habitat for local species, and important 

consequences for biodiversity and ecosystem functioning (Bulleri et al., 2002; 

Thibaut et al., 2005; Mangialajo et al., 2008; Thibaut et al., 2015; Mineur et al., 

2015; Blanfuné et al., 2016; Gianni et al., 2017).  

Efforts to protect and restore macroalgal forests and similar habitats around the 

world are based on classical management with Marine Protected Areas (MPAs) 

and, in particular, No-Take Zones (NTZs). NTZs prevent the overexploitation of 

key structural species, allowing for the reduction or removal of associated 

impacts, maintaining and restoring ecosystem function, with the subsequent 

improvement of trophic regulation on populations of consumers (i.e., trophic 

cascades). However, not much evidence supports NTZs as effective enough to 

restore degraded ecosystems (Huntington et al., 2011; Sangil et al., 2012; Toth et 

al., 2014; Cox et al., 2017). The natural variability on species dynamics and 

ecological interactions limit recovery benefits only after long term periods (i.e., 

decades, Babcock et al., 2010; Strain et al., 2019). A more suitable tool for recovery 

in the shorter term is ecosystem restoration, which involves the active assistance 

in the recovery of a degraded, damaged, or destroyed habitat (SER 2004). Active 

restoration speeds up the ecosystem recovery by implementing management 

techniques (e.g., transplanting) (Perrow and Davy, 2002; Holl and Aide, 2011; 

Bayraktarov et al., 2016).  

Restoration of macroalgal forests has mostly considered transplanting individuals 

(Vasquez and Tala, 1995; Carney et al., 2005; Falace et al., 2006; Whitaker et al., 

2010), but the limited dispersal ability of Cystoseira spp. (Mangialajo et al., 2012; 

Gianni et al., 2013) and the negative impact of transplanting Cystoseira individuals 

from the remaining populations (Verdura et al., 2018) have led to the 

development of non-destructive restoration techniques such as the enhancement 

of recruitment potential (Gianni et al., 2013; Falace et al., 2018; Verdura et al., 

2018) or the ex situ outplanting (De La Fuente et al., 2019).  

Several control measures to reduce sea urchin abundance such as eradication 

have been also described to actively restore the sea urchin barren grounds 
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(Leighton et al., 1966; Watanuki et al., 2010; Sangil et al., 2012; Piazzi and 

Ceccherelli, 2019). Despite these efforts, attempts to recover macroalgal forests 

from sea urchin barren grounds remain challenging due to the high hysteresis of 

stable barren state and the difficulty of reestablishing populations of natural 

predators and consequent trophic cascades (i.e., in old and well-enforced NTZs) 

that help reduce pervasive sea urchin overgrazing (Ling et al., 2015; 2019).  

Combining well-designed active and passive restoration practices has become an 

indispensable strategy to reverse widespread ecosystem degradation (Lotze et al., 

2006; Mitsch, 2014; Possingham et al., 2015). Given that this is a largely 

unexplored scenario on Cystoseira forestation and restoration of degraded barren 

grounds, the aim of this study was to evaluate the potential success of active 

restoration techniques alone or combined with marine protection (active and 

passive restoration) to recover shallow stable degraded habitats. To do this, we 

tested for the most adequate active restoration techniques to forest shallow sea 

urchin barren grounds combining the sea urchin eradication with recruitment 

enhancement techniques to promote the Cystoseira forestation inside and 

outside a Mediterranean NTZ.  

2. Materials and Methods 

2.1 Model species  

Most Cystoseira sensu lato species are endemic to the Mediterranean Sea 

(Ballesteros, 1990; Cormaci et al., 2012), where they can form forests from the 

surface to the upper circalittoral zone, play a key functional role (Ballesteros et al., 

1998; Mangialajo et al., 2008; Sala et al., 2012; Cheminée et al., 2013). 

Treptacantha elegans (Sauvageau, 1912) is a Mediterranean endemic species, 

inhabiting from the infralittoral zone to several meters depth in the Catalan Coast 

(maximum observed 20 m depth, Capdevila et al., 2019b). Their canopy-forming 

branches grow in spring, reaching the maximum development and the fertile 

maturity in early summer when larger specimens may exceed fifty centimeter 

height (Barceló et al., 2001). The reproductive period of T. elegans spans from the 

end of May to July (individuals of 1 or >1 year old, author’s personal observation). 

Plants are reduced to single axes in autumn and winter with which they remain 

attached to the substratum perennially (Gómez-Garreta et al., 2001; Rodriguez-

Prieto et al., 2013).  
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2.2 Study site: the Montgrí, Illes Medes and Baix Ter (MIMBT) Natural Park  

Active forestation tests were carried out in the MIMBT Natural Park in 2018 (Fig. 

1). This Natural Park, located in the North-Western Mediterranean Sea, has its 

core in the NTZ of the Medes Islands, where all fishing activities are prohibited 

and the abundance of the main sea urchin fish predators and sea urchin predation 

rates have remained significantly higher than outside the NTZ (Hereu et al., 2012a; 

Medrano et al., 2019a). Benthic shallow-rocky habitats inside and outside the NTZ 

are similar and mostly dominated by photophilic algal communities of small erect 

algae and calcareous algal formations (Ballesteros, 1991; Medrano et al., 2019b). 

Among these communities, there are conspicuous healthy and well-preserved 

forests dominated by the fast-growing T. elegans species as well as degraded 

barren grounds dominated by sea urchins (authors, in preparation). The sea 

urchin Paracentrotus lividus (Lamark, 1816) is considered the most abundant and 

important local herbivore controlling fleshy macroalgal dynamics in these shallow 

reefs (Sala and Zabala, 1996; Hereu, 2005). Although the black sea urchin Arbacia 

lixula (Linnaeus, 1758) is also common, its abundance is comparatively very low 

in the Catalan coast (Hereu et al., 2012a). 



Chapter IV 

  

87 
 

In the MIMBT Natural Park, 10 locations were selected for this study: six degraded 

barren grounds to forest (3 inside the NTZ and 3 outside), two dense T. elegans 

forests as reference sites of forest state (1 inside the NTZ and 1 outside), and two 

degraded barren ground as reference site of degraded habitat (1 inside the NTZ 

and 1 outside). Given the small extension of the NTZ, we selected a limited 

number of reference areas. All ten locations were selected in the 5 -10 meter 

depth range (5 inside the NTZ and 5 outside) covering the most diverse range of 

barren grounds’ sizes and local-scale variability (Table 1) given the limited size of 

the NTZ area (93 ha). 

Figure 1. Map of the 10 study locations in the Montgrí, Illes Medes and Baix Ter Natural Park in 

the NW Mediterranean Sea. (A) Locations inside the NTZ. (B) Locations outside the NTZ. Pink dots 

indicate barren grounds where active restoration strategy was carried out; grey dots indicate 

reference barren grounds and, green dots represent reference forests. 
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Table 1. Characteristics of the 10 studied locations. On ‘Restoration Strategy’ column, BC means 

Barren Control; AR means Active Restoration (i.e. sea urchin eradication and T. elegans 

forestation); and, FC means Forest Control. Values of sea urchin densities and biomass are Mean 

± SE.  

 

2.3 Forestation techniques 

Active forestation of six barren grounds was carried out by a combination of 

complete sea urchins eradication together with the facilitation of Treptacantha 

elegans forests establishment in the MIMBT Natural Park in 2018.  

Macroalgal forestation technique was based on the enhancement of recruitment 

potential of the new T. elegans populations. In spring 2017, we first experimentally 

tested in situ and ex situ seeding techniques success. To this end, some apical 

branches with fertile receptacles were collected from a healthy and fertile T. 

elegans donor population inside the NTZ (Ferranelles, Fig. 1) and placed in PVC 

mesh bags allowing the gametes liberation through the mesh (Choi et al., 2000; 

Verdura et al., 2018). For in situ recruitment enhancement technique tests, six 

Locality GPS coordinate Protection 
Initial 

state 

Restoration 

strategy 

Depth 

(m) 
Orientation 

Eradication 

extension 

(m2) 

Initial 

sea 

urchin 

density 

(Ind/m2) 

Initial 

sea 

urchin 

biomass 

(g/m2) 

       

Dofi Sud 
42°2'38.25"N; 

3°13'35.48"E 
Inside NTZ Barren AR -7.6 S 225 

27.2 ± 

2.95 

208.2 ± 

22.6 

       

Dofi_N 

Arcs 

42°2'40.46"N; 

3°13'34.35"E 
Inside NTZ Barren AR -6.8 NW 90 

27.1 ± 

6.56 

297.3 ± 

59.1 

       

Dofi N  

Cantonada 

42°2'39.61"N; 

3°13'34.15"E 
Inside NTZ Barren AR -7 S 45 

25.2 ± 

2.67 

184.3 ± 

38.2 

       

Ferranelles 
42°2'31.88"N; 

3°13'32.07"E 
Inside NTZ Forest FC -5.5 S - 

0.67 ± 

0.67 

8.7 ± 

8.7 

       

La Vaca 
42°2'51.29"N; 

3°13'32.47"E 
Inside NTZ Barren BC -7.6 S - 

41.1 ± 

4.36 

339.7 ± 

50.4 

       

Foradada 
42°4'57.94"N; 

3°11'54.46"E 

Outside 

NTZ 
Barren AR -5.5 S 72 

25.6 ± 

3.73 

181.3 ± 

36.6 

       

R. Sardina 
42°4'15.67"N; 

3°12'24.65"E 

Outside 

NTZ 
Barren AR -6 NW 660 

31.2 ± 

7.58 

251.6 ± 

34.1 

       

C. Calella 
42°3'35.60"N; 

3°12'46.13"E 

Outside 

NTZ 
Barren AR -6 S 24 

42.4 ± 

3.64 

155.6 ± 

33.3 

       

Falaguer 
42°3'57.82"N; 

3°12'36.70"E 

Outside 

NTZ 
Forest FC -7 S - 

0.17 ± 

0.17 

8.3 ± 

8.3 

       

Catifoll 
42°3'47.90"N; 

3°12'38.59"E 

Outside 

NTZ 
Barren BC -6 S - 

42.7 ± 

15.09 

157.3 ± 

28.4 
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meshed bags containing about 75-80 g FW of fertile apexes each (77.84 ± 6.49 g 

FW, Mean ± SE) were placed in a degraded algal community (dominated by 

barren and turf communities with no T. elegans stands) tied to a plastic screw 

previously fixed in the hard substratum, and 5 flat manufactured limestone plates 

of 25 cm2 (hereinafter referred to as stone plates) were set directly below the 

seedling bags as settlement collectors.  

To test the same technique in an ex situ experiment, we simultaneously placed 5 

identical seedling bags into five 12-L aquaria together with the same settlement 

stone plates. Aquaria were set to close-fitting the light and temperature natural 

environmental conditions. Day/night cycles were simulated at 12/12 hours regime 

and temperature was constant over the two experimental months around 17ºC. 

T. elegans zygotes settled and grew up in aquaria for two months in order to 

ensure an optimal development of early life stages of T. elegans individuals 

(Falace et al., 2018). After then, the collectors were placed at the same locality 

than in situ technique collectors. Density of the recruits (new T. elegans 

individuals) in each collector was measured at the transplant moment and was 

compared between the two techniques 2 months after the transplantation using 

a generalized linear model (GLM) (McCullagh and Nelder, 1989). The abundance 

of T. elegans recruits was fitted with a negative binomial distribution and a 

logarithm link function after visually checking the most likely distribution of the 

data. The variables technique (2 levels: in situ vs. ex situ) and time (2 levels: initial 

vs. two months later) were included as main factors in the model. 

Once the successful technique was estimated in preliminary tests, in spring 2018, 

in situ seedling technique was implemented within the 6 degraded barren 

grounds (3 inside the NTZ and 3 outside, Fig. 2A) and the 4 reference sites (Table 

1). Taking advantage of this experimental setup, we additionally tested three 

types of settlement collectors; stone plates (flat manufactured limestone), plots 

of original substrate (unmanipulated limestone substrate, mainly covered by the 

representative algal assemblages), and plots of scraped and cleared substrate of 

approximately 25 cm2 area each. Six collectors of each type were randomly placed 

or delimited around the 6 seeding bags on each experimental site (Fig. 2B). The 

density of T. elegans recruits was measured at the beginning of the experiment 

and one year later on the 18 collectors at each site, to assess a) if free and available 

substrate should be provided to enhance the development of the new recruits, 

and b) which was the best substrata for initial settlement. The number of initial 

recruits was fitted in a GLM with the type of collector as explanatory factor (3 

levels: stone plates, original substrate, cleared substrate). Differences in the one 
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year mortality rate of recruits between collectors were assessed using the same 

GLM but fitting the mortality rate as response variable instead of the number of 

the initial recruits. All GLMs analyses were conducted using the package “MASS” 

for R software (Venables and Ripley, 2002). 

 

 

Figure 2. Diagram showing the experimental design and the three-step T. elegans forestation 

protocol. A) Complete eradication of sea urchins on the degraded barren grounds. B) Detail of 

meshed seeding bags (grey) and the three different types of settlement collectors. C) Mature 

forest of T. elegans resulting from restored degraded sea urchin barren grounds. 
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To remove the sea urchin grazing impact and to ensure the survival of newly 

settled T. elegans populations, we eradicated sea urchin populations on the study 

sites by manually removing all of them (as Guarnieri et al., 2014). The complete 

eradication of the sea urchins present in the six selected barrens was performed 

by SCUBA divers with the permission and following the ethical standards of the 

Natural Park which ensure that this study did not involve the removal of species 

listed as endangered. Therefore, in order to promote the forestation of sea urchin 

barren grounds, we set a three-step protocol involving: 1) the removal of the 

impact (sea urchins eradication), 2) the seeding with T. elegans, and 3) the 

enhancement of the T. elegans recruitment (see video file S6 for detailed protocol 

and Fig. 2 for the summarized one). 

2.4 Restoration strategies 

To assess the success of active restoration within the two levels of protection 

(inside a NTZ and outside), we characterized macroalgal and sea urchin 

communities at the 10 locations by SCUBA diving before the forestation actions 

(2018; Table 1) and one year later (2019).  

Sea urchin abundance and size (diameter) were measured in 10 quadrats of 50x50 

cm in order to estimate their biomass and size structure in each location before 

and one year after the sea urchin eradication. To assess the effectiveness of 

eradication, the sea urchin biomass in the degraded locations where active 

eradication was done, was selected as reference level and compared with the 

mean biomass of reference locations (degraded barren ground and healthy 

forests) using two generalized linear mixed models (GLMMs) (Bolker et al., 2009) 

(one for 2018 biomass as the reference level and one for 2019). GLMMs were 

fitted with sea urchin biomass as independent variable and Restoration Strategy 

(3 levels: Active restoration, Reference barren ground, and Reference Forest), 

Protection level (2 levels: inside and outside the NTZ), and Time (2 levels: before 

(2018) and after eradication (2019)) as fixed factors, and location as random factor 

nested in Restoration Strategy.  

Treptacantha elegans cover, number of individuals, and maximum length of the 

longest axis of each T. elegans stand, were measured in 20 randomly placed 50x50 

cm quadrats in each location one year after the active restoration (sea urchin 

eradication and Cystoseira seeding). The distance between the T. elegans 

individual further from the seeding bags was measured with a measuring tape 

and considered as the maximum effective dispersal distance. Percent cover in 

2019 (one year after the implementation of the forestation actions) was compared 
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between the different restoration strategies and protection levels using a GLMM 

as described above.  

All GLMMs analyses were conducted using the package “lme4” for R software 

(Bates et al., 2015). For the fitted models, Type II Wald χ2 test was used to assess 

the effect of fixed factors. Wald χ2 test was performed using the “Anova” function 

from the CAR package (Fox and Weisberg, 2011).   

Macroalgal community was sampled using six replicate 50x50 cm quadrats 

divided into 25 subquadrats of 10x10 cm. At each quadrat, percent cover of erect 

algae, turf algae, and bare rock was estimated as the percentage of the number 

of subquadrats where these different algal types were present (Hereu et al., 2008). 

In order to explore the relationships between different restoration strategies and 

benthic community structure, we compared the benthic community structure of 

the restored locations before and after implementation of the forestation actions 

(2018 vs. 2019)  and the reference ones, using a non-metric multidimensional 

scaling (nMDS) ordination (Kruskal, 1964). The nMDS was performed with the R 

package “vegan” (Oksanen et al., 2017) on a Bray-Curtis dissimilarity matrix (Bray 

and Curtis, 1957) calculated from log transformed data of bare rock, erect algae, 

and turf algae cover. All statistical analysis and plots were run with the software 

R 3.3.3 (R Core Team, 2017). 

Seawater temperature was logged in situ throughout the complete year using 

Hobo Pendant® autonomous sensors placed at 6 meters depth inside and 

outside the NTZ to rule out temperature differences between the protection 

levels. Almost identical temperatures were recorded inside and outside the NTZ 

during T. elegans growing season (Spring), ranging from 11.8 to 15.4 ºC between 

January and late April of 2019 (Fig. 1 S5). 

2.5 Costs of forestation actions 

To provide an estimate and comparable costs of the combined restoration 

techniques carried out in this study, the costs of both techniques (complete sea 

urchin eradication together with the in situ Treptacantha elegans forestation) 

were assessed considering the forestation of 200 m2 sea urchin barren ground. 

We accounted for the transportation and material costs, and the salary of 3 

qualified divers and 1 boat skipper following the methods of previous studies 

(Verdura et al., 2018; Pagès-Escolà, in press). In terms of time, sea urchin 

eradication and T. elegans forestation of a single barren ground of 200 m2 size 

should be achieved in a single day involving the staff mentioned above. The staff 

salary was established according to the guidelines for monitoring protocols in 
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marine protected areas (Generalitat de Catalunya, 2017). All costs were calculated 

in our study area and they could be variable depending on the country. 

3. Results 

3.1 Forestation techniques 

In 2017 experiments, density of T. elegans recruits was similar in both the in situ 

and ex situ recruitment enhancement techniques at the beginning (11.84 ± 2.64 

and 10.14 ± 5.30 (Mean ± SE) recruits/cm2, respectively). High and similar 

mortality rates were observed between in situ and ex situ restoration techniques 

within the firsts 2 months (95.9% for in situ and 94.9% for ex situ, Table 1 S5).  

In 2018-2019 experiments, a higher density of newly T. elegans recruits was found 

on the free surface collectors (stone plates and cleared substrate) than on original 

substrate (Fig. 3A, Table 2 S5). As expected, high mortality rates of recruits were 

observed one year later within the three collectors tested (80% on ‘cleared 

substrate’, 86.47% on ‘stone plates, and 92.3% on ‘original substrate’ collectors). 

The higher survival was reported on the ‘cleared substrate’ collectors (Fig. 3B, 

Table 3 S5).  
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Figure 3. Forestation techniques results. (A) Boxplot showing the initial density of recruits within 

the 3 different collectors. (B) Boxplot showing the mortality rate within the three type of collectors 

one year after the forestation. In the boxplots, the bold horizontal line indicates the median value 

(Q2); the box marks the interquartile distances, Q1 and Q3; and the whiskers mark the values that 

less than Q3+1.5*IQR but greater than Q1–1.5*IQR. ‘*’ indicates significance differences (p<0.05) 

in the GLM analysis 

 

3.2 Restoration strategies 

High and similar initial sea urchin biomasses were observed in the degraded 

areas, along with the reference barren grounds, before the eradication actions 

(2018), whilst lower biomasses defined the reference forests (Fig. 4A, Table 1, and 

Table 4 S2). Sea urchin biomasses in the degraded barren grounds did not shown 

differences between levels of protections before the restoration action (χ2
2 = 1.88, 

p=0.17).Size structure of the sea urchin populations in the barren grounds before 

the eradication showed a bimodal distribution characterized by higher densities 

of small size’ sea urchins outside than inside the NTZ (Fig. 4B). One year after the 

complete eradication, a significant reduction of the sea urchin biomass (involving 

mainly a reduction of large sized sea urchins) was achieved (Fig. 4, Table 4 S5) 
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leveling the locations selected for restoration actions implementation to the 

reference forests density values (Fig. 4, Table 4 S5). The same pattern was 

observed inside than outside the NTZ, meaning null effect of the level of 

protection on the sea urchin eradication success (χ2
2 =3.31, p=0.07, Table 4 S5). 

Figure 4. Sea urchin biomass (A), and frequency distribution of sea urchins’ size-class (B) observed 

before (light colors) and one year after forestation actions (dark colors) within the different 

restoration strategies. Pink-colored boxes represent barren grounds in which active forestation 

was done. Grey-colored boxes represent reference barren grounds and green-colored boxes, 

reference forests. Left panel represents the strategies carried out inside the NTZ and, right panel, 

outside the NTZ.  

Before the forestation, T. elegans populations were practically non-existent within 

degraded barren grounds whilst they represent about the 50 % of total algal cover 

of the reference forests (Fig. 5A). One year after forestation, T. elegans cover only 

increased in the locations where the complete sea urchin eradication was 
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performed (Fig. 5A). Although T. elegans cover increased in the actively restored 

grounds, it did not reach the cover observed at the reference forests in the study 

period (Fig. 5A, Table 5 S5). Comparing T. elegans increase on restored locations 

inside the NTZ with the locations without protection, we observed a higher T. 

elegans cover at equal densities of sea urchins in the locations where both active 

and passive restoration strategies were combined (Fig. 2 S5). T. elegans 

individuals in the locations where active and passive strategies were combined 

(active restoration inside the NTZ) reached similar heights to the reference forests 

ones (7.6 ± 0.25 cm vs. 8.51 ± 0.22 cm (Mean ± SE), respectively), whereas mean 

height was about half of the wild canopy where active strategies alone were 

applied compared with the reference forest outside the NTZ (4.25 ± 0.37 cm vs. 

8.31 ± 0.22, Mean ± SE, respectively) (Fig. 5B). Limited dispersal ability was 

observed, which was three times higher inside the NTZ, with a maximum distance 

of 3 to 10 m away from the seedling bags, and lower outside the NTZ, with a 

maximum of 1 to 3 m away.  

Reference forests were positioned on the right side of the nMDS with a major 

cover of erect algae in 2018 and 2019 (Fig. 6). Degraded barren grounds were 

defined by bare rock and turf algae, displaying on the left and the top side before 

the forestation action (2018). Only the barren grounds forested by combining 

active and passive restoration strategies (active forestation inside the NTZ) moved 

close to the reference forests one year after, while the barren grounds actively 

forested outside the NTZ together with the reference barren remained close to 

their original position (Fig. 6).  



Chapter IV 

  

97 
 

Figure 5. Percentage of cover of Treptacantha elegans (A), and frequency of distribution of 

maximum height (B) observed before (light colors) and one year after forestation actions (dark 

colors) within the different restoration strategies. Pink-colored boxes represent barren grounds in 

which active forestation was done. Grey-colored boxes represent reference barren grounds and 

green-colored boxes, reference forests. Left panel represents the strategies carried out inside the 

NTZ and, right panel, outside the NTZ.  
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Figure 6. Non-metric multidimensional scaling (nMDS) ordination plot of the relationships 

between different restoration strategies and community structure before (1) and one year after 

forestation actions (2). The cover of erect algae, turf algae, and bare rock were plotted for each 

restoration strategy. Boxes indicate non-protected locations (outside the NTZ) and circles indicate 

locations inside the NTZ. Grey color represents reference barren grounds, green color represents 

reference forests and, pink, degraded barren ground in which active restoration was done.  

 

3.3 Costs of forestation actions 

The estimated cost to forest a 200m2 sea urchin barren ground is estimated in 

1,140 € (Table 5). While the costs covering the materials used for the active actions 

accounts for just one tenth of the total costs, staff costs required the majority of 

the budget. The differences in costs between sea urchins eradication and 

Cystoseira forestation were negligible, encouraging the combination of both 

actions at the same time. 
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Table 2. Estimated costs of both restoration techniques, the complete sea urchin eradications 

together with the in situ Treptacantha elegans forestation. 

Concept Rate Cost Total (€) 

Common costs       

Transport     

Boat (gasoil) 5 km  1.3/L 6.5 € 

Car (gasoil) 300 km 0.40€/km 120 € 

 

Staff     

Salary 3 persons x 1 day 281.76€/person 845.28 € 

Air diving cylinder 1 dive x 3 persons 5.85€/dive 26.55 € 

Annual diving insurance 3 persons x 1 day 4.31 € day/person 12.93 € 

    1,011.26 € 

Sea urchins eradication       

Material     

Scraper 3 4.5€/unit 13.5 € 

Big shopping bags 3 3€/unit 9 € 

Safety gloves 3 pairs 2.5€/pair 7.5 € 

    30 € 

Treptacantha elegans 

forestation       

Material     

Epoxy putty 
1 unit of 2 

components 
70€/kg 70 € 

Plastic screws 6 units 12.5€/100 units 0.75 € 

Cable ties 6 units 1.69€/50 units 0.21 € 

Meshed bags 6 units 0.15€/unit 0.9 € 

Scissors 1 unit 1.95€/unit 1.95 € 

Hammer 1 unit 3.45€/ unit 3.45 € 

Cooler box 1 unit 20€/ unit 20 € 

Zipper plastic bags 3 units 1.5€/10 units 0.45 € 

      97.71 € 

Total     ~1138.97 € 
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4. Discussion 

This study presents a novel approach on combined passive and active restoration 

strategies in a NTZ marine reserve to forest sea urchin barren grounds. A larger 

forestation success was achieved one year after active and passive restoration 

strategies were combined, increasing the structural complexity relative to 

Cystoseira forests in barren grounds. A successful three-step protocol to promote 

forestation of sea urchin barrens was established by combining sea urchin 

eradication and Cystoseira forestation. We evaluated this forestation protocol 

with 2 different restoration strategies (active, and active + passive). Results 

presented here supported previous findings about sea urchin grazing or 

Cystoseira recruitment success while reinforcing the role of NTZ marine reserves 

to improve the ecosystem state and function.  

No-take marine reserves have been proposed as an effective tool to control sea 

urchin abundances due to their potential ability to restore trophic cascades and 

thus increasing the top-down control on sea urchins (Pinnegar et al., 2000; 

Guidetti, 2006; Barrett et al., 2009; Sangil et al., 2012). Unfortunately, when large 

sea urchin individuals are already present, restored trophic cascades may not be 

strong enough to break hysteresis loops and control sea urchin populations 

(Medrano et al., 2019a). Beyond this predatory control, recruitment variability, 

spatial refuge availability, escaping behavior, and adult-juvenile associations can 

maintain dense sea urchin populations even when predatory fishes are abundant 

(Nishizaki and Ackerman, 2004; Zhang et al., 2011; Bonaviri et al., 2012; Hereu et 

al., 2012a; Oliva et al., 2016). Conversely, approaches involving commercial and 

recreational sea urchin fishery have also been reported in some studies as a 

potential factor controlling sea urchin abundance (Guidetti et al., 2004; Pais et al., 

2007) and can promote Cystoseira recruitment as shown in recent studies (Piazzi 

and Ceccherelli, 2019). Even though sea urchin harvesting is currently highly 

regulated in our study area, it could be considered as an additional strategy to 

recover Cystoseria forests.  

Applied active removal approaches in our study involved the complete 

eradication of sea urchins to reduce and control their abundance in the barren 

grounds before forestation. As expected within the short time scale of this study, 

no reduction of the sea urchin populations was observed within the reference 

barren inside the NTZ. Conversely, successful control of sea urchin populations 

was achieved through active eradication, since significantly reduced sea urchin 
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abundance was found after removal both inside and outside the NTZ one year 

after the eradication, small-sized sea urchins were observed again in the localities 

due to the arrival of new individuals but larger sea urchins were significantly 

reduced. Collectively, these observed responses tend to support that fish 

predation alone cannot successfully control established sea urchin populations 

with large-sized individuals due the high recruitment and juvenile survival of sea 

urchins (Medrano et al., 2019a). To date, however, predatory control on sea 

urchins cannot be completely ruled out, as longer term monitoring is necessary 

to test the true effectiveness of this single eradication action outside the NTZ. A 

higher cover of T. elegans was observed inside the NTZ than outside at equal sea 

urchin densities one year after eradication, which could suggest non-lethal effects 

of sea urchin predators on their prey. Grazing activity of Paracentrotus lividus 

could have been reduced inside the NTZ as a result of predator-induced fear 

(Hereu, 2005; Manzur and Navarrete, 2011).  

Control of sea urchin populations has been generally proposed as individual 

restoration tools to reestablish habitats such as marine forests. Even though their 

role reducing overgrazing has been proved, this forestation technique may fail 

due to limited dispersal capability of natural neighbor algae populations, and the 

reduced potential of natural ecological succession after sea urchins have been 

removed (Leinaas and Christie, 1996; Watanuki et al., 2010; Piazzi and Ceccherelli, 

2019). To solve this limitation, the combination of both techniques (i.e., combined 

sea urchin control and enhanced Cystoseira recruitment) proposed in our study 

ensured and accelerated the formation of complex marine forests with low 

dispersal and recruitment natural potential. 

A range of ex situ and in situ seeding techniques have been proposed to enhance 

the natural limited dispersal ability of Cystoseria spp. zygotes and reduce the high 

mortalities on their first life stages reported here and elsewhere (Mangialajo et 

al., 2012; Verdura et al., 2018). Conservation efforts to obtain recruits on ex situ 

hatcheries have been explored on fucoid algae (Hwang et al., 2006; Verdura et al., 

2018; de la Fuente et al., 2019) since this technique allows to control the 

environmental conditions for an optimal development obtaining large densities 

of new recruits (Falace et al., 2018). These techniques are limited due to the high 

costs to maintain infrastructures, transportation, and the limited range of 

reproducible environmental conditions (usually only light and temperature). 

Therefore, ex situ approaches are only cost-effective when the density of adults 

and recruits of Cystoseira species in the field are very low and the necessary 

recruit densities can only be obtained in laboratory conditions. Since we found 
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similar densities and mortality rates of T. elegans recruits with both in situ and ex 

situ seeding techniques, we selected the in situ approach due to the much lower 

economic costs and avoiding any acclimation steps to natural environmental 

conditions in the development stages.  

The mentioned limited natural recruitment in macroalgae also relies on their 

ability to colonize the substrate upon arrival which can be driven by light 

availability (Reed and Foster, 1984), competition (Steen and Scrosati, 2004), or 

microhabitat characteristics such as substrate type (Benedetti-Cecchi and Cinelli, 

1992; Mangialajo et al., 2012). Similar limitations are also found in Cystoseira 

species (Capdevila et al., 2015; Verdura et al., 2018), and our study shows 

differences in the ability of T. elegans to recruit on occupied and cleaned 

substrata. We found that recruitment success could be improved by providing 

adequate cleared (i.e., from both organisms and sediment) substrate available to 

the new recruits. Although no major differences were found in recruit densities 

between stone plates or natural cleared collectors, recruiting on natural 

substrates ensures long-term viability as stone plates may breakdown due to 

deterioration. Besides, preserving the natural heterogeneity and complexity of the 

substrate such as in cleared collectors may favor the survival and growth of 

Cystoseira early life stages. These observations suggest that cleared natural 

collectors are a promising technique to enhance recruitment for T. elegans. 

Following general approaches, we evaluated the success of this restoration action 

based on high survival and/or density sustained over time (Gianni et al., 2013). T. 

elegans cover increased one year after forestation, reaching cover levels high 

enough to consider results from the combined active with passive strategy very 

successful. As suggested in previous studies (Verdura et al., 2018), we also 

evaluated the T. elegans size-class structure to complement this result with other 

recovery attributes. T. elegans individuals of restored forests inside the NTZ 

reached similar size-class structure to the reference forest only a year after the 

active restoration. The recovery time of degraded habitats with mature T. elegans 

forests observed in this study was shorter than the observed on previous 

successful Cystoseira restoration actions (e.g., Verdura et al., 2018). In addition, 

we compared the benthic community structure on restored locations which 

became similar to the reference forests one where active and passive restoration 

was combined, replacing the low productive barren grounds with more diverse 

and functional forests. However, cover levels in these restored forests did not 

reach reference levels in the mature T. elegans forests for any of the restoration 

strategies evaluated. Other successful restoration cases tend to indicate that 
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complete functional and diversity restoration of macroalgal habitats is a complex 

process only achievable in the longer term (Marzinelli et al., 2016). 

The small extension of the NTZ marine reserve in our study limited the design for 

replicated locations, but allowed the rapid assessment of local restoration efforts. 

Only one location inside the NTZ could be included into the assessment for the 

passive restoration strategy as no more locations were eligible, and thus the 

success of this approach in restoration in our study site remains not fully explored. 

Our design, however, allowed for a rapid (in one year) and low-cost forestation of 

degraded shallow barrens occurring at local scales of hundreds of square meters. 

Low economic costs of combining forestation actions with sea urchins eradication 

in our study were comparable to other in situ actions carried out to restore 

Cystoseira barbata populations at local scales (Verdura et al., 2018), indicating the 

economic feasibility of these local forestation actions.  

In light of the global decline of canopy-forming macroalgal forests, forestation of 

sea urchin barren grounds is encouraged in this study as a tool to shift from low 

productive and structurally poor barren grounds to high productive and diverse 

marine forests. Finally, this successful restoration case shows that not only do 

combined passive and active restoration techniques provide better results than 

isolated approaches, but also indicates that more effectively-managed No-Take 

marine reserves can be essential for both management purposes and ecological 

restoration.  
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Discussion 

 

This thesis addressed marine vegetation changes in the shallow rocky shores of 

the Montgrí, Illes Medes and Baix Ter Natural Park (NW Mediterranean Sea) 

integrating the macroalgal and sea urchin dynamics in front of natural and 

human-related impacts, and the role and effectiveness of Marine Protected Areas 

and restoration actions as conservation tools at lower trophic levels. Besides, since 

most of this thesis is based on long-term monitoring data, a valuable baseline of 

the algal community’s dynamics and current status was provided here which 

could be vital to predict and detect future ecological changes that could 

jeopardize the preservation of seaweed forests. 

Loss of marine forests due to sea urchin outbreaks has been often reported within 

temperate seas (reviewed by Filbee-Dexter and Scheibling, 2014). Once the 

forests shift to barren states, the rapid transition from macroalgal beds to the  sea 

urchin high-density state increase the feedbacks that reinforce the resilience of 

the degraded state (Filbee-Dexter and Scheibling, 2014; Melis et al., 2019). Facing 

the ongoing global change, potential synergistic interactions of multiple stressors 

may further increase the hysteresis of stable degraded ecosystems which would 

hinder the future conservation of marine forests and important losses of 

ecosystems services (Rogers-Bennett and Catton, 2019). As human threats are 

expected to increase on the marine environments (IPCC, 2014), it is likely that 

regime shifts will become more frequent, presenting major challenges for 

ecosystem management (Conversi et al., 2015). Due to their worldwide concern 

and their expected upward trend, an emphasized approach to overgrazing threat 

on macroalgae and consequent regime-shifts between marine forests and barren 

grounds were addressed here from a management perspective. 

1. Understanding long-term dynamics of macroalgae and 

keystone herbivores 

1.1. Some optimism face to global decline of algal communities 

Seaweed beds formed by macroalgae on rocky bottoms have been recognized to 

have a key role in temperate coastal ecosystems. Macroalgal beds are threatened 

by multiple and diverse stressors, ranging from local to global threats, as a result 

of human activities or natural fluctuations (Mineur et al., 2015). Although several 

studies reported dramatic declines of marine forests as consequence of several 
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ongoing stressors impacting these communities at local and global scales (Airoldi 

and Beck, 2007; Connell et al., 2008; Raybaud et al., 2013; Mineur et al., 2015), this 

thesis exposes two encouraging stories. First, macroalgal assemblages in the 

shallow rocky shores of the Montgrí, Illes Medes and Baix Ter (MIMBT) Natural 

Park were stable over the last fifteen years contrasting with important declines of 

algal forests over the world (Wernberg et al., 2011a; Filbee-Dexter and Wernberg, 

2018) and also in the Mediterranean Sea (Perkol-Finkel and Airoldi, 2010). Some 

variability were observed thought the past years but the absence of major shifts 

in the most representative macroalgal species abundance was highlighted in this 

dissertation. Secondly, this thesis provides evidence of a recent expansion of the 

canopy-forming Treptacantha elegans in the Catalan coast. Bearing in mind that 

this species was reported in decline in nearby rocky shores (Thibaut et al., 2005; 

2015) and listed as threatened species in the Mediterranean Sea mainly as a result 

of coastal development and sea urchin overgrazing (Verlaque et al., 2019), ours 

results provide some hope on the capacity of these algal forests to persist or even 

widen their geographical distributions under global change scenarios (see also 

Thibaut et al., 2014b).  

Redistribution of the species is a common response to stressors on land and 

ocean, with shifts in the latitude and depth to keep pace with preferred 

environmental conditions (Pecl et al., 2017). Recent changes in the distribution of 

many marine taxa have been documented on all continents (Perry et al., 2005; 

Wernberg et al., 2011b; Poloczanska et al., 2013). Changes in macroalgal 

distribution, which may be particularly sensitive to human threats (Harley et al., 

2012; Poloczanska et al., 2013), include both range extensions, where species 

colonize new, usually adjacent habitats, and range contractions, where species 

lose previously occupied areas (Wernberg et al., 2011b; Bates et al., 2014). The 

spreading of the canopy forming T. elegans could be explained by the interaction 

of favorable traits to colonize and compete for the substrata detailed in this thesis, 

such as their fast-growing dynamics, their early fertile maturity -within their first 

years of life- and their high turnover rate, compared with other canopy-forming 

species.  
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1.2. Lessons learned from long-term monitoring: understanding temporal 

shifts of keystone species and the role of extreme events in algal-dominated 

communities 

Sea urchins, and especially Paracentrotus lividus, are the main herbivore 

structuring the algal communities in the NW Mediterranean Sea (Hereu et al., 

2012a). Recruitment variability, spatial refuge availability, escaping behavior, and 

adult-juvenile associations can act as feedback mechanisms that maintain dense 

sea urchin populations even when predatory fish are abundant (Nishizaki and 

Ackerman, 2004; Zhang et al., 2011; Bonaviri et al., 2012; Oliva et al., 2016). Due 

to the combination of these factors, the long-term monitoring of sea urchins in 

the studied Natural Park have showed a large variability on long-term trends of 

P. lividus density since 1991 regardless of the high densities of predatory fish 

observed inside the NTZ (Hereu et al., 2012a). Beyond this variability, the long-

term dataset studied in this thesis has allowed to report the rebuilding capacity 

of collapsed sea urchin stocks after extraordinary mass mortalities, which have 

been poorly studied until now due to the lack of robust data (but see Edmuns 

and Carpenter, 2001; Miller et al., 2003; Girard et al., 2012; Clemente et al., 2014; 

Lessios, 2016). 

The black sea urchin Arbacia lixula is also common in the Mediterranean Sea but 

is much more abundant in the southern and eastern areas of the Mediterranean 

Sea than in the NW where this thesis took place, with a low density in the MIMBT 

Natural Park over the last decades (Hereu et al., 2012a). A. lixula is considered a 

thermophilic species (Privitera et al., 2011; Wangensteen et al., 2013) and it has 

been suggested that climate change can increase its abundance and distribution 

(Francour et al., 1994; Wangensteen et al., 2012). Nevertheless, there is little 

quantitative evidence of these increasing patterns in the field to date. As a result 

of the long-term monitoring dataset studied, this thesis reported an increase of 

densities and biomass over the last years in the MIMBT Natural Park, reaching 

values never observed before. The upward trend seems to be linked to the fast-

growing rate of A. lixula sea urchin (Barrera, 2018) and the warming trends 

observed on the Catalan coast in the recent decades, where the temperature has 

increased 0.26 ± 0.08 °C/decade from 1985 to 2015 (Vargas-Yáñez et al., 2017). 

Several studies to date have demonstrated that extreme climate events can have 

important effects on rocky shore communities (Denny et al., 2009; Micheli et al., 

2016; Borja et al., 2018). Severe storms and extreme waves can trigger mass 
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mortalities in sea urchins populations (Scheibling and Lauzon-Guay, 2010; 

Scheibling et al., 2010) and have been also considered as potential drivers eroding 

macroalgal beds (Navarro et al., 2011; Borja et al., 2018; Capdevila et al., 2019a). 

The extraordinary storm occurred in the MIMBT Natural Park in 2008 give us the 

opportunity to address partly this issue understanding how benthic communities 

could respond to single catastrophic events in the framework of a long-term 

monitoring data. Benthic shallow-rocky habitats in the MIMBT Natural Park are 

mostly represented by photophilic algal communities of small and erect algae 

(e.g. Dyctiota spp.) and calcareous algal formations (Ballesteros, 1991). Right after 

the 2008 storm, and accordingly with similar studies (Navarro et al., 2011; Michelli 

et al., 2016; Maggi et al., 2018), macroalgal assemblages in the MIMBT Natural 

Park changed abruptly (Fig. 1). Most of the perennial macroalgal species were 

swept away while the seasonal species took advantage of the available space. 

However, the abundance and structure of the main macroalgal assemblages 

recovered swiftly to pre-storm values and no long-term impacts were observed 

over the following years, indicating that impacts of a single extraordinary storm 

on rocky-shallow algal communities may be reversed relatively quickly through 

the recovery of the main canopy-forming species (Fig. 1). Contrarily, sea urchin 

populations were affected after the 2008 severe storm. After the almost complete 

depletion of sea urchin populations, they needed more time to recover than the 

observed for macroalgal assemblages. Besides, clear differences in recovery 

related to the marine protection were found here, which will be addressed in the 

next section of this discussion (Fig. 1).  
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Figure 1. Schematic illustration of the effects of the 2008 severe storm on macroalgal assemblage 

and sea urchin populations inside and outside the NTZ. 

Notwithstanding that, we should consider that these recovery patterns 

correspond to a single extreme event and an increase in their recurrence or 

frequency could modify the observed patterns. An increase in the intensity and 

frequency of extreme climatic events, such as extraordinary storms has been 

observed since 1950 and is expected to increase in the future (IPCC, 2014; 

Reguero et al., 2019), especially in the Mediterranean Sea, which has been 

highlighted as a hotspot of ongoing climate change. Facing these environmental 

changes future research exploring the thermotolerance of studied species may 

be addressed to properly manage and conserve seaweed marine forests in our 

changing sea. 

2. The role of Marine Protected Areas in benthic communities 

Facing all the exposed local and global threats, marine protected areas may 

mitigate the total sum of local disturbances affecting the marine ecosystems, 

hence enhancing the resilience of populations toward global factors away from 

the umbrella of the local management such as climate change (McLeod et al., 

2009; Brown et al., 2013; Lamb et al., 2015). 

The benefits of MPAs and NTZs are universally known, being the increase in 

biodiversity and species biomass the most repeatedly reported. Although Marine 

Protected Areas (MPAs) have been historically conceived to conserve commercial 

and harvested species from the human impacts, especially from fishing (No Take 

Zones -NTZs-) and coastal development, including species that play a key 
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ecological role in the design of MPAs (e.g., canopy forming algae) may enhance 

the conservation of the biodiversity and of the complex services that they provide 

to the ecosystem functioning (Palumbi et al., 2009; Gianni et al., 2013). NTZs 

prevent the overexploitation of key structural species, allowing for the reduction 

or removal of associated impacts, maintaining and restoring ecosystem 

functioning, with the subsequent improvement of trophic regulation on 

populations of consumers (i.e. trophic cascades). 

No-take areas (those fully protected from fishing) have been proposed as an 

effective tool to control sea urchin abundances due to their potential ability to 

restore trophic cascades and thus increasing the top-down control on sea urchins 

(Fig. 2) (Pinnegar et al., 2000; Guidetti, 2006; Barrett et al., 2009; Sangil et al., 2012).  

Figure 2. Schematic illustration of a trophic cascade in Mediterranean rocky shallow shores and 

the role of marine protected areas on it. Blue arrows indicate positive effects and red ones, 

negative effects. Symbols extracted from IAN Symbol Libraries. 

Unfortunately, we have seen in the chapter 2 that, if large sea urchin individuals 

were already established when the protected area was created (such as in the 

MIMBT Natural Park), restored predator fish populations may not be strong 

enough to break the stability of sea urchin barren community. This is consistent 

with the presence of feedback mechanisms that maintain the high stability of 
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high-density sea urchins state. For example, the presence of adult individuals 

facilitate the juvenile survival by offering refuge under their spiny canopy for 

avoiding predation (Zhang et al., 2011; Hereu et al., 2012a) and reducing micro-

predator abundance (Bonaviri et al., 2012). The 2008 dramatic storm reset these 

feedback mechanisms by removing the sea urchin adult individuals. After the 

almost complete depletion of adult P. lividus individuals the trophic cascades 

inside the NTZ became reestablished which contributed to explaining why sea 

urchin populations outside the NTZ recovered faster than the populations inside 

the NTZ. The results of this natural and destructive event shown that predation 

was the main factor controlling the recovery of sea urchin populations in the NTZ. 

Macroalgal assemblages in the MIMBT Natural Park were similar in algal 

composition and total cover inside and outside the protected NTZ over the last 

fifteen years. Therefore, a negligible effect of protection was observed on the 

abundance of the main macroalgal assemblages. However, we observed 

differences in the abundance of the canopy-forming alga Treptacantha elegans 

which was larger inside the protected NTZ. Given that, NTZs could be particularly 

relevant as conservation tools for canopy-forming algae as was also suggested 

by Sala et al. (2012). The combined results of the long-term monitoring of both 

benthic communities in the rocky-shallow infralittoral zone of the MIMBT Natural 

Park (macroalgal beds and sea urchin populations) stress out the important 

potential role of NTZs in the structure of benthic communities (Sangil et al., 2012; 

Sala and Giakoumi, 2017).  

We must not lose sight of the local scale of this thesis in which, the obvious 

logistics constraints, limit this study to a single marine protected area with no 

replication of the effect of protection. A perfect design would imply to work 

simultaneously in different MPAs, however taking into account the intensive 

fieldwork that implies all the sampling performed in this Ph.D. as well as the 

inherent differences between MPAs due to the biotic and abiotic factors and the 

difficulty to perform long-term studies to understand the community dynamics, 

perform this kind of studies at large spatial scales become really difficult. 

Notwithstanding that, comparing communities at different regional scales 

requires a deep understanding of the natural variability of local communities, 

which was the aim of this thesis for the macroalgal communities on the MIMBT 

Natural Park. 
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3. Restoration actions in macroalgal beds: a promising but 

challenging conservation tool 

Passive conservation strategies such as NTZs could not be enough to restore 

degraded benthic ecosystems (Huntington et al., 2011; Sangil et al., 2012; Toth et 

al., 2014; Cox et al., 2017). Even in NTZs, the natural variability of species dynamics 

and ecological interactions prevent the recovery or limit it only to long term 

periods (i.e. decades Babcock et al., 2010; Strain et al., 2019). A more suitable tool 

for recovery in the shorter term is ecosystem restoration, which involves the active 

assistance in the recovery of a degraded, damaged, or destroyed habitat (SER 

2004). 

In the case of degraded macroalgal and seagrass beds, even if there is mitigation 

or full removal of environmental stressors due to the passive conservation 

management strategies such as NTZs, it is difficult to recover due to lack of nearby 

healthy populations which can produce propagules and hence restore the 

damaged site. This is really relevant for these species with low dispersal ability 

such as the canopy-forming fucoids (Nyström et al., 2012; Basconi et al., 2020). In 

these conditions, active restoration can help to recover ecosystems and habitats 

by management techniques (Perrow and Davy, 2002; Elliott et al., 2007; Holl and 

Aide, 2011; Bayraktarov et al., 2016). However and despite their importance, 

macroalgal ecosystems receive little attention and research funding compared 

with other marine habitats (Bennet et al., 2016; Wood et al., 2019). In top of that, 

lower success of the few active restoration actions carried out in macroalgal 

ecosystems were reported in contrast with restoration success of the most 

restored marine habitats, such as coral reefs, mangroves or salt marshes (Fig. 3) 

(Basconi et al., 2020). 
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Figure 3. Average survival per habitat after restoration. Data extracted from Basconi et al., 2020. 

Combining well-designed active and passive restoration practices have become 

indispensable to reverse widespread ecosystem degradation (Lotze et al., 2006; 

Mitsch, 2014; Possingham et al., 2015). However, the combination of active (i.e., 

transplantation) and passive restoration (i.e., NTZs) is a largely unexplored 

opportunity for macroalgal forests. Therefore, this thesis presents a novel 

approach on combined passive and active restoration strategies as a tool to shift 

from degraded sea urchin barren grounds to functional and productive marine 

forests.  

By integrating the acquired knowledge in this thesis about the dynamics of 

macroalgal beds and sea urchin populations in the MIMBT Natural Park, a three 

step restoration protocol was assessed in the last chapter to promote the 

forestation of sea urchin barrens combining the complete eradication of sea 

urchin populations and Treptacantha elegans forestation. Successful forestation 

of barren grounds was only achieved when this restoration protocol was 

conducted inside the NTZ. In other words, restoration success was achieved only 

when passive and active restoration tools were combined, highlighting the 

important role of marine protected areas not only in conservation but also in 

ecological restoration. 

The majority of restoration studies reported success in terms of survival of the 

reintroduced species but, in so doing, is difficult to assess the recovery of the 

ecosystem functionality (Basconi et al., 2020). Here, we went one step further 
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while considering the Treptacantha elegans recruitment success of the next 

generation when foresting but, if this thesis could last more than 3 years, 

restoration success would be ideally assessed by other measurements evaluating 

the recovery of ecosystem services and functionality. The incorporation of the 

study of ecological networks on healthy marine forests against reforested ones 

may provide a good assessment of the full recovery of the community beyond 

the effects on single species. 

I want to highlight that the use of the word ‘forestation’ may be more accurate in 

this thesis than the ‘restoration’ one. Although degraded and low productive 

barren areas were transformed here to highly diverse and functional canopy-

forming forests, we ignore if the previous state to these degraded habitats were 

degraded or damaged macroalgal forests or any other habitat. 

4. Insights into the management and conservation of algal forests 

Our forestation results could lead to fisheries agreements that unify the 

restoration actions with the efforts already done by the sea urchins’ fishermen 

instead of removing high densities of sea urchins only for restoration, especially 

on barren grounds dominated by commercial species such as Paracentrotus 

lividus. Similar approaches involving commercial and recreational sea urchin 

fishery have also been reported as potential factor controlling sea urchin 

abundance (Guidetti et al., 2004; Pais et al., 2007) and can promote Cystoseira 

recruitment as showed in recent studies (Piazzi and Ceccherelli, 2019). Sea urchin 

fishery policy is highly restrictive on our coast, which could favor the expansion 

of sea urchin barren grounds. Given the limited number of sea urchin fishery 

licenses and the reported results of this thesis, I would like to propose that the 

sea urchin fisheries may be restricted to sea urchin barren grounds as a win-win 

fishery activity. On one side, fishermen’s efforts will be reduced as the densities 

of sea urchins in the barren grounds are higher than in the common sea urchin 

fishery grounds. On the other side, algal seeding transplantation actions could be 

combined with the fishing activities to promote marine forests instead of desert 

grounds when sea urchins where fished from the restricted grounds. Furthermore, 

non-commercial species such as Arbacia lixula may be controlled by active 

removal actions such as the ones presented in this thesis. 

This dissertation demonstrates the valuable role of the long-term ecological 

monitoring to provide fundamental knowledge of ecosystems functioning but 
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also as a key tool to detect changes in marine ecosystems (e.g., regime shifts), to 

validate ecological models, and to design effective management actions 

(Lindenmayer et al., 2012; Conversi et al., 2015). However, the establishment and 

maintenance of long-term monitoring have been limited by deficient financial 

support whereby funding cycles typically support 1-4 years-long projects and that 

is why ecological research recently emphasize studies using meta-analysis and 

mathematical models (Day, 2008; Lindenmayer et al., 2012; Lamb, 2017). The lack 

of long-term studies in macroalgal forests was highlighted in the introduction 

and should be addressed in order to understand future changes inside but also 

outside MPAs. In this sense, Citizen Science could be considered an interesting 

tool to preserve long-term rigorous monitoring. Citizen science projects involve 

public in scientific research with the added benefit of increase their knowledge 

and sensitivity to not only study but also protect the natural systems (Bonney et 

al., 2009). 
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Conclusions 

 

Macroalgal and sea urchins long-term dynamics in the Montgrí, Illes Medes 

and Baix Ter (MIMBT) Natural Park  

- From a well-designed long-term monitoring, this thesis provides current 

baselines of the rocky-shallow macroalgal assemblages and sea urchin 

populations in the NW Mediterranean Sea (CHAPTER I and CHAPTER II).  

- Coastal macroalgal assemblages in the MIMBT Natural Park were stable and 

similar in total algal cover over the fifteen years of study with no species 

replacement, although some variability were observed between years (CHAPTER 

I). 

- Impacts of a single extraordinary storm on rocky-shallow macroalgal 

communities may be reversed relatively quickly as no long-term impacts were 

observed in the abundance and composition of the main macroalgal assemblages 

after the severe storm of 2008. However, we should consider that an increase in 

the intensity and frequency of extreme climatic events is expected in the future 

(CHAPTER I). 

- Bottom-up (resources control) and top-down (herbivorous control) processes 

interactively influence the structure of macroalgal benthic communities in the 

MIMBT Natural Park.  Bottom-up forces such as spring nutrient concentration and 

water temperature influence the abundance of most of the seasonal algal species 

while top-down forces may play a role in determining the abundance of fucoids 

such as the canopy-forming Cystoseira sensu lato species and the encrusting 

coralline algae species (CHAPTER I). 

- Predation (top-down) is the main force controlling the recovery of depleted sea 

urchin populations since, after the observed mortality event, sea urchin 

populations inside the NTZ recovered slowly than the populations outside the 

NTZ (CHAPTER II). 
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- The canopy-forming alga Treptacantha elegans has substantially increased their 

depth range and spatial distribution over the last two decades in the Catalan coast 

(CHAPTER III). 

- In the Medes Islands NTZ, T. elegans forests showed a fast growing dynamics, 

and their stands were able to reach their fertile maturity within their first year of 

life, which could represent an advantage to colonize the available substrate 

(CHAPTER III). 

- No differences were observed between T. elegans annual mortality rates and 

the percentage of new individuals observed within the same year. This turnover 

rate may support their recently expansion (CHAPTER III).  

- All the T. elegans populations analyzed along the Catalan constitute a single 

genetic group with little differentiation of populations (CHAPTER III). 

 

Management outcomes for macroalgal forests and sea urchin barrens 

- Marine protection does not affect the composition and total algal cover of the 

coastal macroalgal assemblages in the rocky shores in the MIMBT Natural Park. 

However, protection is particularly relevant to canopy-forming T. elegans, which 

was more abundant inside the NTZ than in unprotected areas (CHAPTER I). 

- Restored trophic cascades may not be strong enough to break hysteresis loops 

and control sea urchin populations once they are established. However, fully 

protected areas (NTZs) have an important role controlling the recovery patterns 

of sea urchins populations (CHAPTER II, CHAPTER IV).  

- Due to the fast and stable population dynamics of the canopy-forming T. 

elegans, forestation of sea urchin barren grounds using T. elegans seeding is 

encouraged in this thesis as a potential technique to restore degraded 

ecosystems in rocky shallow habitats (CHAPTER III and

- A successful three-step protocol to reverse degraded shallow hard-bottoms into 

high productive and diverse marine forests has been achieved. This protocol 

includes: 1) sea urchin population eradication, 2) seeding with T. elegans, and 3) 

enhancement of T. elegans recruitment (CHAPTER IV). 
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- Our results showed that combined active and passive restoration (e.g., MPAs or 

NTZs) strategies increase the success of restoration actions (CHAPTER IV). 

- More effectively-managed No-Take marine reserves can be essential for both 

management purposes and ecological restoration (CHAPER II and CHAPTER IV).  
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Supplementary material Chapter I (S2) 

 

Table 1 S2. Results from the Tukey pairwise comparison on the CVs between protection levels 

(inside/outside NTZ). Bolded font indicate significant differences between pairs. Species code in 

Table 1. 

Pairs (inside/outside NTZ) Pr(F) 

Inside/Outside NTZ 0.749 

  

Asparagopsis 0.005 

Dictyota 0.011 

T. elegans 0.125 

C. vermilara 0.231 

C. bursa 0.516 

Halopteris 0.030 

Laurencia 0.526 

Padina 0.156 

Sphaerococcus 0.319 

Wrangelia <0.001 

Corallina 0.897 

Jania 0.190 

L. incrustans 0.019 

M. alternans  0.043 
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Supplementary material Chapter II (S3) 

 

 

 

Fig. 1 S3. Empirical cumulative distribution of Paracentrotus lividus abundance between 2009 and 

2013 (the studied recovery period) against fitted distribution functions. The negative binomial 

distribution matches more closely. 
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Supplementary material Chapter III (S4) 
 

Table 1 S4. Pearson correlation coefficients between the length of the longest axis of T. elegans 

and other morphometric variables 

Variable r2 p 

Biomass of branchlets (g fw) 0.61 <0.01 

Holdfast diameter (cm) 0.40 0.04 

Main axis length (cm) 0.48 0.01 

Number of tophules 0.48 0.01 

Number of primary axes 0.20 0.33 

 

 

Table 2 S4. AMOVA analyses results for differentiation between the three populations. P-value 

significance for 10,100 permutations. 

Source of 

Variance df 

Sum of 

Squares 

Variance 

Components % Variation F-ST P-value 

Among 

populations 
2 6.41 0.074 6.7 0.07 <0.001 

Within 

populations 
85 87.84 1.033 93.3   
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Supplementary material Chapter IV (S5) 

 
Table 1 S5. Results of the generalized linear model (GLM) testing differences in density of T. 

elegans recruits between different forestation techniques (in situ and ex situ) across time. 

 

 

Table 2 S5. Results of the generalized linear model (GLM) comparing the initial density of T. 

elegans recruits between the different tested collectors. 

 

 

Table 3 S5. Results of the generalized linear model (GLM) comparing the T. elegans recruits 

mortality two months after transplantation in relation to the type of collector tested. 

  

 

Model Variables Coefficients AIC 

Estimate Std. 

Error 

z value p 

Recruits density ~ 

Technique + Time  

Intercept 3.4144 0.4349 7.852 <0.001 137.01 

Technique (in 

situ) 
0.1579 0.6142 0.257 0.797 

Time (2 

months) 
-2.5390 0.6745 -3.764 <0.001 

Technique*Ti

me 
-0.6969 0.9841 -0.708 0.479 

Model Variables Coefficients AIC 

Estimate Std. 

Error 

z value p 

Recruits density ~  

Collector  

Intercept 1.9938 0.1442 13.829 <0.001 682.17 

Stone plates 0.6585 0.1988 3.312 <0.001 

Cleared 

substrate 

0.8570 0.1964 4.364 <0.001 

Model Variables Coefficients AIC 

Estimate Std. Error z value p 

Mortality rate ~  Collector  Intercept 0.92357 0.03855 23.956 <0.001 44.083 

Stone 

plates 

-0.05887 0.05304 -1.110 0.2687 

Cleared 

substrate 

-0.11685 0.05261 -2.221 0.0277 
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Table 4 S5. Results of the generalized linear mixed models (GLMMs) testing differences in the sea 

urchin biomass before and after the eradication between the active restoration strategy and the 

reference sites and the role of protection.  

 

 

 

 

Models 

Fixed effects 

Coefficients 

AICs Estimate Std. Error 

z 

value p 

Sea urchin biomass ~ 

Strategy * Protection*Year 

+ (1|Strategy:Location) 

Intercept 5.27896 0.20484 25.771 <0.001 2163.8 

Strategy Barren -0.22075 0.38335 -0.576 0.565 
 

Strategy Forest -3.15869 0.52052 -6.068 <0.001 
 

NTZ 0.13598 0.281 0.484 0.628 
 

Year 2019 -1.89847 0.29135 -6.516 <0.001 
 

NTZ: Strategy 

Barren 0.63339 0.60288 1.051 0.293 
 

NTZ: Strategy 

Forest -0.09471 0.73219 -0.129 0.897 
 

Strategy 

Barren:2019 2.20833 0.56189 3.93 <0.001 
 

Strategy 

Forest:2019 3.22407 0.66516 4.847 <0.001 
 

NTZ:2019 0.32097 0.40546 0.792 0.429 
 

Strategy 

Barren:NTZ:2019 -0.86416 0.83694 -1.033 0.302 
 

Strategy 

Forest:NTZ:2019 0.4878 0.93641 0.521 0.602 
 

Random effects 
Variance 

Std. 

Deviation     
 

Strategy: 

Location <0.001 <0.001     
  

Sea urchin biomass 2019 ~ 

Protection*Strategy + 

(1|Strategy:Location) 

Intercept 3.38049 0.24608 13.737 <0.001 1007.8 

NTZ 0.45695 0.34741 1.315 0.188  

Strategy Barren 1.98758 0.48915 4.063 <0.001  

Strategy Forest 0.06538 0.49196 0.133 0.894  
NTZ: Strategy 

Barren -0.23026 0.69138 -0.333 0.739  
NTZ: Strategy 

Forest 0.3931 0.69412 0.566 0.571   
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Table 5 S5. Results of the generalized linear mixed model (GLMM) testing differences in the final 

T. elegans total cover between the active restoration strategy and the reference locations and the 

protection role. 

 

Models 
Fixed 

Effects 

Coefficients 

AIC 

Estimat

e 
Std. Error z value p 

T. elegans cover 2019 ~ 

Protection*Strategy + 

(1|Strategy:Location) 

Intercept 14.697 0.4085 3.597 
<0.00

1 

378.

4 

NTZ 1.071 0.5543 1.932 0.05  

Strategy 

Barren 
-30.458 362.039 -0.084 0.9329 

 

Strategy 

Forest 
22.177 0.7607 2.915 

<0.00

1  

NTZ: 

Strategy 

Barren 

281.712 362.039 0.078 0.9379  

NTZ: 

Strategy 

Forest 

-0.8476 10.631 -0.797 0.4253  

Random 

effects 

Varianc

e 

Std. 

Deviation       

Strategy: 

Location 
0.2866 0.5353 
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Figures  

 

Fig. 1 S5. Thermal regime inside and outside the NTZ over the studied period at 6 m depth. Lines 

correspond to daily mean temperature (ºC) and the colored areas to the SD. Orange color 

represents the values outside the NTZ and blue color represents the values inside the NTZ.  

 

Fig. 2 S5. Relationship between T. elegans cover and sea urchin abundance one year after 

forestation within the different restoration strategies. Horizontal continuous and colored lines 

represent the mean cover of T. elegans within the different restoration strategies (pink: A, blue: 

A+P, and green: reference forest). Vertical dotted line point out the mean density of sea urchins 

observed one year after the complete eradication.
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A B S T R A C T   

Macroalgal communities have an essential role in the shallow benthic habitats of temperate seas, where changes 
in their composition can resonate through entire coastal ecosystems. As all major ecosystems on Earth, algal beds 
have already been affected by multiple disturbances. Passive conservation tools, such as marine protected areas 
or No-take zones, have the potential to reduce some of the anthropogenic impacts by limiting human activity. 
However, without a good knowledge of the natural community dynamics, it is not easy to discern between 
changes fruit of the intrinsic variability of biological communities and the ones caused by human-related 
stressors. In this study, we evaluated the natural variability of macroalgal communities’ composition inside 
and outside a Mediterranean No-Take marine reserve during 15 years. We described their temporal dynamics 
considering their main drivers and we tested the effect of protection in seaweed beds. We did not find differences 
either in the composition of the macroalgal assemblages or the total algal cover between protected and non- 
protected locations over the fifteen years of study. Nevertheless, we observed a positive effect of the protec-
tion increasing the cover of some specific species, such as the canopy-forming Treptacantha elegans. Our results 
highlight the importance of obtaining long-term data in ecological studies to better understand the natural 
variability of marine communities. Accordingly, a robust understanding of the community dynamics would help 
us to avoid misinterpretations between ‘impacted’ or ‘in-recovery’ communities when recovery times are longer 
than the study periods.   

1. Introduction 

Global and local human disturbances have affected all major eco-
systems on Earth, including coastal algal communities (Halpern et al., 
2007; Gianni et al., 2017), the dominant primary producers in the 
coastal zone (Krause-Jensen and Duarte, 2016). Overfishing, global 
warming, and exceptional storms further contribute to transforming 
rocky infralittoral algal habitats (Ling et al., 2009; Smale and Vance, 
2016; Wernberg et al., 2016; Maggi et al., 2018). Conservation tools 
such as Marine Reserves or No-Take Zones (NTZ) have the potential to 
reduce some of these anthropogenic disturbances (i.e, banning fishery 
activities) and to restore benthic habitats through trophic cascade effects 
(Shears and Babcock, 2002; Guidetti, 2006; Babcock et al., 2010). 

Macroalgae play a key role in the structure of temperate benthic 

ecosystems (Jones et al., 1994; Duarte and Cebrian, 1996; Teagle et al., 
2017), representing an important source of carbon sequestration 
(Krause-Jensen and Duarte, 2016) and providing invaluable ecosystem 
services in many shallow coastal systems (Blamey and Bolton, 2018). 
Consequently, changes in macroalgal communities may sway in the 
whole coastal ecosystem (Mineur et al., 2015). In the Mediterranean 
Sea, algal communities dominate the shallow benthic habitats (Zabala 
and Ballesteros, 1989). There, the highest level of structural complexity 
is represented by canopies of fucoid algae, mostly Cystoseira sensu lato 
populations, providing habitat, shelter, and food to many associated 
organisms and harboring a high diversity and productivity (Ballesteros 
et al., 1998; Mangialajo et al., 2008; Sala et al., 2012; Chemin�ee et al., 
2013). Water pollution, modifications of natural rocky coastline, and sea 
urchin overgrazing as a consequence of overfishing are the major drivers 
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of the loss of fucoids in the Mediterranean Sea (Airoldi and Beck, 2007; 
Mineur et al., 2015). Consequently, severe declines of macroalgal forests 
(i.e. Cystoseira spp.) have been documented, with the consequent 
changes in the associated species, and effects cascading up to higher 
trophic levels (Ling et al., 2015; Chemin�ee et al., 2013). 

Long-term ecological studies observing natural communities dy-
namics under the human influence are essential to understand the 
operation of natural systems, and most especially, to know the com-
munities’ baseline before describing pressures or impacts. Changes in 
marine benthic communities and conservation effects are usually re-
ported in ‘before-after’ studies or with ‘snapshots’ of the protected area 
vs. the unprotected one, while long-term monitoring programs are 
focused on specific species or populations, such as corals, seagrasses, sea 
urchins or kelp species among others (e.g. Kirkman and Kirkman, 2000; 
Steneck et al., 2002; Babcock et al., 2010; Gross and Edmunds, 2015). 
Despite the essential role of macroalgal beds in benthic communities, 
there is an important lack of continuous and long-term studies that 
integrate community changes together with their long-term dynamics 
and with the conservation role, without which we can misinterpret 
communities alterations. 

In this study, we annually monitored infralittoral macroalgal com-
munities inside and outside a NTZ located in the North-Western Medi-
terranean Sea during 15 years. Benthic shallow-rocky habitats in the 
study area are mostly represented by photophilic algal communities of 
small and erect algae (e.g., Dyctiota spp.) and calcareous algal formations 
(Ballesteros, 1991). The sea urchin Paracentrotus lividus is the main 
herbivorous species that control algal biomass (Hereu et al., 2012; 
Medrano et al., 2019). Abundance and temporal trends on sea urchin 
populations were similar inside and outside the studied NTZ (Hereu 
et al., 2012) until an exceptionally violent storm occurred in 2008 that 
drastically reduced sea urchin densities. After that, the populations of 
the sea urchin P. lividus outside the NTZ recovered faster than the pop-
ulation inside the NTZ (Medrano et al., 2019). The present study aims to 
describe the temporal dynamics of the macroalgal communities 
considering their main drivers and environmental stressors and to 
evaluate the effect of protection in macroalgal beds over time by 
analyzing long-term monitoring data. 

2. Methods 

2.1. Monitoring and study area 

Shallow rocky infralittoral macroalgal communities were monitored 
at eight localities in the Montgrí, the Illes Medes and the Baix Ter Nat-
ural Park, located in the North-Western Mediterranean Sea (Fig. 1). 
Within the Natural Park, four out of the eight sampled localities were 
placed inside the Medes Islands No-Take Zone (NTZ) and, the other four, 
outside the boundaries of the NTZ (Fig. 1). 

To monitor macroalgal communities, we annually sampled the algal 
assemblage structure based on the main seaweed species (Table 1) from 
2001 to 2016, excluding the years 2006, 2007, 2011 and 2015. The algal 
percent cover was visually quantified using 50 � 50 cm quadrats divided 
into 25 subquadrats of 10 � 10 cm (Hereu et al., 2008). Twenty replicate 
quadrats were randomly counted at each location at depths between 5 
and 10 m by SCUBA divers. At each quadrat, each species percentage 
cover was estimated as the percentage of the numbers of subquadrats 
where the species was present relative to the total number of sub-
quadrats sampled (as described in Sala and Ballesteros, 1997 and Hereu 
et al., 2008). To avoid the effect of seasonality, sampling was always 
performed at the end of May, when the most representative macroalgae 
(perennial and seasonal species) reach the maximum biomass in the 
study area (Sala and Boudouresque, 1997). 

2.2. Environmental drivers and stressors determining algal assemblage 
structure 

To investigate the relation between the composition of the macro-
algal assemblages and the effect of the environmental drivers inside and 
outside the NTZ, we used Redundancy Analysis (RDA) (Van Den Wol-
lenberg, 1977) on fourth-root transformed percentage cover data of all 
the monitored macroalgal species (Table 1). The RDA is a multivariate 
analysis technique which allows to introduce explanatory (environ-
mental) variables considering multiple regressions to determine linear 
combinations of these variables with the dependent variables (sea-
weeds). Water nutrients, sea-surface temperature, sea urchin abun-
dance, and level of protection (as categorical variable) were included as 
environmental variables (adapted from Hereu et al., 2008). 

Specifically, Chlorophyll-a (Chl-a) levels are a good proxy for 
nutrient levels in coastal waters (Brodie et al., 2007). Therefore, Chl-a 
data from the MODIS-Aqua sensor were extracted for the monitored 
area with a 4 km resolution from NASA Giovanni (MOD-
ISA_L3m_CHL_v2018; https://giovanni.gsfc.nasa.gov/giovanni/) from 
2002 (starting date of this time-series) to 2016. In order to relate the 
nutrient concentration with the sampled algae cover, the average con-
centration of Chl-a (mg/m3) was calculated for the spring season of each 
sampled year (March to May). 

Sea-surface temperature (SST) data were obtained from the L’Estartit 
Meteorological Station (http://meteolestartit.cat/mar/temperatura/), 
where temperature has been measured 1.7 km offshore of the Medes 
Islands NTZ (the northwestern Mediterranean, 42�030N 3�1501500E) 
since 1974. Like Chl-a, we have considered here the mean SST of the 
spring season (March to May) for each year from 2001 to 2016. 

Fig. 1. Map of the study sites in the Montgrí, the Illes Medes, and the Baix Ter 
Natural Park (NW Mediterranean Sea). Orange dots represent the long-term 
monitoring sites: four are located outside the NTZ, and four more are inside 
the Medes Islands NTZ. The perimeter of the Medes Islands NTZ is delimited by 
the green polygon. Unprotected zone is outside the green polygon. (For inter-
pretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 
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We used the same physical environmental variables (Chla- and SST) 
for locations inside and outside the NTZ, given that the average distance 
between the locations is lower than the spatial resolution of the 
described physical environmental variables (2 km). 

The effect of protection on fish communities and the sea urchin 
abundance inside and outside the Medes Islands NTZ over the studied 
period were obtained from the long-term monitoring program of the 
Montgrí, the Illes Medes and the Baix Ter Natural Park (Medrano et al., 
2019). Sea urchins missing data of the years 2006, 2007, 2014 and 2015 
were linearly interpolated from the known values in the time-series. It is 
important to note that higher fish abundance and biomass of the main 
sea urchin predator species have remained significantly larger inside the 
NTZ than outside (García-Rubies and Zabala 1990; Sala, 1997; Hereu, 
2005; Sala et al., 2012), with higher predation rates of sea urchins 
observed inside the NTZ over the last years (Sala, 1997; Hereu, 2005, 
2012). Contrarily, no clear effect of protection on the unique herbivo-
rous fish in the area, Sarpa salpa, was observed in rocky bottoms 
(Macpherson et al., 2002; Hereu et al. non pub. data). 

The collinearity of the four variables was checked. Although the 
maximum correlation was found between the variables Sea urchin 
abundance and Protection level (Spearman correlation: � 0.7), we 
considered and included all four variables as reasonably explanatory in 
this study. 

2.3. Long-term trends of the main macroalgal species inside and outside 
the NTZ 

The fourteen most representative algal species (representing a total 
cover of 89 � 0.06% (Mean � SD) in the studied monitoring period, 
Table 1 bolded species) were selected to describe the temporal patterns 
of the macroalgal dynamics across protection levels and time. To show a 
clearer global view rare species were excluded. First, kite diagrams of 
the percentage of the main algal cover were plotted to visualize the 
changes of these algal assemblages over the studied period inside and 
outside the NTZ. Second, to assess the abundance variability throughout 
the studied period inside and outside the NTZ, we calculated the coef-
ficient of variation (CV) of the algal relative abundance in each location. 
CVs of the fourteen most representative macroalgae were estimated as 
the mean CV of each species between the monitoring sites and CVs of the 
assemblages between protection levels were estimated with the fourteen 
CVs mean of each site. To test pairwise comparisons among CV, we used 
Tukey’s Honestly Significant Differences (HSD) test in each pair of 
means (inside/outside NTZ). Finally, to test for differences in overall 
macroalgal assemblage structure among protection and time, we used 
multivariate generalized linear models implemented in the manyglm 
function of the mvabund R package (Wang et al., 2017). The macroalgal 
abundance in each monitored site was fitted as the response variable 
with a negative binomial distribution after visually checked the most 
likely distribution of the data. The variables protection (inside/outside 
NTZ) and time (years) were included as main fixed effects in the model. 
We then ran a univariate analysis of variance to test the significance of 
the effects in every algal species (Wang et al., 2017). 

All statistical analysis and plots were run with the software R 3.3.3 (R 
Core Team, 2017). Multivariate analyses were performed with the R 
package ‘vegan’ (Oksanen et al., 2017) and R Package ‘mvabund’ (Wang 
et al., 2017). 

3. Results 

3.1. Environmental drivers and stressors determining algal assemblage 
strucure 

The first two axes of the RDA explained the 68% of the species- 
environment relationship (Fig. 2A RDA, Table 2). The four biotic and 
abiotic variables were significantly correlated with the RDA axes. Pro-
tection and Sea urchins were strongly correlated with the first axis, 
while environmental variables related to seasonality (SST and Chl-a) 
were significant correlated with the second axis (Table 3). 

Along the first axis, species positioned at the far right end were more 
abundant in protected sites with low abundance of sea urchins (e.g., 
Asparagopsis armata and Treptacantha elegans). These species were 
separated from those most commonly observed in non-protected sites, 
which were correlated with higher abundances of sea urchins (e.g., 
Wrangelia penicillata, Lithophyllum incrustans, Peyssonnelia bornetii). In 
line with that, the species identified as canopy-forming (Cystoseira sensu 
lato species) were positioned in the right side of the axis, while the 
encrusting coralline algae were on the left side (e.g, Lithophyllum 
incrustans and M. alternans). Along the second axis, the macroalgal 
seasonal species (spring-growing) related to the spring nutrient peak and 
cold waters were positioned in the top of the RDA biplot (e.g., Dictyota 
spp., Bonnemaisonia asparagoides, and Ulva rigida). Despite being a sea-
sonal growing alga, since Laurencia obtusa biomass peak takes place 
during the late spring-early summer, it was mostly related to warm 
waters as well as the perennial Codium species (Fig. 2A). 

Macroalgal assemblages inside and outside the NTZ shifted towards 
the same ordination space over time, highlighting inter-annual vari-
ability of the assemblage, and homogeneous patterns of change in both 
protection levels (Fig. 2B). Despite this observed variability, the last dot 
(representing 2016 data) was located close to the origin dot (repre-
senting 2003 data), indicating that no major shifts in the algal 

Table 1 
List of the main macroalgal species present in the study area and included in the 
anual monitoring: full names, abbreviations, and authorities. The species in bold 
represent about 90% of total algal cover and were considered here as the four-
teen major species.  

Rhodophyta 

Amphiroa rigida Amphiroa Lamouroux 
Asparagopsis armata Asparagopsis Harvey 
Bonnemaisonia 

asparagoides 
Bonnemaisonia (Woodward) C. Agardh 

Ceramium ciliatum Ceramium Ducluzeau 
Corallina elongata Corallina Ellis and Solander (also accepted as 

Ellisolandia elongata) 
Gelidium spinosum Gelidium (Gmelin) Silva 
Jania rubens Jania (Linnaeus) Lamouroux 
Laurencia obtusa Laurencia (Hudson) Lamouroux 
Liagora viscida Liagora (Forsskal) C. Argardh 
Lithophyllum 

incrustans 
L.incrustans Philippi 

Mesophyllum 
alternans 

M.alternans (Foslie) Cabioch and Mendoza 

Peyssonnelia bornetii Peysonnelia Bourderesque and Denizot 
Sphaerococcus 

coronopifolius 
Sphaerococcus (Goodenough and Woodward) 

Stackhouse 
Wrangelia penicillata Wrangelia C. Agardh  

Phaeophyta 

Cladostephus spongiosus Cladostephus (Hudson) C. Agardh 
Colpomenia sinuosa Colpomenia (Mertens ex Roth) Derb�es and Solier 
Cystoseira compressa C.compressa (Esper) Gerloff and Nizamuddin 
Treptacantha elegans T.elegans Sauvageau 
Dictyota spp Dictyota  
Halopteris scoparia Halopteris (Linneaus) Sauvageau 
Padina pavonica Padina (Linneaus) Thivy 
Zanardinia typus Zanardinia (Nardo) Furnari  

Chlorophyta 

Acetabularia 
acetabulum 

Acetabularia (Linnaeus) Silva 

Codium bursa C.bursa (Linnaeus) C. Agardh 
Codium effusum C.effusum (Rafinesque) Delle Chiaje 
Codium vermilara C.vermilara (Olivi) Delle Chiaje 
Flabellia petiolata Flabellia (Turra) Nizamuddin 
Halimeda tuna Halimeda (Ellis and Solander) Lamouroux 
Ulva rigida Ulva C. Agardh  
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assemblages occurred over this long-term study (Fig. 2B). 

3.2. Long-term trends of the main macroalgal species inside and outside 
the NTZ 

The cover of the main macroalgal communities was homogeneous 

between the protected and the non-protected locations (inside/outside 
NTZ) (Fig. 3). The seasonal species of the genus Dictyota and the 
perennial Corallina elongata (today also accepted as Ellisolandia elongata) 
were the dominant seaweed in the study area during Spring, with a mean 
cover of 60 � 15% and 52 � 17.3% (Mean � SD), respectively, across the 
eight monitored sites over time (Fig. 3). High stability of seaweeds cover 

Fig. 2. (A) Redundancy Analysis ordination for macroalgal cover data over time. Blue dots are sampling sites inside the NTZ and grey dots, outside the NTZ. Species 
code in Table 1 (B) Biplot of the Redundancy Analysis connecting the monitored years with grey lines within the protection levels. Font colors indicate the protection 
level (Blue ¼ inside the NTZ, Grey ¼ outside the NTZ). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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over the fifteen years was found in most of the species in both protection 
levels. Annual changes in the species cover were detected simulta-
neously throughout the fifteen years in the protected NTZ and unpro-
tected zones, suggesting the same variability on algal community drivers 
and the similar impact of stressors in both levels of protection (Fig. 3). 

The coefficient of variation showed a consistency of the total 

macroalgal cover estimates over time in both protection levels (Fig. 4A). 
For the particular species A. armata, Halopteris scoparia, W. penicillata, 
and M. alternans, CV pairwise comparisons showed differences within 
levels of protection being A. armata and H. scoparia more variable 
outside the NTZ while the abundances of W. pencillata and M. alternans 
were more variable inside the protected area (Fig. 4B, Table 1 supple-
mentary). Among all the most abundant species, the canopy-forming 
species Treptacantha elegans showed the highest variability (Fig. 4B). 

Short-term changes in macroalgal abundance such as the observed 
after the 2008 extraordinary storm occurred in the studied period 
(Fig. 3), but these were not significant over all the multi-year monitoring 
for the majority of the species (Table 4). Only three of the fourteen 
dominant species showed differences in their cover across protection 
levels (Table 4). In spite of the very low cover, the seasonal growing 
naturalized alga A. armata and the perennial canopy-forming T. elegans 
were more abundant inside the NTZ than outside. In contrast, the sea-
sonal growing species W. penicillata was the most characteristic species 
outside the NTZ (Fig. 3, Table 4). While L. obtusa increased its relative 
cover over the study period (Fig. 3, Table 4) the calcareous algae 
C. elongata and Jania rubens decreased over the study period but only 
outside the NTZ (Fig. 3, Table 4). 

4. Discussion 

Our results revealed that the coastal macroalgal assemblages of the 

Table 2 
Results of redundancy analysis (RDA) on fourth-root transformed data.  

Axes RDA 1 RDA 2 RDA 3 RDA 4 

Eigenvalues 2.8765 1.4672 1.2062 0.8398 
Cumulative percentage variance 

of species data 9.92 14.98 19.14 22.03 
of species-environment relation 45.02 67.98 86.86 100  

Table 3 
Biplot scores for environmental variables, the coefficient of determination (R2), 
and their significance using 999 permutations on the RDA results.  

Variable RDA 1 RDA 2 R2 p (>r) 

Protection 0.97570 � 0.21911 0.7393 0.001 
Sea-urchins � 0.93935 � 0.34297 0.4598 0.001 
SST � 0.62272 � 0.78244 0.2954 0.001 
Chl-a 0.58762 0.80913 0.0859 0.043 

SST:Surface Seawater Temperature. Chl-a: Chlorophyll-a as proxy of nutrients. 

Fig. 3. Kite diagram representing the cover of the fourteen most representative macroalgal species in the study area over the fifteen years. Left panel corresponds to 
the percentage cover within NTZ localities and right panel to the percentage cover of the localities outside the NTZ. Percentage cover was scaled to the maximum 
value of 50 and the colored diagrams show spectral values from 0 to 50 for each species. The color code indicates the corresponding macroalgae phyllum (Rho-
dophyta: red, Phaeophyta: yellow, and Chlorophyta: green). (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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Montgrí, the Illes Medes and the Baix Ter Natural Park were stable and 
similar in total algal cover inside and outside the protected NTZ over the 
fifteen years of study with no species replacement, although some 
variability were observed between years. The communities were domi-
nated by the perennial species C. elongata and the seasonal Dictyota 
species. Corallina elongata has been previously described as predominant 
species subjected to moderate pollution (Díez et al., 1999; Soltan et al., 

2001). Species related to high-quality environmental requirements, such 
as Cystoseira sensu lato species (Thibaut et al., 2005; Mangialajo et al., 
2008). were less abundant in the study area. In addition to environ-
mental quality, bottom-up (herbivorous control) and top-down (re-
sources control) processes interactively influence the structure of 
macroalgal benthic communities (Korpinen et al., 2007; Smith et al., 
2010). As we expected, bottom-up forces such as spring nutrient 

Fig. 4. Coefficients of Variation (CVs) over time. Blue 
color represents the values inside the NTZ and grey color 
the values outside the NTZ. (A) Boxplot showing within- 
protection CVs in total macroalgae cover (inside/outside 
the NTZ). (B) Boxplot showing CVs in the cover of the 
fourteen main macroalgae species within protection levels. 
‘*’ indicates significance differences (p < 0.05) in pair 
means using Tukey pairwise comparison. Species code in 
Table 1. (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version 
of this article.)   

Table 4 
Generalized Linear Model manyglm results (Deviation test statistic, p-value) of macroalgal cover (Percentage/0.25 m2) Df: degrees of freedom. Bold indicates p < 0.05. 
‘:’ indicates interaction. Species code in Table 1.  

Source Df Asparagopsis Dictyota T. elegans C. vermilara C. bursa 

Protection 1 25.093, 0.001 2.45, 0.596 23.324, 0.001 5.545, 0.209 2.26, 0.607 
Time 10 31.461, 0.343 30.58, 0.343 25.542, 0.547 26.429, 0.531 39.415, 0.112 
Protection:Time 9 17.314, 0.088 16.605, 0.088 16.276, 0.088 28.503, 0.020 6.463, 0.088  

Source Df Halopteris Laurencia Padina Sphaerococcus Wrangelia 

Protection 1 0.001, 0.993 0.14, 0.993 0.108, 0.993 0.089, 0.993 14.214, 0.006 
Time 10 29.86, 0.354 47.096,0.010 27.475, 0.489 26.928, 0.510 40.56, 0.112 
Protection:Time 9 18.854, 0.061 13.157, 0.088 19.008, 0.061 13.115, 0.088 11.207, 0.088  

Source Df Coralina Jania L. Incrustans M. Alternans  

Protection 1 0.933, 0.889 1.62, 0.744 8.749, 0.052 3.736, 0.391  
Time 10 34.044, 0.228 21.578, 0.547 33.851, 0.228 35.31, 0.169  
Protection:Time 9 26.231, 0.025 24.497, 0.025 18.032, 0.077 15.289, 0.088   
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concentration and the ordination of the majority of seasonal algal spe-
cies were associated to water temperature, in which herbivory showed 
the weakest influence (except for A. armata and W. penicillata). 
Contrarily, top-down forces may play a role in determining the abun-
dance of fucoids such as the canopy-forming Cystoseira sensu lato species 
and the encrusting coralline algae species. It has been extensively 
documented that increased abundance of grazers feeding on algal beds 
can significantly change the structure of shallow benthic communities 
(Airoldi and Beck, 2007; Filbee-Dexter and Scheibling, 2014; Mineur 
et al., 2015). 

The sea urchin Paracentrotus lividus is the most important herbivore 
in the study area, playing an important role in structuring algal com-
munities (Sala and Zabala, 1996; Palacıń et al., 1998; Hereu et al., 
2008). As P. lividus preferentially graze on fleshy algae (Privitera et al., 
2008), encrusting algae showed a positive relationship to the presence of 
sea urchins. Although many studies have been demonstrate that her-
bivorous fishes may also influence the structure of the benthic assem-
blages (Verg�es et al., 2009; Gianni et al., 2017), we did not consider 
them because there are not evidences of the effect of protection on the 
abundance of the unique herbivore fish in this area, Sarpa salpa (Prado 
et al., 2007). Moreover, their effects on macroalgal beds in the studied 
area are weaker than the sea urchins one (Hereu, 2006; Hereu et al., 
2008). This could be explained by the feeding preference and behavior 
of Sarpa salpa, the only strictly herbivorous fish in this area (Sala and 
Boudouresque, 1997). S. salpa has shown preference for high palatable 
plants such as seagrasses or fleshy algae (Verg�es et al., 2009; Ali et al., 
2017). In addition, fishes feeding behavior differ from the sea urchins as 
fishes bite the leaf while sea urchins graze the entire thalli which could 
deplet large algal extensions (Hereu, 2006; Jadot et al., 2006). 

No-take marine reserves can indirectly restore the original trophic 
cascades recovering the abundance of herbivores’ predators (Sala and 
Giakoumi, 2017) and controlling the herbivore populations (Medrano 
et al., 2019). Results of this study go one step further in the trophic 
cascade of the studied area and also demonstrate that No-Take marine 
reserves can influence the abundance of the canopy-forming Cystoseira 
sensu lato species, being more abundant in protected areas (as reported 
for the same studied NTZ in Sala et al., 2012). Without losing sight of the 
large variability observed in the cover of perennial canopy-forming 
T. elegans over time suggesting a high influence of local conditions on 
this species, this results reinforces the usefulness of marine reserves as 
conservation tools also at lower trophic levels, which is particularly 
relevant when considering the global decline of Cystoseira sensu lato 
species. in the Mediterranean Sea (Thibaut et al., 2005, 2014). Despite 
Cystoseira sensu lato species were not the dominant species in the mac-
roalgal beds of the Natural Park, their loss or replacement could have 
major consequences for many associate organisms (e.g., lowering fish 
recruitment, Chemin�ee et al., 2013). On the other hand, Codium vermi-
lara showed completely opposite ordination relative to the main drivers 
and stressors than Cystoseira spp. This result support the hypothesis of 
C. vermilara could have been replaced by Cystoseira sensu lato species 
assemblages after their historical decline in the NW Mediterranean Sea 
(Ricart et al., 2018). Regarding the less abundant species, our study 
confirms the effect of protection for A. armata, which was already sug-
gested by Sala and Boudouresque (1997). This unpalatable red alga was 
practically absent outside the NTZ, but showed a high variability over 
the fifteen years. The reverse pattern was observed for W. penicillata 
species, more abundant and less variable outside the NTZ. We did not 
detect the influence of any of the studied drivers in the filamentous turf 
forming Ceramium ciliatum, probably because of their short life cycle 
(Bologa et al., 1995). 

Extreme climate events such as severe storms have been also 
considered as potential drivers eroding macroalgal beds (Navarro et al., 
2011; Borja et al., 2018; Capdevila et al., 2019). An exceptionally storm 
with drastic consequences on benthic communities occurred in the study 
area in 2008 (Mateo and Garcia-Rubies, 2012; Sanchez-Vidal et al., 
2012), where we observed a short-term effect in the macroalgal 

communities exerted by the storm like those previously reported in 
other studies (Navarro et al., 2011; Micheli et al., 2016; Maggi et al., 
2018). Benefiting from the available space that resulted from the storm, 
a rapid increase of highly seasonal Dictyota species were observed right 
after the storm (the year 2009), while most of the perennial species 
decreased. Over the following years, the abundance and structure of the 
main macroalgal assemblages recovered swiftly to pre-storm values and 
no long-term impacts were observed, indicating that impacts of a single 
extraordinary storm on rocky-shallow algal communities may be 
reversed relatively quickly. However, we should consider that an in-
crease in the intensity and frequency of extreme climatic events, such as 
extraordinary storms, has been observed since 1950 and is expected to 
increase in the future (IPCC et al., 2014; Reguero et al., 2019), especially 
in the Mediterranean, which has been highlighted as a hotspot of 
ongoing climate change (IPCC et al., 2014; Cramer et al., 2018). Our 
results stress the importance of increasing spatial and temporal scales to 
better understand the natural variability of the marine communities and 
do not misunderstand the changes observed in algal assemblages (Lin-
denmayer et al., 2012). If the same dataset of this study would have been 
used to describe the consequences of this extraordinary storm right after 
the impact, notable differences could have been described. 

Despite the relevance of monitoring algal communities, it is impor-
tant to highlight some limitations of this study. In order to effectively 
document long-term changes of the macroalgal assemblages structure 
over time, we prioritize a broad view of the community by monitoring 
the algal cover of the main species in our study area and missing the 
minority species. This methodology allows to maintain long-term 
monitoring programs, involving different observers due to the easy 
identification of a reduced number of species but it is not the optimal 
ecological design in order to analyze other community indexes such as 
biodiversity or richness. Many studies pool species into functional 
groups, as a way to predict algal community composition (Steneck and 
Dethier, 1994). This reduction of species-specific information is gener-
ally accepted at the expense of a broader view of the changes in com-
munity structure. However, it is important to stress that this approach 
hinders to detect some important changes at the species level because 
different algal species have different responses to herbivores and other 
perturbations independently on their functional group (Hereu et al., 
2008). Most of the results exposed here would have been lost or mis-
interpreted working with functional groups such as the high variability 
of T. elegans, which would have been pooled in the erect algae group. 

A major insight of this study is the absence of major shifts in species 
replacement and abundance and the null effect of protection in the most 
important macroalgal communities in the rocky-shallow infralittoral 
zone of the studied area. Differences only regard the less abundant 
species, among them the canopy-forming Treptacantha elegans which 
took preference inside the protected NTZ. These results provide a cur-
rent baseline of algal communities and contribute to the literature on the 
role of NTZs marine reserves in the benthic communities. 

Authors’ contributions 

MZ, BH, and CL designed and began the long-term monitoring. MZ, 
BH, CL, EA, AM, PC MPE, and IMS conducted most of the fieldwork 
presented in this study. AM analyzed the data and wrote the first version 
of the manuscript with reviews and editing from all the authors. 

Funding 

This work was supported by the long-term monitoring programme of 
the Natural Park of Cap de Creus and the Natural Park of Montgrí, Illes 
Medes and Baix Ter, the Medes Islands and the Baix Ter protected areas 
(public agreement PTOP- 2017-130, Departament de Territori i Soste-
nibilitat of the Generalitat de Catalunya) and by the European Union’s 
Horizon 2020 research and innovation programme under grant agree-
ment No 689518 (MERCES). This output reflects only the authors’ view, 

A. Medrano et al.                                                                                                                                                                                                                               



Marine Environmental Research xxx (xxxx) xxx

8

and the European Union cannot be held responsible for any use of the 
information contained herein that may be made. All the authors are part 
of the MedRecover research group 2017SGR-1521 (www.medrecover. 
org). 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

We are gratefully acknowledged to Josep Pascual, who measured and 
provided the seawater temperature data. We thank C. Bonaviri, A.L. 
Dedeu, L. Navarro, N. Teixid�o, and F. Tomas for their assistance in the 
fieldwork during the long-term monitoring. We want to recognize Gra-
ciel⋅la Rovira, who was not involved in the research group by the 
monitored period in this study but is a key figure to continue studying 
these communities over the following years. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.marenvres.2019.104826. 

References 

Airoldi, L., Beck, M.W., 2007. Loss, status and trends for coastal marine habitats of 
Europe. In: Oceanography And Marine Biology: an Annual Review. Aberdeen 
University Press/Allen and Unwin. CRC Press, London, pp. 357–417. ISSN 0078- 
3218.  

Ali, R., El-Etreby, S., Alwany, M., Ahmed, A., 2017. Food and Feeding Habits of Sarpa 
salpa Salema (Family: Sparidae) in the Libyan Coast of the Mediterranean Sea. 

Babcock, R.C., Shears, N.T., Alcala, A.C., Barrett, N.S., Edgar, G.J., Lafferty, K.D., 
McClanahan, T.R., Russ, G.R., 2010. Decadal trends in marine reserves reveal 
differential rates of change in direct and indirect effects. Proc. Natl. Acad. Sci. 107 
(43), 18256–18261. https://doi.org/10.1073/pnas.0908012107. 

Ballesteros, E., 1991. In: Ros, J.D., Prat, N. (Eds.), Structure and Dynamics of North- 
Western Mediterranean Phytobenthic Communities: a Conceptual Model. Homage to 
Ramon Margalef, or, Why There Is Such Pleasure in Studying Nature, Oecologia 
Aquatica, vol.10, pp. 223–242, 1991.  

Ballesteros, E., Sala, E., Garrabou, J., Zabala, M., 1998. Community structure and frond 
size distribution of a deep water stand of Cystoseira spinosa (Phaeophyta) in the 
Northwestern Mediterranean. Eur. J. Phycol. 33 (2), 121–128. https://doi.org/ 
10.1080/09670269810001736613. 

Bologa, A.S., Bodeanu, N., Petran, A., Tiganus, V., Zaitsev, Y.P., 1995. Major 
modifications of the Black Sea benthic and planktonic biota in the last three decades. 
Bull. Inst. Oceanogr. (Monaco) 1, 85–110. 

Blamey, L.K., Bolton, J.J., 2018. The economic value of South African kelp forests and 
temperate reefs: past, present and future. J. Mar. Syst. 188, 172–181. https://doi. 
org/10.1016/j.jmarsys.2017.06.003. 

Borja, A., Chust, G., Font�an, A., Garmendia, J.M., Uyarra, M.C., 2018. Long-term decline 
of the canopy-forming algae Gelidium corneum, associated to extreme wave events 
and reduced sunlight hours, in the southeastern Bay of Biscay. Estuar. Coast Shelf 
Sci. 205, 152–160. 

Brodie, J., De’Ath, G., Devlin, M., Furnas, M., Wright, M., 2007. Spatial and temporal 
patterns of near-surface chlorophyll a in the Great Barrier Reef lagoon. Mar. Freshw. 
Res. 58 (4), 342–353. https://doi.org/10.1071/MF06236. 

Capdevila, P., Hereu, B., Salguero-G�omez, R., Rovira, G.L., Medrano, A., Cebrian, E., 
Garrabou, J., Kersting, D., Linares, C., 2019. Warming impacts on early life stages 
increase the vulnerability and delay the population recovery of a long-lived habitat- 
forming macroalga. J. Ecol. 107 (3), 1129–1140. https://doi.org/10.1111/1365- 
2745.13090. 

Chemin�ee, A., Sala, E., Pastor, J., Bodilis, P., Thiriet, P., Mangialajo, L., Cottalorda, J.-M., 
Francour, P., 2013. Nursery value of Cystoseira forests for Mediterranean rocky reef 
fishes. J. Exp. Mar. Biol. Ecol. 442, 70–79. https://doi.org/10.1016/j. 
jembe.2013.02.003. 

Cramer, W., Guiot, J., Fader, M., Garrabou, J., Gattuso, J.P., Iglesias, A., et al., 2018. 
Climate change and interconnected risks to sustainable development in the 
Mediterranean. Nat. Clim. Chang. 1 https://doi.org/10.1038/s41558-018-0299-2. 

Díez, I., Secilla, A., Santolaria, A., Gorostiaga, J.M., 1999. Phytobenthic intertidal 
community structure along an environmental pollution gradient. Mar. Pollut. Bull. 
38 (6), 463–472. https://doi.org/10.1016/S0025-326X(98)90161-8. 

Duarte, C.M., Cebri�an, J., 1996. The fate of marine autotrophic production. Limnol. 
Oceanogr. 41 (8), 1758–1766. 

Filbee-Dexter, K., Scheibling, R.E., 2014. Sea urchin barrens as alternative stable states of 
collapsed kelp ecosystems. Mar. Ecol.: Prog. Ser. 495, 1–25. https://doi.org/ 
10.3354/meps10573. 

Gianni, F., Bartolini, F., Pey, A., Laurent, M., Martins, G.M., Airoldi, L., Mangialajo, L., 
2017. Threats to large brown algal forests in temperate seas: the overlooked role of 
native herbivorous fish. Sci. Rep. 7 (1), 6012. https://doi.org/10.1038/s41598-017- 
06394-7. 

Gross, K., Edmunds, P.J., 2015. Stability of Caribbean coral communities quantified by 
long-term monitoring and autoregression models. Ecology 96 (7), 1812–1822. 
https://doi.org/10.1890/14-0941.1. 

Guidetti, P., 2006. Marine reserves reestablish lost predatory interactions and cause 
community changes in rocky reefs. Ecol. Appl. 16 (3), 963–976. https://doi.org/ 
10.1890/1051-0761. 

Halpern, B.S., Selkoe, K.A., Micheli, F., Kappel, C.V., 2007. Evaluating and ranking the 
vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 21 
(5), 1301–1315. https://doi.org/10.1111/j.1523-1739.2007.00752.x. 

Hereu, B., 2005. Movement patterns of the sea urchin Paracentrotus lividus in a marine 
reserve and an unprotected area in the NW Mediterranean. Marine Ecology 26 (1), 
54–62. https://doi.org/10.1111/j.1439-0485.2005.00038.x. In press.  

Hereu, B., 2006. Depletion of palatable algae by sea urchins and fishes in a 
Mediterranean subtidal community. Mar. Ecol. Prog. Ser. 313, 95–103. 

Hereu, B., Zabala, M., Sala, E., 2008. Multiple controls of community structure and 
dynamics in a sublittoral marine environment. Ecology 89 (12), 3423–3435. https:// 
doi.org/10.1890/07-0613.1. 

Hereu, B., Linares, C., Sala, E., Garrabou, J., Garcia-Rubies, A., Diaz, D., Zabala, M., 
2012. Multiple processes regulate long-term population dynamics of sea urchins on 
Mediterranean rocky reefs. PLoS One 7 (5), e36901. https://doi.org/10.1371/ 
journal.pone.0036901. 

IPCC, 2014. Core writing Team. In: Pachauri, R.K., Meyer, L.A. (Eds.), Climate Change 
2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth 
Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, 
Geneva, Switzerland, p. 151. 

Jadot, C., Donnay, A., Acolas, M.L., Cornet, Y., B�egout Anras, M.L., 2006. Activity 
patterns, home-range size, and habitat utilization of Sarpa salpa (Teleostei: sparidae) 
in the Mediterranean Sea. ICES (Int. Counc. Explor. Sea) J. Mar. Sci. 63 (1), 128–139. 

Jones, C.G., Lawton, J.H., Shachak, M., 1994. Organisms as ecosystem engineers. In: 
Ecosystem Management. Springer, New York, NY, pp. 130–147. 

Krause-Jensen, D., Duarte, C.M., 2016. Substantial role of macroalgae in marine carbon 
sequestration. Nat. Geosci. 9 (10), 737. https://doi.org/10.1038/NGEO2790. 

Kirkman, H., Kirkman, J., 2000. Long-term seagrass meadow monitoring near Perth, 
Western Australia. Aquat. Bot. 67 (4), 319–332. https://doi.org/10.1016/S0304- 
3770(00)00097-8. 

Korpinen, S., Jormalainen, V., Honkanen, T., 2007. Bottom–up and cascading top–down 
control of macroalgae along a depth gradient. J. Exp. Mar. Biol. Ecol. 343 (1), 52–63. 
https://doi.org/10.1016/j.jembe.2006.11.012. 

Lindenmayer, D.B., Likens, G.E., Andersen, A., Bowman, D., Bull, C.M., Burns, E., et al., 
2012. Value of long-term ecological studies. Austral Ecol. 37 (7), 745–757. https:// 
doi.org/10.1111/j.1442-9993.2011.02351.x. 

Ling, S.D., Johnson, C.R., Frusher, S.D., Ridgway, K.R., 2009. Overfishing reduces 
resilience of kelp beds to climate-driven catastrophic phase shift. Proc. Natl. Acad. 
Sci. 106 (52), 22341–22345. https://doi.org/10.1073/pnas.0907529106. 

Ling, S.D., Scheibling, R.E., Rassweiler, A., Johnson, C.R., Shears, N., Connell, S.D., et al., 
2015. Global regime shift dynamics of catastrophic sea urchin overgrazing. Philos. 
Trans. R. Soc. Biol. Sci. 370 (1659) https://doi.org/10.1098/rstb.2013.0269, 
20130269.  

Macpherson, E., Gordoa, A., Garcıa-Rubies, A., 2002. Biomass size spectra in littoral 
fishes in protected and unprotected areas in the NW Mediterranean. Estuarine. Coast 
Shelf Sci. 55 (5), 777–788. 

Maggi, E., Puccinelli, E., Benedetti-Cecchi, L., 2018. Ecological feedback mechanisms 
and variable disturbance regimes: the uncertain future of Mediterranean macroalgal 
forests. Mar. Environ. Res. 140, 342–357. https://doi.org/10.1016/j. 
marenvres.2018.07.002. 

Mangialajo, L., Chiantore, M., Cattaneo-Vietti, R., 2008. Loss of fucoid algae along a 
gradient of urbanisation, and structure of benthic assemblages. Mar. Ecol. Prog. Ser. 
358, 63–74. https://doi.org/10.3354/meps07400. 

Mateo, M.A., Garcia-Rubies, T., 2012. Assessment of the Ecological Impact of the 
Extreme Storm of Sant Esteve’s Day (26 December 2008) on the Littoral Ecosystems 
of the North Mediterranean Spanish Coasts. Centro de Estudios Avanzados de Blanes, 
Consejo Superior de Investigaciones Científicas, Blanes, Spain, p. 318. Final Report 
(PIEC 200430E599).  

Medrano, A., Linares, C., Aspillaga, E., Capdevila, P., Montero-Serra, I., Pag�es-Escol�a, M., 
Hereu, B., 2019. No-take marine reserves control the recovery of sea urchin 
populations after mass mortality events. Mar. Environ. Res. 145, 147–154. https:// 
doi.org/10.1016/j.marenvres.2019.02.013. 

Micheli, F., Heiman, K.W., Kappel, C.V., Martone, R.G., Sethi, S.A., Osio, G.C., et al., 
2016. Combined impacts of natural and human disturbances on rocky shore 
communities. Ocean Coast Manag. 126, 42–50. https://doi.org/10.1016/j. 
ocecoaman.2016.03.014. 

Mineur, F., Arenas, F., Assis, J., Davies, A.J., Engelen, A.H., Fernandes, F., Malta, E.-J., 
Thibaut, T., Nguyen, T.V., Vaz-Pinto, F., Vranken, S., Serr~ao, E., De Clerck, O., 2015. 
European seaweeds under pressure: consequences for communities and ecosystem 
functioning. J. Sea Res. 98, 91–108. https://doi.org/10.1016/j.seares.2014.11.004. 

Navarro, L., Ballesteros, E., Linares, C., Hereu, B., et al., 2011. Spatial and temporal 
variability of deep-water algal assemblages in the Northwestern Mediterranean: The 
effects of an exceptional storm. Estuarine, Coastal and Shelf Science 95 (1), 52–58. 

A. Medrano et al.                                                                                                                                                                                                                               

http://www.medrecover.org
http://www.medrecover.org
https://doi.org/10.1016/j.marenvres.2019.104826
https://doi.org/10.1016/j.marenvres.2019.104826
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref1
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref1
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref1
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref1
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref2
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref2
https://doi.org/10.1073/pnas.0908012107
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref4
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref4
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref4
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref4
https://doi.org/10.1080/09670269810001736613
https://doi.org/10.1080/09670269810001736613
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref8
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref8
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref8
https://doi.org/10.1016/j.jmarsys.2017.06.003
https://doi.org/10.1016/j.jmarsys.2017.06.003
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref10
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref10
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref10
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref10
https://doi.org/10.1071/MF06236
https://doi.org/10.1111/1365-2745.13090
https://doi.org/10.1111/1365-2745.13090
https://doi.org/10.1016/j.jembe.2013.02.003
https://doi.org/10.1016/j.jembe.2013.02.003
https://doi.org/10.1038/s41558-018-0299-2
https://doi.org/10.1016/S0025-326X(98)90161-8
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref16
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref16
https://doi.org/10.3354/meps10573
https://doi.org/10.3354/meps10573
https://doi.org/10.1038/s41598-017-06394-7
https://doi.org/10.1038/s41598-017-06394-7
https://doi.org/10.1890/14-0941.1
https://doi.org/10.1890/1051-0761
https://doi.org/10.1890/1051-0761
https://doi.org/10.1111/j.1523-1739.2007.00752.x
https://doi.org/10.1111/j.1439-0485.2005.00038.x
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref22
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref22
https://doi.org/10.1890/07-0613.1
https://doi.org/10.1890/07-0613.1
https://doi.org/10.1371/journal.pone.0036901
https://doi.org/10.1371/journal.pone.0036901
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref25
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref25
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref25
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref25
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref26
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref26
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref26
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref27
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref27
https://doi.org/10.1038/NGEO2790
https://doi.org/10.1016/S0304-3770(00)00097-8
https://doi.org/10.1016/S0304-3770(00)00097-8
https://doi.org/10.1016/j.jembe.2006.11.012
https://doi.org/10.1111/j.1442-9993.2011.02351.x
https://doi.org/10.1111/j.1442-9993.2011.02351.x
https://doi.org/10.1073/pnas.0907529106
https://doi.org/10.1098/rstb.2013.0269
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref35
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref35
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref35
https://doi.org/10.1016/j.marenvres.2018.07.002
https://doi.org/10.1016/j.marenvres.2018.07.002
https://doi.org/10.3354/meps07400
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref38
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref38
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref38
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref38
http://refhub.elsevier.com/S0141-1136(19)30475-1/sref38
https://doi.org/10.1016/j.marenvres.2019.02.013
https://doi.org/10.1016/j.marenvres.2019.02.013
https://doi.org/10.1016/j.ocecoaman.2016.03.014
https://doi.org/10.1016/j.ocecoaman.2016.03.014
https://doi.org/10.1016/j.seares.2014.11.004
http://refhub.elsevier.com/S0141-1136(19)30475-1/opt4fzEFL101r
http://refhub.elsevier.com/S0141-1136(19)30475-1/opt4fzEFL101r
http://refhub.elsevier.com/S0141-1136(19)30475-1/opt4fzEFL101r


Marine Environmental Research xxx (xxxx) xxx

9

Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., 
Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P.M., Stevens, H.H., Szoecs, E., 
Wagner, H., 2017. vegan: community Ecology Package. R package version 2.4-2. 
https://CRAN.R-project.org/package¼vegan. 
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A B S T R A C T

Understanding how no-take zones (NTZs) shape the population dynamics of key herbivores is crucial for the
conservation and management of temperate benthic communities. Here, we examine the recovery patterns of sea
urchin populations following a high-intensity storm under contrasting protection regimes in the NW
Mediterranean Sea. We found significant differences in the recovery trends of Paracentrotus lividus abundance
and biomass in the five years following the storm. The P. lividus populations outside the NTZ recovered faster
than the populations inside the NTZ, revealing that predation was the main factor controlling the sea urchin
populations inside the NTZ during the study period. Arbacia lixula reached the highest abundance and biomass
values ever observed outside the NTZ in 2016. Our findings reveal that predation can control the establishment
of new sea urchin populations and emphasize top-down control in NTZs, confirming the important role of fully
protected areas in the structure of benthic communities.

1. Introduction

Within marine protected areas, no-take zones (NTZs), where the
exploitation of marine resources is not allowed, provide large-scale
controlled areas for examining trophic interactions and cascade effects
compared to natural ecosystems (Pinnegar et al., 2000; Guidetti, 2006).
Previous empirical and observational studies within NTZs have de-
monstrated the role of herbivores, such as sea urchins, and their pre-
dators as major structuring forces in marine temperate benthic com-
munities (Castilla and Durán, 1985; Shears and Babcock, 2002). As a
result of prohibiting extractive activities, predation and top-down
control increases as lower trophic levels decline, including sea urchins
(Guidetti, 2006; Barrett et al., 2009; but see also Halpern, 2003).

Beyond the top-down control of predatory fishes, many processes,
such as recruitment variability, spatial refuge availability and their
escaping behaviour, influence sea urchin abundances (Sala and Zabala,
1996; Nishizaki and Ackerman, 2004; Hereu et al., 2012a; Oliva et al.,
2016). Moreover, when sea urchin populations are established, adult
individuals can also facilitate juvenile survival by reducing micro-pre-
dator abundance (Bonaviri et al., 2012) and offering refuge under their
spine canopy for avoiding predation (Tegner and Dayton, 1977; Zhang
et al., 2011; Hereu et al., 2012a).

A favourable combination of such processes can maintain dense sea
urchin populations, even when they coexist with abundant fish pre-
dators within NTZs; this provides evidence of the existence of strong
feed-back processes that provide resilience for sea urchin populations
once they are established (Bonaviri et al., 2012; Ling and Johnson,
2012). In addition to biological interactions, other factors, such as hy-
drodynamic forces (Micheli et al., 2016), extraordinary storms
(Sanchez-Vidal et al., 2012), sea urchin diseases (Girard et al., 2012;
Clemente et al., 2014), or even human harvesting (Pais et al., 2011),
can also determine the abundance of sea urchins at local scales.

To date, several studies have examined the long-term natural trends
of established sea urchin populations (Lessios et al., 1984; Sala et al.,
1998; Hereu et al., 2012a), where all of the processes affecting their
dynamics occur together. Nevertheless, few studies have reported the
rebuilding capacity of collapsed sea urchin stocks after extraordinary
mass mortalities (Edmuns and Carpenter, 2001; Miller et al., 2003;
Girard et al., 2012; Clemente et al., 2014; Lessios, 2016). Hence, little is
known about the underlying mechanisms that drive their recovery and
how conservation tools such as NTZs can influence and modulate these
processes (Hunte and Younglao, 1988; Guidetti, 2006; Hamilton and
Caselle, 2015).

To investigate the underlying mechanisms behind the recovery sea
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urchin populations and the role of fully protected areas in such recovery
patterns, we used long-term monitoring data (nearly three decades) of
sea urchin populations inside and outside the NTZ of Montgrí, Illes
Medes and Baix Ter Natural Park in the NW Mediterranean Sea.

In this area, the purple sea urchin, Paracentrotus lividus (Lamark), is
the most abundant species and is considered the most important her-
bivore controlling the macroalgal dynamics on the shallow reefs (Sala
and Zabala, 1996; McClanahan and Sala, 1997; Bulleri et al., 1999;
Hereu, 2005). Although the black sea urchin, Arbacia lixula (Linnaeus),
is also common, it is approximately one order magnitude less abundant
than P. lividus on the Catalan coast (Hereu et al., 2012a). Despite its low
density, A. lixula is considered a thermophilic species (Privitera et al.,
2011; Wangensteen et al., 2013), and it has been suggested that climate
change can increase its abundance and distribution (Francour et al.,
1994; Wangensteen et al., 2012). Nevertheless, there is little quantita-
tive evidence of these increasing patterns in the field to date. The
abundance of both species did not show significant differences between
contrasting protection levels from 1991 to 2010 (Hereu et al., 2012a).
In December 2008, when an extraordinary storm occurred in this area
(Mateo and Garcia-Rubies, 2012) that had drastic effects on the benthic
communities (Sanchez-Vidal et al., 2012), a sea urchin population mass
mortality event occurred (Hereu et al., 2012b; Pagès et al., 2013). The
main goal of this study was to examine the recovery patterns of the
devastated sea urchin populations under contrasting protection re-
gimes. We hypothesize that top-down control could play a major role
restricting the recovery of depleted sea urchin populations within the
NTZ, while a fast recovery was expected outside the NTZ where the
predation pressure is lower (García-Rubies et al., 2013). Since almost
all of the adult individuals were lost after the storm, we anticipated that
the population recovery would rely on recruitment and juvenile sur-
vival.

Due to the key role of sea urchins in structuring sublittoral com-
munities in the Mediterranean Sea, understanding how fully protected
areas can shape their population dynamics may be crucial for enhan-
cing the effectiveness of conservation actions for temperate benthic
communities.

2. Materials and methods

2.1. Study site

The Montgrí, the Illes Medes and the Baix Ter Natural Park is lo-
cated on the north-eastern coast of Catalonia, Spain (NWMediterranean
Sea, Fig. 1), covering a marine area of 2.037 ha. The park has its core in
the no-take zone (NTZ) of the Medes Islands, which comprises the Ar-
chipelago of the Medes Islands (93 ha), where all fishing and harvesting
activities have been prohibited since 1983 (García-Rubies and Zabala,
1990). Outside the NTZ, the nearby Montgrí coast is divided into a
peripheral zone, a contiguous beltway zone to the Medes Islands that
was established in 1990 where artisanal fishing and recreational an-
gling are allowed under restriction, and a no reserve zone, where ar-
tisanal, recreational and spearfishing are allowed (Fig. 1).

The total fish biomass and abundance of the apex predators and
carnivores have remained significantly higher in the NTZ than in the
two areas where some type of fishing is allowed, with no differences
between them (Sala et al., 2012; García-Rubies et al., 2013; Hereu et al.,
2017). Because there were no differences in the fish abundance and
biomass between the peripheral zone and the no-reserve zone, both of
the areas were considered outside the NTZ in this study. Accordingly, a
higher fish biomass of the main sea urchin predatory species (Table 1)
and higher sea urchin predation rates have been observed inside the
NTZ in recent years (Sala, 1997; Hereu et al., 2005, 2012a).

2.2. Long-term monitoring

We monitored four sea urchin populations inhabiting extensive reef

areas (150m2) with the same topography that is dominated by large
limestone boulders in the natural park yearly beginning in 1991
(Fig. 1). Two of the four studied populations were located in the Medes
Islands NTZ (sites coordinates: 42°2.497′N; 3°13.629′E and 42°2.658′N;
3°13.479′E), and the other two were located outside the NTZ in the
nearby coast: one located inside the peripheral zone (42°3.313′N;
3°12.721′E) and one in the no-reserve zone (42°3.952′N; 3°12.591′E).

During the first monitoring years, the sea urchin population den-
sities remained similar inside and outside the NTZ despite the higher
fish abundances observed in the NTZ throughout the study period
(Hereu et al., 2012a). In December 2008, an extraordinary storm struck
the Catalan coast, with maximum wind speeds up to 20m/s, significant
wave heights as great as 8m, record maximum wave heights in excess
of 14m, and wave periods up to 14 s. This storm was categorized as a
highly extreme event with a return period of more than 100 years
(Sanchez-Vidal et al., 2012). Substantial negative effects on the benthic
populations and communities inhabiting soft and hard bottoms (e.g.,
macroalgae, gorgonians, seagrass meadows and sea urchins) from
shallow to deep waters were documented after the storm (Mateo and
García-Rubies, 2012; Sanchez-Vidal et al., 2012; Pagès et al., 2013).
The impact of these forces on the sea urchin populations rendered a
more than 80% loss of individuals and 90% of the biomass and levelled
the sea urchin populations between the areas inside and outside the
NTZ. The larger specimens of P. lividus were the most affected, with
consequent changes in their size frequency distribution (Hereu et al.,
2012a, 2012b).

Fig. 1. Map of the study locations in the Montgrí, the Illes Medes and the Baix
Ter Natural Park in the NW Mediterranean Sea. Orange dots represent the long-
term monitoring sites: two are located outside the NTZ, and two more are inside
the NTZ. The perimeter of the Medes Islands NTZ is delimited by the green
polygon, and the peripheral zone (PZ) is delimited by the blue polygon. No
reserve zone is outside the green and blue polygons. (For the interpretation of
the references to colour in this figure legend, please refer to the web version of
this article).
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2.3. Sampling methodology

To describe the medium-term (5 yrs) recovery patterns of sea urchin
populations inside and outside the NTZ after the 2008 mass mortality
event on the P. lividus and A. lixula populations under different pro-
tection regimes, we extended the annual monitoring until 2016.
Although the abundances of Arbacia lixula were very low in our study
area for the duration of the monitoring, we also evaluated their tem-
poral trend to detect any clear pattern in this species.

The sea urchin species, abundance and size were recorded in three
50m2 transects at 6m depth in each study site. As described in Hereu
et al. (2012a), the transects were divided into five 10m2 sub-transects,
and within each transect, we counted and measured the diameter of all
the present sea urchins. The sea urchin biomass was calculated using
the allometric length-weight relationship, W= a(TD)b, where W is the
wet weight (in g) and TD (in cm) is the measured sea urchin test dia-
meter. Biomass of P. lividus was estimated as
W=0.00319(TD)2.479(Ling et al., 2015) and, A. lixula biomass was
estimated as W=0.8467(TD)2.6042 (Ballesteros, 1981).

2.4. Data analysis

To detect potential structural changes in the P. lividus populations
due to the 2008 storm, the mean abundance per year was fitted into
sequential linear regressions. Every potential change point in the data
series was assessed by computing the residuals of the linear models and
analysing the F statistics using the R package ‘strucchange’ for R (Zeileis
et al., 2003).

We used generalized linear mixed models (GLMMs) to determine
differences in the medium-term (5 yr) recovery patterns of the sea
urchin populations between the NTZ and the non-protected area. The P.
lividus densities and biomass in the five subsequent years (2009–2013)
were fitted as the dependent variables. The explanatory variables time
(years) and protection level (inside/outside the NTZ) were included as
fixed effects, and the sample sites nested to the protection level were a
random effect. The data distribution was visually inspected by fitting
the response variable to the most likely distribution (Fig. 1, supple-
mentary material), and the negative binomial GLMMs with a logarithm
link function were conducted using the package ‘lme4’ for R (Bates
et al., 2015).

Because of the low abundance and biomass of Arbacia lixula, which
were an order of magnitude lower than those of P. lividus, we did not
statistically examine the recovery patterns of this species.

All the statistical analyses were performed with R version 3.3.3 (R
Core Team, 2017).

3. Results

The abundance and biomass of P. lividus reached the lowest values
ever recorded after the storm of 2008 (Figs. 2 and 3). Despite the short-
term effects of the mortality event, we found significant differences in
the recovery trends of the P. lividus abundance and biomass over the
following five years under the different protection regimes (Table 2 and

Fig. 3). Sequential F tests and the critical F values identified a shift in
the P. lividus populations inside the NTZ after the 2008 storm, resulting
in a significant reduction in the population abundance from that time
on (Fig. 2).

In contrast, outside the NTZ, both the P. lividus abundance and
biomass started to recover one year after the mortality caused by the
storm, and the biomass increased fourfold in two years, from the lowest
value of 119.7 ± 28.3 g/10m2 in 2009 to 445.6 ± 83.7 g/10m2

(mean ± SE) in 2011 (Fig. 3). The non-protected populations dis-
played a fast recovery in density in 2010 (Fig. 3), which was consistent
with the high recruitment peak observed that year (61.6% of the po-
pulation, Fig. 4). From these new sea urchins, the non-protected po-
pulations began to grow, reaching a similar size structure as that before
the storm in 2013 (Fig. 4).

In 2016, eight years after the storm, the P. lividus abundance and
biomass in the non-protected sites were higher than the pre-storm va-
lues in 2008 and higher than those observed inside the NTZ (Figs. 2 and
3).

In contrast, inside the NTZ, the P. lividus abundance and biomass
continued decreasing for some of the years after the 2008 mass mor-
tality event, reaching the lowest biomass values three years after the
storm (40.8 ± 15 g/10m2 in 2011). The sea urchin biomass in the NTZ
started to recover in 2013 (255.2 ± 59.6 g/10 m2), and 5 years after
the storm, the biomass and density values were far from the pre-storm
year values (Fig. 2). No recruitment peak was observed inside the NTZ
until 2011, when the populations were dominated by small individuals
(> 80% of the sea urchins were< 4 cm in diameter, Fig. 4).

The abundance of the Arbacia lixula populations was lower than that
of P. lividus, but it also dropped as a consequence of the 2008 storm.
Nevertheless, the A. lixula populations did not show significant con-
trasting short-term recovery patterns under different protection re-
gimes, which was observed in P. lividus. The abundance and biomass of
A. lixula outside the NTZ reached the highest values ever observed in
this area in 2016. In contrast, inside the NTZ, the recovery was slower,
and in 2016, the density values were similar to those observed before
the mass mortality event (Fig. 5a–b).

4. Discussion

In this study, we tested the effects of a NTZ on the recovery process
of a key herbivore following a high-intensity storm in a temperate
benthic community. We conclude that the sea urchin Paracentrotus li-
vidus populations outside the NTZ recovered faster than the populations
inside the NTZ, revealing that predation is the main factor controlling
the recovery of sea urchin populations in the NTZ. This is consistent
with many studies that also demonstrated the role of top-down control
as a major structuring force in benthic communities in other temperate
systems (Shears and Babcock, 2002; Guidetti, 2006; Halpern et al.,
2006; Clemente et al., 2011).

After the almost complete depletion of adult P. lividus populations
due to the dramatic storm in 2008 and given that the foundation and
recovery of benthic populations relies on the interaction between set-
tlement and post-settlement mortality, we expected differences in one

Table 1
Density and biomass (Mean ± SE) of the main P. lividus predators vulnerable to fisheries inside and outside the Medes Islands NTZ from 2009 to 2016 (Hereu et al.,
2017).

Species Density (Ind/500m2) Biomass (kg wet mass/500m2)

NTZ No reserve NTZ No reserve

Sparidae
Diplodus sargus* 12.4 ± 1.7 7.9 ± 1.9 3.1 ± 0.5 1.5 ± 0.4
*main predator of juveniles and adult sea urchins (> 10 mm) (Sala and Zabala, 1996; Sala, 1997; Hereu et al.,

2005)
Diplodus vulgaris 29.9 ± 6.2 17.2 ± 3.7 3.6 ± 0.9 1.3 ± 0.4
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or both of the processes between the protected and non-protected areas
to fully understand the contrasting recovery patterns observed.

The settlement of P. lividus is decoupled from local populations and
can be highly variable at small scales given the long planktonic stage of
sea urchin larvae (Hereu et al., 2004, 2012a). Therefore, the arrival of
new individuals is not expected to explain the differences between the
protected and non-protected areas, suggesting a key role of post-set-
tlement mortality to fully understand the contrasting recovery patterns
observed between the different protection levels.

In fact, the high juvenile predation rate (Hereu et al., 2005) and the
absence of adult individuals that facilitate juvenile survival inside the
NTZ may explain the slow sea urchin population recovery within the
fully protected area. After the depletion of sea urchin populations in
2008, the size structure of the P. lividus populations inside and outside
the NTZ changed dramatically. When the recovery began, unimodal
size distributions dominated by small sizes were observed in both areas
because of recruitment pulses. Although the settlement episodes were
simultaneous both inside and outside the NTZ, the recruitment peak
observed in 2010 outside the NTZ was not observed in the NTZ, sug-
gesting high predation control within the NTZ. After the 2010 recruit-
ment peak, the sea urchin populations outside the NTZ began to re-
cover, showing immediate increases in their abundance, size and
biomass according to the reported growth rates for this species (Turon
et al., 1995; Ouréns et al., 2013). In addition, the annual arrival of new

settlers and the low predation rate maintained the smallest size class as
the most frequent class outside the NTZ over time (Sala and Zabala,
1996; Hereu et al., 2012a). Inside the NTZ, the recovery of adult in-
dividuals was slower, as it was determined by the lower survival of
juveniles.

Adult P. lividus specimens were established in populations in both
protection regimes, i.e., inside and outside the NTZ, at different times:
in 2013 outside the NTZ and in 2016 inside the NTZ. In 2016, the
population structures were characterized by a bimodal distribution,
with one mode in the adult sea urchin size class in both areas and an-
other in the juvenile size class, which is typical of sea urchin popula-
tions under a certain degree of predation pressure (Sala and Zabala,
1996), but with the majority of the smallest size classes in the non-
protected area due to the highest post-settlement mortality inside the
NTZ. These observed patterns support that top-down control is crucial
for determining the sea urchin population structure within the NTZ and
reaffirm the importance of adults in maintaining sea urchin popula-
tions. When sea urchins reach the refuge size from their predators (Sala
and Zabala, 1996), they facilitate post-settlement survival by conferring
protection from predation (Tegner and Dayton, 1977; Ouréns et al.,
2014), eliminating micropredator grazing (Bonaviri et al., 2012), and
protecting them from environmental and hydrodynamic forces
(Nishizaki and Ackerman, 2004).

Before the extraordinary storm, the similar abundance and biomass

Fig. 2. Paracentrotus lividus abundance over
time. Blue lines represent the values inside the
NTZ, and orange lines represent the values out-
side the NTZ. (a) The density of P. lividus per
10m2 (Mean ± SE) since 1990. (b) Mean va-
lues of the P. lividus density before (average
density from 1991 to 2008) and after the ex-
traordinary storm (average density from 2010 to
2016). (c–d) Change-point analysis by sequen-
tial F tests with the proper critical F levels. (c)
Identified change point after the 2008 storm
inside the NTZ, and (d) the absence of a change
point after the storm outside the NTZ. (For in-
terpretation of the references to colour in this
figure legend, the reader is referred to the Web
version of this article.)
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trajectories observed over the years between the sea urchin populations
of both protection regimes reinforce that factors other than top-down
control can be important over large scales, as was also revealed in
Guidetti and Dulčić (2007) and in Bonaviri et al. (2012).

In 2008, the P. lividus densities reached the lowest values inside the
NTZ throughout the long-term monitoring until the storm. This together
with the time scale could be crucial in the observed responses of long-
term studies (Babcock et al., 2010), and we think that predation could
have become the major controlling force of sea urchin populations in-
side the NTZ regardless of the storm on a timescale longer than the one
studied.

The Arbacia lixula populations showed a similar recovery pattern to

that of the P. lividus populations, as the density and biomass values
outside the NTZ increased in 2012. In addition, A. lixula reached den-
sities and biomasses never observed in this area outside the NTZ in
2016. A. lixula is a thermophilic species that is more abundant in the

Fig. 3. Recovery patterns of Paracentrotus lividus in abundance (a) and biomass
(b). Black points correspond to the mean, and the coloured areas correspond to
the SE. The blue colour represents the values inside the NTZ, and orange re-
presents the values outside the NTZ. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this
article.)

Table 2
Results of the generalized linear mixed models (GLMMs) testing differences in the P. lividus density and biomass between different protection levels (inside and
outside the NTZ) and in the five subsequent years after the storm (2009–2013). To select the maximum likelihood model, we used Akaike's information criteria (AIC).
According to Burnham and Anderson (2003), the model with the lowest AIC value was considered the most appropriate, which is indicated in bold.

Models Variable Coefficients AICc

Estimate Std. Error z value p

Density ∼ Protection*Years + (1|Protection:Site) Intercept 3.7138 0.5421 6.851 <0.001 2104.3
Protection (MPA) −2.0464 0.7673 −2.667 0.0076
Year 0.6540 0.0842 7.768 <0.001
Protection*Year −0.3182 0.1132 −2.811 0.0049

Density∼ (1|Protection:Site) Intercept 2.8035 0.6739 4.16 <0.001 2169.3
Biomass ∼ Protection*Years + (1|Protection:Site) Intercept 5.9833 0.259 23.101 <0.001 3447.3

Protection (MPA) −1.6393 0.3645 −4.497 <0.001
Year 0.9989 0.1103 9.057 <0.001
Protection*Year −0.7008 0.1454 −4.820 <0.001

Biomass∼ (1|Protection:Site) Intercept 5.3857 0.5519 9.759 <0.001 3520.8

Fig. 4. Size class distribution of Paracentrotus lividus before the extraordinary
storm (2008) and in the years following the storm (2009–2016). The blue
colour represents the frequency distribution inside the NTZ, and orange re-
presents the frequency distribution outside the NTZ. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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southern and eastern areas of the Mediterranean Sea. Thus, such an
upward trend seems to be linked to the warming trends observed on the
Catalan coast in recent decades, where the temperature has increased
0.26 ± 0.08 °C/decade from 1985 to 2015 (Vargas-Yáñez et al., 2017),
and is probably enhanced by the lack of predation pressure when
fishing is allowed. In addition, the preliminary results on the A. lixula
growth rate (Barrera, 2018) have shown the faster growth of newborn
A. lixula compared with P. lividus, which is suggested as a win-win
strategy for A. lixula under expected global change conditions.

The coexisting sea urchins P. lividus and A. lixula have different diets
and foraging activities (Wangensteen et al., 2011; Agnetta et al., 2013),
and it has been described that P. lividus has a preference for fleshy algae
and that A. lixula preferentially graze on encrusting coralline algae
(Privitera et al., 2008), having an important role in the maintenance of
sea urchin barrens once they are established (Agnetta et al., 2015). In
addition, a wider area can be impacted by A. lixula grazing activity than
by P. lividus activity due to its higher mobility on barren zones (Bonaviri
et al., 2011). Therefore, the increase of this species may have large
consequences for macrophyte-dominated communities.

Physical disturbances and interactions among multiple stressors
acting at local and global scales can drive important changes in the
structure and function of marine populations and communities. Several
studies to date have demonstrated that severe storms and extreme
waves can trigger mass mortalities in sea urchins populations
(Scheibling and Lauzon-Guay, 2010; Scheibling et al., 2010) and have
important effects on rocky shore communities in general (Denny et al.,
2009; Micheli et al., 2016; Borja et al., 2018). An increase in the in-
tensity and frequency of extreme climatic events, such as extraordinary
storms (as observed in our study), has been observed since 1950 and is
expected to increase in the future (IPCC, 2014; Reguero et al., 2019),
especially in the Mediterranean, which has been highlighted as a hot-
spot of ongoing climate change (IPCC, 2014, Cramer et al., 2018).

Our findings reveal that predation can control the establishment of
new sea urchin populations and emphasize top-down control in NTZs.
These results confirm the important potential role of protected zones,
those areas fully protected from fishing, in the structure of benthic

communities (Sangil et al., 2012; Sala and Giakoumi, 2017). Ad-
ditionally, the contrasting patterns regarding different levels of pro-
tection observed in this study highlight the relevance of well-designed
long-term monitoring to better understand the natural variability of sea
urchin populations and to discern the underlying mechanisms when
mass mortality events occur. Long-term monitoring also provides useful
insights into the management and conservation of algal-dominated
benthic ecosystems.
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