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Non-centrosomal nucleation mediated by augmin
organizes microtubules in post-mitotic neurons and
controls axonal microtubule polarity
Carlos Sánchez-Huertas1,w, Francisco Freixo1,*, Ricardo Viais1,*, Cristina Lacasa1, Eduardo Soriano2,3,4,5

& Jens Lüders1

Neurons display a highly polarized microtubule network that mediates trafficking throughout

the extensive cytoplasm and is crucial for neuronal differentiation and function. In newborn

migrating neurons, the microtubule network is organized by the centrosome. During neuron

maturation, however, the centrosome gradually loses this activity, and how microtubules are

organized in more mature neurons remains poorly understood. Here, we demonstrate that

microtubule organization in post-mitotic neurons strongly depends on non-centrosomal

nucleation mediated by augmin and by the nucleator gTuRC. Disruption of either complex not

only reduces microtubule density but also microtubule bundling. These microtubule defects

impair neurite formation, interfere with axon specification and growth, and disrupt axonal

trafficking. In axons augmin does not merely mediate nucleation of microtubules but ensures

their uniform plus end-out orientation. Thus, the augmin-gTuRC module, initially identified in

mitotic cells, may be commonly used to generate and maintain microtubule configurations

with specific polarity.
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T
he neuronal microtubule cytoskeleton provides transport
tracks for molecular cargos and organelles, and mediates
essential processes such as neuron migration and

polarization, neuritic growth and branching, and synaptic
transmission1–3. Microtubules are polymers assembled from
a-b-tubulin heterodimers and have an intrinsic polarity based
on the head-to-tail arrangement of a- and b-tubulin. Neuronal
microtubules appear predominantly bundled, presenting both
parallel and anti-parallel configurations. Whereas in axons most
of the microtubules are oriented with their plus ends away
from the soma, microtubules in dendrites show mixed polarity,
with a large fraction of microtubule plus ends oriented
towards the soma. This specific organization of the microtubule
cytoskeleton underlies the characteristic morphology and
compartmentalization of neurons1,3–5.

Interestingly, most of the microtubules in mature neurons are
not connected to the centrosome, the main microtubule
organizing centre (MTOC) in many other cell types, raising the
question of how non-centrosomal microtubules in neurons are
nucleated and correctly positioned4. Early work established a
model in which microtubules are nucleated at the centrosome,
released, and transported into axons and dendrites by
motor-dependent sliding along existing microtubules6–12.
However, experimental removal of the centrosome affected
neither axon growth in rodent cultured hippocampal neurons13

nor neuronal microtubule organization and morphogenesis
in flies1–3,14,15. These results led to the conclusion that
microtubules in post-mitotic neurons can be nucleated by a
non-centrosomal mechanism. Together with non-centrosomal
nucleation, severing of existing microtubules by katanin
and spastin has also been proposed to generate new
microtubules at non-centrosomal sites1,3–5,16,17. However, it is
unclear how the polarity of locally generated microtubules would
be controlled.

An essential component of all MTOCs is the protein g-tubulin.
g-Tubulin, together with g-tubulin complex proteins (GCPs),
assembles into large g-tubulin ring complexes (gTuRCs)
that function as microtubule nucleators4,18. During neuron
maturation g-tubulin is gradually lost from centrosomes,
correlating with a progressive loss of centrosomal nucleation
activity6–13,15,19, but remains present in the cytoplasm.
Non-centrosomal g-tubulin was recently proposed to nucleate
microtubules from dendritic Golgi outposts13,20 and from
diffusible sites in the somato-dendritic compartment21.
However, the existence of nucleation sites at dendritic Golgi
outposts has subsequently been questioned22,23, and the
mechanism by which g-tubulin dependent, non-centrosomal
nucleation occurs remains obscure.

In addition to nucleation at MTOCs, microtubules can also be
nucleated from the lateral surface of pre-existing or ‘mother’
microtubules. Such a mechanism generates microtubules within
mitotic and meiotic spindles and within the interphase cortical
microtubule array in plants, independently of centrosomes24.
This nucleation mode requires another multi-subunit protein
complex termed augmin, which recruits gTuRC to microtubule
lattices to nucleate microtubule branches25–29.

Here, we demonstrate that augmin and gTuRC are crucial
for microtubule organization in post-mitotic neurons. Non-
centrosomal, augmin-gTuRC-dependent nucleation generates the
highly bundled neuronal microtubule network and ensures
uniform plus end-out microtubule polarity in axons. These
functions are crucial for neuron morphogenesis and intracellular
transport. Our results reveal the versatility of the augmin-gTuRC
module and suggest that mature neurons may not require any
specific MTOC to maintain the organization of their extensive
microtubule network.

Results
cTuRC is present in neurons throughout development.
To address whether gTuRC may have a role in post-mitotic
neurons we first determined the levels of gTuRC subunits at the
centrosome of murine cultured hippocampal neurons and in the
soluble fraction of hippocampal lysates. Previous work in rat
hippocampal cultures suggested that despite the loss of
centrosomal g-tubulin, the cytosolic levels of g-tubulin only
moderately decreased during maturation. However, fully mature
neurons were not analyzed13. We observed that at early stages of
differentiation the g-tubulin signal at centrosomes colocalized
largely with the pericentriolar material marker pericentrin.
During neuron maturation the centrosomal g-tubulin signal
progressively decreased, supporting previous findings13, but
remained detectable even in the more mature stages (Fig. 1a,b;
Supplementary Fig. 1a,b). Interestingly, we also found that
contrary to early stages, the residual centrosomal g-tubulin in
more mature neurons was not co-distributed with the
pericentriolar material, but was restricted to the centrioles
(labelled by centrin antibody) (Fig. 1a,b). Thus, residual
centrosomal g-tubulin in mature neurons may represent a more
stably bound, centriolar fraction of g-tubulin30,31. A very similar
decrease and redistribution was observed for the gTuRC targeting
subunit NEDD1 (Supplementary Fig. 1a,b).

To determine the levels of cytosolic gTuRC we probed soluble
extracts from cultured neurons and from hippocampal tissue
dissected at different developmental stages by western blotting.
After an initial, slight downregulation, the cytosolic levels of the
gTuRC subunits g-tubulin and GCP3 plateaued and remained
constant throughout neuronal maturation in both experimental
models. In contrast NEDD1, which targets gTuRC to centro-
somes in proliferating cells32,33, was strongly downregulated and
barely detectable in mature stages (Supplementary Fig. 1c,d).

To test whether cytosolic g-tubulin in neurons assembled into
gTuRC we used sucrose gradient centrifugation to size-fractionate
extracts from cultured neurons or from hippocampal tissue at
different stages of maturation. Indeed, in all cases some of the
cytosolic g-tubulin cofractionated with GCP4 at a molecular
weight corresponding to the size of gTuRC (Fig. 1c,d).
We conclude that, similar to proliferating cells, g-tubulin in
post-mitotic neurons assembles into gTuRC.

cTuRC nucleates microtubules in all neuronal compartments.
To study the function of g-tubulin in murine hippocampal
neurons we depleted both forms of endogenous g-tubulin
(TUBG1 and TUBG2) by lentivirus-mediated short hairpin
RNA (shRNA) transduction (Figs 1e,f and 4a, shRNA #1;
Supplementary Fig. 2a). Expression of shRNA depleted mainly
the cytosolic fraction of g-tubulin since the residual g-tubulin
signal at centrosomes of 5 days in vitro (DIV) neurons was not
further reduced (Fig. 1e,f), consistent with our earlier notion that
the remaining centriolar g-tubulin may turn over more slowly
(Fig. 1a,b). Depletion of g-tubulin was previously suggested to
reduce microtubule nucleation in the soma and in dendrites
(assayed by scoring EB3-labelled plus ends in fixed cells),
thereby impairing dendritic arborization21. We used time-lapse
imaging in lentivirus-transduced neurons transiently expressing
EB3-Tomato and confirmed that under our experimental
conditions depletion of g-tubulin reduced the density of
EB3-comets in the soma (Fig. 1g,h; Supplementary Movie 1). In
addition, we found that g-tubulin knock-down also reduced
comet density in axons (Fig. 1i,j; Supplementary Movie 2),
without affecting the average speed or distance covered by the
comets (Supplementary Fig. 2b,c). In both somas and axons the
reduction in comet density was fully rescued by co-expression of
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Figure 1 | Non-centrosomal cTuRC is required for microtubule nucleation in somas and axons of hippocampal neurons. (a) Immunofluorescence images

of centrosomes of neurons at the indicated DIV stained with the indicated antibodies. DAPI was used to stain nuclei. Scale bars, 5mm and 1mm

(magnification). (b) Quantification of the distribution of centrosomal g-tubulin in neurons shown in a. n¼ 33 (1 DIV), 36 (3 DIV) and 25 (10 DIV) neurons,

3 independent cultures. (c) Lysates of cortical cultures at 1 or 8 DIV were fractionated on sucrose gradients. Input protein levels are shown, actin was used

as loading control. The fractions were immunoblotted with the indicated antibodies. The asterisk labels an unspecific band recognized by the GCP4

antibody. The brackets mark gTuRC peak fractions. Aldolase (158 kDa, 7S) and thyroglobulin (669 kDa, 19S) were fractioned and used as molecular weight

standards. Results were replicated twice. (d) Homogenates from hippocampi dissected at stage e17.5 or post-natal day 60 were analyzed on sucrose

gradients as in c. (e) Representative immunofluorescence images of control and g-tubulin-depleted neurons (transfected with shRNA #1, Fig. 4a) stained

with g-tubulin antibody. Red arrowheads mark centrioles. Scale bar, 5 mm. (f) Quantification of mean g-tubulin immunofluorescence intensity at

centrosomes and in the non-centrosomal cytoplasm. n¼ 25 (control), 27 (depleted) neurons. Two independent experiments. **Po0.01, ns, not significant

by the two-tailed t-test. Red bars show average. (g–j) Neurons were infected at 1 DIV with the indicated lentivirus, transfected at 4 DIV with the reporter

EB3-Tomato and imaged by time-lapse microscopy 24 h later. (g) EB3-Tomato time-lapse projections with comet tracings of control and g-tubulin-depleted

somas. (h) Density of EB3-comets in the soma of control, g-tubulin-depleted and g-tubulin-depleted/rescued neurons. n¼ 17, 15 and 21 neurons,

respectively. Three independent experiments. **Po0.01, ***Po0.001 by one-way ANOVA followed by the Bonferroni’s post hoc test. Error bars: s.e.m.

(i) Kymographs of EB3-comets in control and g-tubulin-depleted axons. (j) Quantification of comet density in control, g-tubulin-depleted and

g-tubulin-depleted/rescued axons. n¼ 38, 35 and 39 axons, respectively. Four independent experiments. **Po0.01, ****Po0.0001 in the Wald tests

derived from a linear model. Error bars: s.e.m.
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shRNA-resistant TUBG1 indicating the specificity of the
phenotypes (Fig. 1h,j). Together with previous findings21,22

these results indicate that non-centrosomal g-tubulin is
required for microtubule nucleation in all compartments of
mammalian neurons.

Surprisingly, in cells expressing exogenous TUBG1 we
consistently observed a slight increase in the density of axonal
EB3-comets compared with the control cells (Supplementary
Fig. 2d). Moreover, whereas in control cells almost all axonal
microtubules grew with their plus ends away from the soma,
increased nucleation activity in cells expressing exogenous
TUBG1 correlated with a small increase in the percentage of
microtubule plus ends growing towards the soma (Supplementary
Fig. 2e–g). These observations not only support the notion that
g-tubulin-dependent nucleation takes place in the axon but
additionally suggest that regulation of microtubule nucleation
and polarity may be mechanistically linked.

Microtubules in c-tubulin-depleted neurons are disorganized.
To determine whether reduced nucleation in g-tubulin-depleted
neurons affected the microtubule network we fixed and stained
neurons with antibodies under conditions that extracted most of
the soluble tubulin but preserved microtubules34. Compared with
the control neurons somas of depleted neurons displayed a
B22% reduction in the intensity of total microtubule staining
(Fig. 2a,b). Moreover, whereas most control cells contained
robust microtubule bundles in the periphery of the soma and
entering the neuritic shafts, microtubules in g-tubulin-depleted
cells appeared disorganized, with fewer cells displaying
microtubule bundles (Fig. 2a,c). In addition, we noticed that
somas of depleted neurons expanded over a larger area than
somas of control cells (Fig. 2a,d). All of these defects could be
rescued by expression of shRNA-resistant TUBG1. Similar to
somas, axons in g-tubulin-depleted neurons also contained fewer
microtubules (Fig. 2e,f). Microtubules in axons are particularly
stable and during neuron maturation become heavily modified by
post-translational modification including tubulin acetylation35.
However, even in mature neurons acetylated microtubules
coexist with non-acetylated microtubules (Fig. 2i)36. Staining
with antibodies against acetylated tubulin indicated that
g-tubulin depletion did not cause a reduction in acetylated
axonal microtubules, suggesting that disruption of gTuRC
primarily diminished the less stable population of microtubules
(Fig. 2e,g,h).

Due to the high density of microtubules in axons we could not
discern qualitative changes in microtubule organization in this
compartment. Instead we measured microtubule-based axonal
transport as read-out for potential microtubule defects. Motility
and distribution of mitochondria critically depend on micro-
tubules37. Strikingly, depleting g-tubulin reduced the proportion
of motile mitochondria in hippocampal axons from B50 to
B30%, a defect that was rescued by expression of RNAi-resistant
wild-type g-tubulin (Fig. 3a,b; Supplementary Movie 3). Analysis
of the directionality of mitochondrial transport revealed that
g-tubulin depletion impaired similarly both anterograde and
retrograde transport (Fig. 3c). We also observed changes in the
steady state distribution of axonal mitochondria. Depletion of
g-tubulin reduced the density of mitochondria by B30% and this
defect was rescued by shRNA-resistant TUBG1 (Fig. 3d,e).
Together these results demonstrate that g-tubulin has a critical
role in maintaining microtubule organization and function in
both soma and axon of hippocampal neurons.

Morphogenesis of axons and dendrites requires c-tubulin.
Since microtubules are important determinants of neuron

morphogenesis we examined whether loss of g-tubulin affected
axonal development in cultured hippocampal neurons. g-Tubulin
was depleted as before or with a different shRNA (shRNAs #1 and
#2, respectively; Fig. 4a). In g-tubulin-depleted 7 DIV neurons the
total axon length was reduced by B40% compared with the
control cells and the total number of axonal branch points was
similarly reduced (Fig. 4b–d). To test whether loss of g-tubulin
also interfered with neurite formation and axon specification,
neuronal cultures transduced with shRNAs for 4 days were
trypsinized for a complete retraction of all processes and re-pla-
ted. After 24 h B95% of control neurons had initiated formation
of MAP2-positive neurites and B80% had one MAP2-negative
neurite with a thin and elongated, axon-like morphology
(Fig. 4e,f). In contrast in g-tubulin-depleted replatings, only
B78% of neurons had MAP2-positive neurites and a minority
(B34%) appeared re-polarized with an axon-like process
(Fig. 4e,f). In addition, the average number of neurites per cell
and the length of the longest axon-like neurite were also reduced
(Fig. 4e,g,h). Additional depletion experiments were performed in
Neuro2A cells, a neuroblast cell line that can be stimulated with
retinoic acid to promote cell cycle exit and neuritic outgrowth.
Neuro2A cells transfected with plasmids expressing g-tubulin
shRNA (Supplementary Fig. 3a) and treated with retinoic acid
formed fewer processes and total neurite length was reduced
when compared with the control cells (Supplementary Fig. 3b–d).
Together these results indicate that g-tubulin is required for
neurite outgrowth and extension as well as axon specification and
arborization.

cTuRC in post-mitotic neurons interacts with augmin.
We sought to gain insight into the mechanism by which non-
centrosomal gTuRC nucleated microtubules during neuron
maturation. Since staining of rodent neurons with g-tubulin
antibodies did not reveal any structure with accumulation of
g-tubulin outside the centrosome (Fig. 1e)13,21, we speculated that
post-mitotic neurons may generate new microtubules in an
augmin-dependent manner, by nucleation from pre-existing
microtubules rather than from a specific MTOC. Consistent
with this possibility, western blotting of hippocampal cell lysate
revealed that HAUS6, an augmin subunit implicated in binding to
gTuRC38, is expressed in nerve cells throughout neuronal
differentiation in vitro and in vivo (Fig. 5a,b). Probing of
extracts prepared from separated neuronal compartments
revealed that HAUS6 and GCP4 were present not only in the
somato-dendritic compartment but also in axons, as previously
shown for g-tubulin13 (Fig. 5c). The identity of the detected
HAUS6 protein was confirmed by shRNA-mediated depletion of
augmin subunits (Fig. 5d). Depending on the gel system used for
western blotting the HAUS6 antibody detected one or multiple
bands, suggesting the presence of different HAUS6 isoforms or
differential post-translational modification (Fig. 5d). Targeting
independently two other augmin subunits, HAUS1 and HAUS7,
by expression of shRNAs resulted in the co-depletion of HAUS6
(Fig. 5d,e). This interdependence of augmin subunits was
observed previously in cycling cells25 and would be consistent
with the presence of an augmin complex in post-mitotic neurons.
Strikingly, despite the downregulation of the gTuRC adaptor
NEDD1 (Supplementary Fig. 1), which mediates cooperation
with augmin in other systems24,32,38,39, the augmin subunit
HAUS6 could be co-immunoprecipitated with the gTuRC sub-
unit GCP3 from lysates of both 3 DIV and 10 DIV neuronal
cultures, indicating a physical interaction between both
complexes (Fig. 5f). NEDD1 was detected in immuno-
precipitates from young but not more mature cultures,
suggesting that the interaction between gTuRC and augmin in
mature neurons may be NEDD1-independent (Fig. 5f).
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Figure 2 | c-Tubulin is essential to the density and organization of the microtubule network in somas and axons of hippocampal neurons.

(a–h) Cultures were infected with lentivirus at 1 DIV, fixed at 5 DIV, and stained with the indicated antibodies. (a) Representative images of microtubules

stained with a-tubulin antibodies in control, g-tubulin-depleted and g-tubulin-depleted/rescued neurons. Red arrowheads mark microtubule bundles in the

soma. The areas in dashed squares are shown magnified for a better visualization of microtubule configurations. Scale bar, 5 mm. (b) Quantification of the

mean intensity of a-tubulin staining in the somas of cells as in a. Values are normalized to the average intensity of axons in control cells. Red bars show

average. (c) Quantification of neurons as in a containing tangled versus bundled microtubules. Error bars: s.e.m. (d) Quantification of the area covered by

somas of neurons as in a. (b–d) n¼ 68 (control), 72 (depleted), 74 (rescued) somas, three independent experiments. **Po0.01, ***Po0.001 and

****Po0.0001 by one-way ANOVA followed by the Bonferroni’s test. Red bars show average. (e) Examples of a-tubulin and acetylated-a-tubulin

co-stainings in the distal region of axons of control, g-tubulin-depleted and g-tubulin-depleted/rescued neurons. Scale bar, 5 mm. (f) Quantification of the

mean intensity of a-tubulin staining in axons. Normalization was done as in b. Red bars show average. (g) Quantification of the mean intensity of

acetylated-a-tubulin staining in the same axonal regions quantified in f. Normalization was done as in b. Red bars show average. (h) Ratios of acetylated-a-

tubulin and total a-tubulin intensities in axons. (f–h) n¼ 73 (control), 80 (depleted), 69 (rescued) axons, three independent experiments. **Po0.01,

***Po0.001, ns: not significant by one-way ANOVA followed by the Bonferroni’s test. Boxes show 25–75 percentiles, whiskers show 5–95 percentiles,

black bars show median. (i) Costaining of a-tubulin and acetylated-a-tubulin in a hippocampal axon. The white arrowhead marks an acetylated microtubule

bundle, the open arrowhead marks a non-acetylated microtubule bundle.
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Augmin depletion phenocopies the disruption of cTuRC. We
next tested whether augmin had a role in neuronal microtubule
nucleation. Indeed, depletion of either HAUS1 or HAUS7 caused
a reduction in the density of EB3-labelled comets in the neuronal
soma, similar to what we observed with g-tubulin depletion
(Figs 1g,h; 6a,b). In contrast, depletion of NEDD1 using two
different shRNAs had no effect (Fig. 6c; Supplementary Fig. 4a).
Staining of microtubules with a-tubulin antibodies revealed a
reduction in both microtubule density and bundling in somas of
augmin-depleted neurons (Fig. 6d–f), again similar to the defects
caused by g-tubulin depletion. The disruption of augmin also
reduced total microtubule density in axons, without affecting
acetylated axonal microtubules suggesting preferential loss of less
stable microtubules (Fig. 6g–j). Indeed, the signal obtained with
antibodies detecting tyrosinated tubulin, which is present in
relatively young microtubules, was reduced in augmin-depleted
axons (Supplementary Fig. 4b–d). In summary, the defects caused
by depletion of augmin subunits were strikingly similar to the
defects observed after depletion of g-tubulin.

Augmin controls microtubule polarity in axons. We hypothe-
sized that augmin’s capacity to generate microtubule arrays of
uniform polarity24,28 may have important implications in axons
in which almost all microtubules are oriented with their plus ends
distal to the soma. To address this we infected hippocampal

neurons with virus expressing shRNA directed against HAUS1 or
HAUS7 and assessed microtubule orientation by quantifying
the directionality of comets labelled by transiently expressed
EB3-Tomato. Whereas in control neurons o4% of the growing
plus ends of axonal microtubules were oriented towards the soma,
in cells depleted of HAUS7 or HAUS1 this percentage increased
to B17 and B11%, respectively (Fig. 7a,b,d; Supplementary
Movie 4), while overall comet density was not changed (Fig. 7c).
HAUS1 depletion also caused polarity defects in the axons of
more mature neurons (10 DIV; Supplementary Fig. 5a–c)
in which NEDD1 levels were naturally downregulated
(Supplementary Fig. 1)13. This result supports our earlier
notion that NEDD1 may not be required for augmin-dependent
nucleation in post-mitotic neurons. Consistently, silencing of
NEDD1 did not produce any changes in comet density or polarity
in axons (Fig. 7e,f).

The increase in retrogradely growing axonal microtubules after
augmin depletion could be interpreted to mean that augmin
ensures nucleation of microtubules in parallel orientation along
mother microtubules and that loss of augmin would cause ectopic
and thus randomly oriented nucleation. If this model was correct,
the co-depletion of g-tubulin together with augmin should rescue
the polarity defect. Indeed, no polarity defect was observed in
neurons co-depleted of both HAUS7 and g-tubulin (Fig. 8a–c).
Another prediction of this model was that forcing ectopic
nucleation by gTuRC may also increase the percentage of
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microtubules with reverse polarity, similar to augmin depletion.
To test this we took advantage of the gTuRC-activating function
of CDK5RAP2, a large scaffold protein found at the centrosome
and the Golgi40. As predicted, overexpression of a small
CDK5RAP2 fragment that harbours the gTuRC-activating
region (CDK5RAP2 amino acids 51–100 or ‘gTuNA’41)
increased not only the density of EB3-labelled comets in axons
of hippocampal neurons but also the percentage of comets
directed towards the soma (B11% compared with the 5% in
control cells; Fig. 8d–g; Supplementary Movie 5). We conclude
that microtubules in axons of post-mitotic hippocampal
neurons can be nucleated by non-centrosomal gTuRC, and that
directional restriction of nucleation by augmin is required to

correctly organize these microtubules with plus-end-distal
orientation (Fig. 8h).

Discussion
Generating the complex architecture of the mammalian
brain requires precise control over the neuronal microtubule
network to coordinate the distinct patterns of migration,
neuritogenesis and maturation that characterize the heteroge-
neous neural cell population. This is demonstrated in part by the
association of mutations in genes encoding tubulins, microtubule-
associated proteins and molecular motors with a large spectrum
of congenital brain malformations and neurodegenerative
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disorders3,4,42–44. For this reason, there has been a long-standing
interest in deciphering how neuronal cells organize their
extensive non-centrosomal microtubule arrays. Our work shows
that mouse hippocampal neurons employ the augmin-gTuRC
module to generate and organize microtubules. Previous work has
implicated augmin-gTuRC dependent nucleation in the assembly
of mitotic and meiotic spindles and of the plant-specific
interphase cortical microtubule array24–27,45–47. On the basis of
the results presented here we propose that this nucleation
mechanism may be more common than previously anticipated.

Mutations in the genes encoding the gTuRC subunits g-tubulin
(TUBG1), GCP4 (TUBGCP4) and GCP6 (TUBGCP6) were
recently identified in human patients suffering from brain
malformations42,48–50, establishing gTuRC as an important
player in brain development. In particular, in patients with
mutations in TUBG1, cortical dysgenesis seems to be associated
with migratory defects in developing neurons42. In coordination
with their migratory path, neurons polarize and extend dendrites
and axons51. In our study we observed that g-tubulin deficiency
impaired all of these processes and additionally disrupted axonal
microtubule organization and transport. Even though mutations
in genes encoding gTuRC subunits are known to cause
centrosomal defects, it is tempting to speculate that impairment

of the post-mitotic, non-centrosomal role of gTuRC that we
describe here may contribute to the pathologies observed in
patients with mutant gTuRC.

During neuron maturation, g-tubulin is progressively lost
from the centrosome, most likely due to downregulation of
the targeting factor NEDD1 (this study)13. Interestingly, in
the cortical microtubule array of interphase plant cells RNAi-
mediated downregulation of NEDD1 reduces the angle at which
daughter microtubules are nucleated along mother microtubules,
biasing the balance towards a more parallel and bundled
microtubule configuration52. Similarly, the developmental
downregulation of NEDD1 in neurons may promote the
bundled organization of microtubules in these cells. In mitotic
systems, however, NEDD1 seems to have a role in mediating the
cooperation between augmin and gTuRC53,54. Thus, one
important issue to be addressed in future studies is how
augmin and gTuRC in neurons cooperate in the absence of
NEDD1. Another important question is whether augmin-gTuRC
also stabilize the minus ends of nucleated microtubules or hand
these over to CAMSAPs, which were recently shown to stabilize
microtubule minus ends in neurons21,55–57. In this context it
should be noted that branch structures have not yet been
visualized in neuronal microtubule arrays. This may be explained
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t-test. Red bars in dot plots show average. Boxes show 25–75 percentiles, whiskers show 5–95 percentiles, black bars show median.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12187 ARTICLE

NATURE COMMUNICATIONS | 7:12187 | DOI: 10.1038/ncomms12187 | www.nature.com/naturecommunications 9

http://www.nature.com/naturecommunications


by a high mobility of newly formed augmin-dependent
microtubules, as observed in other systems28,54,58,59, which
would cause branch structures to form only transiently. Indeed,
even in the human mitotic spindle, which is composed of
hundreds of microtubules, a recent 3D reconstruction by electron
tomography revealed only very few microtubule minus ends that
were visibly linked to the lattice of a ‘mother’ microtubule29.

Work from several laboratories has demonstrated that
centrosomal microtubule organization is not required for neuron
differentiation and specification13–15. By implicating augmin in
this process our study now provides a suitable mechanism
to explain these results. However, centrosomal nucleation, release
and transport of microtubules7 may coexist with augmin-
dependent nucleation, in particular at early stages of neuronal
differentiation, when the centrosome still retains some activity.

While augmin disruption largely phenocopied the microtubule
defects caused by depletion of g-tubulin, we also observed one
important difference. Loss of augmin, but not of g-tubulin,
randomized microtubule polarity in the axon. This result reveals a
key activity of augmin: controlling the orientation of newly
nucleated microtubules. Interestingly, even though in axons
augmin knockdown primarily affected the direction of nucleation
rather than nucleation per se, the levels of axonal microtubules
were lower than in controls. This suggests that microtubules
nucleated in reverse orientation may be short-lived or subject to
clearing60 and thus do not contribute to formation of the axonal
microtubule array.

By promoting nucleation of daughter microtubules along
mother microtubules, augmin may promote the formation of
bundled microtubule configurations. This is supported by the
loss of microtubule bundling and the appearance of tangled
microtubules in both gTuRC and augmin-disrupted neurons.
Independent of this nucleation-based effect, augmin may also
promote bundling by direct interaction with microtubules61.

Since previous studies in animal cells have shown that augmin, by
nucleation of branches at relatively shallow angles, creates
microtubule arrays of uniform polarity28,29, we have focused
most of our analyses on axons. However, the ability of augmin to
generate new microtubules based on the configuration of pre-
existing microtubules, may also serve to organize the mixed
polarity dendritic microtubule network. In this scenario the
distinct microtubule configurations of axons and dendrites may
be established by other mechanisms such as directed microtubule
transport11,12, and the role of augmin-dependent nucleation
would be reinforcement and maintenance of the compartment-
specific arrays. Indeed, augmin has recently been implicated in
microtubule formation in the dendrites of Drosophila sensory
neurons62.

An increase in the number of axonal microtubule plus ends
growing towards the soma has recently been described for
gain- and loss-of-function alleles of g-tubulin in Drosophila22.
The provided evidence suggested a link between microtubule
orientation and altered gTuRC nucleation activity. Based on our
own results an alternative interpretation would be that the
described g-tubulin mutations may disrupt cooperation with
augmin and/or induce ectopic nucleation. Our finding that
ectopic nucleation can be induced by overexpression of a gTuRC
activator implies that at least some gTuRC in axons is in a
relatively inactive state. Deciphering how gTuRC may be
activated on recruitment by augmin is an important goal for
future studies.

In summary, the work presented here places augmin and
gTuRC at the centre of microtubule organization in neurons.
These two components together achieve what may be difficult
to accomplish by MTOCs that are associated with specific
cellular structures: assembling and maintaining microtubule
arrays with specific polarity throughout an extensive, highly
compartmentalized cytoplasm.
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Methods
Animals and cell cultures. Pregnant 6-weeks-old female mice (Mus musculus;
strain OF1) were purchased from Charles River and maintained at the animal
facilities of the Barcelona Science Park (PCB), in strict accordance with the Spanish
and European Union regulations. Work protocols have been approved by the
Animal Care and Use Committee of the PCB (IACUC; CEEA-PCB), in accordance
with applicable legislation. Hippocampal and cortical cell cultures63 were prepared
from e17.5-18-5 mouse embryos. Briefly, tissue was dissected, treated with 0.25%
trypsin (Life Technologies) during 15 min at 37 �C and dissociated into single cells
by gentle trituration. Neurons were seeded on glass coverslips or plastic plates
coated with 0.1 mg ml� 1 Poly-D-lysine (Sigma) at B105 cells per cm2 or 2� 104

cells per cm2 for low-density cultures. Neurons were plated in DMEM containing
10% fetal bovine serum (FBS), penicillin/streptomycin (pen/strep), and 1-2 h later
medium was replaced by neurobasal medium supplemented with 2% B27, pen/
strep, 0.6% Glucose and Glutamax (all reagents from Life Technologies). Cytosine
arabinoside (1 mM; Sigma) was added to cultures at 3 DIV and 1/3 of the medium
was refreshed every 4–5 days. Cultures of low density were supplemented at 2 DIV
with conditioned media from mature cultures. HEK293T and Neuro2A cell lines
were grown in DMEM containing 10% FBS and pen/strep. All cells were kept at
37 �C in a humidified atmosphere containing 5% CO2.

Plasmids. The target sequences for simultaneous depletion of both TUBG1 and
TUBG2 (g-Tub#1: CAAGGAGGACATCTTCAA; g-Tub#2: GGTTCGAGTTCT

GGAAACA), HAUS6 (GGAGCTGATTGACACTTTA), NEDD1 (NEDD1#1:
GCAGACATGTGTCGATTTA; NEDD1#2: GTCTAACCAAGCAAGAAAT) and
luciferase (CTTACGCTGAGTACTTCGA) were cloned for expression as shRNAs
into pLL3.7 (Addgene plasmid #11795)64. Plasmid pLL3.7-shRNA g-Tub#1 was
cloned and kindly provided by Tim Stearns’ laboratory (Stanford University, USA).
Other lentiviral plasmids with shRNAs were obtained from Sigma (HAUS1:
GCTGAACTTACCAAGAAAGTA; HAUS7: CCAGATGACCAGGATCTTCTA;
scrambled: CAACAAGATGAAGAGCACCAA). For rescue experiments, the
cDNA of human g-tubulin-MycHis54 was rendered shRNA resistant by PCR
mutagenesis and cloned into pLL3.7-shRNA g-Tub#1 and pLL3.7-luciferase-
shRNA plasmids using NheI/EcoRI sites, replacing GFP. PCR was used to amplify
a CDK5RAP2 fragment (amino acids 51–100) from the cDNA clone KIAA1633
(Kazusa DNA Research Institut, Kisarazu, Japan). The CDK5RAP2 51–100
sequence was inserted into pEGFP-C1 (Clontech). To generate bacterial expression
plasmids for the production of His-tagged fragments of GCP3 and GCP5 the
cDNA sequences corresponding to the N-terminal fragments of human GCP3
(amino acids 1–552), GCP4 (amino acids 1–347) and GCP5 (amino acids 1–713)
were cloned into pET28a. The reporter plasmid EB3-Tomato was a generous gift of
Anne Straube (University of Warwick, UK), and the mitochondrial reporter
MitoDsRed was kindly provided by Antonio Zorzano (IRB Barcelona, Spain).

Antibodies. To generate anti-GCP3, anti-GCP4 and anti-GCP5 antibodies,
His-tagged N-terminal fragments of GCP3, GCP4 and GCP5 were expressed in
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Figure 8 | Augmin ensures the parallel orientation of axonal microtubules by restricting the nucleation of non-centrosomal cTuRC. (a–c) Neurons were

infected consecutively with g-tubulin and HAUS7 shRNA lentiviruses at 1 and 2 DIV, transfected with EB3-Tomato at 4 DIV, and imaged 24 h later.

(a) Representative kymographs of EB3-comets in control, HAUS7-depleted and HAUS7/g-tubulin double depleted axons. Yellow arrowheads point to

reverse comets. (b) Quantification of EB3-comet density in control, g-tubulin-depleted, HAUS7-depleted and HAUS7/g-tubulin double depleted axons.

(c) Scoring of reverse comets in axons analyzed in b. n¼40 (control), 30 (g-tubulin depleted), 46 (HAUS7 depleted), 48 (double depleted) axons,

four independent experiments. (d–g) Hippocampal neurons were co-transfected at 3 DIV with EGFP or EGFP-tagged CDK5RAP2 fragment 51–100 together

with EB3-Tomato. Imaging was performed at 4 DIV. (d) Immunofluorescence image of EGFP-tagged CDK5RAP2 51–100 in the axon. Scale bar, 5 mm.

(e) Representative kymographs of EB3-comets in EGFP or EGFP-CDK5RAP2 51–100 transfected axons. Yellow arrowheads mark reverse comets.

(f) Quantification of EB3-comet density in axons of EGFP (Ctrl) and EGFP-CDK5RAP2 51–100 (51–100) transfected neurons. (g) Scoring of reverse comets

in the recordings analyzed in f. n¼ 27 (control), 28 (51–100) axons, three independent experiments. (b,f) *Po0.05, **Po0.01, ****Po0.0001 in the Wald

tests derived from a linear model. Error bars: s.e.m. (c,g) *Po0.05, ***Po0.001 by two-tailed t-test. Error bars: s.e.m. (h) Schematic representation

illustrating microtubule nucleation and control of microtubule polarity in hippocampal axons, as well as defects observed upon either loss of augmin or

ectopic gTuRC activation. Microtubule polarity is indicated by ‘plus’ and ‘minus’ symbols.
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ArcticExpress cells (Agilent), solubilized in 8 M urea and affinity-purified under
denaturing conditions using Ni-Sepahrose beads (GE Healthcare) according to the
manufacturer’s protocol. The proteins were then used for immunization of rabbits
(Antibody Production Service, Facultat de Farmacia, Universitat de Barcelona,
Spain). GCP3, GCP4 and GCP5-specific antibodies were affinity-purified using the
antigens subjected to PAGE and blotted onto membranes. The specificity of the
antibodies was assayed by western blotting of Hela cell extract treated for 72 h with
control siRNA or siRNA depleting GCP3 (GGACTTGCUAAAACCAGAA;
Ambion), GCP4 (GCAATCAAGTGGCGCCTAA41) or GCP5 (GGAACATCA
TGTGGTCCATCA65) (Supplementary Fig. 6). Dilutions for western blot were
1:2,000 for anti-GCP3 and 1:1,000 for anti-GCP4 and anti-GCP5.

Other rabbit antibodies used in this study were: anti-NEDD1 (gift from S.
Kumar, University of South Australia, Adelaide, Australia; dilution WB: 1:200;
dilution IF: 1:500), anti-Pericentrin32 (dilution IF: 1:500), anti-HAUS6 (ref. 54)
(dilution WB: 1:2,000), anti-Centrin3 (gift from A. Groen/R. Ori, dilution IF:
1:500), anti-GCP3 (Proteintech, dilution WB: 1:1,000), anti-MAP2 (Chemicon,
dilution IF: 1:500) and anti-Myosin IIB heavy chain (Abcam #24761, dilution WB:
1:5,000). The mouse antibodies used were: anti-g-tubulin (GTU-88, Sigma, dilution
WB: 1:10,000; and TU-30, ExBio, dilution IF: 1:500), anti-a-tubulin (DM1A,
Sigma, dilution IF: 1:2,000), anti-Acetylated-a-tubulin (6-11B-1, Sigma, dilution IF:
1:50,000), anti-actin (C4, MP Biomedicals, dilution WB: 1:10,000), anti-Pericentrin
(BD Transduction Laboratories, dilution IF: 1:500), anti-Histone (gift of Ferran
Azorı́n, IRB Barcelona, dilution WB: 1:1,000), anti-Tau-1 (PC1C6, Chemicon,
dilution IF: 1:1,000), anti-b-Galactosidase (Promega, dilution IF: 1:1,000). Chicken
anti-GFP (Aves Labs, dilution IF: 1:1,000). Rat anti-Tyrosinated-a-Tubulin (YL1/2,
Millipore, dilution 1:5,000).

Lentivirus production and transduction. Lentivirus was generated using the
LentiLox3.7 system64. Briefly, HEK293T cells were co-transfected with pLL3.7 and
the packaging plasmids with calcium phosphate, 72 h later lentivirus particles in the
medium were concentrated by ultracentrifugation at 27,000 r.p.m. during 2 h. Virus
particles were resuspended in PBS, aliquoted and stored at � 80 �C. Infectivity was
assayed for GFP-carrying virus by infecting HEK293T cells with serial dilutions of
concentrated lentivirus, and sorting of GFP-positive cells by FACS 72 h after
infection. Neurons were infected at 1 DIV at multiplicity of infection 3, in the case
of low-density cultures we used multiplicity of infection 6. The complete medium
was replaced with fresh medium 16–18 h after infection. For g-tubulin/augmin
double depletion, neurons were first infected with lentivirus encoding g-tubulin
shRNA at 1 DIV, followed by infection at 2 DIV with lentivirus encoding HAUS7
shRNA. Alternatively, the HAUS7 shRNA was provided by co-transfection of
plasmid together with the EB3-tomato reporter 48 h before imaging. Both methods
gave similar results. 16–18 h after each infection the complete medium was
replaced. Infection efficiencies were determined at 4 DIV by GFP
immunofluorescence analysis.

Cell culture treatments. Young hippocampal neurons, shRNA-transduced
neurons or more mature hippocampal neurons were transfected at 2 DIV, 4 DIV or
8 DIV, respectively, using Lipofectamine 2,000 (Life Technologies) according to
manufacturer’s instructions. To perform replating experiments, shRNA-transduced
cultures at 5 DIV were trypsinized (0.05% Trypsin-EDTA, Life Technologies) for
5 min, collected in neurobasal medium with 5% FBS, pelleted at 800 r.p.m. for
3 min, resuspended in conditioned media and re-plated on poly-D-lysine coated
coverslips. After 24 h of regrowth, neurons were fixed and stained for microscope
analysis. The mouse neuroblastoma Neuro2A cells were transfected with
Lipofectamine 2,000 and 72 h later differentiated by addition of 40 nM of retinoic
acid (Sigma) plus 0.1% fetal calf serum (FCS) over 24 h before fixation.

Protein extraction and immunoprecipitation. Cell cultures and hippocampal
tissue samples were homogenized in lysis buffer (50 mM Tris pH 7.4, 150 mM
NaCl, 1 mM MgCl2, 1 mM EGTA, 10% glycerol and 1% Triton X-100) in the
presence of protease inhibitors (Complete, Roche). Lysates were clarified by cen-
trifugation at 16,000g for 10 min at 4 �C. To obtain somato-dendritic or axonal
protein extracts, hippocampal neurons were cultured on filters with 3 mm pore size
membranes (Neurite Outgrowth Assay Kit, Millipore). At 8 DIV cells were fixed in
methanol at � 20 �C for 5 min. To obtain axonal fractions, somas on the upper side
of the device were first carefully removed with wet flattened cotton swabs following
manufacturer’s instructions. Axons at the bottom side of the membrane were
extracted in a 200 ml drop of SDS sample buffer. To obtain somato-dendritic
fractions, axons from the bottom part of the device were first removed by scraping.
Then SDS sample buffer extracts were prepared from the upper side of the
membrane. For immunoprecipitation, 3 DIV or 10 DIV hippocampal cultures were
lysed and cleared by centrifugation as above. Equal protein amounts were
immunoprecipitated with anti-GCP3 (3 ml) antibody overnight. Protein
G-Sepharose beads (GE Healthcare) were added during 2 h. After washing with
lysis buffer, the proteins were eluted by boiling in 1 volume of 2� sample loading
buffer. For Western blotting all samples were boiled in sample buffer for SDS–
PAGE, then proteins were separated and transferred onto PVDF membranes
(Millipore). Membranes were blocked with 5% milk in TBST (20 mM Tris, pH 7.5,
150 mM NaCl, 0.05% Tween20) for 1 h and probed overnight with primary

antibodies diluted in TBST. All uncropped western blots can be found in
Supplementary Fig. 7.

Sucrose gradient centrifugation. Cortical culture lysates and hippocampal
homogenates were analyzed on sucrose gradients66 by loading equal protein
amounts in lysis buffer (50 mM HEPES, pH 7.5, 150 mM NaCl, 1 mM MgCl2,
1 mM EGTA, 0.5% NP-40, with protease inhibitors) on a 10–40% sucrose gradient
and centrifuged for 4 h at 55,000 r.p.m. at 4 �C. Fractions were collected and
analyzed by immunoblotting. Aldolase (158 kDa, 7S) and thyroglobulin (669 kDa,
19S) (GE Healthcare) were centrifuged in parallel under identical conditions, and
were used as molecular weight standards.

Immunofluorescence microscopy. Cultured neurons and cell lines were fixed in
methanol at � 20 �C for 5 min or in 4% PFA/4% sucrose diluted in PBS for 15 min
at room temperature. For staining microtubules34 cells were simultaneously
permeabilized and fixed using 4% paraformaldehyde (PFA)/4% sucrose/0.25%
glutaraldehyde/0.1% Triton X-100 diluted in PHEM buffer (60 mM Pipes, 25 mM
Hepes pH 7.4, 5 mM EGTA, 1 mM MgCl2). All fixed cells were permeabilized with
0.25% Triton X-100 in PBS for 5 min, blocked with 4% bovine serum albumin
(BSA, Sigma) and incubated in 2% BSA overnight with the primary antibodies
as detailed in the Antibodies section. Alexa350, Alexa488, Alexa568 or
Alexa633-coupled secondary fluorescent antibodies (Life Technologies) were used
at dilution 1:250. Nuclei were stained with DAPI. Different samples within one
experiment were imaged using constant intensity and exposure settings, avoiding
signal saturation. An inverted confocal microscope TCS-SP2 AOBS (Leica
Microsystem, GmbH) equipped with a 63� /1.40 OIL objective was used for
imaging centrosomes and axonal mitochondria at 1,024� 1,024 pixel resolution.
Centrosome image stacks were taken with a 0.3–0.4 mm step-size, and
mitochondria density in axons was analyzed in b-Gal/MitoDsRed-transfected
neurons by imaging a B100 mm axon segment proximal to the soma. For analysis
of microtubule stainings, single-plane images of neuron somas and isolated axon
shafts within constant distance from the growth cone were acquired with an Orca
AG camera (Hamamatsu) coupled to a Leica DMI6000B microscope equipped with
a 100� /1.40 OIL objective. 10� /0.30 DRY, 20� /0.50 DRY, and 40� /1.25 OIL
objectives were additionally used for standard imaging and for mosaics generation
of complete axons and re-plated neurons.

Time-lapse microscopy. Hippocampal cultures were plated in glass-bottom
dishes (MatTek), transduced with virus expressing shRNA, transfected with
either EB3-Tomato or Mito-DsRed reporters at 3/4 DIV and imaged 24 h later.
For analysis after expression of EGFP-CDK5RAP2 51–100, cultures were
co-transfected with plasmid encoding EGFP or fragment EGFP-CDK5RAP2
51–100 together with EB3-Tomato reporter (2:1 ratio) at 3 DIV and imaged 24 h
later. For comet analysis in more mature neurons, cultures were co-transfected
with shRNAs together with EB3-Tomato reporter (2:1 ratio) at 8 DIV and imaged
48 h later. Live-imaging of EB3-comets and of mitochondria was performed in the
soma and/or within the proximal axons of random transfected cells, using an
Olympus IX81 microscope equipped with Yokogawa CSU-X1 spinning disc and a
temperature controlled CO2 incubation chamber. Image stacks were acquired with
100� /1.4 OIL immersion objective and an iXon EMCCD Andor DU-897 camera,
using iQ2 software. Fluorescent images with pixel size of 0.14 mm were taken at 1 s
intervals during 2.5 min for EB3-comets in axons, at 0.5 s intervals during 25 s for
EB3-comets in somas, and at 3 s intervals during 6 min for axonal mitochondria.

Image analysis. All images were processed and quantified using the ImageJ
software (NIH). For all fluorescence intensity measurements, background signal
was measured in an adjacent area and subtracted. For centrosome quantifications,
equal numbers of confocal planes were projected and the intensity within a fixed
circular area around the centrosomes was measured in each cell. Soma EB3 comet
density was obtained using an ImageJ custom-written macro and normalized to the
neuronal soma area. Axonal EB3 comet and mitochondria analysis were performed
using the kymograph macro (ImageJ software), with lines drawn on the trajectories
of comets and mitochondria, respectively. The average fluorescence intensities of
a-tubulin, acetylated a-tubulin, and tyrosinated a-tubulin stainings were measured
within the soma area or along the imaged axonal trace.

For scoring cells with microtubule bundles we took advantage of the higher
intensity of the a-tubulin signal in bundled compared with the tangled
configurations. a-Tubulin images of the somas were thresholded (ImageJ) using the
average of the auto threshold values of control cells in each experiment. The
thresholded images highlighted features with high staining intensity. A binary
mask was obtained from the thresholded image and overlayed with the 8-bit grey
scale image of the stained microtubules for identification and scoring of
microtubule bundles. High intensity microtubule signals that were not bundles
were not scored. Cells were classified as ‘bundled’, when showing at least one
microtubule bundle in the soma, other cells were classified as ‘tangled’.

Whole axon and neurite length were measured using the NeuronJ macro
(ImageJ software).
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Statistic analysis. Statistic analysis was done using the Prism 6 software.
Two-tailed unpaired t-tests or ANOVA tests were performed to compare the
experimental groups. The details are reported in the figures and the figure legends.
For Figs 1j, 7c,e and 8b,f and Supplementary Figs 2d and 5b group means
differences were assessed using a linear model including the experiment run as a
covariate. As a deviation from the normal distribution was observed in the data,
a transformation was applied to the data in order to meet the assumptions of the
model. This transformation was chosen from the Box–Cox family as it showed to
be optimal according to the Maximum Likelihood criteria67. For interpretation
purposes, results are expressed as adjusted means and standard errors in their
original scale after undoing this transformation. For doing so, standard errors were
computed from 1,000 simulations generated by the corresponding model using the
R package arm (http://CRAN.R-project.org/package=arm)68. In addition and for
visualization purposes, adjusted means were calibrated to the overall comet density
of Fig. 1j. A 5% level was chosen for significance of group differences after multiple
contrasts adjustment69.

Data availability. The authors declare that all the data supporting the findings of
this study are available within the article and its Supplementary Information files,
or available upon request from the authors.
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66. Teixidó-Travesa, N. et al. The gammaTuRC revisited: a comparative analysis of
interphase and mitotic human gammaTuRC redefines the set of core
components and identifies the novel subunit GCP8. Mol. Biol. Cell. 21,
3963–3972 (2010).

67. Box, G. E. P. & Cox, D. R. An analysis of transformations. J. R. Stat. Soc. Ser. B
(Methodol.) 26, 211–252 (1964).

68. Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/
Hierarchical Models (Cambridge University Press, 2006).

69. Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general
parametric models. Biom. J. 50, 346–363 (2008).

Acknowledgements
We thank the staff of the Advanced Digital Microscopy facility, in particular Sebastian
Tosi, and Antonio Berenguer in the Biostatistics/Bioinformatics facility for help with the
analysis of comet densities. We are grateful to Esther Perez for help with pilot studies in
the early stages of this work, and Sabine Klischies for providing EGFP-CDK5RAP2

51-100 plasmid. We are grateful to visiting students Paulina Cichosz and Claudia Llinàs
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