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Abstract 10 

The electrochemical degradation of tetracaine hydrochloride has been studied in urban wastewater. 11 

Treatments in simulated matrix with similar ionic composition as well as in 0.050 M Na2SO4 were 12 

comparatively performed. The cell contained an air-diffusion cathode for H2O2 electrogeneration 13 

and an anode selected among active Pt, IrO2-based and RuO2-based materials and non-active boron-14 

doped diamond (BDD). Electrochemical oxidation with electrogenerated H2O2 (EO-H2O2), electro-15 

Fenton (EF) and photoelectro-Fenton (PEF) were comparatively assessed at pH 3.0 and constant 16 

current density. The pharmaceutical and its byproducts were oxidized by •OH formed from water 17 

oxidation at the anode surface and in the bulk from Fenton’s reaction, which occurred upon addition 18 

of 0.50 mM Fe2+ in all media, along with active chlorine originated from the anodic oxidation of Cl− 19 

contained in the simulated matrix and urban wastewater. The PEF process was the most powerful 20 

treatment regardless of the electrolyte composition, owing to the additional photolysis of 21 

intermediates by UVA radiation. The use of BDD led to greater mineralization compared to other 22 

anodes, being feasible the total removal of all organics from urban wastewater by PEF at long 23 

electrolysis time. Chlorinated products were largely recalcitrant when Pt, IrO2-based or RuO2-based 24 

anodes were used, whereas they were effectively destroyed by BDD(•OH). Tetracaine decay always 25 

obeyed a pseudo-first-order kinetics, being slightly faster with the RuO2-based anode in Cl− media 26 

because of the higher amounts of active chlorine produced. Total nitrogen and concentrations of 27 

NH4
+, NO3−, ClO3−, ClO4− and active chlorine were determined to clarify the behavior of the 28 

different electrodes in PEF. Eight intermediates were identified by GC-MS and fumaric and oxalic 29 

acids were quantified as final carboxylic acids by ion-exclusion HPLC, allowing the proposal of a 30 

plausible reaction sequence for tetracaine mineralization by PEF in Cl−-containing medium. 31 

Keywords: BDD; Electro-Fenton; Photoelectro-Fenton; Product identification; Tetracaine; Urban 32 

wastewater 33 
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1. Introduction 34 

 The removal of pharmaceuticals and their metabolites from water bodies is an urgent challenge 35 

in order to improve the overall quality of drinking water. Pharmaceuticals enter continuously into 36 

the aquatic environment, pre-eminently from excreted feces and urine by either animals or humans, 37 

where they become accumulated at low contents around µg L-1. This causes global alarm because of 38 

their possible long-term effects on living beings (Sirés and Brillas, 2012; Feng et al., 2013; Rivera-39 

Utrilla et al., 2013; Golovko et al., 2014). Conventional biological and physicochemical systems 40 

that are ubiquitous in current wastewater treatment plants (WWTPs) result rather inefficient for 41 

destroying pharmaceuticals, thus remaining as micropollutants in natural water. This is the case of 42 

tetracaine (C15H24N2O2, 2-dimethylaminoethyl-4-butylaminobenzoate, M = 264.36 g mol-1), an 43 

amino ester compound widely used for nerve block, as well as for spinal and topical anaesthesia. It 44 

is commercialized as hydrochloride salt and can be formulated as the base of ointments, gels and 45 

creams (Al-Otaibi et al., 2014; Shubha and Puttaswamy, 2014). The analysis of hospital wastewater 46 

has shown the presence of up to 0.48 µg L-1 tetracaine (Escher et al., 2011). Powerful treatments are 47 

then needed for its removal from wastewater. 48 

 Electrochemical advanced oxidation processes (EAOPs) based on electrogenerated H2O2, with 49 

or without addition of catalytic Fe2+, include electrochemical oxidation with electrogenerated H2O2 50 

(EO-H2O2), electro-Fenton (EF) and photoelectro-Fenton (PEF), which have received increasing 51 

attention over the last years for treating wastewater containing organics (Brillas et al., 2009; Panizza 52 

and Cerisola, 2009; Oturan and Aaron, 2014; Sirés et al., 2014; Vasudevan and Oturan, 2014). 53 

These EAOPs are environmentally friendly because no noxious chemicals are employed and they 54 

originate powerful, short lifetime reactive oxygen species (ROS), mainly hydroxyl radical (•OH). 55 

This radical with Eº = 2.8 V/SHE can non-selectively attack most organics up to their overall 56 

mineralization (Martínez-Huitle et al., 2015; Moreira et al., 2017). The common feature of these 57 

methods is the continuous electrogeneration of H2O2 by reaction (1) from direct injection or 58 
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dissolution of O2 gas that is reduced at a carbonaceous cathode such as boron-doped diamond 59 

(BDD) (Cruz-González et al., 2010, 2012), carbon-polytetrafluoroethylene (PTFE) O2 or air-60 

diffusion electrodes (Ammar et al., 2006; Thiam et al., 2014, 2015b), carbon felt (Dirany et al., 61 

2012; El-Ghenymy et al., 2014; Yahya et al., 2014), carbon modified with metals or metal oxides 62 

nanoparticles (Assumpção,et al., 2013), graphite felt (Vatanpour et al., 2009), carbon nanotubes 63 

(Khataee et al., 2013, 2014) and activated carbon fiber (Wang et al., 2008). 64 

O2(g)  +  2 H+  +  2e−  →  H2O2         (1) 65 

 The studies performed in our laboratory with a carbon-PTFE air-diffusion cathode have shown 66 

its superiority over other electrodes for enhancing O2 reduction, as well as for minimizing the 67 

cathodic reduction of organics. In EO-H2O2, EF and PEF performed in aqueous medium with 68 

sulfate anions, organics are preferentially oxidized by adsorbed hydroxyl radicals (M(•OH)) formed 69 

at high applied current at the surface of a large O2-overvoltage anode M from water oxidation (Boye 70 

et al., 2002; Marselli et al., 2003; Panizza and Cerisola, 2009): 71 

M  +  H2O  →  M(•OH)  +  H+  +  e−         (2) 72 

 Non-active BDD thin-film electrodes have been established as the best anodes for the 73 

production of physisorbed M(•OH) from reaction (2) (Cañizares et al., 2005; Flox et al., 2006; 74 

Özcan et al., 2008). This is related to the very large overvoltage for O2 evolution in aqueous 75 

medium and the weak •OH adsorption on its surface (Santos et al., 2010; dos Santos et al., 2015). 76 

This allows the generation of larger amounts of active M(•OH) compared to other anodes, leading 77 

to greater mineralization of aromatics including pharmaceuticals (El-Ghenymy et al., 2013; Brinzila 78 

et al., 2014; Bedolla-Guzman et al., 2016; Coria et al., 2016). Conversely, active electrodes like Pt 79 

and dimensionally stable anodes (DSA®) based on IrO2 and RuO2 present lower oxidation ability 80 

because they yield less active, chemisorbed M(•OH) that mainly appear as a weaker oxidant (i.e., 81 
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superoxide species, MO) (Ribeiro et al., 2008; Panizza and Cerisola, 2009; Scialdone et al., 2009; 82 

Thiam et al., 2015a). 83 

 In chlorinated medium, Cl− is oxidized to active chlorine species (Cl2, HClO and/or ClO−) from 84 

reactions (3)-(5), which compete with adsorbed M(•OH) to destroy the organic matter (Panizza and 85 

Cerisola, 2009; Martínez-Huitle et al., 2015). Under these conditions, DSA® anodes such as those 86 

based on RuO2 form larger amounts of active chlorine to rapidly attack the aromatic molecules, 87 

even more quickly than BDD(•OH), although partial mineralization is achieved due to the 88 

accumulation of persistent chloroderivatives (Thiam at al., 2014; Steter et al., 2016). 89 

2 Cl−  →  Cl2(aq) + 2e−           (3) 90 

Cl2(aq)  +  H2O  →  HClO  + Cl− + H+        (4) 91 

HClO    ClO−  +  H+ pKa = 7.56        (5) 92 

 In EO-H2O2, M(•OH) and/or active chlorine are the main oxidizing agents, whereas the EF 93 

process becomes more powerful because it allows the generation of large amounts of •OH from 94 

Fenton’s reaction (6), with optimum pH ∼ 3, upon addition of a small quantity of Fe2+ as catalyst to 95 

the solution (Dirany et al., 2012; Yahya et al., 2014; Thiam et al., 2015b). •OH thus produced in the 96 

bulk is the most important oxidizing ROS in EF since it is continuously formed thanks to cathodic 97 

Fe2+ regeneration via reaction (7). The degradation can be upgraded if the solution is illuminated 98 

with UVA light in the PEF process. This irradiation causes the photolysis of Fe(OH)2+, which is the 99 

preferential Fe3+ species at pH ∼ 3, to be reduced to Fe2+ producing additional •OH by reaction (8). 100 

A more important role of UVA light is related to the photodecarboxylation of Fe(III) complexes 101 

with several carboxylic acids generated during the degradation process by the general reaction (9) 102 

(Moreira et al., 2013; Bedolla-Guzman et al., 2016; Coria et al., 2016). 103 

H2O2  +  Fe2+  →  Fe3+  +  •OH  +  OH−        (6) 104 
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Fe3+  +  e−  →  Fe2+             (7) 105 

Fe(OH)2+  +  hν  →  Fe2+  +  •OH           (8) 106 

Fe(OOCR)2+  +  hν  →  Fe2+  +  CO2  +  R•         (9) 107 

 The application of PEF to wastewater remediation has been pre-eminently focused on the 108 

treatment of organic pollutants in synthetic solutions (Sirés and Brillas, 2012; Moreira et al., 2017), 109 

whereas less is known about its oxidation power in real effluents like urban wastewater. The 110 

complex composition of the latter matrices entails a greater difficulty for a clear interpretation of 111 

the role of generated oxidants. Hence, comparison with simulated media is required to assess the 112 

performance of PEF regarding pharmaceutical removal from real wastewater. 113 

 This paper presents a study on the degradation of tetracaine by means of EO-H2O2, EF and PEF 114 

in acidic media. These treatments were comparatively performed in two kinds of synthetic 115 

solutions: 0.050 M Na2SO4 to analyze the oxidation power of generated hydroxyl radicals and a 116 

simulated matrix with chloride + sulfate ions to understand the action of active chlorine. These 117 

trials were made to better understand the degradation of the pharmaceutical in an urban wastewater 118 

matrix that contained main ions at a concentration similar to that of the simulated matrix, apart from 119 

natural organic matter (NOM, related to tannic, fulvic and humic acids). The comparative oxidation 120 

power of four anodes including BDD, Pt, IrO2-based and RuO2-based materials was tested using an 121 

undivided cell with a carbon-PTFE air-diffusion cathode. The tetracaine decay and final carboxylic 122 

acids were monitored by reversed-phase and ion-exclusion high-performance liquid 123 

chromatography (HPLC), respectively. Primary intermediates formed in PEF with a BDD anode 124 

using the simulated matrix were identified by gas chromatography-mass spectrometry (GC-MS), 125 

allowing the proposal of a mineralization route for tetracaine. The evolution of total nitrogen and 126 

ions concentrations during the PEF treatments in simulated matrix and urban wastewater as well as 127 

the accumulated active chlorine content were determined as well. 128 
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2. Experimental 129 

2.1. Reagents 130 

 Tetracaine hydrochloride (C15H24N2O2 · HCl, M = 300.82 g mol-1), heptahydrated iron(II) 131 

sulfate, dihydrated oxalic acid and fumaric  acid were of analytical grade purchased from Sigma-132 

Aldrich. The salts used as background electrolytes in the synthetic solutions were of analytical 133 

grade supplied by Probus, Prolabo and Panreac. These solutions were prepared with high-purity 134 

Millipore Milli-Q water with resistivity > 18 MΩ cm at 25 ºC. Analytical grade sulfuric acid from 135 

Merck was used to adjust the initial pH to 3.0. All the other chemicals were of analytical or HPLC 136 

grade supplied by Panreac and Merck. 137 

2.2. Aqueous media 138 

 The following aqueous matrices were used in the electrolytic trials: 139 

 (i) A sample from the secondary effluent of a WWTP located in Gavà-Viladecans (Barcelona, 140 

Spain), which treasd 50,000 m3 d-1 of urban and industrial wastewater. After collection and before 141 

use, it was preserved in a refrigerator (4 ºC). This real wastewater of pH = 8.1 and conductivity = 142 

1.73 mS cm-1 had a total organic carbon (TOC) content = 12.2 mg L-1. The concentration of cations 143 

was: 0.19 mg L-1 Fe2+, 24 mg L-1 Mg2+, 86 mg L-1 Ca2+, 34 mg L-1 K+, 212 mg L-1 Na+
 and 36.9 mg 144 

L-1 NH4
+. The content of anions was: 0.79 mg L-1 NO2−, 0.85 mg L-1 NO3−, 318 mg L-1 Cl− and 145 

141.3 mg L-1 SO4
2−; 146 

 (ii) A simulated matrix that mimicked the real wastewater, prepared with Millipore Milli-Q 147 

water containing the following salts: 1.50 mM NH4Cl, 10.0 mM NaCl, 0.50 mM K2SO4, 80.0 mM 148 

Na2SO4 and 0.02 mM NaNO3. This solution of pH = 5.1 and conductivity = 1.79 mg L-1 did not 149 

contain any organic matter; 150 

 (iii) A 0.050 M Na2SO4 solution in Millipore Milli-Q water at pH = 7 with conductivity = 6.89 151 

mS cm-1, which was utilized for comparative purposes. 152 
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 The pH of all the above solutions was adjusted to 3.0 before the electrolytic assays. Hence, the 153 

conductivity of the three matrices increased up to 2.22, 2.01 and 7.53 mS cm-1, respectively, values 154 

that did not vary significantly during the electrochemical treatments. 155 

2.3. Electrochemical systems 156 

 All the EO-H2O2, EF and PEF assays were carried out in a conventional undivided glass cell 157 

surrounded with a jacket to keep the temperature at 35 ºC upon recirculation of thermostated water. 158 

The cell contained 150 mL of solution, which was vigorously stirred with a magnetic bar at 800 159 

rpm. Four anodes were alternately used: a boron-doped diamond (BDD) thin film over Si from 160 

NeoCoat (Le-Chaux-de-Fonds, Switzerland), a Pt sheet (99.99% purity) from SEMPSA (Barcelona, 161 

Spain), and IrO2-based and RuO2-based plates from NMT Electrodes (Pinetown, South Africa). The 162 

cathode was a carbon-PTFE air-diffusion electrode from Sainergy Fuel Cell (Chennai, India) and 163 

was fed with air at 1 L min-1 for continuous H2O2 generation, as previously reported (Thiam et al., 164 

2015a; Steter et al., 2016). The geometric area of all electrodes was 3 cm2, whereas the 165 

interelectrode gap was near 1 cm. The runs were made at constant current density (j), which was 166 

supplied by an Amel 2049 potentiostat-galvanostat, being the cell voltage measured with a 167 

Demestres 601BR digital multimeter. All the electrodes were initially cleaned/activated upon 168 

polarization in 0.050 M Na2SO4 at j = 100 mA cm-2 for 180 min. The EF and PEF treatments of all 169 

aqueous solutions were performed after addition of 0.50 mM Fe2+, which is the optimum content of 170 

this ion found for many organics degraded by these EAOPs in this kind of cell (Thiam et al., 2014, 171 

2015a, 2015b)]. For PEF, the solution was exposed to UVA light (λmax = 360 nm) provided by a 172 

Philips TL/6W/08 fluorescent black light blue with a power density = 5 W m-2, measured with a 173 

Kipp&Zonen CUV 5 UV radiometer. 174 

2.4. Analytical methods 175 

 A Metrohm 644 conductometer was employed to determine the electrical conductance of all 176 

solutions, whereas their pH was measured with a Crison GLP 22 pH-meter. The H2O2 concentration 177 
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accumulated was determined from the light absorption of its Ti(IV) complex at λ = 408 nm using an 178 

Unicam UV/Vis spectrophotometer at 25 ºC (Welcher, 1975). All the samples were filtered with 179 

0.45 µm PTFE membrane filters from Whatman before analysis. TOC of the samples was 180 

immediately measured on a Shimadzu VCSN TOC analyzer. Values with ±1% accuracy were found 181 

by injecting 50 µL aliquots into the analyzer. Total nitrogen (TN) was determined on a Shimadzu 182 

TNM-1 unit coupled to the TOC analyzer. 183 

 The tetracaine removal was monitored by reversed-phase HPLC. Acetonitrile (1:1) was added 184 

to the samples upon withdrawal during EF and PEF trials in order to stop the degradation process. 185 

This analysis was made by injecting 10 µL aliquots into a Waters 600 LC coupled to a Waters 996 186 

photodiode array detector selected at λ = 311 nm. The LC was fitted with a BDS Hypersil C18 (250 187 

mm × 4.6 mm) column at 25 ºC. The mobile phase was a 50:50 (v/v) acetonitrile:water (KH2PO4 10 188 

mM, pH 3) mixture eluting at 1.0 mL min-1. Under these conditions, the chromatograms exhibited a 189 

well-defined peak for tetracaine at retention time tr = 8.9 min. The generated carboxylic acids were 190 

quantified by ion-exclusion HPLC using the above LC fitted with a Bio-Rad Aminex HPX 87H 191 

(300 mm × 7.8 mm) column at 35 ºC, setting the photodiode array detector at λ = 210 nm and 192 

eluting a 4 mM H2SO4 solution as mobile phase at 0.6 mL min-1. Well-defined peaks related to 193 

fumaric (tr = 14.7 min) and oxalic (tr = 6.8 min) acids were obtained in the recorded 194 

chromatograms. 195 

 Kinetic and mineralization tests were duplicated and average values are reported. The error of 196 

the corresponding data within a 95% confidence interval was very small (< 2%) and hence, error 197 

bars are not shown in figures. 198 

 NH4
+ was quantified by the standard indophenol blue method with an Alpkem Flow Solution 199 

IV flow injection system. The other cations were determined by inductively coupled plasma-optical 200 

emission spectroscopy. The concentration of NO3−, SO4
2−, Cl−, ClO3− and ClO4− was obtained by 201 

ion chromatography using a Kontron 465 LC fitted with a Waters IC-pack (150 mm × 4.6 mm) 202 



10 
 

anion column at 35 ºC, coupled to a Waters 432 conductivity detector. A volume of 200 µL was 203 

injected into the LC upon elution of a sodium tetraborate, sodium gluconate, boric acid, butanol, 204 

acetonitrile and glycerine solution at 2 mL min-1. Active chlorine was measured by the N,N-diethyl-205 

p-phenylenediamine colorimetric method (λ = 515 nm) on a Shimadzu 1800 UV/Vis 206 

spectrophotometer (APWA, AWWA, WEF, 2005). 207 

 Stable organic intermediates accumulated after 30 and 120 min of degradation of 0.561 mM 208 

tetracaine in simulated matrix by PEF with BDD/air-diffusion cell at j = 33.3 mA cm-2 were 209 

identified by GC-MS, comparing with NIST05 data library. The treated solutions were lyophilized 210 

and the remaining solid was dissolved with 2 mL of CH2Cl2. Analysis was carried out on an Agilent 211 

Technologies 6890N GC coupled to an Agilent Technologies 5975C inert XL MS in EI mode at 70 212 

eV. A non-polar Teknokroma Sapiens- X5ms (0.25 µm, 30 m × 0.25 mm) column was employed. 213 

The temperature program was: 36 ºC for 1 min, 5 ºC min-1 up to 325 ºC and hold time 10 min, with 214 

the inlet, source and transfer line at temperatures of 250, 230 and 300 ºC, respectively. 215 

3. Results and discussion 216 

3.1. Tetracaine degradation in 0.050 M Na2SO4 217 

 The degradation profiles obtained for the treatment of 150 mL of 0.561 mM tetracaine 218 

hydrochloride solutions by the different EAOPs were firstly assessed in 0.050 M Na2SO4 to clarify 219 

the oxidation power of hydroxyl radicals and/or UVA light. The study was carried out with a BDD 220 

anode since it is expected to be the best one in this synthetic medium (Panizza and Cerisola, 2009; 221 

Sirés and Brillas, 2012). Experiments were made after adjustment of the initial pH to 3.0 and 222 

addition 0.50 mM Fe2+ in EF and PEF. A constant j = 33.3 mA cm-2 was applied for 360 min. In all 223 

cases, the solution pH underwent a slight decay along time up to final values of 2.6-2.7, suggesting 224 

the formation of acidic byproducts like short-chain aliphatic carboxylic acids (Moreira et al., 2013, 225 
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Steter et al., 2016), since no pH change was found under similar electrolytic conditions for a 226 

solution without contaminant. 227 

 Fig. 1a illustrates the tetracaine concentration decay with electrolysis time for the above assays. 228 

A continuous removal of the pharmaceutical following an exponential decay up to its total 229 

disappearance at long time can be observed in EO-H2O2, as expected if it is slowly attacked by 230 

BDD(•OH) originated from reaction (2). In contrast, only 180 min were needed for its 231 

disappearance in EF and PEF systems, as a result of faster destruction by additional •OH produced 232 

from Fenton’s reaction (6). For the latter two EAOPs, a very quick degradation of tetracaine was 233 

found during the first 5 min of electrolysis, whereupon it underwent a much slower removal up its 234 

total disappearance. Fig. 1a also shows a quite analogous degradation rate by both, EF and PEF 235 

treatments, thus informing about a very little production of •OH from photolytic reaction (8). The 236 

inset panel of Fig. 1a shows the analysis of the above concentration decays assuming that tetracaine 237 

obeyed a pseudo-first-order kinetics. A good linear correlation was obtained in EO-H2O2 trials, 238 

giving rise to an apparent rate constant k1 = 0.0106 min-1. In EF and PEF processes, however, an 239 

excellent linear correlation was only found for times > 5 min, related to k1 ∼ 0.02 min-1. This 240 

behavior can be associated with the fast and large conversion of Fe(II) into Fe(III) (about 90%) by 241 

Fenton’s reaction (6) (Sirés et al., 2014), yielding Fe(III)-tetracaine complexes that are more slowly 242 

attacked by BDD(•OH) and •OH than the initial molecule, as proposed for similar treatments of 243 

other N-derivatives (Guelfi et al., 2017). The k1 value obtained for each process along with its 244 

regression coefficient (R2) is summarized in Table 1. The pseudo-first-order decay of the 245 

pharmaceutical suggests its reaction with a constant, low concentration of BDD(•OH) and/or •OH in 246 

all cases. 247 

 The TOC abatement for the above experiments, shown in Fig. 1b, reveals an enhancement of 248 

the mineralization process in the order EO-H2O2 < EF < PEF, as can also be deduced from the final 249 

TOC removal achieved, listed in Table 1. Again, the superiority of EF over EO-H2O2 can be 250 
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associated to the additional formation of •OH in the bulk, which outperform the BDD(•OH) because 251 

of their generation in the whole volume. The highest oxidation power was found in PEF system, 252 

which can be ascribed to the rapid photolysis of several organic intermediates, especially complexes 253 

of Fe(III), under UVA irradiation (Sirés and Brillas, 2012; Sirés et al., 2014). Nonetheless, partial 254 

mineralization was attained due to the high stability of remaining byproducts (see Table 1). 255 

 At the end of the PEF process, it was found that the solution contained 0.378 mg L-1 NH4
+ 256 

(26.2% of initial N) and 0.135 mg L-1 NO3− (2.7% of initial N) coming from the mineralization of 257 

the N atoms of tetracaine (1.122 mM). Since the solution TN practically did not undergo any 258 

significant variation, one can conclude that NH4
+ is the preponderant ion released during PEF, 259 

although most of the initial N remained in solution, probably as linear byproducts that are hardly 260 

removed by BDD(•OH), •OH and UVA light. Note that Lacasa et al. (2014) showed the partial 261 

reduction of NO3− to NH4
+ in sulfate medium by EO using cathodes like conductive diamond, 262 

stainless steel, silicon carbide, graphite or lead. Nevertheless, this reaction is expected to be 263 

insignificant in our air-diffusion cathode, which is highly electrocatalytic for the reduction of O2 gas 264 

to H2O2 by reaction (1). From these findings, the theoretical mineralization reaction of the 265 

protonated form of tetracaine, the prevailing species at pH = 3.0, can be written as reaction (10), 266 

yielding CO2 and NH4
+ as major generated nitrogenated ion upon passage of a number of electrons 267 

n = 74: 268 

C15H25N2O2
+  +  28H2O  →  15CO2  +  2NH4

+  +  73H+  +  74e−     (10) 269 

The mineralization current efficiency (MCE) for each trial at current I (= 0.100 A) and 270 

electrolysis time t (h) was then estimated as follows (Thiam et al., 2015a; Steter et al., 2016): 271 

% MCE =                               ×  100         (11) 272 
n F V (TOC) 

 4.32×107 m I t 
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where F is the Faraday constant (= 96,485 C mol-1), V is the solution volume (= 0.150 L), (TOC) 273 

is the TOC abatement (mg L-1), 4.32×107 is a conversion factor (= 3600 s h-1 × 12,000 mg C  mol-1) 274 

and m is the number of carbon atoms of tetracaine (= 15). 275 

 The current efficiencies calculated from Eq. (11) for the trials of Fig. 1b are presented in Fig. 276 

1c. As expected, MCE rose as the oxidation power of the EAOP increased (see Table 1), reaching 277 

the highest value of about 35% after 120 min of PEF. It is noteworthy that current efficiency 278 

gradually decreased at long electrolysis time in all cases. This behavior is typical of EAOPs and can 279 

be explained by the progressive loss of organic load along with formation of more resistant 280 

byproducts (Panizza and Cerisola, 2009), thus making the processes more inefficient. 281 

3.2. Tetracaine degradation in simulated matrix 282 

 In a second series of experiments, the treatment of 0.561 mM tetracaine hydrochloride in the 283 

simulated matrix at pH 3.0 was tested by the different EAOPs in order to know the influence of Cl− 284 

ion on the degradation process. Initially, a BDD anode was used by applying the same conditions 285 

described for 0.050 M Na2SO4. The solution pH also underwent a slight drop with electrolysis time 286 

in all cases, attaining final values of 2.7-2.8 after 360 min of treatment at j = 33.3 mA cm-2. 287 

 In all the above treatments, the accumulated H2O2 increased up to a steady state value, when its 288 

generation and destruction rates became equal, yielding 25.0, 14.5 and 6.1 mg L-1 in EO-H2O2, EF 289 

and PEF, respectively. This agrees with the quicker removal of H2O2 with Fe2+ from Fenton’s 290 

reaction (6) in EF and, additionally, with the enhancement of Fe2+ regeneration from photolytic 291 

reaction (8) in PEF. Moreover, a higher steady H2O2 content of 31.5 mg L-1 was found operating 292 

under EO-H2O2 conditions without tetracaine, suggesting that this oxidant is able to oxidize some 293 

organics during the electrochemical decontamination. A similar electrolysis in the absence of 294 

pharmaceutical and Cl− ion yielded a greater steady H2O2 concentration of 34.0 mg L-1 and thus, the 295 

lower H2O2 accumulation in the simulated matrix can be related to its reaction with active chlorine 296 

from reaction (12) (Sirés et al., 2014; Steter et al., 2016). 297 
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HClO  +  H2O2  →  Cl−  +  O2(g)  +  H2O  +  H+       (12) 298 

 Fig. 2a highlights the very rapid destruction of the pharmaceutical by all EAOPs, always 299 

disappearing in about 40 min. The removal was slightly slower by EO-H2O2 compared to EF and 300 

PEF, which led to quite analogous degradation rate. A more rapid disappearance of tetracaine was 301 

obtained in the simulated matrix, as compared with Fig. 1a. This can be related to its preponderant 302 

oxidation by active chlorine (Cl2/HClO) generated from reactions (3) and (4). The slightly greater 303 

rate found in EF and PEF systems can then be ascribed to the concomitant reaction with •OH 304 

originated from Fenton’s reaction (6). It is noticeable that for the two Fenton-based EAOPs, a 305 

uniform pharmaceutical decay was obtained during all the electrolysis. The fact that the degradation 306 

was not decelerated at times > 5 min, in contrast to behavior found in 0.050 M Na2SO4, suggests 307 

that the aforementioned Fe(III) complexes are rapidly destroyed by active chlorine. The inset panel 308 

of Fig. 2a shows the good linear fittings determined assuming a pseudo-first-order kinetics for all 309 

the EAOPs, as a result of the attack of a constant amount of active chlorine and hydroxyl radicals. 310 

The corresponding k1 value given in Table 1 for EO-H2O2 in the simulated matrix was 5.6-fold 311 

higher than that in 0.050 M Na2SO4, whereas it was 3.7-fold and 4.0-fold greater for EF and PEF, 312 

respectively, corroborating the higher effectiveness of active chlorine compared to BDD(•OH) and 313 

•OH to destroy tetracaine. These results also demonstrate that the influence of Cl− ions contained in 314 

the commercial tetracaine on processes performed in 0.050 M Na2SO4 can be disregarded. 315 

 Surprisingly, the TOC decay for the above treatments showed that mineralization was upgraded 316 

in the sequence EF < EO-H2O2 < PEF, as depicted in Fig. 2b. This means that chlorinated and non-317 

chlorinated byproducts were more easily destroyed by BDD(•OH) and active chlorine in EO-H2O2 318 

compared to EF, because they probably form more recalcitrant Fe(III) complexes in EF that are 319 

more resist better the attack of •OH in the bulk, as well as BDD(•OH) and active chlorine. This 320 

hypothesis on the detrimental action of active chlorine is supported by two experimental evidences. 321 

On the one hand, the large enhancement of mineralization under PEF conditions (see Fig. 2b), 322 
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which can be explained by the photolysis of Fe(III) complexes upon UVA irradiation. On the other 323 

hand, the loss of mineralization effectiveness in the simulated matrix (22% and 13% for EF and 324 

PEF, respectively) with respect to 0.050 M Na2SO4 (see Table 1), which can be ascribed to the 325 

formation of hardly oxidizable complexes of Fe(III) with chlorinated byproducts. The 326 

mineralization profile is also reflected in the relative MCE values obtained, given in Fig. 2c and 327 

Table 1. The current efficiency fluctuated from 14% to 16% in EO-H2O2, from 12% to 15% in EF 328 

and from 19% to 22% in PEF. This behavior suggests a quite constant mineralization rate in all 329 

cases. 330 

 The influence of active anodes like Pt, IrO2-based and RuO2-based ones on tetracaine 331 

degradation was comparatively checked for the most powerful EAOP, i.e., PEF process. Fig. 3a 332 

shows a quick abatement of the pharmaceutical regardless of the anode, being slightly accelerated 333 

in the order: Pt < IrO2-based < BDD < RuO2-based, with total disappearance at 40-60 min due to its 334 

preponderant reaction with active chlorine formed from reactions (3) and (4). This tendency seems 335 

contradictory based on the greater active chlorine production expected for active anodes as 336 

compared to BDD (Thiam et al., 2015a; Steter et al., 2016). This anomalous behavior could then be 337 

explained by the remarkable destruction of active chlorine due to its reaction with H2O2 from 338 

reaction (12). 339 

 The inset panel of Fig. 3a illustrates the pseudo-first-order decay kinetics found in all trials. As 340 

can be seen in Table 1, the greatest k1 = 0.097 min-1 was obtained with the RuO2-based anode, then 341 

decreasing a 15.4%, 23.7% and 44.3% with BDD, IrO2-based and Pt, respectively. This trend can 342 

then be associated with the gradually lower content of active chlorine in the aqueous matrix at the 343 

beginning of the PEF treatment. 344 

 A very different behavior was found when TOC removal was measured. Fig. 3b highlights the 345 

poor mineralization rate in PEF process using the three active anodes, only allowing near 34-36% 346 

TOC decay with 9.2-9.8% current efficiency after 360 min (see Table 1). In contrast, the use of 347 
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BDD led to a much greater final TOC drop of 70% with 19% current efficiency. This confirms the 348 

key role of BDD(•OH) to oxidize the chlorinated intermediates formed, having much higher 349 

oxidation ability than Pt(•OH), IrO2(•OH) and RuO2(•OH) (Panizza and Cerisola, 2009). 350 

Consequently, one can infer that BDD is the best anode to destroy tetracaine and its metabolites in 351 

the simulated matrix by PEF, since the treatment takes advantage of a large synergistic action 352 

between BDD(•OH), •OH, active chlorine and UVA light to foster their mineralization. 353 

3.3. Tetracaine degradation in urban wastewater 354 

 The study of the PEF treatment of tetracaine with different anodes was extended to an urban 355 

wastewater matrix adjusted to pH = 3.0. As occurred in the other media, solution pH decayed up to 356 

slightly smaller values of pH 2.6-2.7 after 360 min of electrolysis at j = 33.3 mA cm-2 in all cases. 357 

 The decay in pharmaceutical concentration with electrolysis time when treating 0.561 mM 358 

tetracaine spiked into the real wastewater sample using BDD, Pt, IrO2-based or RuO2-based anodes 359 

is depicted in Fig. 4a. A quite similar profile can be observed using the three former electrodes, 360 

leading to overall pharmaceutical removal in 90 min, whereas a more rapid decay occurred for 361 

RuO2-based anode with tetracaine disappearance in 60 min. All these trials agreed with a pseudo-362 

first-order degradation kinetics, as shown in the inset panel of Fig. 4a. Comparison of Fig. 3a and 4a 363 

allows concluding that the pharmaceutical disappeared more slowly in the urban wastewater than in 364 

the simulated matrix in all cases, as also corroborated by the smaller k1 values determined with each 365 

anode in the former medium (see Table 1). The slower destruction of tetracaine in the urban 366 

wastewater can be ascribed to the partial consumption of M(•OH), •OH and pre-eminently active 367 

chlorine by NOM. This competition was not so important in PEF with the RuO2-based anode, 368 

probably because it led to a greater active chlorine accumulation. Conversely, it was comparatively 369 

more significant with BDD, suggesting a dramatic scavenging influence of NOM on BDD(•OH) 370 

availability for tetracaine degradation. 371 
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 Fig. 4b confirms the large inefficiency of Pt, IrO2-based and RuO2 based anodes for reaching a 372 

high degree of mineralization. Worth noting, greater TOC removal was determined in these cases 373 

compared to trials performed in the simulated matrix, even though the urban wastewater containing 374 

tetracaine hydrochloride accounted for a larger TOC = 112.2 mg L-1 (see Fig. 3b and Table 1). 375 

Hence, the presence of NOM was beneficial for the overall mineralization process, except for PEF 376 

with BDD since the same amount (70 mg L-1 TOC) was destroyed in both media at the end of the 377 

electrolyses, as deduced from data of Table 1. As commented for the simulated matrix, the higher 378 

mineralization in urban wastewater was reached using BDD, then corroborating that it is the best 379 

anode for the PEF treatment of tetracaine. 380 

 The oxidation ability of the potent PEF process with BDD was tested for tetracaine contents 381 

between 0.028 and 1.122 mM spiked into the urban matrix. A gradual exponential drop of 382 

pharmautical concentration can be observed in Fig. 5 in all these runs, which always obeyed a 383 

pseudo-first-order kinetics, as presented in the inset panel. The time needed for total removal rose 384 

with the initial concentration, being close to 40, 60, 80, 90 and 240 min for 0.028, 0.140, 0.280, 385 

0.561 and 1.122 mM tetracaine, respectively. According to this, the corresponding k1 value 386 

progressively decreased (see Table 1), meaning that it did not correspond to a true pseudo-first-387 

order rate constant. Nevertheless, greater content of the pharmaceutical was removed when its 388 

initial concentration increased. For instance, at 30 min of electrolysis, 6.8, 33.7, 71.8, 99.1 and 389 

182.1 mg L-1 tetracaine were removed starting from 0.028, 0.140, 0.280, 0.561 and 1.122 mM, 390 

respectively. It can then be inferred that the presence of a higher organic load is beneficial since it 391 

favors the reaction of tetracaine and its oxidation products with BDD(•OH), •OH or active chlorine 392 

(Sirés et al., 2014; Martínez-Huitle et al., 2015) This gradually greater oxidation ability was verified 393 

for the mineralization process. Table 1 reveals a decay in percentage of TOC removal from 74% for 394 

0.028 mM to 30% for 1.122 mM, corresponding to an increasing amount of TOC removed from 395 
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12.8 to 63.6 mg L-1. This means that, as a very remarkable feature, the PEF treatment with BDD 396 

becomes more effective for highly charged urban wastewater. 397 

 Finally, to clarify whether PEF with BDD was able to destroy the NOM and the intermediates 398 

of tetracaine in the real wastewater matrix, a long electrolysis with 0.561 mM of the pharmaceutical 399 

was carried out. A 78% TOC abatement was found at 11 h, attaining 100% mineralization at 24 h. 400 

This confirms that this EAOP is powerful enough to mineralize all the organic matter contained in 401 

polluted solutions, although a long electrolysis time is needed owing to the very slow destruction of 402 

the largely recalcitrant final byproducts. 403 

3.4. Total nitrogen, inorganic ions and active chlorine 404 

 The fate of N and Cl contained in the simulated matrix and the urban wastewater with 0.561 405 

mM tetracaine hydrochloride was determined for PEF process with BDD. Table 2 summarizes the 406 

initial and final values found for TN, inorganic ions and active chlorine. In both media, TN was 407 

reduced to a much larger extent with active anodes, primordially with the RuO2-based one (loss of 408 

34-41% of initial N), compared to non-active BDD (loss of about 2% of initial N). This can be 409 

related to the generation of volatile byproducts such as N2, NxOy and/or chloramines, which can be 410 

formed from reaction between the large quantities of active chlorine produced in active anodes and 411 

NH4
+ (contained in the matrices and/or generated upon mineralization). This explanation is 412 

supported by the large destruction of the initial NH4
+, as shown in Table 2, which followed a similar 413 

sequence to the relative loss of TN for the different anodes in each matrix. Table 2 also highlights 414 

the same trend for the accumulation of NO3− from tetracaine, which was more largely accumulated 415 

with BDD anode, in agreement with its great mineralization ability. Nevertheless, the sum of the 416 

concentration of NH4
+ and NO3− ions was always smaller than the corresponding TN value, 417 

suggesting that the final treated solutions still contained large quantities of organic N-derivatives, 418 

especially for the three active anodes where > 57% of the initial TOC remained in the final 419 

solutions (see Fig. 3b and 4b). 420 
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 Regarding the fate of chlorinated ions, it should be noted that a much higher removal of initial 421 

Cl− occurred using BDD (see Table 2), regardless of the matrix considered. It has been reported that 422 

BDD can oxidize Cl− to active chlorine, which is consecutively transformed into ClO2−, ClO3− and 423 

ClO4− ions by reactions (13)-(15) (Thiam et al., 2015a; Steter et al., 2016): 424 

HClO  +  H2O  →  ClO2−  +  3H+  +  2e−        (13) 425 

ClO2−  +  H2O  →  ClO3−  +  2H+  +  2e−        (14) 426 

ClO3−  +  H2O  →  ClO4−  +  2H+  +  2e−        (15) 427 

 However, the data of Table 2 also reveal an analogous final active chlorine concentration using 428 

all the anodes in each aqueous matrix, with slightly greater accumulation using the RuO2-based 429 

anode, as expected from the faster tetracaine decay reported with this electrode in Fig. 3a and 4a. In 430 

the simulated matrix, a greater accumulation of ClO4− compared to ClO3− was found in all cases 431 

(see Table 2). The maximum total content of both ions with Pt (1.952 mM) was even superior to 432 

1.597 mM determined with BDD, demonstrating that reactions (14) and (15) occurred to similar 433 

extent at all electrodes. A mass balance of all chlorinated species detected in the simulated matrix 434 

reveals a good agreement with the initial chloride content (11.91 mM) using Pt (11.77 mM, i.e., 435 

98.8% of initial Cl−), IrO2-based (10.25 mM, i.e., 86.1%) and RuO2-based (11.83 mM, i.e., 99.3%). 436 

In contrast, a large decay was observed with BDD (5.71 mM, i.e., 47.9%), which could be ascribed 437 

to its greater oxidation ability to generate not only more chloro-organics that remain in the solution, 438 

but also volatile inorganic species, probably ClO2 from ClO2− oxidation (Gómez-Gonzalez et al., 439 

2009), as well as chloramines. 440 

3.5. Detection of intermediates and final linear short-chain carboxylic acids 441 

 GC-MS analysis of organics extracted upon treatment of 0.561 mM tetracaine hydrochloride in 442 

simulated matrix by PEF with BDD allowed identifying one benzenic compound (2), three 443 
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monochloro- (3-5), two dichloro- (6 and 7) and one trichloro- (8) benzenic derivatives, and one 444 

dichloro aliphatic product (9), whose characteristics are summarized in Table S1 of Supplementary 445 

Material. The aromatic derivative 2, 4-hydroxybenzoic acid, comes from the partial loss of the side 446 

groups of the benzenic ring of tetracaine (1) via deamination and hydroxylation. The partial 447 

cleavage of the side groups upon chlorination, oxidation, deamination, denitration, demethylation, 448 

dechlorination and/or hydroxylation yields chlorinated aromatics 3-8. Further cleavage of the 449 

benzene moiety by chlorination and oxidation explains the formation of the chlorinated aliphatic 9, 450 

i.e., dichloroacetic acid methyl ester. The detection of these intermediates confirms the production 451 

of chlorinated byproducts using aqueous matrices with Cl−, as pointed out above. 452 

 Ion-exclusion HPLC analysis of the above treated tetracaine solution revealed the generation of 453 

two linear carboxylic acids, namely fumaric (10) and oxalic (11) acids. The former acid is expected 454 

to appear from the breaking of the benzene moiety, whereas the second one arises from the 455 

oxidation of 10 and other longer aliphatic acids, being a final product that is directly mineralized to 456 

CO2 (Moreira et al., 2013; Sirés et al., 2014). Fig. 6a and b illustrates the time-course of these acids 457 

under the same conditions described in Fig. 3. As can be seen, both acids were produced with all 458 

electrodes to a similar extent, showing maximum concentrations between 180 and 240 min of PEF 459 

treatment. This suggests that they are pre-eminently originated by the combined action of •OH 460 

formed from Fenton’s reaction (8) and UVA light, since they form Fe(III)-fumarate and Fe(III)-461 

oxalate complexes to large extent that are easily photolyzed under light irradiation (Sirés et al., 462 

2014; Martínez-Huitle et al., 2015). In these assays, very small contents < 0.87 and < 23.1 µM of 10 463 

and 11, respectively, were found in the final solutions, corresponding to a total TOC < 0.6 mg L-1, 464 

which is an insignificant value compared to the large residual TOC remaining in them (e.g., 30 mg 465 

L-1 using BDD, see Fig. 3b). These results allow inferring that tetracaine degradation involves the 466 

predominant production of other byproducts with a high content of N, as stated above, resulting 467 

even more recalcitrant than short-chain aliphatic carboxylic acids. 468 
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3.6. Reaction sequence for tetracaine mineralization 469 

 Based on the intermediates detected, a plausible reaction sequence for tetracaine mineralization 470 

by PEF in Cl−-containing medium is proposed in Fig. 7. In this route, •OH at the anode surface and 471 

from Fenton’s reaction (8) as well as active chlorine (Cl2/HClO) are assumed as the main oxidizing 472 

agents. Moreover, for sake of simplicity, only the formation of Fe(III)-oxalate complexes is stated. 473 

 The path is initiated with the cleavage of the side aliphatic groups of the benzene moiety of 1 474 

either by deamination or hydroxylation to yield 2, or with parallel chlorination over C-2 leading to 475 

the chloro-amine derivative 3 with a methoxy group. Further degradation of 3 yields 4, 5 or 6 via 476 

oxidation of the amine to a nitro group, demethylation of the methoxy group or chlorination over C-477 

5, respectively. Subsequent denitration with chlorination of 4 produces the trichloro-derivative 8, 478 

which can also be formed from deamination with chlorination of 6. Hydroxylation of compounds 5, 479 

6 and 8 with loss of carboxy or carbomethoxy group as well as deamination or denitration originates 480 

the dichlorohydroquinone 7. Oxidation of aromatic intermediates with breaking of benzene ring 481 

yields linear aliphatic products like the dichloro-derivative 9 and the carboxylic acid 10. 482 

Degradation of these aliphatic compounds eventually leads to the final acid 11, which can be 483 

directly oxidized to CO2 at the anode. Alternatively, its Fe(III) complexes can be largely photolyzed 484 

by UVA light with Fe2+ regeneration according to reaction (9). 485 

4. Conclusions 486 

 The PEF process with non-active BDD anode is the best EAOP for the removal of tetracaine 487 

spiked into urban wastewater at pH 3.0. This method yielded greater mineralization compared to 488 

active Pt, IrO2-based and RuO2-based anodes since it took advantage of synergy between M(•OH), 489 

•OH, active chlorine and UVA light to destroy the oxidation products of the pharmaceutical. Total 490 

mineralization was feasible by PEF with BDD at long electrolysis time. Tetracaine always decayed 491 

at similar rate obeying a pseudo-first-order kinetics regardless of the anode, being only slightly 492 
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faster with the RuO2-based one because it originated larger amounts of active chlorine. However, 493 

the chlorinated products were largely recalcitrant using a Pt, IrO2-based or RuO2-based anodes, 494 

therefore requiring BDD for their destruction. The fast photolysis of Fe(III) complexes upon UVA 495 

irradiation explains the superior oxidation ability of PEF. In Cl−-containing media, TN was lost to a 496 

large extent for all active anodes due to formation of chloramines. ClO3− and ClO4− ions were 497 

produced with all the electrodes, but initial Cl− disappeared significantly from solution only with 498 

BDD, possibly by oxidation to ClO2. A reaction sequence for tetracaine mineralization by PEF in 499 

the presence of chloride ion has been proposed.  500 
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Fig. 1. (a) Tetracaine content decay, (b) TOC removal and (c) mineralization current efficiency with 
electrolysis time for the treatment of 150 mL of a 0.561 mM pharmaceutical solution in 0.050 M 
Na2SO4 at pH 3.0 using a boron-doped diamond (BDD)/air-diffusion cell, both electrodes with 3 
cm2 area, at current density (j) of 33.3 mA cm-2 and 35 ºC. Method: () Electrochemical oxidation 
with electrogenerated H2O2 (EO-H2O2), () electro-Fenton (EF) with 0.50 mM Fe2+ and () 
photoelectro-Fenton (PEF) with 0.50 mM Fe2+ and 6 W UVA light. The inset panel of graph (a) 
presents the corresponding pseudo-first-order kinetic analysis. 
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Fig. 2. (a) Tetracaine concentration removal, (b) TOC abatement and (c) mineralization current 
efficiency over time for the degradation of 150 mL of a 0.561 mM pharmaceutical solution in the 
simulated matrix at pH 3.0 using a BDD/air-diffusion cell at j = 33.3 mA cm-2 and 35 ºC. Method: 
() EO-H2O2, () EF with 0.50 mM Fe2+ and () PEF with 0.50 mM Fe2+. The inset panel of graph 
(a) depicts the kinetic analysis for a pseudo-first-order reaction of tetracaine. 
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Fig. 3. (a) Drug concentration decay and (b) normalized TOC removal (initial TOC = 100 mg L-1) 
for the PEF treatment of 150 mL of a 0.561 mM tetracaine solution in the simulated matrix at pH 
3.0, j = 33.3 mA cm-2 and 35 ºC. Anode: () BDD, () Pt, () IrO2-based and () RuO2-based. 
The corresponding pseudo-first-order kinetic analysis is shown in the inset panel of Fig. 3a. 
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Fig. 4. (a) Drug concentration removal and (b) normalized TOC decrease (initial TOC = 112.2 mg L-

1) for the PEF treatment of 150 mL of 0.561 mM tetracaine spiked into urban wastewater at pH 3.0, j 
= 33.3 mA cm-2 and 35 ºC. Anode: () BDD, () Pt, () IrO2-based and () RuO2-based. The inset 
panel of Fig. 4a presents the kinetic analysis assuming a pseudo-first-order reaction for tetracaine. 
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Fig. 5. Effect of tetracaine concentration on its decay kinetics for the PEF treatment of 150 mL of 
different solutions of the pharmaceutical spiked into urban wastewater at pH 3.0 using a BDD/air-
diffusion cell at j = 33.3 mA cm-2 and 35 ºC. Initial tetracaine content: () 1.122 mM, () 0.561 
mM, () 0.280 mM, () 0.140 mM and () 0.028 mM. The inset panel presents the pseudo-first-
order kinetic analysis. 
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Fig. 6. Time-course of the concentration of (a) fumaric (10) and (b) oxalic (11) acids detected during 
the PEF treatment of a 0.561 mM tetracaine solution in the simulated matrix under the same 
conditions of Fig. 3. Anode: () BDD, () Pt, () IrO2-based and () RuO2-based. 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 60 120 180 240 300 360 420

Time / min

[O
xa

lic
 a

ci
d]

 / 
m

M

0.0

0.3

0.6

0.9

1.2

1.5

[F
um

ar
ic

 a
ci

d]
 / 
µM

a 

b 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Proposed reaction sequence for tetracaine mineralization by PEF in Cl−-containing medium. 
•OH accounts for the hydroxyl radical formed at the anode surface and from Fenton’s reaction. 
Cl2/HClO denotes the active chlorine species originated from anodic oxidation of Cl−. 
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Table 1. 

Pseudo-first-order rate constant along with R-squared, percentage of TOC removal and 

mineralization current efficiency determined for the degradation of 150 mL of tetracaine in synthetic 

and urban wastewater at pH 3.0 by electrochemical advanced oxidation processes with different 

anodes and an air-diffusion cathode at j = 33.3 mA cm-2 and 35 ºC. 

 

 
Method 

 
Anode 

[Tetracaine]0 
(mM) 

k1 
(min-1) 

 
R2 

% TOC  
removal 

 
% MCE 

0.050 M Na2SO4 solution     

EO-H2O2 BDD 0.561 0.0106 0.995 53b 15b 

EF BDD 0.561 0.0195a 0.997 69b 19b 

PEF BDD 0.561 0.0204a 0.987 83b 23b 

Simulated matrix      

EO-H2O2 BDD 0.561 0.059 0.992 52b 14b 

EF BDD 0.561 0.073 0.998 47b 13b 

PEF BDD 0.561 0.082 0.992 70b 19b 

 Pt 0.561 0.054 0.992 34b 9.3b 

 IrO2-based 0.561 0.074 0.992 36b 9.7b 

 RuO2-based 0.561 0.097 0.994 35b 9.5b 

Urban wastewater     

PEF BDD 0.028 0.163 0.992 74c - 

 BDD 0.140 0.109 0.984 49c - 

 BDD 0.280 0.103 0.986 37c - 

 BDD 0.561 0.040 0.990 23c 

35d 

63b 

- 

- 

- 

 Pt 0.561 0.030 0.991 43b - 

 IrO2-based 0.561 0.049 0.998 25b - 

 RuO2-based 0.561 0.092 0.990 41b - 

 BDD 1.112 0.034 0.995 30d - 
a From 5 to 60 min of treatment (Fig. 1a) 

Electrolysis time: b 360 min, c 120 min, d 180 min 



 
 

Table 2. 

Total nitrogen and inorganic ions detected before electrolysis and after 360 min of PEF treatment of 

150 mL of 0.561 mM tetracaine in simulated matrix and urban wastewater at pH 3.0 using different 

anodes and an air-diffusion cathode at j = 33.3 mA cm-2 and 35 ºC. 

 

 
Parameter 

 
Initial value 

BDD 
(at 360 min) 

Pt 
(at 360 min) 

IrO2-based 
(at 360 min) 

RuO2-based 
(at 360 min) 

Simulated matrix     

TN (mM) 2.654 2.580 2.073 2.544 1.726 

NO3− (mM) 0.0258 0.6523 0.3798 0.2770 0.1726 

NH4
+ (mM) 1.961 1.443 1.037 0.280 0.302 

Cl− (mM) 11.91 3.99 9.77 9.29 10.18 

ClO3− (mM) - 0.572 0.391 0.140 0.214 

ClO4− (mM) - 1.025 1.564 0.728 1.275 

Active chlorine 

(mg L-1) 

- 0.121 0.047 0.092 0.165 

Urban wastewater     

TN (mM) 3.215 3.150 2.252 2.901 1.892 

NO3− (mM) 0.0237 0.5291 0.4089 0.4347 0.4462 

NH4
+ (mM) 2.053 1.848 0.939 0.791 0.299 

Cl− (mM) 11.73 2.71 10.53 9.50 7.31 

Active chlorine 

(mg L-1) 

- 0.047 0.005 0.078 0.098 
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