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Abstract. We study a Frenkel-Kontorova model of a finite chain with free-end boundary conditions. The
model has two competing potentials. Newton trajectories are an ideal tool to understand the circumstances
under a driving of a Frenkel-Kontorova chain by external forces. To reach the insights we calculate some
stationary structures for a chain with 23 particles. We search the lowest energy saddle points for a complete
minimum energy path of the chain for a movement over the full period of the on-site potential, a sliding. If
an additional tilting is set, then one is interested in barrier breakdown points on the potential energy surface
for a critical tilting force named the static frictional force. In symmetric cases, such barrier breakdown
points are often valley-ridge inflection points of the potential energy surface. We explain the theory and
demonstrate it with an example. We propose a model for a DC drive, as well as an AC drive, of the chain
using special directional vectors of the external force.

PACS. Frenkel-Kontorova model – DC- or AC-tilting – Newton trajectory – Barrier breakdown point
– Valley-ridge inflection point

1 Introduction

In solid-state physics one often divides a set of particles
in a one-dimensional subsystem of interacting elements,
and in the remaining part as a substrate. The latter acts
by a potential on the extracted subsystem. One example
of such a model is the Frenkel-Kontorova (FK) model [1,
2]. It has the ability to account for many nonlinear prob-
lems. The one-dimensional subsystem is represented by a
discrete chain of particles harmonically coupled with their
nearest neighbors, while the action of the fixed substrate
can be described by a sinusoidal form.

In many applications, one particularly interesting as-
pect of the FK model is its driven form. The concept has
subsequently been involved in many applications of the
model including alternating current (AC) driven models
[2–6], or direct driven (DC) models [7–10]. Nowadays slid-
ing friction forms a broad interdisciplinary research field
that often involves the application of the FK model [8,10,
11] where the applications go up to earthquake research
[12]. Zanca et al. recently remarked that ’friction is, among
all basic physical phenomena, the one in most need of fun-
damental works’ [13].

We here propose the usage of Newton trajectories (NTs)
[14]. They describe the curve of the displaced stationary
points under the increasing external force for every tilted
potential energy surface (PES). To treat the PES of a
physical problem is not new, however it is here the key

step for a deeper understanding. On the other hand, NTs
are mathematical tools. They are curves on the given PES
where at every curve point the gradient of the PES points
into the same direction called the search direction [15].
With the help of NTs we find a low energy path for a full
movement of the chain through the PES over a period of
the site-up potential. The search direction of the NT is
the tilting direction of a force to be applied to move the
chain exactly along this pathway.

The paper has the following Sections: in Section 2 we
report on the FK model which is then tilted in Sect. 3.
A short review of the theory of NTs is added, and it is
explained how NTs can be applied to the FK model. Sec-
tion 5 describes an example of the N=23 FK chain. We get
symmetric and asymmetric minimums and saddle points
(SPs) of index 1 and 2. Here the particularity emerges
that the global lowest transition state on a minimum en-
ergy path (MEP) for a movement of the chain by ≈ as, the
period of the sinusoidal potential, is a pair of two SPs of
equal height in a row, with a valley-ridge inflection (VRI)
manifold of points in between. Two such valleys emerge
in the N=23-case, separated by an SP of index 2. The
connection of the two corresponding SP1 is a family of
singular NTs. Using these mathematical findings, we pro-
pose a model for an overall tilting of the chain along its
axis by a special DC force, as well as by an alternating
AC force hopefully anticipating a corresponding experi-
ment. The end is the Conclusion. Data are collected in a
Supplemental Material (SM).
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2 The FK model

2.1 Model formula

x = (x1, .., ..., xN )T is a linear chain of N discrete parti-
cles. The positions xi are on an axis. For all particles holds
xi < xi+1. They are sorted in a fixed order. We treat a
finite chain, thus N is less than infinity [14,16–23]. The
boundaries are free [24]

A spring force acts with a force constant k between
the particles which would results in a constant natural
distance ao of the particles. Without the side force, the
end points of the chain are such that the average distance
is ao = (xN−x1)/(N−1). Different ’natural’ distances are
a possible generalization [25–28], as well as different spring
constants, ki [29], both of which we do not use here. A
fixed on-site potential with a periodicity of as acts on the
particles in concurrence with the springs. The sinusoidal
potential mimics a rigid, not deformable substrate. The
ratio ao/as is named the misfit parameter. The PES for
the variables xi is the Frenkel-Kontorova model

V (x) = v

N∑
i=1

[1−cos(2πxi
as

)]+

N−1∑
i=1

k

2
[xi+1−xi−ao]2 . (1)

We put the factor at the sinusoidal potential, v=1, through-
out the paper. Then the spring constant, k, is also the ratio
of the strength of the sinusoidal potential to that of the
spring potential. Because v >0, the sinusoidal potential
will modulate the chain [30], and we will generally get an-
other average spacing, ão. All quantities referred to in this
work are dimensionless.

2.2 Calculation of special structures of the FK chain

We use here the application of NTs as a method for the FK
model [14]. For control reasons, we also use the optimiza-
tion in Mathematica by ”NMinimize“. A further tool is
steepest descent (SD). Barrier breakdown points (BBPs)
are calculated by the Barnes method [31]. Valley-ridge in-
flection points (VRIs) are approximated by a scheme of
Schmidt and Quapp [32,33].

3 Tilting of the FK model

In atomic force microscopy, a cantilever pulls a molecule
with a given force in a defined direction [23,24]. Such a
tilting can be applied also to an FK chain. Additionally
to the two forces of the FK model, we use an external,
linear force in the ansatz [1,2,14,19,26,34–43]. We name
the resulting PES an effective PES

VF (x) = V (x)− F (l1, .., lN )T · x . (2)

The multiplication point between the normalizedN -dimen-
sional direction vector l=(l1, .., ln)T and the N -variable x
means the scalar product. The amount of the force is ei-
ther given by the direct part, Fdc [7–10], or by an alternat-
ing part, ±Fac [2–5]. The force tilts the former sinusoidal

potential with the incline F in direction l. If F=0, then
a minimum structure for the chain will exist. But if all
li > 0, and if F > 0 is large enough, then a minimum
does not exit [14,19]. Interesting is the so-called pinning-
depinning transition, as well as the backward process [20],
compare also Section 4.3 below. The barrier for a depin-
ning is reduced in the case of special misfit parameters
between chain and substrate. It was named superlubricity
[44–49].

4 Newton trajectories

4.1 The Definition

Tilting means that we now look for a stationary chain with
gi(x) = F li, i = 1, .., N , F is the variable amount and the
li are fixed. Such an ansatz is named Newton trajectory
[50,51] in the N-dimensional space of the particles, to a
search direction f = F (l1, .., lN )T . The stationary points
on the effective potential satisfy the vector equation

∇x VF (x) = g(x)− f = 0 . (3)

One searches a point where the gradient of the original
PES, g(x), has to be equal to the force, f. The NT de-
scribes a curve of force-displaced stationary points (FDSPs)
of the tilted PES under a different load, F [50–56]. Usu-
ally, the energy of a minimum can increase, but the energy
of the next SP can be lower. This means that the barriers
become lower.

The NT can be treated without the treatment of the
physics of the external force in Eq.(2). One only needs
an abstract search direction. Then any NT describes a
connection between different stationary points of an in-
dex difference of one [57]. Following an NT is a method to
search a next SP if a minimum is given, or vice versa.

We write Eq.(3) in projector form [50,51](
U− l lT

)
g(x) = 0 . (4)

U is the unit matrix and the l-unit vector is the normalized
direction of f . The equation (4) then means that g and l
are parallel. If we differentiate the projector Eq.(4) with
respect to the parameter that characterizes the FDSPs
curve, s in x(s), we obtain with the Hessian, H [51,53](

U− l lT
)
H(x)

dx

ds
= 0 . (5)

This is an expression of the tangent of the FDSPs curve.
For the calculation, the continuous NT is approximated
by L node points. The N particles of the chain form a
point in the N -dimensional configuration space. A curve
of such points is the NT. And it is numerically treated by
its L nodes. We can easily calculate the Hessian of the FK
model [14]. Then Eq.(5) is a way to generate the NT of
a successive tilting. We use a predictor-corrector method
for the calculations. For the predictor we use the tangent
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of the NT with Eq.(5), or the growing string ansatz [58,
59]. The tangent of Eq.(5) also is employed for the cor-
rector direction, back to the correct NT, with a Newton-
Raphsen-like method [59].

Note, the amount of the tilting force, F , does not ap-
pear in Eq.(5). Thus the NT of the original PES for F = 0
does not change if we jump to a special effective surface,
VF , for a fixed l-direction and an F > 0.

4.2 Application of NTs to the FK model

We search for a minimum on the PES of the FK chain
with the three steps:

(1) Build a natural chain with spacing ao: Set, for ex-
ample, x1=0 for the initial particle, thus it is in the first
well of the sinusoidal potential, and set xi = (i− 1) ao for
i = 2, .., N .

(2) Use the natural chain in the PES of Eq.(1): it gives
V (x), and calculate the gradient g(x).

(3) Form the normalized direction l along the negative
gradient: it is the search direction of an NT which goes
through the surface point V (x). Follow the NT downhill
to the next stationary state which usually is a minimum.

(4) By turning the search direction starting at a mini-
mum, we find SPs in the same way because NTs equiva-
lently work downhill or uphill. This property is connected
with the index theorem [57] which determines that regu-
lar NTs connect stationary points of an index difference
of one.

4.3 Barrier breakdown points - BBPs

If one goes along the corresponding FDSPs curve with a
given direction l, then the magnitude of the gradient, equal
to F , is zero at a stationary point of V(x), and ends with
zero at the final next stationary point. In between there
has to be a maximum of |g|. Here holds the condition [55,
60,61].

Det(H(x)) = 0 (6)

with the Hessian, H(x), of the original PES, V (x). This
is the point where the effective VF (x) along the FDSPs
path has a shoulder [55,60,61]. The barrier of VF (x) de-
creases from the original PES barrier to zero. The point
on the FDSPs curve is named the barrier breakdown point
(BBP). Then the critical force, Fc, named the static fric-
tional force [8], is so high that it causes the final depinning
of the chain.

If we compare all NTs of a set which connect the same
minimum and SP, then the NT which gives the lowest
value of Fc is the optimal NT, and the point is named the
optimal BBP [55,61]. The optimal BBP defines the lowest

maximal magnitude of the force. It satisfies the equation
[55,61]

H(x)g(x) = 0 where g(x) 6= 0 . (7)

At the optimal BBP the gradient is an eigenvector of the
Hessian matrix to eigenvalue zero. The point belongs to a
gradient extremal (GE) [62–68]. At the optimal BBP, the
Det(H) = 0-manifold, the GE and the optimal regular NT
meet. An algorithm to locate optimal BBPs has recently
been proposed [31]. The expression of the optimal BBP,
Eq.(7), has a special form for the FK-model because of
the tridiagonal shape of the Hessian, see Ref. [14].
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Fig. 1. 2D PES model around a ridge-shoulder (upper black
bullet). A family of NTs is drawn starting at the SP to different
directions. Only one NT crosses the shoulder, which behaves
like an ordinary point of the PES. The green lines are BBPs
of NTs.

4.4 Degenerated stationary points

On the PES of the FK model for N=23 particles many
degenerated stationary points emerge. They are defined
by the condition

|g(x)|+ |detH(x)| = 0 . (8)

For NTs such points are quasi ’regular’ points where the
index theorem [57] does not apply. We demonstrate it by
a simple 2D example in Fig. 1. (There are equidistant con-
tours drawn by Mathematica, version 11.2, like all other
figures of this paper). We study the behavior of NTs near
a shoulder on a ridge where condition (8) is fulfilled.

The index theorem does not say what happens, be-
cause the shoulder is a stationary point of a ’half’ index:
the gradient is the zero vector, but also an eigenvalue of
the Hessian is zero. The shoulder point behaves like an
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Fig. 3. Schematic picture of the structures of the ’left’ asymmetric global minimum of the 23-particles chain, and its mirror
image, the ’right’ asymmetric minimum. The energy is 19.8242. Note that the particles are artificially set to the value of the
(1-cos)-function. The real chain is linearly ordered on its axis. Only the distances between the xi are changed by the on-site
potential.
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Fig. 2. Energy profile of the equidistant 23 particles (the nat-
ural chain) moved over the on-site potential as a fixed chain by
a total distance of 2π. The horizontal axis depicts the location
of x1. The curve is a hint that for ’useful’ connected struc-
tures, from one stationary point to the next at 2π distance,
the energy should not exceed this 24 units mark.

ordinary point of the PES: exactly one NT crosses it. If
the shoulder changes to an intermediate minimum, where
the zero eigenvalue changes to a positive eigenvalue, then
all NTs will cross it, like the SP.

5 Example of the FK Chain with 23 particles

Experiments with a chain of few tens of ions are done [24,
69]. The chain we will be looking at is the case N=23,
with the parameters as=2π, a0=4π/3, v=k=1 (thus the
misfit parameter is 2/3).

For Fig. 2 we move the rigid natural chain with fixed
equal distances, a0, between all atoms, by 2π over the on-
site potential and draw the energy profile. Because the
on-site potential is fixed, we get different energies for the
chain. We do not use an NT for the movement of the
fixed chain, but the direction of the movement itself is the
standard one, (1,...,1)T . The minimum emerges at 22, the
maximum at 24. The energy difference of the profile of
Fig. 2 exhausts with 2 units the value of the (1 − cos(x))
function of the FK model [18]. Note that for the natural

chain the part of the spring energy is zero. At the mean
energy, 23, the 23 cosine terms of V (x) also add to zero; it

only remains V =
∑23

1 1=23. The minimum of the curve
at x1 = π/3 is a hint for a search of a better real mini-
mum of the structure, in another position, and of course,
with another ã0, in comparison to the natural chain, see
the next subsection. Any useful SP of the structure should
not overcome the 24 units obtained here because this nat-
ural structure would be such an SP, in a first approxima-
tion. However, the movement of the chain for Fig. 2 is an
abstract one.

5.1 Global minimums

We have reported [14] two low minimums, as well as a
low lying SP of index one in between. The minimums
are asymmetric, but the SP is symmetric. The two mir-
ror image minimums are shown in Fig. 3. Their energies
are V (min)=19.8242. The SP has an energy of 19.9644.
For the minimum is ã0=4.12, quite near to the natural
a0=4.19. The data of the minimum structures are given
in the SM, Sect.1.1. and 1.2. The 23 particles of the chain
are distributed to 16 wells of the sinusoidal potential. The
occupation numbers 1 and 2 alternate here.

If we imagine a movement of the chain from the ’left’
minimum to the ’right’ minimum, one has to move in a
first step up to the SP the atoms x15, x18, x21 into a
new well but the x12 to the top between two wells. On
the other side downhill to the ’right’ minimum, the x12 is
moved into its new well, and the atoms x3, x6, x9 move
into a new well. Note the triple numbering of the moving
atoms, and note that the SP has only its central atom x12
at a top of the on-site potential. So it appears like a stable
structure.

At the outer sides of the two minimum wells we tried
to continue an NT to the standard direction (1,...,1)T . It is
possible to calculate a continuation, but the NT does not
meet a stationary point up to an energy of over 22. After
passing some higher turning points (TPs), the NT later
finds the ’global’ SP at an energy 21.2106, see below. This
means that useful NTs of the chain, along a lower energy,
go on by other, sectional directions. Below we add some
results.
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Fig. 4. An SP of index 2 of the 23-particle chain depicted by
SP2 in the simplified Fig. 5. The energy is 22.099. It is sym-
metric.

5.2 Global low energy pathways

In an NT calculation we found an SP of index 2 at an en-
ergy 22.099, see Figs. 4 and 5 and data in the SM, Sect. 2.1.
It is a central point for a system of low energy valleys of
the FK model (1) with N=23 particles and the given pa-
rameters. The reason is that it is connected by a steepest
descent with a minimum of a chain in normal position (x1
is in the zero well of the site potential like in Fig. 3), and
with a complementary minimum on the other side of the
PES mountains moved by as = 2π over the sinusoidal po-
tential. This is the aim: we search for a recurrence of the
initial state of the chain moved over the site-up potential.
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Fig. 5. A region of the PES is approximated around the global
SP2 at (0,0). The axes are the two negative eigenvectors of the
full Hessian at the SP2. They are symmetric or asymmetric
directions. The thick curve is a singular NT to direction ’sym’.
The 4 red points are VRI points. The green bullets are BBPs of
the singular NT, and the net of green lines indicates Det(H)=0.
The description of the SPs of index 1 goes with ’l’ for left, ’r’
for right, ’b’ for bottom, and ’t’ for top, in this Figure. gMin
depicts the two (global) minimums of the (full) PES. In this
2D simplification of the PES the iMin1 is still deeper.

The SP2 has two equal negative eigenvalues of -0.3813.
To give an image of the region around this top we draw
a 2D sectional picture of the PES of the FK model (1)
for N=23. We used the two negative eigenvectors of the
SP2 for the plane of the picture, the data are in the SM,
Sect.2.1. The points of the plane are obtained by the linear
ansatz x(s, a) = SP2 + sEV1 + aEV2 and are included in
the energy function, V (x). The result is Fig. 5. It is a rep-
resentation of the simplified energy function VSP2(x(s, a))
by level lines. Note that it is a 2D section. The point (0,0)
is exactly the SP2, however, stationary points lying dis-
placed may not be correctly represented.

Since 30 years, SPs of index 2 are discussed in theo-
retical chemistry [70–77]. Here emerges a possible
Characterization of an SP2:

– From a usual SP of index 1 one can expect to go down
by the SD into two different minimum valleys using
for the first step the eigenvector to the negative eigen-
value.

– From an SP of index two one can hope that it is pos-
sible to go down by the SD into up to four different
minimums using for the first step the two eigenvec-
tors to negative eigenvalues. (But many other cases
are possible; one is studied in Refs. [78,79]).

We have four SPs of index one on a circle around the
SP2. On the full 23-dimensional PES of the chain we local-
ized the corresponding stationary points. The left two are
on the level 21.1699, the right two at the slightly higher
energy 21.2106 (in contrast to the relation in Fig. 5). The
data are in the SM in Sect. 2.2. An equipotential line con-
nects the two left SPl

1, as well as another equipotential
line connects the two right SPr

1. The corresponding pieces
are part of an NT to direction ’sym’, here in this simplified
2D picture. It means that all gradients of the 2D sectional
PES on this curve point into ’sym’-direction. Note that
the NT can pass a point where its tangent is orthogonal
to the gradient: at the symmetric valley-ridge inflection
(VRI) points.

From ’gMin’ at the bottom of Fig.5 to ’2π+gMin’ at
the top, we find two valleys through the PES, one may be
the minimum energy path (MEP) over the two lower SPs
of index one, but the other is a low energy path (LEP)
quite parallel to the former. Which valley we choose for a
movement of the chain by a tilting force depends on the
direction of the describing NT of the corresponding valley,
see the description below.

The singular NT divides the two different valleys. It
has a branch which forms the line asym=0 in Fig. 5. The
two red points on the line are the bifurcation points of
the NT which are VRI points of the surface between the
two intermediate minimums, iMin, and the SP2. Thus the
NT is a singular NT [51]. (Two other asymmetric VRI
points are also included in the Figure, near the sym=0
line at the green crosses. The corresponding singular NTs
through the asymmetric VRI points are given in Figs. 6
and 7.) The symmetric VRI points on the line asym=0
are also BBPs because they are intersected by two green
lines. But we cannot classify these BBPs to be ’optimal’
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Fig. 6. The singular NT through the ’lower’ asymmetric VRI
point in the 2D simplified PES of Fig.5.
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Fig. 7. The singular NT through the ’upper’ asymmetric VRI
point in the 2D simplified PES of Fig.5.

because the NT is singular. Other NTs for a comparison
do not connect the two SPl

1, or the two SPr
1, because of

the index theorem [57]. On the line asym=0, of course, it
holds at the BBPs that |g| is a maximum. Such a maxi-
mum fits well the NT theory at VRIs [55].

Figure 8 represents a regular NT through the two ’right’
SP1. The structure of the SPlb

1 is shown in Fig. 9, where
the structure of the SPrb

1 is shown in Fig. 10. The SPs at
the top of the corresponding Fig. 5 are mirror structures
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Fig. 8. The regular NT to direction ’asym’ connects the two
global minimums over the two ’right’ SP1 and the ’right’ inter-
mediate minimum, on the simplified 2D plane. Thus it could
be one of the NTs of interest for a global low energy path of
the chain.
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Fig. 9. The SPlb
1 of the 23-particle chain, compare Fig. 5. The

energy is 21.1699. It is asymmetric. Its mirror structure is SPlt
1 .

0 20 40 60 80 100
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Fig. 10. The SPrb
1 of the 23-particle chain, compare Fig. 5.

The energy is 21.2106. It is asymmetric. Its mirror structure is
SPrt

1 .

of the SPs below. The data are in the SM, Sect.2.2. The
NT of Fig. 8 may be one of the interesting NTs which
describes a low energy path of the chain over a distance
of 2π, the periodicity of the site potential. Below we will
examine its use in the full 23D coordinate space.

Note that NTs are sometimes good models for reaction
pathways over a PES. Here they serve for paths which de-
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scribe the FDSPs curve. They connect different stationary
points in an understandable and continuous way, and they
can be used for a tilting of the chain into the correspond-
ing direction.

Another method for the study of the PES is the steep-
est descent (SD) from the upper stationary points. Thus,
the global connection of the region around SP2 is easy
to explore by the SD for the full 23-chain. We can start
the SD curves at the SP2 in the direction of its negative
eigenvectors, or at the corresponding SP1 in a diagonal
direction. We have 4 valleys going downhill; two meet at
the bottom and two at the top of Fig. 5, which we always
use for the illustration but leaving out the other hidden
21 dimensions of the full chain. Two other valleys meet
at the intermediate iMin1, and two at the intermediate
iMin2. Thus SPlb

1 connects the global ’right’ minimum
with iMin2, SPlt

1 connects the global ’left’ minimum+2π
with iMin2, SPrb

1 connects the global ’right’ minimum with
iMin1, and SPrt

1 connects the global ’left’ minimum+2π
with iMin1. This means equivalently that the vertical di-
rection of the NT leads to the global ’right’ minimum be-
low, and to the global ’left’ minimum +2π at the top.
Thus, a vertical pathway like one of the corresponding
branches of the shown NT of Fig.8 will form a global low
energy path of the chain. The first peculiarity is that here
are two competing ways, one on the left hand side, and
one on the right hand side. The second peculiarity is that
there are two SPs of index one in a row. A LEP on the
tilted PES of the chain would have to pass both SPs on
one side, one after the other.

For the full 23-chain, location and energy change for
the numerical relations between the diverse stationary
points, however, the ’topological’ relations continue to stay
like in Fig. 5.

20 40 60 80
x

Fig. 11. ’Left’ intermediate minimum 2 of the chain. The en-
ergy is 20.6556. It is symmetric. It is a compressed structure.

The horizontal direction along the asym = 0 line leads
downhill from SP2 to two intermediate minimums. This is
also the result of a steepest descent in the ±-symmetric
direction from the SP2. The structure of the minimums
is shown in Figs. 11 and 12; and the data are in the SM,
in Sect. 3. The intermediate minimum, iMin2, is symmet-
ric. It is a compressed structure, ã0=3.98. The ends of
its structure are pushed into the center by ≈ 2π. The in-
termediate minimum, iMin1, is also symmetric, but it is
a stretched structure, ã0=4.48 (remember a0=4.19). An

0 20 40 60 80 100
x

Fig. 12. ’Right’ intermediate minimum 1 of the chain. The
energy is 20.437 units, and it is also located on the symmetry
hyperplane of the PES. It is a stretched structure.

imagination of a vibration between the two intermediates
”flowing“ around the SP2, more or less in the symmet-
ric hyperspace of the chain, would be a ’breathing’ of
the chain, but not a translation of the chain by 2π. On
the other hand, the intermediate minimums are connected
over the SPs of index 1 to the corresponding global mini-
mums. Thus one can imagine an LEP on the PES of the
chain from a global minimum over one of the SP1 to the
corresponding intermediate, and then it finds the exit over
the mirror SP to the next global minimum: it could be the
scenario of a global movement of the chain by as = 2π.

SP1
lb

SP1
lt

SP1
rb

SP1
rt

SP2

gMin

2π + gMin

iMin2 iMin1

-3 -2 -1 0 1 2 3 4

-3

-2

-1

0

1

2

3

sym

a
s
y
m

Fig. 13. Tilting the PES to the left hand side by a force into
’sym’ direction. All stationary points move on the NT.

The question emerges: is the knowledge of the circle
of SPs of index 1 around the SP2 usable for a moving di-
rection of the chain? Mathematically it is a singular NT
through a VRI point at an end of the bowl of one of the
intermediate minimums. Below we will examine its use in
the full 23D coordinate space. First we treat the simplified
2D-case of Fig. 5 for a demonstration of what should hap-
pen. We have to take into account that the NT in Fig. 5
which connects all the interesting points is a singular NT.
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SP1
lb

SP1
lt

SP1
rb

SP1
rt

gMin

2π + gMin

iMin2 iMin1SP2
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3
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Fig. 14. Tilting the PES to the right hand side by a force into
minus ’sym’ direction.

SP1
lb

SP1
lt

SP1
rb

SP1
rt

gMin

2π +gMin

iMin2 iMin1
SP2

-3 -2 -1 0 1 2 3 4
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-2

-1

0

1

2

3

sym
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s
y
m

Fig. 15. Tilting the PES to the top of the region by a force into
’asym’ direction with F=0.275. The light brown curves are two
singular NTs through the asymmetric VRIs (see Figs. 6 and 7)
which are the borders of the channel for a useful regular NT
[56].

Now we tilt the chain along the direction of the singular
NT, by an external force ±F EV T

sym · x.

It reduces to an effective surface

V (s, a)eff = VSP2(x(s, a))± F s . (9)

On the line asym = 0 the tilting moves together, or moves
apart, the symmetric stationary points: the SP2 and al-
ternatively the two symmetric intermediate minimums.

For a moderate F > 0, say 0.2, it moves together the
SP2 and the right symmetric minimum. This means that
the iMin1 is increased in energy, see Fig. 13. Under this
action, the two right SPr

1 also move up in energy, so that
the two left SPl

1 become much lower, and the MEP clearly
goes over the left iMin2. But the level lines between the
left, as well as the right SP1 survive because the SPs move
together on the singular NT which also survives.

For a moderate F < 0 the tilting moves together the
SP2 and the left symmetric minimum, vice versa to the
former case, see Fig. 14. At least, for a critical Fc, the 2D-
summit of SP2 and the corresponding former intermediate
minimum coalesce, as well as the two SP1, and only one
path along the level line along the singular NT remains.
A corresponding strong tilting makes the corresponding
symmetric, former intermediate minimum to the global
minimum, at least on the simple 2D section of Fig. 5.

On the other hand, a tilting along the asymmetric
eigenvector, in vertical direction in Fig. 5, leads at least
to a dramatic disappearance of one global and the left in-
termediate minimum, and of the SP2, and of three SP1,
compare Fig. 15. For F=0.275 the global minimum at the
bottom (with x1 near 0 on the axis) and the right in-
termediate minimum 1 survive. For F=-0.275 the global
minimum at the top (with x1 near 2π on the axis) and
again the right intermediate minimum 1 survive.

gMin 2π +gMin

iMin1

SP1
rb SP1

rt

50 100 150 200 250 300
Node

20.0
20.2
20.4
20.6
20.8
21.0
21.2

V

Fig. 16. Energy profile over a quasi ’minimal’ pathway on the
PES crossing the two SPr

1 at 21.2106. Shown is a combination
of 4 NTs. The two left NTs are calculated to the SP-eigenvector
at the bottom-SPrb

1 , where the two right NTs are calculated to
the SP-eigenvector at the top-SPrt

1 which is the mirror vector
to the former direction. Start is in all cases the corresponding
SP, and the four pieces are combined. At the iMin1 two NTs
cross which belong to different directions. All stationary points
are depicted by black bullets.

Now we leave the tool of the 2D approximation of
Fig. 5, even though we already had associated correspond-
ing patterns of the approximation with real structures of
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the chain. For the 23-chain, we first show a connection be-
tween the two right SPr

1 by two different NTs in Fig. 16.
The search directions are the two SP directions. The com-
bined curve opens a connection between the two global
minimums, one at the initial location, but the second at
a 2π moved structure. An external stimulation in the cor-
responding directions would need an AC-like force for a
first step to move the chain into the iMin1, and a second
step to move it to the ’upper’ global minimum. However,
it seems quite complicated to generate such forces because
not only the ± changes are needed but also a change of
the direction to its mirror direction in the 23D space.

In Fig. 17 is shown the same calculation for the SPs of
index one on the left hand side of the SP2.

gMin 2π +gMin

iMin2

SP1
lb SP1

lt

100 200 300 400
Node

20.0
20.2
20.4
20.6
20.8
21.0
21.2

V

Fig. 17. Energy profile over an MEP on the PES crossing the
two SPl

1 at 21.1699. The two left NTs are calculated to the SP-
eigenvector at the bottom-SPlb

1 , where the two right NTs are
calculated to the SP-eigenvector at the top-SPlt

1 . Start is in all
cases the corresponding SP, and the four pieces are combined.
At the iMin2 two NTs again cross which belong to different
directions. All stationary points are depicted by black bullets;
further small peaks of the inner NTs are turning points (TPs).

5.3 Symmetric VRI points between iMin1 and SP2

To guess the search direction for singular NTs is possible
[32,33]. In full 23 dimensions, we first test the NT to the
’sym’ direction of the SP2: does it fulfill the task as it
does in the simplified 2D case to be a singular NT? The
proof is doing an NT calculation to the negative symmet-
ric eigenvector direction of the SP2. The (more or less)
positive result is given in Fig. 18. It is an automatic de-
tection of a VRI point to the sym-direction of the SP2.
This takes place by the NT to the given direction starting
at the SPrb

1 . The energy profile over the NT crosses the
symmetry subspace of the chain at the corresponding VRI
point at 21.46, see Fig. 18. However note that the level of
this VRI point is quite higher than the level of the SPr

1. So
one can guess that the sym-direction of the SP2 is not an
optimal direction for an external stimulation of the chain.

VRI

SP1
rb

SP1
rt

0 20 40 60 80 100
Node

21.25

21.30

21.35

21.40

21.45

V

Fig. 18. Energy profile over an NT to the symmetric EV-
direction of the SP2. Start is the SPrb

1 where the NT follows
the direction up to the VRI point at 21.46. The NT follows the
mirror branch after the VRI to the SPrt

1 .

The search of further symmetric VRIs is done by the
variational program of Schmidt and Quapp [32,33]. The
aim is to find a ’better’ singular NT which connects the
two right central SPr

1 over this VRI point. The NT will
be a tool to push and pull the FK chain globally over the
PES by 2π. Three further VRIs are detected by test calcu-
lations. We assume that between them a manifold of VRI
points exists [57,80–83].
Remark: The chemical community ignores the fact, up
to date, that usually not only a single VRI point exists,
but the VRIs are connected in a larger VRI-manifold. It is
like in the case of conical intersections. Here we have the
same problem of the ’unimaginability’ of higher dimen-
sional connected points of such a character, see Refs. [84,
85] and further references therein.

The data of the VRI points are given in the SM, Sub-
sect. 3.3. The VRI1 is at energy 20.6710 with |Ag|=1.459E-
002. (A is the adjoint matrix to the Hessian, H. |Ag| = 0
is the VRI criterion.) The NT to the corresponding direc-
tion of the gradient here, by the growing string method
[58,59,78] is shown in Fig. 19 together with other NTs.
The curve in the symmetric subspace of iMin1 and SP2

is well calculated with convergent corrector steps. We use
here the growing string method to really enforce the NT
to finish at the SP2. It thus has to cross the VRI point
on its way; but it does not break out to a side branch of
the singular NT to one of the two SPr

1. (In the next Sub-
section we use the other kind of calculations following the
tangent of the NTs.)

The VRI2 is at energy 20.92 with |Ag|=3.843E-003.
The next corresponding NT is shown again in Fig. 19. The
VRI3 is at energy 21.0913 with |Ag|= 1.507E-003. The
level of this VRI point is nearest to the corresponding
SPr

1-level. The structure of the VRI3 point is shown in
Fig. 20. The NT is shown in Fig. 19. The NTs to the 3
lower VRIs all show a turning point. Nevertheless, they
are fully in the symmetric subspace of the 23-chain. Note
additionally that the curves are depicted over their nodes
of the NT calculation. The distances in the coordinate
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space, from node to node, may be not equidistant because
of the predictor-corrector scheme of the calculation.

SP2

iMin1

1

2
3

SP2

50 100 150 200
Node

20.5

21.0

21.5

22.0

V

Fig. 19. Comparison of the energy profiles over NTs in the
symmetric subspace to the directions of the 3 calculated VRIs
(to numbers 1-3) between iMin1 and SP2, and the NT to the
direction of the lowest symmetric EV of the SP2. For the other
branches of one of the NTs, compare Fig. 18. The VRI points
are represented by red bullets.

0 20 40 60 80 100
x

Fig. 20. The structure of the symmetric VRI3 point.

5.4 Branches of the singular NT between the two SPr
1

and the iMin1

The found 3 VRI points deliver the directions for 3 sin-
gular NTs which connect the two SPr

1, and which also
have a branch to the intermediate iMin1. They are calcu-
lated with an NT following program using the tangent of
the NTs with Eq.(5) for a predictor step. The results are
shown in Figs. 21 to 23. Now the calculation of the corre-
sponding NTs can jump to a side branch of the singular
NT at the VRI point, in Fig. 21 and in Fig. 23 as well.
Interestingly, in Fig. 22 the NT follows the tangent and
jumps over the VRI point to the other side branch.

5.5 Singular NTs between the two SPl
1 and the iMin2

We will again get an automatic detection of the VRI to the
sym-direction of the SP2 starting now at the left SPlb

1 . The
energy profile over the NT crosses the symmetry subspace

VRI

iMin1
2π +gMin

SP1
rt

TPTP

50 100 150
Node

20.0

20.5

21.0

21.5

V

Fig. 21. Energy profile over an NT to direction of the sym-
metric VRI3 point. Start is the iMin1 where the NT follows the
direction to SP2 uphill up to the VRI point at 21.091. There
it jumps to one of the crosswise branches from the VRI point
to the SPrt

1 of index 1. The NT crosses the SP and goes fur-
ther downhill to the global minimum moved by 2π. Further
seemingly peaks are TPs.

VRI
SP1

rb
SP1

rt

20 40 60 80 100120140
Node

20.8

20.9

21.0

21.1

21.2

21.3

V

Fig. 22. Energy profile over an NT to direction of the sym-
metric VRI3 point. Start is the SPrb

1 where the NT follows
the direction to the VRI point at 21.091. It follows the mirror
branch after the VRI to the SPrt

1 . The branch between the VRI
point and the SPrt

1 is also a part of Fig. 21.

of the chain at the corresponding VRI point at 21.687,
see Fig.24. Note that the level of this VRI point is quite
higher than the level of the SPl

1. So one can guess that the
sym-direction of the SP2 again is not an optimal direction
for a stimulation.

6 Calculations on the tilted PES

6.1 Symmetric force AC driving to new stationary
states

We apply Eq.(2) with the direction vector being the gradi-
ent at a selected VRI point of the symmetric subspace of
the chain, (g1, ..., gN )T . The vector is also symmetric. For
Fig. 25 we use the gradient vector of the VRI3 as an exam-
ple. To make the profiles for different amounts, F , compa-
rable, we represent relative energies. The global minimum
(moved by 2π) at the end of the NTs (on the right hand
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VRI

iMin1
2π +gMin

SP1
rt

TPTP

50 100 150
Node

20.0

20.5

21.0

21.5

V

Fig. 23. Similar energy profile over an NT to direction of the
symmetric VRI2 point, like in Fig.21. Start is again the iMin1
where the NT follows the direction to SP2 uphill up to the VRI
point at 20.92.

VRI

SP1
lb

SP1
lt

50 150 250 350
Node

21.1

21.3

21.5

21.7

V

Fig. 24. Energy profile over an NT to symmetric EV direction
of the SP2. Start is the SPlb

1 where the NT follows the direction
to the VRI point at 21.57. It follows the mirror branch after
the VRI to the SPlt

1 .

side) is always put to zero. Near the factor F=-0.15 the
iMin1 and the former global minimum change the or-
der: the intermediate minimum becomes the global one.
A similar scheme of NTs exists for the other side of the
iMin1 valley, for the connection from the global minimum
(beginning with x1 in the zero-bowl of the site-potential)
over SPrb

1 to the iMin1. On the other side of the SP2, the
iMin2 is increased in energy, for the used tilting, compare
Fig. 14.

With usual thermodynamics, one can assume that un-
der such a force the chain jumps from a global minimum
to the iMin1, if the system temperature is higher than the
remaining SP. If the force is stopped, the chain can relax,
and by the symmetry, it will jump back with a probabil-
ity 1/2 to the global minimum, or to the global minimum
moved by 2π. Thus, with probability 1/2 we would get a
global movement of the chain for such an AC driven sys-
tem. Interestingly, the driving direction along a symmetric
VRI-gradient will be orthogonal to the global moving di-
rection of such a process.

2π +gMinVRI

iMin1

SP1
rt

50 100 150 200 250
Node

-0.5

0.5

1.0

1.5

ΔV

Fig. 25. Tilting of the chain. Relative energy profiles over
NTs to the symmetric gradient direction of the VRI3. One can
imagine the profiles as MEPs on the effective PESs (where the
peak at the VRI point can be omitted). Start is the iMin1
on the left hand side. The NT follows the valley to the VRI
point, then turns to the SPrt

1 and goes downhill to the global
minimum moved by 2π. All curves are fixed at zero at the
former global minimum, for better comparison. From top to
bottom we used the factors F=0, -0.15, -0.2, and -0.35. The
red curve for F=0 corresponds to the not tilted NT in Figs. 21
and 22.

6.2 Asymmetric force DC driving to new stationary
states

We use the first asymmetric eigenvector to the negative
eigenvalue of the central SP2. The energy profile of a con-
tinuous NT starting at the global minimum to this direc-
tion is shown in Fig. 26.

2π +gMingMin

iMin1

SP1
rb SP1

rt

200 400 600 800
Node

20.0

20.5

21.0

21.5

V

Fig. 26. Energy profile over the NT to the asymmetric nega-
tive eigenvector at the SP2. Start is the global minimum on the
left hand side. The NT follows the valley uphill to the SPrb

1 ,
then turns to the intermediate minimum, iMin1, goes further
uphill to SPrt

1 , and after crossing it, the NT goes downhill
to the global minimum moved by 2π. All stationary points
are marked by a black bullet; further small peaks are turning
points of the NT at the slope of the PES.

We again apply Eq.(2) with the direction vector be-
ing the negative asymmetric eigenvector of SP2. We use
F=0, -0.05, and -0.1 in Fig. 27. To make the profiles for
the different amounts of F comparable, we show relative
energies. The global minimum (moved by 2π) at the end



12 W. Quapp, J. M. Bofill: A Model for a Driven Frenkel-Kontorova Chain

of the NTs (on the right hand side) is always put to zero.
With usual thermodynamics, one can assume that under
such a force the chain crosses from the global minimum to
the iMin1, if the system temperature is higher than the re-
maining SP. The way to the other global minimum moved
by 2π is still easier then. The blue curve may describe the
stationary points of such a DC driven system.

2π +gMin

gMin

iMin1

SP1
rb

SP1
rt

200 400 600 800
Node

0.5

1.0

1.5

2.0

2.5

3.0

ΔV

Fig. 27. Tilting of the chain. Relative energy profiles over
NTs to the asymmetric negative eigenvector of SP2. Start is
the global minimum on the left hand side. The NT connects
the SPrb

1 , the iMin1, the SPrt
1 and the global minimum moved

by 2π. All curves are fixed at zero at the former final global
minimum, for better comparison. From top to down we used
the factors F=0.1, 0.05, and 0.0. The red curve for F=0 cor-
responds to Fig. 26. Compare the result with the schematic
representation in Fig. 15 as well.

At the end of this subsection we remark that finding
such an asymmetric driving direction, in a general high-
dimensional PES, may be difficult. One has to detect the
narrow pass, here for one dimension of the 23 dimensions
of the chain, which meets the region of the central SP2. A
3D schematic picture of the former Fig. 5 may illustrate
this, see Fig. 28.

6.3 Push and pull force DC driving to new stationary
states

The asymmetric direction for a driving force in Subsection
6.2 may be quite complicated to realize for an experiment.
But a main property of the direction is that the main com-
ponents of the force are concentrated at the periphery.
This is why we tried a simpler direction, (1,0,...,0,1)T , like
it was used also in the case N=5 in Ref. [14]. The NT to
the direction is successful for a connection of the global
minimum over the SPlb

1 to iMin2 and over the SPlt
1 down

to the 2π moved global minimum. Note: it is the other
way around the SP2, over the iMin2, in contrast to the di-
rection of subsection 6.2. The profile over the NT is shown
in Fig. 29

The used push and pull force is overwhelmingly simple.
A scheme of the tilting for the on-site potential is shown
in Fig. 30. It pushes the first particle of the chain along its

Fig. 28. 3D version of the 2D-schematic PES section of the
23-chain. The hill at the center is the central SP2. One has to
find the region around this SP2 for a MEP of the chain through
the mountains.

axis, and pulls the last particle into the same direction. All
other particles are then moved by the springs between the
particles. If one tilts the chain’s site-potential with this
force, one gets a change of the stationary points along the
NT; and at the end, for a large enough force, a sliding of
the chain will be enforced, see Fig. 31. That will be caused
by a thermally activated transition between neighboring
potential wells.

By the way, the two next still simpler directions, only
push, or only pull [29] along the vectors (1,0,...,0)T or
(0,0,...,0,1)T are not successful directions for an overall
MEP of the chain. In the first case, the corresponding
NT finds a way to the SPlb

1 and the intermediate mini-
mum iMin2, however, then it goes wrong anywhere into
the mountains of the PES. It does not cross the SPlt

1 and
it also does not find to the 2π moved minimum. In the sec-
ond case, the corresponding NT finds a way to the other
valley of the SPrb

1 and the intermediate minimum iMin1,
however, then it also goes wrong anywhere into the moun-
tains. It does not cross the SPrt

1 and it also does not find
to the 2π moved minimum. Both NTs also do not cross
the SP2 in the center of interest here. The two directions
do not belong to the small channel for successful ways,
compare the brown curves in Fig. 15.
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Fig. 29. Energy profile over the NT to the asymmetric direc-
tion (1,0,...,0,1)T , compare Fig. 17. Start is the global minimum
on the left hand side. The NT follows the valley uphill to the
SPlb

1 , then turns to the intermediate minimum, iMin2, goes fur-
ther uphill to SPlt

1 , and after crossing it, the NT goes downhill
to the global minimum moved by 2π. All stationary points are
marked by a black bullet.

20 40 60 80 100
x
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1.0
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2.0

SidePot

Fig. 30. Tilting of the chain at one of the global mini-
mums, compare Fig. 3, right panel. The push and pull force,
f= 0.15 (1,0,...,0,1)T , is used. The tilting force concerns the
atoms x1 and x23. The atoms x2 to x22 can then move by the
spring forces in between.

7 Conclusion

Recently, experiments are done with laser-cooled and trap-
ped ions for insights into friction processes [23,24,49,86–
88]. The systems try to emulate the FK model (1) for a
small number N , where the chain of the interesting par-
ticles slides under an external force over the fixed rigid
sinusoidal potential. The FK model (1) is not realistic in
every detail. But it is sufficiently complex for tests of basic
concepts [89]. Thus any theoretical work to better under-
stand such experiments is useful.

The PES (1) is given by an easy formula of the FK
model. We can execute all calculations of NTs which deter-
mine the properties of the model. For comparison and con-
firmation we controlled the results of NT calculations by
usual minimization procedures of the Mathematica pro-
gram system because the PES of the FK model (1) is a
usual surface where the known minimization procedures
work. NTs are especially appropriate to the driven FK
model by a tilting force. Of course, one can possibly find
the existence of a low energy path through the PES with-
out the theory of NTs. One has simply to do an opti-

2π +gMin
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iMin2

SP1
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SP1
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Node

0.5

1.0

1.5

2.0

2.5

3.0

ΔV

Fig. 31. Tilting of the chain. Relative energy profiles over NTs
to direction (1,0,...,0,1)T . Start is the global minimum on the
left hand side. The NT connects the SPlb

1 , the iMin2, the SPlt
1

and the global minimum moved by 2π. All curves are fixed at
zero at the former final global minimum, for better comparison.
From top to bottom we used the factors F=0.15, 0.1, 0.05, and
0.0. The red curve for F=0 corresponds to the profile in Fig. 29.

mization for the global and intermediate minimums, and
the SPs in between (if one is able to find these structures).
However, an NT which follows more or less the low energy
path gives the direction of the tilting which can move the
chain through this path.

An interesting aspect of the example with N=23 parti-
cles is that usually not single particles form an anti-kink,
a compression of a region of the chain. No, groups, like
sets of triplets are involved in one step from a lower state
to a higher one, and vice versa. Where two particles of the
triplet stay in their well but the third particle moves over
the top of the sinusoidal potential. Of course, this obser-
vation depends on the misfit parameter of 2/3 used here.

NTs allow us to drive them in very different directions
over the PES. The standard direction (1,...,1)T is phys-
ically well understandable. It would cause a washboard
potential. However, beginning with the case N=5 of the
FK model [14], the standard direction is not a successful
direction for a tilting with a low force. Our used directions
deviate from the standard one. The corresponding valleys
on the corrugated PES, which may also be very curvilin-
ear, are better to follow by NTs which are adapted to the
situation. So we work with a kind of tilting which con-
cerns only parts of the chain with different weights. A
possibly practicable case is the pure push and pull direc-
tion, (1,0,...,0,1)T , see Fig.30. The push and pull force at
the ends allows the different atoms to individually move
by their spring forces, but not collectively by an equal
force for all. If one atom surmounts its top of the site-up
potential then another can relax and can transmit its en-
ergy to the former one. Such better directions of a tilting
allow that individual valleys of the PES open, and so op-
timal forces can be gotten. Perhaps experimental workers
can construct an experiment where such optimal forces
are applied to the chain.
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This paper treats the ’static’ PES of the 23-dimensional
FK-chain. Additionally we look for a ’step by step-series’
of tilted ’static’ effective PESs under an assumed exter-
nal force. The amount of the force is even increased step
by step. The tilting changes the barriers of the original
PES. This is the information which we generate and dis-
cuss here. Which kind of dynamics the chain develops if
it is really tilted, this is not discussed here. To study it
would be a next step following the knowledge of the valley
through the PES. But of course, the picture of changing
barriers along a path for a movement may give already an
impression what can happen.

This paper discusses a special chain with N=23 atoms
for a special misfit parameter, 2/3. In a following paper
we discuss different series of chains to different misfit pa-
rameters with the aim to test the possible length of the
chain up to a ’critical’ value where the theory above be-
comes questionable. We guess that the here found low en-
ergy paths through the PES continue to exist up to very
high dimensions, in the kind ’global minimum → pre-SP
→ intermediate minimum → post-SP → global minimum
moved by as’. However, it will be more and more difficult
to find a corresponding search direction for a unique NT
which follows the path.
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40. S. Slijepčević, Chaos 25, 083108 (2015)
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1 Data of the discussed structures of the
23-particle chain

1.1 a) The ’left’ minimum is at energy 19.824175.

The structure is shown in the text.
Coordinates

0.3010 4.78629 8.2743 12.6753 17.1849
20.699 25.1744 29.6916 33.2206 37.7223
42.2472 45.7856 50.297 54.84 58.3925
62.908 67.4994 71.0919 75.6031 80.3176
84.0536 88.4852 93.4143

The 5 lowest eigenvalues are:
0.3565, 0.2293, 0.1675, 0.1132, 0.0000402.
The lowest eigenvector is

0.0309, 0.0600, 0.0987, 0.0851, 0.1543,
0.2454, 0.1913, 0.3163, 0.5759, 0.3015,
0.2499, 0.4041, 0.2325, 0.128, 0.1472,
0.0977, 0.0505, 0.0533, 0.0368, 0.0193,
0.0207, 0.0131, 0.0067

1.1 b) The ’right’ minimum is

Coordinates

0.8314, 5.7595, 10.188, 13.9256, 18.6413,
23.1508, 26.744, 31.3368, 35.8509, 39.4036,
43.9479, 48.4581, 51.9966, 56.5227, 61.0232,
64.5523, 69.0706, 73.5450, 77.0593, 81.5701,
85.9700, 89.4589, 93.9452

Its structure is shown in the text.

2 Global region around the central high SP of
index 2

2.1 The SP2

There is the central region around an SP2 at an energy
22.099. The structure is shown in the text.
Coordinates

3.3442 7.33177 12.186 16.6691 20.3323
24.9916 29.5103 33.0845 37.654 42.1783
45.7296 50.2655 54.8013 58.3527 62.877
67.4464 71.0207 75.5393 80.1987 83.8619
88.3449 93.1992 97.1868

The 6 lowest eigenvalues are:
0.3768, 0.2581, 0.1717, 0.1247, -0.3813, -0.3813.

Two negative degenerated eigenvectors are

0.6445 0.2589 0.1012 0.0759 0.0361
0.0133 0.0087 0.0045 0.0017 0.0011
0.0007 0.0004 0.0007 0.0011 0.0017
0.0045 0.0087 0.0133 0.0361 0.0759
0.1012 0.2589 0.6445
1.ev antisymmetric

-0.6445 -0.2589 -0.1012 -0.0759 -0.0361
-0.0133 -0.0087 -0.0045 -0.0016 -0.001
-0.0004 0.0 0.0004 0.001 0.0016
0.0045 0.0087 0.0133 0.0361 0.0759
0.1012 0.2589 0.6445
2. ev symmetric

We show a Figure with NTs connecting the central SP2

with other stationary points.

Min Min

SP2

SP1 SP1

50 100 150 200 250 300
Node

20.0

20.5

21.0

21.5

22.0

V

Fig. 1. Energy profile over a path formed by NTs from the
’left’ minimum of Fig. 3 of the text to the 2π displaced ’left’
minimum. The global barrier is 2.275 units. The green bullets
are the main BBPs. The SP2 is depicted in Fig. 4 in the text.
The SP1 are the ’left’ ones, SP lb

1 and SP lt
1 .
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2.2 The SP1 of the circle around the central SP2

SPrb
1 at 21.2106

0.86463 5.81427 10.312 14.0344 18.7515
23.3708 27.0083 31.5997 36.3738 40.1779
44.5974 49.5938 53.9679 57.8101 62.6049
67.1746 70.8119 75.4412 80.1136 83.7859
88.3192 93.1997 97.2137

EW:
0.26125, 0.1875, 0.12561, 0.02687, -0.38473

minus EV:
0.0 0.0 0.0 0.0 0.0
0.00001 0.00002 0.00002 0.00006 0.00015
0.00017 0.00039 0.00107 0.00126 0.00231
0.00651 0.01086 0.01802 0.05010 0.10162
0.14053 0.36529 0.91295

A force, f, in this direction would push mainly the right
part of the chain, with increasing components.

SPrt
1

3.31726 7.33126 12.2118 16.7451 20.4174
25.0898 29.7191 33.3564 37.9261 42.7209
46.5631 50.9372 55.9336 60.3531 64.1572
68.9313 73.5227 77.1602 81.7795 86.4966
90.219 94.7167 99.6663

EW:
0.26125, 0.1875, 0.12561, 0.02687, -0.38473

minus EV:
0.91295 0.36529 0.14053 0.10162 0.0501
0.01802 0.01086 0.00651 0.00231 0.00126
0.00107 0.00039 0.00017 0.00015 0.00006
0.00002 0.00002 0.00001 0.0 0.0
0.0 0.0 0.0

A force, f, in this direction would push mainly the left
part of the chain, with increasing components to the left
hand side.

SPlb
1 at 21.16990

3.90152 7.40144 11.8007 15.5069 19.4129
23.8527 27.3346 31.6239 36.1196 39.6154
44.0521 48.5584 52.0741 56.5616 61.062
64.5822 69.0863 73.5616 77.0721 81.5773
85.9785 89.4647 93.9484

EW:
0.30922, 0.20752, 0.13871, 0.08378, -0.20945

minus EV:
0.8263 0.40039 0.23342 0.28363 0.11532
0.06867 0.05609 0.02216 0.01456 0.00989
0.00394 0.00274 0.00174 0.0007 0.0005
0.00031 0.00012 0.00009 0.00005 0.00002
0.00002 0.0 0.0

SPlt
1

6.57531 11.0573 14.5433 18.9488 23.4539
26.9652 31.4425 35.9465 39.4671 43.9682
48.4553 51.971 56.4775 60.9130 64.4084
68.9039 73.1896 76.6719 81.1102 85.0077
88.7209 93.1195 96.6123

EW:
0.30922, 0.20752, 0.13871, 0.08378, -0.20945

minus EV:
0.0 0.0 0.00002 0.00002 0.00005
0.00001 0.00012 0.00031 0.0005 0.0007
0.00174 0.00274 0.00394 0.00989 0.01456
0.02216 0.05609 0.06867 0.11532 0.28363
0.23342 0.40039 0.8263

3 Intermediates

3.1 iMin1

The intermediate minimum is shown in the text. It is at
the level 20.437.
Coordinates

0.9172, 5.8999, 10.5087, 14.2336, 18.9539,
23.7785, 27.6263, 32.0778, 37.1438, 41.6827,
45.4756, 50.2655, 55.0554, 58.8483, 63.3871,
68.4532, 72.9047, 76.7525, 81.577, 86.2973,
90.0223, 94.6311, 99.6138

Lowest eigenvalues are 0.3151, 0.2505, 0.1697, 0.0721, 0.0366.

3.2 iMin2

The intermediate minimum is shown in the text. The en-
ergy is 20.6556.
Coordinates

6.472, 10.8485, 14.2358, 18.6182, 22.7713,
26.221, 30.5566, 34.1347, 38.1232, 42.5231,
45.9293, 50.2655, 54.6017, 58.0079, 62.4078,
66.3962, 69.9744, 74.3099, 77.7597, 81.9128,
86.2952, 89.6825, 94.059

Lowest eigenvalues are 0.3712, 0.2357, 0.1866, 0.0404, 0.0149.

3.3 VRIs in the iMin1 bowl

The VRI1 is at energy 20.6710 with |Ag|=1.459E-002

1.3712 6.1583 10.7924 14.6490 19.1809
23.9519 27.8818 32.2208 37.2137 41.7468
45.5090 50.2653 55.0214 58.7835 63.3170
68.3101 72.6493 76.5791 81.3501 85.8819
89.7386 94.3727 99.1596
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vridir (grad)

0.38186 0.02845 -0.20198 0.19658 0.08618
-0.08386 -0.02657 0.06689 -0.00682 -0.01621
0.00494 0.00002 -0.00506 0.01610 0.00684
-0.06695 0.02677 0.08376 -0.08617 -0.19669
0.20205 -0.02832 -0.38199

VRI2 at energy 20.9200 with |Ag|=3.843E-003.

1.6079 6.2715 10.8747 14.7628 19.2271
23.9350 27.8133 32.1958 37.1972 41.7251
45.4988 50.2652 55.0313 58.8048 63.3333
68.3348 72.7173 76.5957 81.3038 85.7682
89.6563 94.2595 98.9231

vridir (grad)

0.52379 0.04876 -0.27730 0.23422 0.12480
-0.10143 -0.05922 0.08427 -0.00770 -0.01931
0.00589 0.00004 -0.00602 0.01918 0.00773
-0.08427 0.05939 0.10124 -0.12474 -0.23413
0.27724 -0.04864 -0.52383

The VRI3 is at energy 21.0872 with |Ag|= 1.507E-003

1.7387 6.3281 10.8995 14.7944 19.2368
23.9082 27.7564 32.1745 37.1823 41.7048
45.4894 50.2652 55.0406 58.8248 63.3480
68.3561 72.7741 76.6223 81.2940 85.7365
89.6315 94.203 98.7925

vridir (grad)

0.58677 0.06379 -0.32116 0.24454 0.14988
-0.1184 -0.07490 0.09879 -0.00886 -0.02270
0.00672 0.00005 -0.00683 0.02249 0.00888
-0.0987 0.07509 0.11808 -0.14977 -0.2445
0.32114 -0.06366 -0.586716


