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Use of Pt and Boron-Doped Diamond Anodes in the
Electrochemical Advanced Oxidation of Ponceau SS Diazo
Dye in Acidic Sulfate Medium
Alexsandro Jhones dos Santos,[b] Carlos A. Martı́nez-Huitle,[b] Ignasi Sirés,[a] and Enric Brillas*[a]

The electrochemical degradation of 2.5 L of Ponceau SS diazo

dye solution in acidic sulfate medium has been studied in a pre-

pilot flow plant with a boron-doped diamond (BDD)/air-

diffusion or Pt/air-diffusion cell connected to an annular photo-

reactor. The decolorization and mineralization was enhanced in

the order: electrochemical oxidation with electrogenerated

H2O2<electro-Fenton<photoelectro-Fenton. The two former

methods performed better with the BDD anode, whereas the

latter yielded similar results for both anodes. From this, the use

of less expensive active anodes such as Ti jPt instead of non-

active BDD for photo-assisted Fenton-based electrochemical

processes is recommended. In all methods, increasing current

density led to a greater degradation rate, but with lower

mineralization current efficiency and higher energy consump-

tion. Five primary aromatic products and four final carboxylic

acids were detected, along with recalcitrant products poorly

removed by hydroxyl radicals and UVA radiation.

1. Introduction

Acid azo dyes are mainly utilized in textile industries for dyeing

of natural (silk, cotton, wool) and synthetic (rayon, acrylic,

polyester) fibers.[1–4] They can also be used in leather, plastics,

inks, and paints. These dyes are characterized by a high

solubility in water because the azo group is linked to aromatic

rings containing �SO3
� groups.[1,4] All around the world, a high

number of industries discharges large volumes of wastewater

containing up to 250 mg L�1 of dyes into the aquatic environ-

ment, causing a considerable impact in water bodies due to

their increase in color and limited light penetration.[5] Moreover,

acid azo dyes and their by-products present a large resistance

to biodegradation and can cause negative effects to living

beings, such as mutagenicity, carcinogenicity, and toxicity.[6–9]

This is the case of Ponceau SS or Acid Red 150 (characteristics

shown in Table 1), also employed as stain in biomedical

applications, including hematology and histology. It has been

documented that Ponceau SS is irritant to eyes and may alter

lung functions giving rise to pneumoconiosis. Despite all these

concerns, no previous work dealing with the removal of this

diazo dye from wastewater has been reported yet.

Several electrochemical technologies[3,4] have shown larger

ability for the remediation of water contaminated with azo dyes

than classical technologies such as filtration,[7] adsorption,[10] and coagulation.[10,11] Electrocoagulation is one of the most

typical electrochemical methods, in which a fraction of

pollutants and their oxidation products can be coagulated with

Fe(OH)n or Al(OH)3 flocs originated from oxidation of sacrificial

Fe or Al anodes, respectively. Nevertheless, this is mainly a

phase separation method since organics are transferred to the

sludge formed, which needs post-treatment.[3] More appropri-

ate technologies for azo dyes removal are the electrochemical

advanced oxidation processes (EAOPs), which involve the

destruction of organics up to mineralization by the attack of

reactive oxygen species (ROS) generated on site, like the strong
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Table 1. Characteristics of Ponceau SS diazo dye.

Chemical
structure

Chemical
name

disodium 3-hydroxy-4-{2-[4-(2-phenyldiazen-1-yl)phenyl]
diazen-1-yl}naphthalene-2,7-disulfonate

Chemical
formula

C22H14N4Na2O7S2

Color Index
number

27190

M [g mol�1] 556.48
lmax [nm] 514

UV/Vis spec-
trum
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oxidant
*

OH.[4,11–15] In all the EAOPs, water oxidation at the

anode M produces physisorbed M(
*

OH) at high current by

reaction (1) that attacks organic pollutants.[11,16–18] In anodic

oxidation (AO), this is the only oxidant. If an adequate cathode

to produce H2O2 by reduction of injected O2 from reaction (2) is

used as counterpart, the process is so-called AO with electro-

generated H2O2 (AO-H2O2) and organics are not only attacked

by M(
*

OH), but also by weaker oxidants like H2O2 and its anodic

oxidation product, hydroperoxyl radical (HO2
*

).[15,19]

Mþ H2O! Mð.OHÞ þ Hþ þ e� ð1Þ

O2ðgÞ þ 2Hþ þ 2e� ! H2O2 ð2Þ

Good efficiencies for reaction (2) have been found by

employing carbonaceous cathodes. Among them, materials

such as graphite,[20] graphite felt,[21] carbon sponge,[22] carbon

felt,[21,23–25] carbon nanotubes,[26,27] and carbon-polytetrafluoro-

ethylene (PTFE) air-diffusion[28–30] electrodes have been utilized.

On the other hand, it is well known that the anode material has

remarkable influence on the oxidation power of AO and AO-

H2O2.[4,18,21] An active anode like Pt produces low amounts of

reactive Pt(
*

OH) from reaction (1) because the strong Pt-
*

OH

interaction and low O2-evolution overpotential facilitates its

oxidation to yield the weaker “chemisorbed” PtOx species,

which favors the electrochemical conversion of organics into

carboxylic acids.[21,31] The opposite behavior is accomplished for

a non-active anode such as boron-doped diamond (BDD), in

which organics become incinerated to CO2 due to the high

quantities of reactive BDD(
*

OH) produced because of the larger

overpotential required for O2 evolution along with the very

weak BDD-
*

OH interaction.[31–33] At present, the BDD anode is

considered the best material for these methods.

Recently, Fenton-based EAOPs have shown larger ability to

remove azo dyes from wastewater.[28,29,34,35] In these processes,

cathodically generated H2O2 is catalytically converted into
*

OH

by Fenton’s reaction (3) upon the action of a small concen-

tration of added Fe2 +.[36–38] This occurs in the electro-Fenton (EF)

method, where M(
*

OH) and
*

OH are the main oxidants, with

optimum pH near 3.[28,33,37] Reduction of Fe3 + to Fe2 + at the

cathode propagates Fenton’s reaction (3).[15,37,38] A modification

of EF is photoelectro-Fenton (PEF), which involves the illumina-

tion of treated solution with UVA light.[4,39] This light can cause

the quick photolysis of some products such as Fe(OH)2 + by

reaction (4), enhancing Fe2 + and
*

OH production, along with

that of final carboxylic acids via reaction (5).[40,41] When natural

sunlight is utilized as free energy source, the process is so-

called solar PEF (SPEF), which is much more cost-effective for

wastewater treatment.[29,42,43]

Fe2 þ H2O2 ! Fe3þ þ .OHþ OH� ð3Þ

FeðOHÞ2þ þ hv ! Fe2þ þ .OH ð4Þ

FeðOOCRÞ2þ þ hv ! Fe2þ þ CO2 þ R. ð5Þ

A limited number of papers has shown that the influence of

the anode (active and non-active) over the performance of

photo-assisted Fenton-based EAOPs to degrade organics is

small because of the powerful photolytic action of UV

radiation.[30,44] This differs from the results found for the AO

process, where the non-active BDD anode presents much

greater oxidation ability than the active ones. More research

efforts are required to know if such behavior is also verified

during the degradation of acid azo dyes since this represents a

key factor for the viability and scale-up of the EAOPs at

industrial scale.

This work presents a study on the decolorization and

mineralization of Ponceau SS diazo dye solutions in acidic

sulfate medium by means of AO-H2O2, EF, and PEF. The assays

were made in a 2.5 L pre-pilot flow plant as a first approach,

allowing the determination of the current efficiency and energy

consumption. Aiming to clarify the role of the anode in each

EAOP, an active Ti jPt and a non-active BDD were used under

comparable conditions. H2O2 was always supplied by a carbon-

PTFE air-diffusion electrode. The effect of current density (j) on

the performance of each process was examined. Gas chroma-

tography-mass spectrometry (GC-MS) and high-performance

liquid chromatography (HPLC) were utilized to detect the

primary aromatic intermediates and final carboxylic acids,

respectively.

2. Results and Discussion

2.1. Degradation of Ponceau SS using a Pt Anode

First, the ability of the pre-pilot flow plant to generate H2O2

with a Pt/air-diffusion cell was tested using 0.050 M Na2SO4 as

background electrolyte at pH 3.0, 35 8C and j = 50 mA cm�2.

Under these AO-H2O2 conditions, 15.1 mM H2O2 (33.8 % effi-

ciency) were accumulated at 360 min. The efficiency decreased

over time, which can be ascribed to the anodic oxidation of this

species to O2 via HO2
*

as intermediate.[4,15] In the presence of

0.50 mM Fe2 + (EF conditions), a greater H2O2 decay was found,

only achieving 4.3 mM by the concurrence of Fenton’s

reaction (3). When the solution was recirculated through the

annular photoreactor containing a 160 W UVA lamp (PEF

conditions), the drop of accumulated H2O2 was more pro-

nounced, attaining 1.5 mM at 360 min, due to the acceleration

of Fenton’s reaction (3) induced by the photolytic reaction (4).

These findings show that the amount of H2O2 generated in

both Fenton-based EAOPs was high enough for maximum
*

OH

production.

Then, solutions with 0.19 mM Ponceau SS (50 mg L�1 of total

organic carbon (TOC)) were prepared under the above con-

ditions to be degraded by AO-H2O2, EF and PEF at j values of

25, 50, and 100 mA cm�2 for 360 min in order to examine the

role of oxidants. In EF and PEF, a catalytic concentration

0.50 mM of Fe2 + was added as optimal quantity.[41–43] A little

change in solution pH was found in all these trials, showing a

slight decrease to final pH 2.7–2.8 due to the formation of

acidic by-products.
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Figure 1a–c illustrates the change of percentage of color

removal or decolorization efficiency for all these assays. This

parameter was determined from the decay of absorbance (A) at

the lmax = 514 nm of Ponceau SS (Table 1) as follows:[28,34]

%Color removal ¼ A0 � At

A0

100 ð6Þ

where A0 denotes the initial absorbance and At that at time t.

Two findings can be observed in Figure 1a–c. On the one hand,

color removal was upgraded with increasing j, in agreement

with the higher rate of reactions (1) and (2) that yield greater

amounts of H2O2 and Pt(
*

OH), respectively, thus causing a

quicker removal of the dye and its colored products. In

addition, in EF and PEF the
*

OH production from Fenton’s

reaction (3) is accelerated by the rise of H2O2 content. On the

other hand, it is evident that
*

OH generated in the latter two

EAOPs decolorizes much more quickly the solution.

At j = 100 mA cm�2, for example, color was reduced by

85.1 % after 360 min of AO-H2O2, whereas the solution was

completely decolorized at about 100 and 90 min in EF and PEF,

respectively. This means that the decolorization power of EAOPs

increased in the order: AO-H2O2 ! EF�PEF. The superiority of

PEF over EF can be accounted for by the extra
*

OH generation

provided by photolytic reaction (4).

To gain a better insight into the decolorization rate of the

above assays, the absorbance decays were analyzed consider-

ing that they obeyed a pseudo-first-order kinetics. The excellent

linear correlations obtained are presented in the insets of

Figure 1a–c, and the slope corresponded to the decolorization

rate constant (kdec). The kdec-values thus found along with their

R2 are listed in Table 2. A look to this table corroborates the

enhancement of kdec as j was increased in each treatment, as

well as the faster loss of color attained by EF and PEF compared

to AO-H2O2. So, the kdec-value was 9.2-fold and 10-fold higher

for the two former processes at j = 100 mA cm�2. This confirms

the important oxidation role of
*

OH in the bulk because it is

able to quickly destroy high quantities of Ponceau SS and its

colored products.

Figure 2a–c depicts the TOC-time plots determined for the

above tests. A progressive TOC removal along electrolysis time

can be observed for each EAOP, which was enhanced when j

was increased, according to the greater amounts of hydroxyl

radicals generated, as stated above. However, unlike decoloriza-

tion, the percentage of TOC removal increased in the order:

AO-H2O2<EF<PEF, with an evident rise for the PEF process

due to the expected parallel photolysis of photoactive products

upon UVA illumination, e. g., Fe(III)-carboxylate complexes via

reaction (5). This tendency can also be deduced from the

percentages of TOC removal collected in Table 2. As can be

seen, the highest mineralization with 93.4 % TOC reduction was

achieved after 360 min of PEF at j = 100 mA cm�2, a value 1.6-

fold and 3.3-fold greater than those obtained for EF and AO-

H2O2, respectively. This means that the photolytic action of UVA

light is much more relevant on the multiple organic intermedi-

ates than on the parent diazo dye.

The fate of N atoms contained in the Ponceau SS molecules

(0.76 mM) was followed during the PEF treatment at j =

100 mA cm�2. Neither NO2
� nor NO3

� ions were detected in the

degraded solution, whereas 0.34 mM of NH4
+ (44.7 % of initial

N) were finally accumulated. These results suggest that the

initial N was only mineralized to NH4
+ ion and, based on the

large degree of mineralization reached (93.4 %, Table 2), it can

be suggested that part of the N was transformed into volatile

N-species, like N2 and NxOy, as suggested for other azo dyes.[34,42]

From this, the theoretical mineralization reaction for the anionic

form of Ponceau SS, with m = 22 C atoms and number of

electrons n = 90, can be expressed as follows:

Figure 1. Decolorization efficiency vs. time for 2.5 L of 0.19 mM PCSS
solution in 0.050 M Na2SO4 at pH 3.0 and 35 8C using a pre-pilot flow plant
with a Pt/air-diffusion cell by a) AO-H2O2, b) EF with 0.50 mM Fe2 +, and c)
PEF with 0.50 mM Fe2 +. Current density: 25 (*, green), 50 (&, red), and
100 mA cm�2 (~, violet). Insets: Kinetic analysis assuming a pseudo-first-
order decolorization reaction.
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C22H14N4O7S2
2 þ 45H2O!

22CO2 þ 2SO4
2� þ 4NH4

þ þ 88Hþ þ 90e�ð7Þ

Considering this, the percentage of mineralization current

efficiency (MCE) at time t (in h) and applied current I (in A) for

each run was calculated from reaction (8):[42]

%MCE ¼ n F V DðTOCÞexp

4:32� 107m I t
100 ð8Þ

where F is the Faraday constant, V is the solution volume (in L),

D(TOC)exp is the TOC removed (in mg L�1) and 4.32 � 107 is a

conversion factor (= 3,600 s h�1 � 12,000 mg C mol�1).

Figure S1a–c of Supporting Information shows the MCE

profiles for the trials of Figure 2a–c. Small efficiencies were

obtained in the AO-H2O2 process due to its low mineralization

ability. Figure S1a highlights that they were quite similar for j

values of 25 and 50 mA cm�2, regularly decreasing for j =

100 mA cm�2. This latter tendency was always observed for all

the EF and PEF processes (Figure S1b and c, respectively), which

can be ascribed to the progressive loss of organic matter with

formation of more recalcitrant by-products.[12] The MCE values

listed in Table 2 after 360 min of electrolysis allows inferring

that they decreased with increasing j regardless of the method,

reaching higher values according to its relative oxidation power.

The most efficient treatment was PEF at j = 25 mA cm�2, with a

maximal of 34.1 % at 180 min that dropped to 27.6 %. The

tendency of MCE with increasing j was opposite to that of TOC,

since the solution was more rapidly mineralized. This behavior

is characteristic of EAOPs due to the larger enhancement of the

parasitic (non-oxidizing) reactions of Pt(
*

OH) and
*

OH that

reduce their relative concentration with the consequent loss of

MCE[4,15]

Another figure of merit used to confirm the viability of

EAOPs is the energy consumption. Based on the D(TOC)exp

determined for each run and the corresponding cell voltage

(Ecell, in V), the energy consumption per unit TOC mass (ECTOC, in

kWh (g TOC)�1) was calculated from Equation (9):[42,43]

ECTOC ¼
Ecell I t

V DðTOCÞexp
ð9Þ

This equation is valid for AO-H2O2 and EF, as well as for SPEF

because of the use of the free natural sunlight. For PEF,

however, the electric power of the UVA lamp (160 W in our

case) should be added, giving the alternative value of ECTOC,total

(kWh (g TOC)�1), expressed as follows:

ECTOC;total ¼
ðEcell I þ 160Þ t

V DðTOCÞexp

ð10Þ

Note that Equation (9) could also be used for PEF, assuming

sunlight irradiation, i. e., the potential replacement of the UVA

lamp by natural sunlight, as has been well proven experimen-

tally elsewhere.[29,42,43]

As can be seen in Figure S2a and b, the ECTOC values for AO-

H2O2 and EF increased with increasing j by the high rise of Ecell,

the opposite trend to that shown by MCE. This can be also

deduced from the data collected in Table 2 at 360 min of both

treatments. The lowest ECTOC was achieved in EF at j =

25 mA cm�2, slightly increasing from 0.34 to 0.45 kWh (g TOC)�1

during the run. In the case of PEF, Figure S2c shows oscillating

values for the enormous ECTOC,total values determined with

varying j due to the compensation between the high electrical

power of the UVA lamp and the greater TOC removal. They

varied between 9.54 and 10.8 kWh (g TOC)�1 (Table 2). Never-

Table 2. Apparent rate constant for decolorization with the corresponding R2, percentage of TOC removal, mineralization current efficiency and energy
consumption per unit TOC mass at 360 min of electrolysis of 2.5 L of 0.19 mM Ponceau SS solutions in 0.050 M Na2SO4 at pH 3.0 and 35 8C by several EAOPs
at different current densities using a pre-pilot flow plant with a cell equipped with a Ti jPt or BDD anode and an air-diffusion cathode, connected to an
annular photoreactor with a 160 W UVA lamp in PEF process.

Method j
[mA cm�2]

kdec

[min�1]
R2 % TOC removal % MCE ECTOC

[a]

Ti jPt anode
AO-H2O2 25 3.7 � 10�3 0,980 15.0 5.4 1.28

50 4.3 � 10�3 0.984 23.9 4.5 2.62
100 6.0 � 10�3 0.992 30.8 2.9 5.63

EF 25 1.8 � 10�2 0.996 42.2 16.1 0.45
50 2.7 � 10�2 0.995 51.6 9.8 1.21
100 5.5 � 10�2 0.994 60.0 5.7 3.04

PEF 25 1.9 � 10�2 0.992 72.6 27.6 10.8
50 3.5 � 10�2 0.995 87.0 16.6 9.54
100 6.0 � 10�2 0.989 93.4 8.9 10.1

BDD anode
AO-H2O2 25 6.6 � 10�3 0.982 48.8 18.6 0.64

50 9.7 � 10�3 0.990 56.4 10.7 1.10
100 1.3 � 10�2 0.981 65.0 6.2 2.74

EF 25 2.3 � 10�2 0.980 54.2 20.6 0.58
50 4.4 � 10�2 0.992 63.0 12.0 1.37
100 6.5 � 10�2 0.991 70.6 6.7 3.40

PEF 25 2.6 � 10�2 0.994 85.2 31.2 9.39
50 4.6 � 10�2 0.994 93.8 16.9 9.11
100 8.7 � 10�2 0.991 97.6 9.0 10.4

[a] Energy consumption per unit TOC mass [in kWh (g TOC)�1] calculated from Eq. (9) for AO-H2O2 and EF and from Eq. (10) for PEF.
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theless, the corresponding ECTOC values at 360 min assuming no

UVA power consumption decreased to 0.29 kWh (g TOC)�1 at j =

25 mA cm�2 and to 2.09 kWh (g TOC)�1 at j = 100 mA cm�2,

which were much smaller than those obtained in EF. The

aforementioned findings demonstrate a greater ability of PEF

process to decolorize and mineralize the Ponceau SS solution

as a result of the action of UVA radiation upon the photoactive

intermediates originated by the attack of Pt(
*

OH) and
*

OH.

2.2. Degradation of Ponceau SS using a BDD Anode

The study of the decolorization and mineralization of 2.5 L of

0.19 mM Ponceau SS solutions in 0.050 M Na2SO4 at pH 3.0 was

extended to a BDD/air-diffusion cell in the pre-pilot flow plant

under comparable conditions to those used with Pt. EF and PEF

were made with 0.50 mM Fe2 +. A slight decrease of the initial

pH down to 2.6–2.7 was also found after 360 min.

Figure 3a–c illustrates the variation of color removal during

the treatments carried out with a BDD anode. A progressively

greater loss of color at higher j can be observed for each

method, associated with the concomitant larger generation of

BDD(*OH) and/or
*

OH due to the increase in rate of reac-

tions (1)–(3). The diazo dye solution was also decolorized much

more quickly by EF and PEF compared to AO-H2O2, thereby

demonstrating the large oxidation enhancement of the target

molecule and its colored products by
*

OH in the bulk. The

insets of Figure 3a–c show the excellent linear relationships

Figure 2. TOC decay with time for the trials of Figure 1 a) AO-H2O2, b) EF, and
c) PEF. Current density: 25 (*, green), 50 (&, red), and 100 mA cm�2 (~,
violet).

Figure 3. Change of percentage color removal for 2.5 L of 0.19 mM PCSS
solution in 0.050 M Na2SO4 at pH 3.0 and 35 8C using a pre-pilot flow plant
with a BDD/air-diffusion cell by a) AO-H2O2, b) EF, and c) PEF. Current density:
25 (*, green), 50 (&, red), and 100 mA cm�2 (~, violet). The insets present
the analysis considering a pseudo-first-order decolorization kinetics.
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obtained from a pseudo-first-order analysis of the correspond-

ing absorbance drops. As expected, the resulting kdec-values,

listed in Table 2, increased with increasing j for each EAOP.

Moreover, comparison of these constants confirmed a raising

decolorization power in the order: AO-H2O2 ! EF<PEF. Worth

mentioning, the upgrade in
*

OH production from photolytic

reaction (4) accounts for the decolorization enhancement in

PEF compared to EF. On the other hand, an inspection of

Table 2 allows inferring the greater kdec-values found in all cases

with BDD compared to those obtained with Pt. While kdec was

1.8–2.2 fold higher in AO-H2O2, it underwent a smaller grew of

1.2–1.5-fold in EF and PEF. The remarkable rise in decolorization

rate in the former EAOP using a non-active BDD anode agrees

with the expected greater oxidation ability of BDD(
*

OH).[4,12,31]

The parallel effective oxidation with
*

OH explains the smaller

contribution of the above physisorbed radicals in the two

Fenton-based EAOPs.

The TOC-time plots depicted in Figure 4a–c using a BDD

anode, along with the percentage of TOC removal given in

Table 2, evidence a faster mineralization in the sequence: AO-

H2O2<EF<PEF. This is in agreement with the decolorization

behavior pointed out above and the results obtained with a Ti jPt

anode. This corroborates the increasing role of BDD(
*

OH),
*

OH and

UVA light to destroy organic pollutants leading to the above

relative oxidation power of EAOPs. Figure 4a–c and Table 2 also

confirm the greater mineralization achieved for each method

when j was increased from 25 to 100 mA cm�2, as expected by the

larger production of reactive BDD(
*

OH) and/or
*

OH. It is

remarkable the considerable growth of mineralization in AO-H2O2

when using BDD instead of Pt; for example, 65.0% vs. 30.8% TOC

reduction at 360 min of j=100 mA cm�2 (Table 2). This difference

was less significant in EF (70.6 % vs. 60.0%) due to the important

oxidation via
*

OH in the bulk, and only a minimum difference was

found in PEF (97.6 % vs. 93.4%) as a result of UVA irradiation.

These findings point to a clear superiority of BDD to be

used in the AO-H2O2 and EF treatment of Ponceau SS solutions,

being much less evident in PEF, particularly at high j values,

where a large mineralization with >93 % TOC abatement can

be reached (Figure 2c and 4c).

The MCE values at 360 min (Table 2) showed a gradual drop

with increasing j for each EAOP, as expected by the progressive

larger extent of the parasitic reactions.[14,15,42] The relative

oxidation ability of BDD anode grew in the order: AO-H2O2<

EF<PEF, as for Pt. Comparison of the MCE data for both anodes

confirms the much higher efficiency achieved using the former

anode in AO-H2O2 (e. g., 6.2 % vs. 2.9 % at 100 mA cm�2). This

difference was strongly reduced in EF (6.7 % vs. 5.7 % at the

same j), whereas in PEF, the same mineralization current

efficiencies were practically obtained at 50 mA cm�2 (16.6 %–

16.9 %) and 100 mA cm�2 (8.9–9.0 %). Regarding the ECTOC values

in AO-H2O2 and EF with BDD of Table 2, they increased with j

and were significantly lower than those obtained with Pt,

despite the higher Ecell of the BDD/air-diffusion cell due to the

larger mineralization reached. In contrast, the ECTOC,total values

determined in PEF varied between 9.1 and 10.4 kWh (g TOC)�1,

quite analogous to those found for Pt because of the very large

contribution of the lamp power. When this contribution was

not considered, the ECTOC values were 0.37, 0.97, and 2.46 kWh

(g TOC)�1 at 25, 50, and 100 mA cm�2, respectively, which are

much greater than in the case of Pt (see section 2.1).

The study performed for the degradation of Ponceau SS in

the pre-pilot flow plant with a cell containing an air-diffusion

electrode indicates that the BDD anode is preferable in AO-

H2O2 and EF, because it provides faster decolorization and TOC

reduction, with higher MCE and lower ECTOC. Under PEF

conditions at j�50 mA cm�2, however, both anodes showed a

quite similar degradation performance.

2.3. Detection of Oxidation Products using a Pt Anode

Five primary aromatic products formed during the PEF

degradation of a 0.19 mM Ponceau SS solution in the pre-pilot

plant with a Ti jPt anode at j = 50 mA cm�2 were identified by

Figure 4. TOC abatement for the assays of Figure 3 a) AO-H2O2, b) EF, and c)
PEF. Current density: 25 (*, green), 50 (&, red), and 100 mA cm�2 (~, violet).
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GC-MS. They were 2 azo derivatives and 3 benzenic products,

which were also found in AO-H2O2 and EF, as well as in all

EAOPs using BDD, since they arise from the attack of hydroxyl

radicals (generated in all cases) onto the initial dye. On this

basis, Scheme 1 proposes a reaction sequence for the primary

degradation of Ponceau SS (1) involving such radicals as main

oxidants. This pathway highlights that the initial hydroxylation

of 1 leads to the cleavage of either one azo group leading to 4-

(phenylazo)phenol (2) and aniline (3), or part of its naphthalenic

ring originating 4-ethyl-1,2-benzenediol (4). Further hydroxyla-

tion of 2 yields the hydroxylated di-(4-hydroxy-phenyl)diazene

(5), whereas that of 3 gives hydroquinone (6).

It is well known that the subsequent destruction of the

above aromatics leads to short-chain aliphatic carboxylic acids,

which form Fe(III) complexes under PEF conditions.[41–45] A

mixture of oxalic, tartronic, malic, and acetic acids was detected

for the above assay by ion-exclusion HPLC. Figure 5 illustrates

the evolution of these acids during the treatment. Total removal

of Fe(III)-oxalate, Fe(III)-tartronate and Fe(III)-acetate complexes

was achieved at the end of the electrolysis, pre-eminently due

to their photolysis via reaction (5) since such Fe(III)-carboxylate

were very poorly abated by Pt(
*

OH) and
*

OH.[14,15] In contrast,

Fe(III)-malate complexes were more slowly degraded and

13.0 mg L�1 of malic acid remained in the final solution,

representing 3.5 mg L�1 TOC that corresponds to 26.9 % of the

organic load (13.0 mg L�1 as deduced from Table 2). This can be

explained by the formation of a larger proportion of other

recalcitrant undetected products that can be more rapidly

removed by increasing j or using a BDD anode because of the

higher oxidation power of BDD(
*

OH).

3 Conclusions

It has been shown that 2.5 L of a 0.19 mM Ponceau SS solution

in acidic sulfate medium treated a pre-pilot flow plant by AO-

H2O2 and EF were more quickly decolorized and mineralized

using a BDD/air-diffusion cell. This is due to the much greater

oxidation ability of BDD(
*

OH) compared to Pt(
*

OH), partially

compensated by the parallel oxidation by
*

OH produced from

Fenton’s reaction in EF. PEF was the most powerful EAOP

thanks to the additional potent photolytic action of UVA

radiation, leading to a quite similar decolorization and mineral-

ization rate for both cells. In all cases, the decolorization decay

obeyed a pseudo-first-order kinetics, with increasing kdec-values

with raising j. The same trend was found for TOC abatement,

with loss of mineralization current efficiency and increase of the

energy consumption. High ECTOC,total values were obtained in

PEF taking into account the lamp power, but the corresponding

consumption if lamp power was not considered was lower than

those of AO-H2O2 and EF. The use of an active anode to destroy

the diazo dye by photo-assisted Fenton-based EAOPs is thus

recommended, whereas the non-active BDD results more useful

in AO-H2O2 and EF. Five primary aromatic products and four

final carboxylic acids were detected.

Experimental Section

Ponceau SS (80 % purity, and the rest of components were
stabilizing salts) was purchased from Sigma-Aldrich. Sulfuric acid
(96 % purity) from Acros Organics and analytical grade NaOH from
Panreac were used to adjust pH conditions. All the solutions were
prepared with deionized water. The rest of chemicals including
Na2SO4 and FeSO4 · 7H2O used as background electrolyte and
catalyst, respectively, were of analytical or HPLC grade purchased
from Fluka, Merck, Panreac and Sigma-Aldrich.

Electrochemical assays were carried out in a 2.5 L pre-pilot flow
plant composed of the following consecutive elements:[45] (i) a PVC
reservoir containing the solution; (ii) a centrifugal pump to
recirculate the solution through the system; (iii) a rotameter to

Scheme 1. Proposed initial route for the degradation of Ponceau SS diazo
dye by EAOPs.

*

OH represents the hydroxyl radical formed at the anode
surface from water oxidation and in the bulk from Fenton’s reaction.

Figure 5. Time-course of the concentration of oxalic (*, blue), tartronic (&,
green), malic (~, red), and acetic (!, violet) acids detected during the PEF
degradation of 2.5 L of 0.19 mM Ponceau SS solution in 0.050 M Na2SO4 at
pH 3.0 using a pre-pilot flow plant with a Pt/air-diffusion cell at 50 mA cm�2,
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regulate the liquid flow rate at 200 L h�1; (iv) two heat exchangers
to maintain the solution temperature at 35 8C; (v) a filter-press
electrochemical cell equipped with a BDD thin-film on Si (NeoCoat)
or a Ti jPt (NMT) anode and a carbon-PTFE air-diffusion cathode
(Sainergy Fuel Cell), all with 20 cm2 of geometric area in contact
with the solution and separated 1.2 cm; and (vi) an annular Schott-
Duran glass photoreactor containing 640 mL of solution volume.
Atmospheric air at overpressure of 8.6 kPa was injected to the dry
face of the cathode for H2O2 production. The plant was covered
with an opaque cloth for AO-H2O2 and EF trials, whereas a Philips
160 W UVA lamp (lmax = 360 nm) was centered in the annular
photoreactor for PEF. Galvanostatic electrolyses were performed
with a Grelco GVD310 (0–10 A) power supply, which displayed
directly the cell voltage (Ecell).

A Crison GLP22 pH-meter was used to measure the pH of solutions.
Prior to analysis, all the samples were filtered with Whatman
0.45 mm PTFE filters. In EF and PEF, they were previously alkalinized
to stop the degradation. The loss of solution color was determined
from the absorbance decay at lmax = 514 nm using a Shimadzu
1800 UV/vis spectrophotometer. The same equipment was utilized
for the determination of H2O2 from its Ti(IV) complex.[46] TOC was
measured on a Shimadzu TOC-VCSN analyzer, by injecting 50 mL
aliquots and with a precision of �1 %. Average values (�2 %
values) are reported for replicated decolorization and TOC measure-
ments.

Ion-exclusion HPLC analysis was performed by injecting 10 mL into
a Waters system (600 LC and 996 photodiode array detector at l=
210 nm) using an Aminex HPX 87H, 300 mm � 7.8 mm, column at
35 8C from Bio-Rad and eluting 4 mM H2SO4 solution at 0.6 mL
min�1. Retention times of 6.7, 7.7, 9.6 and 15.2 min for oxalic,
tartronic, malic and acetic acids, respectively, were found. NH4

+

concentration was obtained from the standard phenate method.[47]

GC-MS analysis was made after extraction with CH2Cl2 (3 � 25 mL) of
the organic components of 100 mL of solutions treated during
short times by PEF using a Pt/air-diffusion cell, followed by drying
the resulting organic solution with Na2SO4, filtration and volume
reduction. An Agilent system with a non-polar J&W HP-5 ms
0.25 mm, 30 m � 0.25 mm, column, was utilized as reported pre-
viously.[30] The products were identified with the help of a NIST05
MS library.
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Degradation of Ponceau SS dye:
Similar decolorization and mineraliza-
tion rates are obtained with photo-
electro-Fenton by using a pre-pilot
flow plant with a BDD/air-difffusion
or Pt/air-diffusion cell. Initially, five
aromatic products are formed,
followed by their conversion into
four carboxylic acids, which are trans-
formed into carbon dioxide (see
figure).
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