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The Formalities of Temporaryism without Presentness

Fabrice Correia and Sven Rosenkranz

Abstract Temporaryism—the view that not always everything always exists—
comes in two main versions: presentism and expansionism (aka the growing
block theory of time). Both versions of the view are commonly formulated using
the notion of being present, which we, among others, find problematic. Expan-
sionism is also sometimes accused of requiring extraordinary conceptual tools
for its formulation. In this paper, we put forward systematic characterisations of
presentism and expansionism which involve neither the notion of being present
nor unfamiliar conceptual tools. These characterisations are full blown logics,
each logic comprising an axiomatic proof system and an intuitive semantics with
respect to which the system is both sound and complete.

1 Introduction

Following Timothy Williamson (2013, p. 4), let us call temporaryism the view that
not always everything always exists, i.e. is something. Different ontologies can be
temporaryist in this sense. According to standard conception, the formulation of
such specific temporaryist ontologies requires appeal to the notion of presentness.
The most prominent temporaryist ontologies on the market are presentism and ex-
pansionism (aka the growing block theory of time). Thus, presentism is standardly
taken to essentially include the postulate that everything in time is present, and ex-
pansionism the postulates that everything in time is present or has been present in
the past, and that something in time is not present.1

If the standard conception is correct, then temporaryist ontologies would seem
vulnerable to recent objections by Williamson (2013) which challenge the suitability
of the notion of presentness to cut much metaphysical ice. For instance, attempts
to explicate the notion in terms of present existence or concreteness notoriously fail
on this count, because on such an understanding of being present, even permanentist
ontologies (according to which always everything always exists) can accommodate
the claim that everything in time is present, including dinosaurs located at remote
times.
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It is also often maintained, if less frequently so, that the formulation of expansion-
ism needs to invoke extraordinary conceptual tools, e.g. a second notion of being
present (Bourne 2002, Braddon-Mitchell 2004, Merricks 2006), non-standard tenses
(Sider 2001), predications that are neither tensed nor untensed (Button 2006, 2007),
or a special set of temporal operators (Tooley 1997). The need for such unfamiliar
machinery would imply a considerable theoretical cost and would make expansion-
ism seem less attractive from the start. But it would also show that the “logics” of
presentism and expansionism differ more deeply than the difference in their charac-
teristic, and mutually inconsistent, postulates would seem to suggest, since uncon-
troversially, presentism has no need for such extraordinary devices.

In this paper, we put forward precise characterisations of (versions of) presentism
and expansionism which involve neither the notion of presentness nor the concep-
tual tools of the unfamiliar kinds just mentioned.2 Thus, besides standard Priorian
temporal operators, truth-functional connectives, first-order quantifiers and an iden-
tity predicate, only two further pieces of vocabulary will be invoked, a predicate for
times and a predicate for temporal location.

The characterisations will not consist in mere lists of principles, but will rather
take the form of full blown logics, each logic comprising an axiomatic proof sys-
tem and a corresponding adequate semantics. In each case, the semantics will be
fairly simple and intuitive, and will therefore substantially add to the appeal that the
corresponding system may independently have. Also, there will not be two charac-
terisations, one for presentism and one for expansionism, but rather a set of charac-
terisations for each view, each set corresponding to a number of natural variants of
the relevant view.

Some of the ideas developed in this paper were first aired in Correia and
Rosenkranz 2013 and 2015, and have then been substantially developed in Cor-
reia and Rosenkranz 2018. This latter work also puts forward a precise logical
characterisation of each view involving a system and a corresponding semantic
characterisation, but, importantly, these characterisations are formulated in a lan-
guage which involves conceptual resources that are richer than those involved in
the characterisations we propose in the present paper. The latter are accordingly
philosophically more satisfactory than the former.

The plan is as follows. We first describe the languages in which the logics are to
be formulated—the temporal languages (section 2). We then introduce a semantics
which distinguishes between presentist models and expansionist models for such lan-
guages (section 3). After a digression on the expressive power of temporal languages
interpreted in such models (section 4), we lay down a system Pres for presentism and
a system Exp for expansionism (section 5). We then show that Pres is adequate with
respect to the semantics of presentist models, and Exp with respect to the semantics
of expansionist models (section 6). We subsequently discuss variants of Pres and
Exp (section 7), and then move on to a discussion about the way temporal location
should be characterised in the context of the logics discussed so far (section 8). We
end up comparing the proposed characterisations of presentism and expansionism
with those put forward in Correia and Rosenkranz 2013 and 2015 (section 9), and
with those put forward in Correia and Rosenkranz 2018 (section 10).3
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2 Languages

The languages in which the logics are to be formulated—the temporal languages,
as we will call them—are standard first-order Priorean languages with identity, aug-
mented with a special predicate for times and a special predicate for temporal loca-
tion. More precisely, each such language has the following vocabulary:

• A countable set of predicates, including a set of distinguished predicates: the
1-place predicate T for times, and the 2-place predicates === and L for identity
and temporal location, respectively.
• A countably infinite set of variables, which we shall denote using the

metavariables x, y, etc.
• A countable (possibly empty) set of constants, which we shall denote using

the metavariables a, b, etc.
• The truth-functional connectives ¬ and ∨ and the existential quantifier ∃.
• The Priorean tense-logical operators H (for ‘Always in the past’) and G (for

‘Always in the future’).
• The brackets ( and ).

An element of the vocabulary is a term iff it is a variable or a constant. We shall
use m, n, etc. as metavariables for terms. The formulas of a temporal language are
defined in the usual way, and we shall adopt familiar notational conventions. On the
intended interpretation, Tm will have to be understood as ‘m is a time’, and Lmn as
‘m is located at time n’. As is customary, we define

• ∀xφ as ¬∃x¬φ ,
• Pφ (‘Sometimes in the past, φ ’) as ¬H¬φ ,
• Fφ (‘Sometimes in the future, φ ’) as ¬G¬φ ,
• Sφ (‘Sometimes, φ ’) as Pφ ∨φ ∨Fφ ,
• Aφ (‘Always, φ ’) as Hφ ∧φ ∧Gφ , and
• Em (‘m exists’) as ∃x(x = m) (where x is the first variable distinct from m

according to some given enumeration of the variables).

In order to make clear which versions of presentism and expansionism we intend
to characterise, we need to say a bit more about the intended interpretation of ∃, T
and L. There are four points worth mentioning.

First, on its intended interpretation, ∃ expresses unrestricted quantification, but
its range is nevertheless thought of as potentially sensitive to temporal standpoints:
what there unrestrictedly is relative to a time need not be the same as what there
unrestrictedly is relative to another time. We say ‘potentially’, because whether the
range of the quantifier actually sometimes changes is a matter of substantive debate
in temporal ontology: temporaryists hold that the range of the quantifier sometimes
changes, while permanentists hold that it never does (see section 1).

Secondly, the concept of existence expressed by the defined predicate E is there-
fore also potentially sensitive to temporal standpoints; yet existing at a time t, in the
relevant sense of ‘existing’, should not be confused with being located at t, at least
given our understanding of the concept of temporal location that L is intended to
express. Permanentists hold that always, everything always exists; but they do not
thereby hold that Tim Williamson is located at all times: they hold (or at least should
hold) that he is located only at the times when he is alive. Likewise, expansionists—
on our understanding of the expansionist view—hold that ever since he was born,
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Socrates has never ceased to exist; but they hold (or at least should hold) that he is
located only at the times when he is alive, and hence that although he exists now,
he is not located now. It is only presentists who could perhaps reasonably hold that
‘exists at t’ and ‘is located at t’ are always coextensional (but see the discussion of
L4 and L5 in section 8).

Thirdly, given that ∃ is understood as unrestricted, the extension of E at a time is
intended to be the set of all the objects that there are relative to that time, whatever
ontological categories they may belong to. Thus, in particular, not only do non-
occurrents such as people, planes and planets count as possibly within the exten-
sion of E, but the same holds also of occurrents such as lives, take-offs and climate
changes, even though it is perhaps not customary to attribute existence at times to
events and processes in ordinary English.

Finally, predicate T is intended to have in its extension only concrete times—e.g.
“container times”, as substantivalism would have it, or maximal fusions of contem-
porary instantaneous events, as some versions of relationism would have it—as op-
posed to so-called “ersatz times”, i.e. abstract representations of what is going on at
concrete times. It is very important to keep this point in mind, since on our under-
standing of the views, both presentism and expansionism hold that what times exist
constantly varies with time, while it is not our intention to claim that these views
cannot defend an ontology of permanently existing ersatz times.4

3 Semantics

We define a structure as a tuple 〈T ,<,D〉, where
• T (times) is a non-empty set,
• < (precedence) is a binary relation on T that is transitive and total, and
• D (domain) is a function which assigns, to each u∈T , a set D(u) (the objects

which exist at time u) such that
⋃

u∈T D(u) 6=∅.
A structure 〈T ,<,D〉 is said to be:
• proper iff T has at least two members, and for all u ∈T , u ∈ D(u).
• presentist iff (c1) it is proper, (c2) for all u,v ∈ T , u < v ⇒ v /∈ D(u), and

(pres) for all u,v ∈T , v < u⇒ v /∈ D(u).
• expansionist iff (c1) it is proper, (c2) for all u,v ∈T , u < v⇒ v /∈ D(u), and

(exp) for all u,v ∈T , u < v⇒ D(u)⊆ D(v).
Three points are worth emphasising. First, given the requirement that < be total,
presentist structures satisfy the following condition: for all u,v ∈ T , u ∈ D(v) ⇒
u = v. Second, the precedence relation of a proper structure must be irreflexive if
the structure is presentist or expansionist. Third, the condition that T has at least
two members in the definition of ‘proper’ is there to capture the view that there is (a
minimal amount of) temporal passage. Without this condition, there would be proper
structures that are both presentist and expansionist, while with this condition there
can be none such.

Let L be any temporal language. We define a model for L as a tuple 〈T ,<,D, I〉,
where 〈T ,<,D〉 is a structure and I (interpretation) a function taking each constant
of the language into an element of D =

⋃
u∈T D(u), and each k-place predicate of

the language and each time into a set of k-tuples of elements of D , with the usual
constraint regarding the identity predicate:
• For all t ∈T , 〈o,o∗〉 ∈ I(===, t) iff o = o∗.
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The model is called proper if the underlying structure is proper, and if in addition I
satisfies the following condition regarding T:
• For all t ∈T , 〈o〉 ∈ I(T, t) iff o ∈T .

We say that a proper model for L is presentist / expansionist iff the underlying struc-
ture is presentist / expansionist.

The truth-conditions for the L-formulas in model M = 〈T ,<,D, I〉 at a time t
relative to a variable-assignment r for L are specified as follows (Ir(m) is I(m) if m
is a constant, and r(m) if m is a variable):
• t �M

r Fm1...mk iff 〈Ir(m1), ..., Ir(mk)〉 ∈ I(F, t) for any k-place predicate F.
• t �M

r ¬φ iff t 2M
r φ .

• t �M
r φ ∨ψ iff t �M

r φ or t �M
r ψ .

• t �M
r ∃xφ iff t �M

r′ φ for some variable-assignment r′ differing from r at most
on x such that r′(x) ∈ D(t).
• t �M

r Hφ iff t ′ �M
r φ for all t ′ ∈T such that t ′ < t.

• t �M
r Gφ iff t ′ �M

r φ for all t ′ ∈T such that t < t ′.
We then have:
• t �M

r ∀xφ iff t �r′ φ for all variable-assignments r′ differing from r at most on
x such that r′(x) ∈ D(t).
• t �M

r Pφ iff t ′ �r φ for some t ′ ∈T such that t ′ < t.
• t �M

r Fφ iff t ′ �r φ for some t ′ ∈T such that t < t ′.
• t �M

r Sφ iff t ′ �r φ for some t ′ ∈T .
• t �M

r Aφ iff t ′ �r φ for all t ′ ∈T .
• t �M

r Em iff Ir(m) ∈ D(t).
Where φ is an L-formula and M a model for L, φ is said to L-hold in M iff φ is true
at all times of M relative to all variable-assignments for L.

The models for temporal languages as they have been defined here are nothing but
standard variable domain models for first-order quantified Priorean languages with
identity, and the semantic clauses put forward are also completely standard. What
is non-standard about the proposed semantics is the focus on proper models, more
precisely on models in which each point of evaluation belongs to its own domain,
and which assign to a distinguished predicate (T, in our case) an extension whose
members are points of evaluation.

The reader will have noticed that nothing has been said about the other distin-
guished predicate of temporal languages, namely the temporal location predicate L.
There are indeed a number of different ways of characterising the notion of tempo-
ral location that are available in the present context, and on our view none of these
characterisations is more suited to subserve one version of temporaryism rather than
the other. Rather than making a particular decision on this issue right from the start,
or already working with a full range of different options, we prefer, for the sake of
perspicuity, to postpone the treatment of temporal location (see section 8).

4 Digression: presentness, precedence and truth

Consider a temporal language with a monadic predicate PRES intended to express
the property of being a present time, a binary predicate <<< for precedence between
times, enriched with a truth operator @ such that for m a term and φ a formula,
@mφ is a well-formed formula, intended to express the claim that it is true at
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time m that φ . In order to properly interpret this language, the previous semantics
should be extended by adding the following truth-conditions relative to any model
M = 〈T ,<,D, I〉 and variable-assignment r:
• t �M

r PRESm iff Ir(m) = t.
• t �M

r m <<< n iff Ir(m), Ir(n) ∈T and Ir(m)< Ir(n).
• t �M

r @mφ iff Ir(m) ∈T and Ir(m) �M
r φ .

Interestingly, relative to presentist models as well as relative to expansionist models,
the special predicates and the special operator are definable (in the logical sense) us-
ing resources which belong to all temporal languages. Thus, relative to expansionist
models,
• PRESm is definable as Tm∧Em∧H¬Em,
• m <<< n as Tm∧Tn∧A(En⊃ PEm), and
• @mφ as Tm∧A(Em∧H¬Em⊃ φ).

The very same definability facts hold relative to the presentist models, although in
this case we also have that
• PRESm is definable as Tm∧Em, and
• @mφ as Tm∧A(Em⊃ φ).

Of course, these points concern logical definability; presentists and expansionists are
in principle free to accept the corresponding equivalences without regarding them as
reductive (nominal or real) definitions. Instead, they may take some or all of the three
notions as irreducible. In the present framework, the right thing for them to do would
then be to consider languages with the relevant predicate(s) or operator together with
the corresponding semantics.

As we stressed in the introduction to this paper, we believe that there might well
be no metaphysically substantive notion of presentness, and that accordingly both
presentism and expansionism should be characterised without appeal to such a no-
tion. Our view on the notions of precedence between times and truth-at-a-time is
different: we do believe that these notions are metaphysically significant. Accord-
ingly, we are in principle ready to accept formulations of presentist and expansionist
logics in languages containing both <<< and @.5 Our view, though, is that the expres-
sive resources introduced in section 2 suffice to capture both the core of presentism
and the core of expansionism.

5 The systems

We here define three Hilbert-style systems (relative to any given temporal language):
the neutral system, the presentist system Pres, and the expansionist system Exp.

The neutral system is defined by means of the following three sets of postulates:

1. AXIOMS AND RULE FROM THE PROPOSITIONAL CALCULUS

Axioms: All instances of classical tautologies.
Rule: Modus Ponens.

2. AXIOMS AND RULES FOR THE PRIOREAN OPERATORS

A1: φ ⊃ HFφ

A2: φ ⊃ GPφ

A3: H(φ ⊃ ψ)⊃ (Hφ ⊃ Hψ)
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A4: G(φ ⊃ ψ)⊃ (Gφ ⊃ Gψ)
A5: FPφ ⊃ (Pφ ∨φ ∨Fφ)
A6: PFφ ⊃ (Pφ ∨φ ∨Fφ)
A7: PPφ ⊃ Pφ

R1: φ / Hφ

R2: φ / Gφ

REMARK: A1-A4 plus R1 and R2, in addition to the classical postulates mentioned
above, define minimal tense logic. The remaining axioms correspond to the follow-
ing conditions on frames in the standard Kripke semantics: A5 corresponds to the
condition that the temporal ordering is linear in the past, A6 to the condition that the
temporal ordering is linear in the future, A7 to the condition that the temporal order-
ing is transitive (given the rest of the postulates, we could have laid down FFφ ⊃ Fφ

instead of A7).

3. AXIOMS AND RULE FOR QUANTIFICATION AND IDENTITY

A8: ∀x(φ ⊃ ψ)⊃ (∀xφ ⊃ ∀xψ)
A9: φ ⊃ ∀xφ

A10: ∀xEx
A11: ∀xφ ⊃ (Em⊃ φ [m/x])
A12: x === x
A13: x === y⊃ (φ ⊃ φ [y//x])
A14: SEm
R3: φ / ∀xφ

In A9, x is supposed not to be free in φ . In A11, φ [m/x] is the result of freely
replacing each free occurrence of x in φ by m. In A13, φ [y//x] is the result of freely
replacing zero or more free occurrences of x in φ by y.

REMARK: This is a standard set of postulates for free logic in quantified temporal
logic.

The neutral system is characterised by the models introduced in the previous sec-
tion, i.e. a formula is a theorem of the system iff it holds in all models. We will come
back to this in section 6.2.

The presentist system and the expansionist system both result from the neutral
system by adding extra axioms. They share the following axioms for T:

AT1: Tx⊃ ATx
AT2: S∃x(Tx∧S∃y(Ty∧ x 6= y)

Pres is defined by adding the following axioms:

AP1: ∃xTx
AP2: ∀x∀y(Tx∧Ty⊃ x === y)
AP3: ∀x(Tx⊃ H¬Ex)

In English: there’s a unique time, and that time never existed before. Exp is defined
by adding the following axioms instead:

AE1: ∃x(Tx∧H¬Ex)
AE2: ∀x∀y(Tx∧Ty∧H¬Ex∧H¬Ey⊃ x === y)
AE3: ∀x(Tx⊃ H¬Ex∨P(Ex∧H¬Ex))
AE4: ∀xGEx



8 F. Correia and S. Rosenkranz

In English: there’s a unique time that never existed before, every time either never
existed before or sometimes in the past existed without ever existing before, and
whatever exists will never fail to exist.

It is possible to replace AE1-AE3 by an equivalent but somewhat less cumber-
some set of axioms formulated using the predicate N (read: ‘is new’), where Nm is
defined as Em∧H¬Em:

AE1*: ∃x(Tx∧Nx)
AE2*: ∀x∀y(Tx∧Ty∧Nx∧Ny⊃ x === y)
AE3*: ∀x(Tx⊃ Nx∨PNx)

In English: there’s a unique new time, and every time either is or was new. Likewise,
AP3 could be replaced by

AP3*: ∀x(Tx⊃ Nx)

6 Soundness and completeness

Let L be a temporal language, held fixed throughout this section, in which we as-
sume that Pres and Exp are formulated. The aim is to show that an L-formula is a
theorem of Pres iff it L-holds in all presentist models for L, and that an L-formula
is a theorem of Exp iff it L-holds in all expansionist models for L. We establish the
“only if” direction of these two claims in section 6.1, and the “if” direction in section
6.3.

6.1 Soundness for Pres and Exp

Theorem 6.1 (Soundness) (1) An L-formula is a theorem of Pres only if it L-
holds in all presentist models for L. (2) An L-formula is a theorem of Exp only if it
L-holds in all expansionist models for L.

Proof Let us keep reference to L implicit for the sake of readability. It is routine
to verify that all the axioms of the neutral system hold in every model, and that each
of Modus Ponens, R1, R2 and R3 preserves the property of holding in a model. This
establishes that the neutral system is sound with respect to the class of all models,
i.e. that a formula is a theorem of the system only if it holds in all models. What
remains to be done in order to establish (1) and (2) is to verify that (a) AT1 and AT2
hold in every proper model, (b) AP1-AP3 hold in every presentist model, and (c)
AE1-AE4 hold in every expansionist model. (a) is obvious given how proper models
are required to interpret T. Let us move to (b) and (c):

(b) Let M = 〈T ,<,D, I〉 be an arbitrary presentist model, t a time of the model
and r a variable-assignment.

AP1. t �M
r ∃xTx because M is a proper model.

AP2. t �M
r ∀x∀y(Tx∧ Ty ⊃ x === y) because given that 〈T ,<,D〉 is a presentist

structure, for all u,v ∈ T , u ∈ D(v)⇒ u = v (as we emphasised right after defining
the various kinds of structures in section 3).

AP3. Suppose, for reductio, that there is a variable-assignment r′ with r′(x)∈D(t)
and t 2M

r′ Tx⊃ H¬Ex. Then r′(x) ∈ T and r′(x) ∈ D(t ′) for some t ′ such that t ′ < t.
But then r′(x) = t (see the previous point), and so we have both t ∈ D(t ′) and t ′ < t.
But this is impossible, due to condition (c2) in the definition of a presentist structure.

(c) Let M = 〈T ,<,D, I〉 be an arbitrary expansionist model, t a time of the model
and r a variable-assignment.
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AE1. Let r′ be the variable-assignment such that r′(x) = t that agrees with r
on all variables distinct from x. Then by condition (c2) in the definition of an ex-
pansionist structure, there is no t ′ such that t ′ < t and r′(x) ∈ D(t ′). It follows that
t �M

r ∃x(Tx∧H¬Ex).
AE2. Let r′ be a variable-assignment such that r′(x),r′(y) ∈ D(t) and t �M

r′ Tx∧
Ty∧H¬Ex∧H¬Ey. Then r′(x)∈T , and for no t ′ < t is it the case that r′(x)∈D(t ′).
Since M’s structure is proper, we have in particular that it is not the case that
r′(x) < t. Now since both r′(x) ∈ T and r′(x) ∈ D(t), we also have, thanks to
condition (c2) in the definition of an expansionist structure, that it is not the case
that t < r′(x). Given the totality of <, we must then have r′(x) = t. A strictly
similar argument establishes that r′(y) = t. It follows that t �M

r′ x === y. Hence,
t �M

r ∀x∀y(Tx∧Ty∧H¬Ex∧H¬Ey⊃ x === y).
AE3. Let r′ be a variable-assignment such that r′(x) ∈ D(t) and t �M

r′ Tx. Then
r′(x)∈T . By the totality of < and condition (c2) in the definition of an expansionist
structure, we must then have r′(x) = t or r′(x) < t. In the first case, condition (ii)
guarantees that we have t �M

r′ H¬Ex. In the second case, the same condition and the
fact that M is proper jointly guarantee that we have t �M

r′ P(Ex∧H¬Ex). Hence, we
have t �M

r ∀x(Tx⊃ H¬Ex∨P(Ex∧H¬Ex)).
AE4. Let r′ be a variable-assignment such that r′(x) ∈ D(t), and let t ′ be such

that t < t ′. By condition (exp) in the definition of an expansionist system, then,
r′(x) ∈ D(t ′). We thus have t �M

r′ GEx. It follows that t �M
r ∀xGEx.

6.2 The standard canonical construction For the completeness proofs, we piggy-
back on a standard canonical construction and provide a new construction on its
basis.6 We here run through the standard construction.

Where S∗ is a Hilbert-style system formulated in a language L∗ that is an exten-
sion of a standard first-order language, say that a set of L∗-formulas Γ is:
• S∗-consistent iff for no φ1, ...,φn ∈ Γ is it the case that ¬(φ1∧ ...∧φn) a theo-

rem of S∗.
• L∗-maximal iff for any L∗-formula φ , φ ∈ Γ or ¬φ ∈ Γ.
• L∗-∃-saturated iff if ∃xδ ∈ Γ, then for some L∗-variable y, Ey∧δ [y/x] ∈ Γ.
• L∗-♦∃-saturated iff for all n ≥ 1, all L∗-formulas δ1, ..., δn and δ , and all
♦1, ..., ♦n in {P,F}, if ♦n(δn∧♦n−1(...♦1(δ1∧∃xδ )...)) ∈ Γ, then for some
L-variable y, ♦n(δn∧♦n−1(...♦1(δ1∧Ey∧δ [y/x])...)) ∈ Γ.
• S∗-nice iff it has the previous four properties.

Let L+ be a temporal language obtained from L by adding a countably infinite
set of new variables. Up until the formulation of proposition 6.8 below, S will be
any given extension of the neutral system formulated in L, and S+ will be the same
extension but formulated in L+.

Proposition 6.2 (Lindenbaum Lemma) Every S-consistent set of L-formulas can
be extended to an S+-nice set of L+-formulas.

Proof Let Σ be an S-consistent set of L-formulas. Suppose given an enumeration
of all the L+-formulas, and an enumeration of all the L+-variables. Define a series
Σ0, Σ1, ... of sets of L+-formulas as follows:

1. Σ0 = Σ.
2. If φk+1 is the (k+1)th L+-formula of our enumeration (k≥ 0), Σk+1 is defined

according to the following conditions:
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(a) If Σk ∪{φk+1} is not S+-consistent, then Σk+1 = Σk.
(b) If Σk ∪{φk+1} is S+-consistent and φk+1 is neither of the form ∃xδ nor

of the form ♦n(δn∧♦n−1(...♦1(δ1∧∃xδ )...)), then Σk+1 = Σk∪{φk+1}.
(c) If Σk ∪ {φk+1} is S+-consistent and φk+1 is of the form ∃xδ , then

Σk+1 = Σk ∪ {φk+1} ∪ {Ey∧ δ [y/x]}, where y is the first L+-variable
not to appear in Σk or in φk+1 (there are such variables, since L+ has
infinitely more variables than L).

(d) If Σk ∪{φk+1} is S+-consistent and φk+1 is of the form ♦n(δn∧♦n−1(...
♦1(δ1 ∧∃xδ )...)), then Σk+1 = Σk ∪{φk+1}∪{♦n(δn ∧♦n−1(...♦1(δ1∧
Ey∧δ [y/x])...))}, where y is the first L+-variable not to appear in Σk or
in φk+1 (again, there are such variables).

Define Σ+ =
⋃

k≥0 Sk. By construction, Σ+ is L+-maximal, L+-∃-saturated and L+-
♦∃-saturated. Given that Σ0 is S-consistent, it is S+-consistent. Thus if we can
establish that construction steps (c) and (d) preserve S+-consistency, then we will
have established that all the Σks, and hence Σ+ is itself, are S+-consistent, and the
proposition will be proved.

That step (c) preserves S+-consistency. Assume that Σk ∪{∃xδ}∪{Ey∧ δ [y/x]} is
not S+-consistent. Then for some ψ1, ..., ψl in Σk ∪{∃xδ}, (ψ1 ∧ ...∧ψl) ⊃ (Ey ⊃
¬δ [y/x]) is a theorem of S+. Then by R3 and A9, (ψ1∧ ...∧ψl)⊃∀y(Ey⊃¬δ [y/x])
is a theorem of S+, and hence by A8 and A10, so is (ψ1∧ ...∧ψl) ⊃ ∀y¬δ [y/x]. It
follows that Σk ∪{∃xδ} is not S+-consistent.

That step (d) preserves S+-consistency. The proof will make crucial use of the fol-
lowing fact:

FACT. α ⊃ Hβ is a theorem of S+ iff Fα ⊃ β is, and likewise α ⊃ Gβ is a
theorem of S+ iff Pα ⊃ β is.

(Only postulates of minimal tense logic are needed to establish this.)

Assume that Σk ∪ {♦n(δn ∧♦n−1(...♦1(δ1 ∧ ∃xδ )...))} ∪ {♦n(δn ∧♦n−1(...♦1(δ1∧
Ey∧ δ [y/x])...))} is not S+-consistent. Then for some ψ1, ..., ψl in Σk ∪{♦n(δn∧
♦n−1(...♦1(δ1∧∃xδ )...))},
• (ψ1∧ ...∧ψl)⊃�n(δn ⊃�n−1(...�1(δ1 ⊃ (Ey⊃ ¬δ [y/x]))...))

is a theorem of S+, where �i = H if ♦i = P, and �i = G if ♦i = F . Thanks to FACT,
• (�1(...(�n−1(�n(ψ1∧ ...∧ψl)∧δn))...)∧δ1)⊃ (Ey⊃ ¬δ [y/x])

is then also a theorem of S+, where �i = F if �i = H, and �i = P if �i = G. Reasoning
as in case (c), we infer that
• (�1(...(�n−1(�n(ψ1∧ ...∧ψl)∧δn))...)∧δ1)⊃ ∀y¬δ [y/x]

is a theorem of S+. Using FACT again, we conclude that
• (ψ1∧ ...∧ψl)⊃�n(δn ⊃�n−1(...�1(δ1 ⊃ ∀y¬δ [y/x])...))

is also a theorem of S+. It follows that Σk ∪{♦n(δn ∧♦n−1(...♦1(δ1 ∧∃xδ )...))} is
not S+-consistent.

Define the binary relation <S+ between S+-nice sets of L+-formulas as follows:
Γ <S+ ∆ iff φ ∈ Γ whenever Hφ ∈ ∆. Note that thanks to A1 and A2, we then have:
Γ <S+ ∆ iff φ ∈ ∆ whenever Hφ ∈ Γ. The proof of the following proposition is
routine:
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Proposition 6.3

1. <S+ is transitive. (Use A7 for the proof.)
2. <S+ is linear towards the past, i.e. for all ∆, ∆∗ and Γ, if both ∆ <S+ Γ and

∆∗ <S+ Γ, then either ∆ = ∆∗, or ∆ <S+ ∆∗, or ∆∗ <S+ ∆. (Use A5 for the
proof.)

3. <S+ is linear towards the future, i.e. for all ∆, ∆∗ and Γ, if both Γ <S+ ∆ and
Γ <S+ ∆∗, then either ∆ = ∆∗, or ∆ <S+ ∆∗, or ∆∗ <S+ ∆. (Use A6 for the
proof.)

Proposition 6.4 For all S+-nice sets of L+-formulas ∆ and all L+-formulas φ :

1. Hφ ∈ ∆ iff for all S+-nice set of L+-formulas Γ such that Γ <S+ ∆, φ ∈ Γ.
2. Gφ ∈ ∆ iff for all S+-nice set of L+-formulas Γ such that ∆ <S+ Γ, φ ∈ Γ.

Proof We only go through the proof of the first claim, the proof of the second
claim being almost identical. The left-to-right direction is immediate. For the other
direction, we first establish the following proposition:

• Let ∆ be an S+-nice sets of L+-formulas such that Hφ /∈ ∆. Then there is
a set of L+-formulas Γ that is S+-consistent, L+-∃-saturated and L+–♦∃-
saturated, and such that {¬φ}∪{ψ : Hψ ∈ ∆} ⊆ Γ.

The proposition yields the desired result. For let Γ∗ be an L+-maximal, S+-
consistent extension of Γ. By construction, Γ∗ is both L+-∃-saturated and L+-♦∃-
saturated, and hence it is S+-nice. Since Γ∗ extends Γ, we have Γ∗ <S+ ∆ and
φ /∈ Γ∗.

Now to the proof of the proposition. Let ∆ be as stated, and let Ω be {ψ : Hψ ∈ ∆}.
Enumerate all the L+-formulas of type ∃xδ or ♦n(δn ∧♦n−1(...♦1(δ1 ∧∃xδ )...)),
labelling them φ1, φ2, ..., and also enumerate all the L+-variables. We build a series
of sets of L+-formulas Γ0, Γ1, ... with:

1. Γ0 = Ω∪{¬φ}.
2. If Γn∪{φn+1} is S+-inconsistent, then Γn+1 = Γn.
3. If Γn∪{φn+1} is S+-consistent, then:

3.1 For the case in which φn+1 is ∃xδ :
Γn+1 = Γn∪{∃xδ}∪{Ey∧δ [y/x]}, where y is the first L+-variable such
that Γn∪{∃xδ}∪{Ey∧δ [y/x]} is S+-consistent.

3.2 For the case in which φn+1 is ♦n(δn−1∧♦n−1(...♦1(δ1∧∃xδ )...)):
Γn+1 = Γn ∪{♦n(δn−1 ∧♦n−1(...♦1(δ1 ∧∃xδ )...))}∪ {♦n(δn−1 ∧♦n−1
(...♦1(δ1 ∧Ey∧ δ [y/x])...))}, where y is the first L+-variable such that
Γn ∪ {♦n(δn−1 ∧ ♦n−1(...♦1(δ1 ∧ ∃xδ )...))} ∪ {♦n(δn−1 ∧ ♦n−1(...♦1
(δ1∧Ey∧δ [y/x])...))} is S+-consistent.

We need to show that in each of the cases 3.1 and 3.2, there is an L+-variable y
satisfying the corresponding condition. Given that Γ0 is S+-consistent, once this
is done, the proposition will be established: the union of all the Γns has all the
properties required.

Suppose, then, that Γn∪{φn+1} is S+-consistent, and let us show that in each of the
cases 3.1 and 3.2, there is a variable satisfying the relevant condition.
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Consider first case 3.2. Let us abbreviate ♦n(δn−1∧♦n−1(...♦1(δ1∧X)...)) to Ξ(X).
Assume for reductio that there is no L+-variable y satisfying the condition men-
tioned, i.e. that for every L+-variable y, Γn ∪{Ξ(∃xδ )}∪ {Ξ(Ey∧ δ [y/x])} is not
S+-consistent. Let Θ be Γn−Ω. Θ is thus finite. Let y be any arbitrary L+-variable.
Then for some {ω1, ...,ωm}⊆Ω, (ω1∧...∧ωm)⊃ (

∧
Θ∧Ξ(∃xδ )⊃¬Ξ(Ey∧δ [y/x]))

is a theorem of S+. (In case Θ is empty, let
∧

Θ be any tautology without free vari-
ables.) We infer that (Hω1 ∧ ...∧Hωm) ⊃ H(

∧
Θ∧Ξ(∃xδ ) ⊃ ¬Ξ(Ey∧ δ [y/x])) is

also a theorem of S+. Given that ∆ is both L+-maximal and S+-consistent, it follows
that H(

∧
Θ∧Ξ(∃xδ )⊃ ¬Ξ(Ey∧δ [y/x])) ∈ ∆.

We then want to prove that for some L+-variable z, H(
∧

Θ∧Ξ(∃xδ )⊃ ¬Ξ(∃z(Ez∧
δ [z/x]))) ∈ ∆. Take any L+-variable z not in δ . Assume for reductio that
H(

∧
Θ∧Ξ(∃xδ ) ⊃ ¬Ξ(∃z(Ez∧ δ [z/x]))) /∈ ∆. Then P(

∧
Θ∧Ξ(∃xδ )∧Ξ(∃z(Ez∧

δ [z/x]))) ∈ ∆. Since ∆ is L+-♦∃-saturated, we then have P(
∧

Θ∧Ξ(∃xδ )∧Ξ(Et∧
δ [t/x])) ∈ ∆ for some L+-variable t. By the fact established in the previous para-
graph, it follows that P(Ξ(Et ∧δ [t/x])∧¬Ξ(Et ∧δ [t/x])) ∈ ∆ for some L+-variable
t. But this is impossible since ∆ is S+-consistent.

As a result, for some L+-variable z, we have: H(
∧

Θ ∧ Ξ(∃xδ ) ⊃ ¬Ξ(∃z(Ez∧
δ [z/x]))) ∈ ∆. But then H¬

∧
Θ ∈ ∆. As a consequence, ¬

∧
Θ is in Ω, and hence

Γn is S+-inconsistent. But by hypothesis, Γn is S+-consistent.

Case 3.1 is treated as case 3.2 by letting Ξ(...) be the empty context, i.e. by letting
Ξ(X) just be X .

To each S+-nice set of L+-formulas Ω we associate a standard canonical model for
L+, M∗Ω = 〈T ∗Ω,<∗Ω,D∗Ω, I∗Ω〉, whose construction goes as follows. Say that two
L+-terms m and n are Ω-equivalent iff m === n ∈Ω. By the reflexivity, symmetry and
transitivity of ===, the relation so defined is indeed an equivalence relation. We let [m]
be the class of L+-terms which are Ω-equivalent to m. We then lay down:
• T ∗Ω = the set consisting of Ω and all the S+-nice sets of L+-formulas Γ

such that Γ <S+ Ω or Ω <S+ Γ.
• Γ <∗Ω ∆ iff Γ,∆ ∈T ∗Ω and Γ <S+ ∆.
• D∗Ω(∆) = {[m] : Em ∈ ∆}.
• I∗Ω(a) = [a], and 〈[m1], ..., [mk]〉 ∈ I∗Ω(F,∆) iff Fm1...mk ∈ ∆, where F is a

k-place predicate.
Given proposition 6.3, we then have:

Proposition 6.5

1. <∗Ω is transitive.
2. <∗Ω is total.

And given proposition 6.4:

Proposition 6.6 For all ∆ ∈T ∗Ω and all L+-formulas φ :
1. Hφ ∈ ∆ iff for all Γ ∈T ∗Ω such that Γ <∗Ω ∆, φ ∈ Γ.
2. Gφ ∈ ∆ iff for all Γ ∈T ∗Ω such that ∆ <∗Ω Γ, φ ∈ Γ.

Given proposition 6.5(2) and proposition 6.6 and the fact that m === n ⊃ A(m === n) is
a theorem of S+, we have:
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Proposition 6.7 For all ∆,Γ ∈ T ∗Ω and L+-terms m and n: if m === n ∈ ∆, then
m === n ∈ Γ.

T ∗Ω is non-empty (it contains Ω), and thanks to A14, proposition 6.6 and the
fact that the members of T ∗Ω are L+-saturated, some D∗Ω(∆) is non-empty either.
Given proposition 6.5, then, 〈T ∗Ω,<∗Ω,D∗Ω〉 is a structure. Given 6.7, M∗Ω is
consequently indeed a model for L+. We can then prove the following by a standard
induction on the complexity of the formulas:

Proposition 6.8 (Standard Truth Lemma) Let r be the variable-assignment which
assigns the value [x] to each variable x of L+. Then for all L+-formulas φ and
∆ ∈T ∗Ω: ∆ �M∗Ω

r φ iff φ ∈ ∆.

The completeness of the neutral system with respect to the class of all models directly
follows from the Standard Truth Lemma.

Proof The argument is standard. Set S = the neutral system formulated in L. Sup-
pose that L-formula φ is not a theorem of S, i.e. that {¬φ} is S-consistent. Let then
Ω be an S+-nice extension of {¬φ} in L+. Consider the model M∗Ω as constructed
above, and let r be as specified in the Lemma. Since ¬φ ∈ Ω, φ /∈ Ω, and so by the
Lemma, Ω 2M∗Ω

r φ . This establishes that φ does not L+-hold in all models for L+.
Now M∗Ω is a model for L+, but it is also a model for L. Where s is the restriction of
r to the L-variables, we also have Ω 2M∗Ω

s φ . Hence, φ does not L-hold in all models
for L.

6.3 Completeness for Pres and Exp The previous construction is not suited to our
aim, because the models M∗Ω we obtain via the construction are not based on proper
structures. But we can hijack this construction to build suitable models. From here
on, we assume that the base system S formulated in L is either Pres or Exp, and that
S+ is the same system but formulated in L+.

Consider a model for L+, M∗Ω = 〈T ∗Ω,<∗Ω,D∗Ω, I∗Ω〉, as constructed above.
The main idea is to replace each member ∆ of T ∗Ω by a distinguished member
t(∆) of D∗Ω(∆). Function t is defined differently according to whether S is Pres
or Exp. In the first case, we put: t(∆) = [m], where m is some L+-term such that
Tm∧ Em ∈ ∆. For any ∆ ∈ T ∗Ω, AP1 guarantees that there is at least one term
meeting the condition, and AP2 that any two terms meeting the condition are Ω-
equivalent; hence t(∆) is well-defined. In the second case, we put: t(∆) = [m], where
m is some L+-term such that Tm∧Em∧H¬Em ∈ ∆. That t(∆) is well-defined is
guaranteed this time by AE1 and AE2. (Given that AP3 belongs to the presentist
system, the second definition of t could also be used in the case of that system. Yet
it is more perspicuous to adopt the proposed definition, and doing so will also be of
some use in section 7.)

Proposition 6.9 t is injective.

Proof (a) Case S = Pres. Consider ∆ and Γ in T ∗Ω, and suppose t(∆) = t(Γ).
Then for some L+-term m, both Tm and Em belong to both ∆ and Γ. Now suppose
for reductio that ∆ 6= Γ. Then since <∗Ω is total, ∆ <∗Ω Γ or Γ <∗Ω ∆. Let us only
deal with the case ∆<∗Ω Γ, the other one being symmetrical. Since Tm,Em∈ Γ, then
by AP3, H¬Em∈ Γ. But then by proposition 6.6(1), ¬Em∈ ∆. But this is impossible
since Em ∈ ∆ and ∆ is Pres+-consistent. (b) The case S = Exp is treated in a very
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similar way (in this case AP3 need not be invoked, due to the definition of t in the
expansionist context).

Let us define the tuple MΩ = 〈T Ω,<Ω,DΩ, IΩ〉 as follows:
• T Ω = {t(∆) : ∆ ∈T ∗Ω}
• t(Γ)<Ω t(∆) iff Γ <∗Ω ∆

• DΩ(t(∆)) = D∗Ω(∆)
• IΩ(a)= I∗Ω(a), and 〈[m1], ..., [mk]〉 ∈ IΩ(F, t(∆)) iff 〈[m1], ..., [mk]〉 ∈ I∗Ω(F,∆),

where F is a k-place predicate
Given proposition 6.9, t is thus a bijection from T ∗Ω to T Ω—it is indeed an iso-
morphism from 〈T ∗Ω,<∗Ω〉 to 〈T Ω,<Ω〉. Since M∗Ω is a model for L+, so is MΩ,
and it is clear that

Proposition 6.10 For all L+-formulas φ , ∆ ∈ T ∗Ω and variable-assignments r:
t(∆) �MΩ

r φ iff ∆ �M∗Ω
r φ .

The Standard Truth Lemma then immediately yields another Truth Lemma:

Proposition 6.11 (New Truth Lemma) Let r be the variable-assignment which as-
signs the value [x] to each variable x of L+. Then for all L+-formulas φ and ∆∈T ∗Ω:
t(∆) �MΩ

r φ iff φ ∈ ∆.

Using AT1 and proposition 6.6, one can show:

Proposition 6.12 For all ∆,Γ ∈T ∗Ω and L+-terms m: if Tm ∈ ∆, then Tm ∈ Γ.

This fact can be used to establish the following proposition:

Proposition 6.13 For all ∆ ∈T ∗Ω and all L+-terms m: Tm ∈ ∆ iff [m] ∈T Ω.

Proof (a) Suppose Tm ∈ ∆. Due to A14, SEm ∈ ∆, and so by proposition 6.6,
for some Γ ∈ T ∗Ω, Em ∈ Γ. Given proposition 6.12, we also have Tm ∈ Γ. If we
assume S = Pres, then we have [m] = t(Γ). Now suppose that we have S = Exp
instead. Given AE3, we then have: either H¬Em ∈ Γ or P(Em∧H¬Em) ∈ Γ. In the
first case, [m] = t(Γ). In the second case, proposition 6.6(1) guarantees the existence
of some Λ ∈T ∗Ω such that Em∧H¬Em ∈ Λ. Given proposition 6.12, we also have
Tm ∈ Λ. It follows that [m] = t(Λ). (b) Conversely, suppose [m] ∈ T Ω. This means
that [m] = t(Γ) for some Γ ∈ T ∗Ω. But then Tm ∈ Γ, and so by proposition 6.12,
Tm ∈ ∆.

In turn, proposition 6.13 can be used to establish the following fact:

Proposition 6.14 T Ω has at least two members.

Proof By AT2, S∃x(Tx∧S∃y(Ty∧ x 6= y) ∈Ω. By proposition 6.6, then, there are
∆ and Γ in T ∗Ω and L+-terms m and n such that: Tm ∈ ∆, Tn ∈ Γ and m 6= n ∈ Γ.
By propositions 6.13 and 6.7, it follows that [m], [n] ∈T Ω and [m] 6= [n].

Given proposition 6.14 and the fact that for all t(∆) ∈T Ω, t(∆) ∈ DΩ(∆), the struc-
ture on which MΩ is based is proper. That MΩ is a proper model for L+ then follows
from proposition 6.13.

We have:

Proposition 6.15 (1) If S = Pres, then MΩ is a presentist model for L+. (2) If
S = Exp, then MΩ is an expansionist model for L+.
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Proof As we just saw, given any of the two systems, MΩ is a proper model for L+.
All we need to do here is prove that the underlying structure satisfies condition (c2),
and that it satisfies (pres) if the system is Pres, and (exp) if the system is Exp (see
the beginning of section 3 for the definition of the presentist and the expansionist
structures).

(c2). Suppose for reductio that we have both t(∆)<Ω t(Γ) and t(Γ) ∈ DΩ(t(∆)).
Let m be a term such that t(Γ) = [m]. We then have H¬Em ∈ Γ (by definition if
we work with the expansionist system, due to AP3 if we work with the presentist
system). Since t(Γ) ∈ DΩ(t(∆)), Em ∈ ∆. Now given that t(∆) <Ω t(Γ), we have
∆ <∗Ω Γ, and so by proposition 6.6(1) we get ¬Em ∈ ∆. But this is impossible since
∆ is S+-consistent.

(pres). Assume S = Pres. Suppose for reductio that we have both t(Γ) <Ω t(∆)
and t(Γ) ∈ DΩ(t(∆)). Let m be a term such that t(Γ) = [m]. We then have
Tm∧ Em ∈ Γ. Note that due to the presence of AT1 and AP3, ∀x(Tx ⊃ G¬Ex)
is a theorem of Pres. We accordingly also have G¬Em ∈ Γ. Now we can reason
as in the case of condition (ii). Since t(Γ) <Ω t(∆), we have Γ <∗Ω ∆, and so by
proposition 6.6(2) we get ¬Em ∈ ∆. But since t(Γ) ∈ DΩ(t(∆)), Em ∈ ∆. This is
impossible since ∆ is Pres+-consistent.

(exp). Assume S=Exp. Assume t(∆)<Ω t(Γ). Then ∆<∗Ω Γ. Let [m]∈DΩ(t(∆)).
Then Em ∈ ∆. By AE4 it follows that GEm ∈ ∆. Given that ∆ <∗Ω Γ and given
proposition 6.6(2), we infer Em ∈ Γ, and hence [m] ∈ DΩ(t(Γ)).

Completeness is then immediate:

Theorem 6.16 (Completeness) (1) An L-formula is a theorem of Pres if it L-holds
in every presentist model for L. (2) An L-formula is a theorem of Exp if it L-holds
in every expansionist model for L.

Proof Let φ be an L-formula that is not a theorem of Pres. Then {¬φ} is Pres-
consistent. Let Ω be a Pres+-nice extension of {¬φ} in L+, and let the model
MΩ = 〈T Ω,<Ω,DΩ,LΩ, IΩ〉 be as defined above, with S = Pres. By proposition
6.15(1), MΩ is a presentist model for L+, and hence for L. Since ¬φ ∈ Ω, φ /∈ Ω,
and so by the New Truth Lemma we get t(Ω) 2MΩ

r φ . If s is the restriction of r to
the L-variables, we then have t(Ω) 2MΩ

s φ . Hence, φ does not L-hold in MΩ. (2) is
established in the very same way, but using proposition 6.15(2) instead of proposition
6.15(1).

7 Variants

Here we describe some variants of the systems introduced above. Throughout this
section, we suppose given a fixed temporal language, which we do not bother to
mention.

7.1 An alternative to AT1 Some readers may object to axiom AT1, i.e. Tx⊃ ATx, on
the grounds that being a time entails existing: if being a time entails existing, then
a consequence of AT1 is that every time always exists, and this goes against both
presentism and expansionism. We are not impressed by this argument (why should
we believe that being a time is existence-entailing?), but we do not want to argue the
case in the present context: our characterisation of presentism and expansionism can
accommodate the view that being a time is existence-entailing.
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On the proof-theoretic side, the idea is to replace AT1 in both Pres and Exp by
the following axioms:

AT1a: Tx⊃ Ex
AT1b: Tx⊃ A(Ex⊃ Tx)

On the semantic side, the modification consists in replacing the condition on the
interpretation of T in proper models by the following condition:

• For all t ∈T , 〈o〉 ∈ I(T, t) iff both o ∈T and o ∈ D(t).

Given this condition, both AT1a and AT1b hold in every proper model. This secures
the soundness of the new systems. Assuming that the systems have AT1a and AT1b
rather than AT1, propositions 6.12 and 6.13 are false. Instead of proposition 6.12,
we have:

• For all ∆,Γ ∈T ∗Ω: if Tm ∈ ∆, then Tm ∈ Γ provided that Em ∈ Γ,

and instead of proposition 6.13, we have:

• For all ∆ ∈ T ∗Ω and all terms m of the extended language: Tm ∈ ∆ iff both
[m] ∈T Ω and Em ∈ ∆.

This latter proposition, just like proposition 6.13, guarantees that the constructed
model MΩ is a proper model for the extended language. Proposition 6.15 still holds
given the new systems (AT1 is invoked in the proof of proposition 6.15(1), as helping
secure that ∀x(Tx⊃G¬Ex) is a theorem of the presentist system, but AT1b is in fact
strong enough in the context). The completeness of the new systems then follows.

7.2 Presentism with times that precede themselves It should be clear that expan-
sionism is inconsistent with the view that some time may be earlier than itself: for
given expansionism, what exists at a time strictly includes what exists at any earlier
time, and strict inclusion is irreflexive. By contrast, on the face of it, presentism is
consistent with the view that there are times preceding themselves, in particular with
the view that time is circular. Yet our proposed logic for presentism precludes such
views. Views that entail that some times precede themselves are certainly exotic, and
it may therefore be thought that it is not problematic to discard them. However, we
would like to show that the previous material can easily be modified to leave room
for such views.

Semantically, the idea is to replace conditions (c2) and (pres) in the definition of
presentist structures by the following single condition:

(w-pres): For all u,v ∈T , u ∈ D(v)⇒ u = v.

Call the new presentist structures / models weak presentist structures / models. A
structure / model is presentist iff it is weakly presentist and its precedence relation is
irreflexive. An example of a non-irreflexive weakly presentist structure is provided
by any structure 〈T ,<,D〉 where < is universal on T and D(u) = {u} for any
u ∈T .

On the proof-theoretic side, the suggestion is to replace AP3 by the schema

AP4: ∀x(Tx∧φ ⊃ A(Ex⊃ φ))

Call the resulting system w-Pres. AP4 holds in all weak presentist models, and so w-
Pres is sound with respect to the modified presentist semantics. AP3 fails to hold in
weak presentist models with times that precede themselves. Thus, w-Pres is strictly
included in Pres.
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In order to establish completeness, a bit more work is required. The definition of
function t in the completeness proof is the same as for the original presentist system.
But the proof that t is injective must be modified. Here is an appropriate proof in the
present context:
• Consider ∆ and Γ in T ∗Ω, and suppose t(∆) = t(Γ). Then for some L+-term

m, both Tm and Em belong to both ∆ and Γ. Let φ be an arbitrary L+-formula
such that φ ∈ ∆. By AP4, then, A(Ex ⊃ φ) ∈ ∆, and so by proposition 6.6,
φ ∈ Γ. Thus, ∆ ⊆ Γ. By symmetry, we also have the converse, and hence
∆ = Γ.

The only other place in the completeness proof for Pres where AP3 plays a role is
the proof of proposition 6.15(1). What should be established in the present context is
that if the base system is w-Pres, then MΩ is a weak presentist model for L+. What
has to be proved in order to get this is the following:
• For all t(∆), t(Γ) ∈T Ω, t(∆) ∈ DΩ(t(Γ))⇒ t(∆) = t(Γ).

Here is a proof:
• Let t(∆) be [m] and t(Γ) be [n]. Assume t(∆) ∈ DΩ(t(Γ)). Then thanks to

AT1 (in fact, AT1b is already enough) and proposition 6.6, we then have
Tm,Tn,Em,En ∈ Γ. But then by AP2, [m] = [n], i.e. t(∆) = t(Γ).

With this in place, the completeness of w-Pres follows.
It should be clear that soundness and completeness are preserved if we replace

AT1 by AT1a and AT1b in the system, and make the corresponding modification in
the semantics that is described in the previous section.

8 Principles for location

Here we deal with the issue of formulating general principles governing the temporal
location predicate L. Here is a set of axioms that we find natural, whatever version
of temporaryism is accepted in the first place:

L1. Lxy⊃ ALxy
L2. Lxy⊃ Ty
L3. Lxy⊃ ¬Tx
L4. Lxy⊃ (Ey⊃ Ex)
L5. S∃yLxy⊃ (Ex⊃ ∃yLxy)

Once L1-L5 are added to any of the systems discussed so far, soundness and com-
pleteness will be preserved by requiring that the interpretation functions of the mod-
els satisfy the conditions encoded in L1-L5. We leave the details aside.

The only axiom in the list that is unquestionable is L2. L1 may be rejected on
grounds similar to those motivating rejection of AT1 that we discussed in the pre-
vious section. L3 sounds compulsory on a conception of times as “containers” in
which entities such as continuants and occurents find their place. But if we view
times as maximal fusions of contemporary instantaneous events, and we take fusions
of temporally located entities to be themselves temporally located entities, then L3
will have to be given up.

Rejecting L4 or L5 may initially look difficult. Granted that Plato’s birth is located
at time t, how could it ever be both true that t exists and false that Plato’s birth
exists? Thus prima facie, L4 seems solid. It is especially hard to see how L5 could
be rejected, given the key ontological consequences it has in the present context. The
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condition on x in its antecedent marks out the set of “temporal inhabitants”, and L5
says that no object from that category can exist without being temporally located.
Combined with Pres, w-Pres or Exp (or the variants obtained by replacing AT1 by
AT1a and AT1b), L5 yields desirable consequences. Let π be the present time (the
time at which we are speaking now). Then an object is present iff it is located at π ,
and an object is merely past (future) iff it is located at a time that precedes (succeeds)
π but not at π itself. On both Pres and w-Pres (and also on the variants that have
AT1a and AT1b instead of AT1), π is the unique time that there is, and by L5, then,
every temporal inhabitant is present, and no temporal inhabitant is merely past or
merely future. This sounds as it should be. On Exp (and the corresponding variant),
no time succeeds π , and therefore, by L5, every temporal inhabitant is either present
or not merely future. Granted that sometimes in the past, there were times occupied
by (say) Socrates and events involving Socrates, then given Exp, there are times
preceding π , and temporal inhabitants that are merely past. This again sounds as it
should be.

However, given certain ontological assumptions, counterexamples to L4 and L5
can be provided (see Correia and Rosenkranz 2018, §3.2). Assume that a set exists
only when all its members do, and that a set is temporally located whenever at least
one of its members is located. On these assumptions, and given either presentism or
expansionism, at the time t of Plato’s birth, the set {Plato’s birth, Hume’s birth} is
located at t but does not exist, while t itself does exist—contrary to what L4 entails.
Assume that a fusion exists whenever at least one of the fused objects exists, and
that a fusion is located at a time only iff at least one of the fused objects is located at
that time. Consider then the fusion of Hume’s birth and the number 7. It is located
whenever Hume’s birth is located, and hence it is sometimes located. By L5, it
should then be located whenever it exists. But given presentism or expansionism and
the extra assumption that numbers always exist, this is not the case.

These admittedly somewhat exotic counterexamples rely on substantive meta-
physical assumptions that would need to be properly assessed, of course.

9 Correia and Rosenkranz, 2013 and 2015

Let us here compare the characterisations of presentism and expansionism put for-
ward in this paper with the characterisation of presentism we advocated in Correia
and Rosenkranz 2015 (hereafter: the 2015 characterisation) and the characterisation
of expansionism we defended in Correia and Rosenkranz 2013 (hereafter: the 2013
characterisation).

The 2015 characterisation can be expressed in temporal languages as follows:
A∃x(Tx∧H¬Ex∧G¬Ex∧∀y((Ty⊃ y === x)∧ (S∃zLyz⊃ Lyx)))

Assuming the neutral system (only minimal tense logic and the proposed quantifica-
tion theory are actually enough), this characterisation is equivalent to the conjunction
of the presentist axioms of Pres, namely AP1, AP2, AP3, and of axiom L5 for tempo-
ral location. Hence, Pres + L5 can be seen as a systematisation of the non-systematic
characterisation of presentism offered in the 2015 paper. As we have argued in the
previous section, presentism seems to be compatible with the rejection of L5. Thus,
reliance on L5 makes the 2015 characterisation unsatisfactory—that is, until the on-
tological assumptions on which the counterexample to presentism + L5 were based
have been shown to be untenable.
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The 2013 characterisation is not as straightforwardly connected to Exp, for a
number of reasons: it makes use of so-called metric temporal operators and of a
predicate for presentness, which are foreign to temporal languages as we have de-
fined them, it does not state any specific principles about times, and it makes the
simplifying assumption that things in time are instantaneous, an assumption which
is acceptable given the dialectics of Correia and Rosenkranz 2013 but which we did
not take on board in the present context (and rightly so, since obviously, the content
of the assumption is not built into expansionism). However, the 2013 characterisa-
tion and Exp share a common spirit.

Given expansionism, there is a notion which is definable in all temporal languages
and whose extension is always identical to the extension of the notion of being a
present time (as the latter is usually understood), to wit the notion of being a time
that exists but never existed before (see section 4), i.e. the notion of being a time
that is new (see the end of section 5 for the definition of ‘is new’). Suppose, then,
that we understand ‘is present’ as ‘is new’. According to the 2013 characterisation,
expansionism is the view that three principles always hold. These three principles
can be formulated as follows (we here keep the original numbering):

(1) Everything either is present or was present in the past.
(2) For any positive number n, what there was n days ago still exists n days later

(i.e. now).
(3) Something is present, and for any positive number n, there is something that

was present n days ago.
Given the proposed interpretation of the presentness predicate, axiom AE3∗ is just
(1) but restricted to times. (Unrestricted (1) has to be rejected, we take it, because
it rules out the possibility of sempiternal entities, with which expansionism per se
should be compatible.) Given plausible assumptions about the relations between
the metric operators and the standard Priorean operators, the claim that (2) always
holds is equivalent to the claim that AE4 always holds. Finally, again given plausible
assumptions, in the presence of (2), (3) is equivalent to the following principle:

(3∗) Presently as well as always in the past, something is present.
Assuming the proposed interpretation of ‘is present’, (3∗) states that presently as
well as always in the past, something is new. In the neutral system, the claim that
this always holds is equivalent to the claim that always, something is new. The claim
that AE1∗ always holds is just this latter claim but with ‘something’ being restricted
to times.

10 Correia and Rosenkranz 2018

Let us finally compare the logics for presentism and expansionism put forward in
this paper with those we gave in Correia and Rosenkranz 2018 (see in particular
Appendix 1 for self-contained material).

Correia and Rosenkranz 2018 introduces just one logic for presentism and one for
expansionism. The common language of these logics is a temporal language (see sec-
tion 2) enriched with both a predicate for precedence between times and an operator
@ for truth-at-a-time. From a proof-theoretic point of view, both logics have a com-
mon core, a “neutral system” that includes our neutral system (see section 5) but has
in addition axioms for the truth-at-a-time operator and the extra-logical predicates
(namely the predicates for times, temporal location and precedence between times),
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and each is defined by that core plus a set of specific axioms. For expansionism, the
axioms are

P1: Ex⊃GEx (which amounts to our EA4 given the background logic of quan-
tification)

P2: Tx⊃@xH¬Ex

and for presentism they are
P2: Tx⊃@xH¬Ex
P3: Tx⊃@xG¬Ex

The models for presentism and those for expansionism are, cosmetic details aside,
the same as the models introduced in this paper but with one important difference:
in each type of model, the precedence relation is required to be irreflexive.

This latter point could be used to argue against the characterisation of presentism
provided in Correia and Rosenkranz 2018 (see section 7.2), but there is a much more
powerful argument in favour of the characterisations of both views that we put for-
ward in this paper. What our study shows is that both presentism and expansionism
can be characterised in a language that is extremely lean by the standards of tempo-
raryism: a first-order language with identity, enriched with a pair of simple Priorean
operators, a predicate for times and a predicate for temporal location. As we ad-
vertised in section 1, there is no need for a presentness predicate, let alone for two
predicates expressing distinct notions of presentness, for predicates that are neither
tensed nor non-tensed, or for non-standard operators of the sorts mentioned in Sider
2001 and Tooley 1997. As we have established here, there is no need either for a
truth-at-a-time operator, contrary to what the results we established in Correia and
Rosenkranz 2018 would seem to suggest.7

Notes

1. According to a far less prominent, but nonetheless noteworthy view, which we might call
the shrinking block theory of time, everything in time is present or will be present, and
something in time is not present (cf. Dummett 2004).

2. The qualification between brackets, which will be mostly left implicit in what follows, is
important since it is not our intention to provide characterisations that fit all possible, or
even all extant, conceptions of presentism and expansionism.

3. Our characterisations of presentist views should also refute the recently advanced claim
that presentism either is trivial or inadvertently collapses into permanentism (see e.g.
Crisp 2004; Meyer 2005 and 2013; for further references, see Ingram and Tallant 2018).
Elsewhere we have argued that this claim is likely to rest on a confusion between temporal
existence and temporal location (Correia and Rosenkranz forthcoming; see also Correia
and Rosenkranz 2015 and 2018).

4. At least one prominent proponent of presentism, Arthur N. Prior, would take the extension
of T, as thus understood, to be always empty: Prior opposes time substantivalism, dislikes
events, and is indeed known for defending an ersatzist conception of time instants (see
e.g. Prior 1967, pp. 74-76 and Prior 1968). Other presentists do not follow Prior in this
regard, but are happy to postulate that there always is a concrete time (Markosian 2004:
76; cf. also Correia and Rosenkranz 2015). This discrepancy is not a problem for us since,
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as we emphasised earlier (footnote 2), our aim is not to be faithful to all possible versions
of presentism. Likewise, the fact that there may be disagreement among expansionists
about the existence of concrete times need not bother us, for the same reason.

5. The formulations advocated in Correia and Rosenkranz 2018 are of that sort; see section
10 below.

6. See Hugues and Cresswell 1996, pp. 296-302, for the case of a modal logic that is rele-
vantly similar.

7. It is also worth noting that the completeness proofs in Correia and Rosenkranz 2018 are
very different from those we provide here. They make essential use of the fact that the
object language contains a predicate for precedence and a truth-at-a-time operator, and,
unlike ours, they do not proceed via the standard construction that we develop in section
6.2.
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