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Establishing transamination as an efficient method to access novel heterobimetallic complexes, 

this study provides magnetic and structural insights of 2,2-dipyridylamide based sodium ferrate 

complexes. 
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Abstract 

Using a transamination approach to access novel Fe(II) complexes, this study presents the 

synthesis, single crystal X-ray diffraction and magnetic characterisation of a series of new iron 

complexes containing the multifunctional 2,2-dipyridylamide (DPA) ligand using iron 

bis(amide) [{Fe(HMDS)2}2] and sodium ferrate [{NaFe(HMDS)3}∞] (1) as precursors (HMDS 

= 1,1,1,3,3,3-hexamethyldisilazide).  Reactions of DPA(H) with 1 show exceptionally good 

stoichiometric control, allowing access to heteroleptic [(THF)2·NaFe(DPA)(HMDS)2] (3) and 

homoleptic [{THF·NaFe(DPA)3}∞] (4) by using 1 and 3 equivalents of DPA(H) respectively.  

Linking this methodology and co-complexation, which is a more widely used approach to 

prepare heterobimetallic complexes, 3 can also be prepared by combining NaHMDS with 

heteroleptic [{Fe(DPA)(HMDS)}2] (2).  In turn, 2 has been also synthesised and structurally 

defined by reacting [{Fe(HMDS)2}2] with one equivalent of DPA(H).  Structural studies 

demonstrate the coordination flexibility of the N-bridged bis(heterocycle) ligand DPA, with 2 

and 3 exhibiting discrete monomeric motifs, whereas 4 displays a much more intricate 

supramolecular structure, with one of its DPA ligands coordinating in a anti/anti fashion (as 

opposed to 2 and 3 where DPA shows a syn/syn conformation), which facilitates propagation 

of the structure via its central amido N. Magnetic studies confirmed the high-spin electron 

configuration of the iron(II) centres in all three compounds and revealed the existence of weak 

ferromagnetic interactions in dinuclear compound 2 (J=1.01 cm-1). 
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Introduction 

Advances in the development of cooperative heterobimetallic compounds and their application 

in synthesis continue to attract widespread interest.1–4  Exhibiting unique synergistic properties, 

mixed-metal complexes (also known as ates) can effectively execute key organic 

transformations such as deprotonative metallation,5 metal/halogen exchange6 and nucleophilic 

addition;7–9 demonstrating exceptional reactivity profiles, outperforming in many cases, 

traditional single-metal reagents.10–13  To date, most of this research activity has concentrated 

on complexes which combine an alkali-metal with an s/p block lower polarity metal such as 

Mg, Zn or Al.1–4,14,15  Some examples of the remarkable reactivity of these systems includes 

the regioselective alpha-metallation of THF and the ortho-meta’ and meta-meta’ di-

magnesiatiations of a series of arenes with sodium magnesium template base 

[Na4Mg2(TMP)6(nBu)2] (TMP = 2,2,6,6-tetramethylpiperidide).16 

Efforts to expand upon the numerous successes observed with main-group systems and extend 

these synthetic approaches to earth-abundant transition metals have so far been limited.17–20  

Iron’s inherent abundance and benign nature presents many economical and ecological 

benefits21–24 but furthermore its open-shell character introduces a new dimension of interest 

not accessible to main-group systems, namely the potential to exhibit interesting magnetic 

behaviours.25–30  Heterobimetallic compounds containing iron, known as ferrate complexes,31–

37 have garnered interest as potential key intermediates in Fe-catalysed C-C bond forming 

processes38–41 and have shown the ability to mediate other important synthetic processes.  

Indeed, Mongin has reported the metallation of aromatic and heteroaromatic substrates at 

ambient temperature using lithium ferrate complex [LiFe(TMP)3].42  Closely related to this 

work, Knochel has demonstrated the synthesis of the Fe(II) complex 

[(TMP)2Fe(MgCl2)2(LiCl)4], capable of metallating functionalised arenes to undergo 

subsequent nickel-catalysed cross-couplings with alkylhalides.43  Though elegant applications 

of ferrate complexes in organic chemistry, their constitutions remain solely putative as the 

reports provide no structural or spectroscopic characterisation.  However, Mulvey has reported 

the structurally well-defined ferrate complex [Na4Fe2(TMP)6(C6H4)], which exhibits an 

unprecedented metallating power, promoting the direct diferration of benzene.44 

Other relevant structural studies include Layfield’s work using Fe(HMDS)2 (HMDS = 

1,1,1,3,3,3-hexamethyldisilazide) to access of homo- and heterometallic Fe(II) cage 

complexes45 as well as homoleptic tris(amido) lithium ferrate complexes.46  In addition, we 
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have also reported the ferration of N-heterocyclic carbene IPr (IPr = 1,3-bis(2,6-

diisopropylphenyl)imidazol-2-ylidene) at its C4 position by sequentially reacting it with 

NaCH2SiMe3 and Fe(HMDS)2.47  Moreover, our studies on co-complexation reactions have 

shown that Na(HMDS) and Fe(HMDS)2 undergo self-assembly in non-donor solvents such as 

hexane to form novel polymeric solvent-free [{NaFe(HMDS)3}∞] (1) which exhibits an 

unusual polymeric chain structure.47 

Building on these initial studies, here we explore the reactivity of this heterobimetallic complex 

to undergo transamination reactions with 2,2’-dipyridylamine (DPA(H)) to access novel homo- 

and heteroleptic sodium ferrate complexes. 

Although less prevalent throughout organometallic chemistry than HMDS,48 amido DPA has 

been utilised in a number of varied branches of chemistry49 including materials science,50 

catalysis,51 supramolecular chemistry52 and even in cooperative bimetallic chemistry.53  Being 

the simplest of the poly 2,2’pyridyl amides, DPA can potentially coordinate through three N 

sites; one central amido N and two neutral pyridyl N atoms.54  Rotation around the two Namido-

C bonds allows for DPA to adopt three different conformations; syn/syn, syn/anti and anti/anti 

(Fig. 1).55  Within heterobimetallic chemistry, Mulvey has successfully prepared mixed 

sodium-zinc reagents containing this amide which can promote the remote alkylation of 

benzophenone at the para position of one of its phenyl groups.53 

N N N N N

N

N

N

N

syn/syn syn/anti

anti/anti  

Fig. 1  The three conformational arrangements of 2,2ʹ-dipyridylamide. 

Extending the use of this amide to mixed sodium-iron chemistry, here we report our findings 

on the synthesis of a new family of sodium ferrates.  Combining X-ray crystallographic studies 

with NMR spectroscopic and SQUID magnetisation investigations, new insights into the 

constitution and magnetic properties of these novel sodium ferrate complexes are presented. 
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Results and Discussion 

Synthetic and structural studies 

We started our investigations with single-metal amide Fe(HMDS)2,  by reacting it with one 

molar equivalent of  DPA(H) in hexane, which produced a brown solution with an off-white 

precipitate.  Addition of THF afforded a homogeneous dark solution which upon cooling to 

−30°C deposited a crop of orange crystals of heteroleptic bis(amide) [{Fe(HMDS)(DPA)}2] 

(2) in a 88% yield (Scheme 1). 
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Scheme 1  Transamination of DPA(H) with Fe(HMDS)2. 

 

 

Fig. 2  X-ray crystal structure of complex 2.  Hydrogen atoms omitted for clarity.  Thermal ellipsoids 
displayed at 50% probability level.  Selected bond distances (Å) and angles (°): Fe1-N1 1.9583(14), Fe1-N2 
2.1642(14), Fe1-N3 2.2112(15), Fe1-N(4)1 2.1044(14), Fe1---N2(1) 2.546(1), Fe1---Fe1(1) 3.3609(1); N1-

Fe1-N2 134.76(6), N1-Fe1-N3 119.34(6), N1-Fe1-N4(1) 111.04(6), N2-Fe1-N3 61.70(5), N2-Fe1-N4(1) 
113.54(5), N3-Fe1-N4(1) 97.63(5), N1-Fe1---Fe1(1) 134.078(1). 

As determined by X-ray crystallography, 2 displays a dimeric structure with a novel eight-

membered {FeNCNFeNCN} core (Fig. 2).  Two opposing Fe centres are each coordinated by 

HMDS in terminal positions whilst the DPA ligands assume bridging positions between the 

metal centres.  The DPA ligands maximise coordination to the Fe centres through their neutral 
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ring nitrogens with the pyridyl rings adopting a syn/syn conformation (a linear array of the N 

atoms) with an interplanar Py-Namido-Py (Py = pyridyl) angle of 50.458°.  Fe1 is formally five-

coordinate when considering the long contact to the opposing central amido nitrogen (Fe1---

N2(1) 2.546(1) Å); though much shorter bond distances are observed between Fe1 and amido 

nitrogens N1 and N2 (1.9583(14) and 2.1642(14) Å, respectively) and to pyridyl nitrogens N3 

and N4(1) (2.2112(15) and 2.1044(14) Å, respectively).  Discounting N2(1), a distorted 

tetrahedral geometry is present around Fe1 (average N-Fe-N angle = 106.36°, range 61.70(5)° 

to 134.76(6)°, excluding N2(1)).  The Fe1---Fe1(1) separation in 2 is 3.3609(1) Å, considerably 

elongated from that of the equivalent Fe---Fe separation in [{Fe(HMDS)2}2] at a distance of 

2.663(2) Å.56  Exhibiting a good solubility in C6D6, the paramagnetic character of 2 was 

evidenced in the five broad paramagnetically shifted resonances observed in its 1H NMR 

spectrum, ranging from 47.15 to −14.31 ppm and accounting for all protons of DPA along with 

a distinct broad singlet at 17.01 ppm integrating for 18H which can be assigned to the SiMe3 

groups.  This chemical shift is significantly different to that found for the Fe(HMDS)2 precursor 

(at 60.27 ppm).47  The solution phase magnetic moment of 2 was found to be 11.28 μB 

(determined by Evans method)57,58 which is consistent with previous examples found in the 

literature where two high-spin Fe(II) centres are connected by a bridging ligand as for example 

xxxx (Ivana, any examples here?).  

Whilst several Fe complexes containing the amine DPA(H) have been structurally defined, 59–

61 there are only two examples where Fe is bonded to  amide DPA. 62,63 The structure of 2 is 

reminiscent to that recently reported for [{Fe(Mes)(DPA)}2] resulting from the metallation of 

DPA(H) by bis(aryl) complex [{Fe(Mes)2}2], where the DPA ligands also coordinate in a syn-

syn fashion, bridging the Fe centres while the mesityl groups are bound terminally.62  

Interestingly, despite the fact that 2 eq. of DPA(H) are employed in the reaction, only one of 

mesityl groups can be replaced by the amide DPA, which contrasts with divergent reactivity 

observed with other first row transition metals (Cr, Co, Ni) which under the same conditions 

are able to form bis(amide) complexes [M2(DPA)4].62,64–68  

Encouraged by the successful transamination reaction using Fe(HMDS)2, we next assessed the 

incorporation of DPA into sodium ferrate scaffolds, using a similar approach, by treating 

homoleptic 1 with variable amounts of the amine DPA(H) (Scheme 2). 
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Scheme 2  Transamination of 1 and 3 equivalents of DPA(H) with sodium ferrate 1. 

Addition of one molar equivalent of DPA(H) to a solution of 1 in hexane immediately afforded 

a brown suspension which could be solubilised by introducing THF (Scheme 2, top).  Orange 

crystals obtained at −30°C were found to be mixed-amide sodium ferrate 

[(THF)2·NaFe(DPA)(HMDS)2] (3), recovered in a 60% yield.  Interestingly, complex 3 was 

found to be accessible by the combination of equimolar equivalents of mixed-amido iron 

complex 2 and NaHMDS in C6D6 (see Supporting Information). 
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Fig. 3  Molecular structure of complex 3.  Hydrogen atoms and disorder present in the two THF molecules 
and one SiMe3 unit omitted for clarity.  Thermal ellipsoids displayed at 50% probability level.  Selected bond 

distances (Å) and angles (°): Fe1-N2 2.1723(13), Fe1-N3 2.1844(14), Fe1-N4 1.9769(14), Fe1-N5 
2.0171(14), Fe1---Na1 3.2253(7), Na1-N1 2.3822(17), Na1-N2 2.6710(15), Na1-N5 2.5464(15), Na1-O1 

2.3479(15), Na1-O2 2.3425(14); N2-Fe1-N3 61.71(5), N2-Fe1-N4 118.24(6), N2-Fe1-N5 105.93(5), N3-Fe1-
N4 103.30(6), N3-Fe1-N5 121.04(6), N4-Fe1-N5 128.42(6), Na1-N2-Fe1 82.82(5), Na1-N5-Fe1 89.16(5), 
Na1---Fe1-N4 145.19(4), N1-Na1-N2 53.62(5), N1-Na1-N5 119.96(5), N1-Na1-O1 91.84(6), N1-Na1-O2 
98.80(6), N2-Na1-N5 79.73(5), N2-Na1-O1 94.22(5), N2-Na1-O2 152.28(5), N5-Na1-O1 131.07(6), N5-

Na1-O2 118.20(5), O1-Na1-O2 88.84(5). 

X-ray crystallographic studies of 3 confirmed successful transamination with HMDS and the 

incorporation of one DPA ligand into the ferrate structure which resides in a syn/syn 

conformation, acting as a bridge between Na1 and Fe1 to generate a monomeric contacted ion-

pair structure (Fig. 3).  DPA’s central amido nitrogen, N2, bridges between Fe1 and Na1 at 

distances of 2.1723(13) and 2.6710(15) Å, respectively, whilst neutral pyridyl nitrogens N1 

and N3 provide additional coordination to Na1 and Fe1, respectively.  The interplanar Py-

Namido-Py angle displayed by the DPA ligand in 3 is 44.281°, marginally more acute than in 2.  

As previously described for other mixed-metal systems, including sodium ferrate 1,47 

anchoring and ancillary bonding modes are present in the molecular architecture of compound 

3.69  The Fe(II) centre forms shorter and more covalent Fe-Namide bonds [ranging from 

1.9769(14) to 2.1723(13) Å], providing the foundation for the {Fe(DPA)(HDMS)2}− anion to 

which the {Na(THF)2}+ cation is affixed by a combination of weaker Na-N ancillary bonds 

involving N2, N5 and N1.  Notably a close inspection of the different metal-N(DPA) distances 

shows that while for iron both Fe-Namide and Fe-Npyridyl are comparable [2.1723(13) and 

2.1844(5) Å, respectively], in the case of Na, the interaction with the N of the pyridyl ring (N1 

in Fig. 3) is stronger than that with Namide (N2 in Fig. 3) [2.3822(17) and 2.6710(15)  Å, 

respectively] which is consistent with significant delocalisation of the negative charge of the 
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amido ligand within the pyridyl rings.  As mentioned above, although alkali-metal amido 

ferrates have already shown interesting applications in synthesis, the number of structurally 

defined complexes is scarce. Related to 2, Layfield has reported mixed lithium-iron (II) 

complex [{LiFe(BTA)(HMDS)2}2] (BTA(H) = benzotriazole), which displays a dimeric 

structure with a central {Li(BTA)}2 core  capped on each end by a Fe(HMDS)2 unit and has 

been prepared by salt-metathesis of Li(BTA) with  FeBr2. 45  

The 1H NMR spectrum of 3 in C6D6 reveals one very broad resonance at 6.39 ppm and two 

marginally sharper resonances at 4.97 and 2.12 ppm.  The extremely broad nature of the 

resonance at 6.39 ppm which also overlaps with the residual solvent signal and another 

resonance at 4.97 ppm, precludes a meaningful integration and assignment of the spectrum.  

The solution phase magnetic moment of 3 was found to be 4.93 μB (determined by Evans 

method) which is close to the expected value (4.90 μB) for a high-spin (S = 2) Fe(II) centre. 

Introduction of 3 molar equivalents of DPA(H) to a hexane solution of 1 and stirring overnight 

generated a mustard coloured suspension in a brown solution (Scheme 2, bottom).  

Recrystallisation from toluene/THF at −30°C furnished yellow plate-like crystals whose 

structure was established by X-ray crystallography to be polymeric [{THF·NaFe(DPA)3}∞] (4) 

(Fig. 4), isolated in an 70% crystalline yield. 
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Fig. 4  Asymmetric unit of complex 4.  Hydrogen atoms and co-crystallised disordered toluene omitted for 
clarity.  Thermal ellipsoids displayed at 30% probability level.  Selected bond distances (Å) and angles (°): 
Fe1-N2 2.286(4), Fe1-N3 2.177(4), Fe1-N5 2.159(3), Fe1-N6 2.262(4), Fe1-N7 2.127(3), Fe1-N9 2.101(3), 
Fe1---Na1 3.4879(17), Na1-N1 2.512(4), Na1-N2 2.571(4), Na1-N4 2.602(4), Na1-N5 2.512(4), Na1-O1 
2.362(4), Na1-N8(1) 2.480(4); N2-Fe1-N3 60.34(13), N2-Fe1-N5 92.97(13), N2-Fe1-N6 112.41(13), N2-
Fe1-N7 152.05(14), N2-Fe1-N9 93.73(14), N3-Fe1-N5 103.05(14), N3-Fe1-N6 162.71(12), N3-Fe1-N7 

92.74(14), N3-Fe1-N9 102.07(14), N5-Fe1-N6 60.46(13), N5-Fe1-N7 101.03(14), N5-Fe1-N9 154.03(14), 
N6-Fe1-N7 95.53(14), N6-Fe1-N9 93.87(13), N7-Fe1-N9 84.21(14), Na1-N2-Fe1 91.61(13), Na1-N5-Fe1 
96.31(14), N1-Na1-N2 53.13(12), N1-Na1-N4 147.38(13), N1-Na1-N5 110.86(13), N1-Na1-O1 87.01(14), 
N1-Na1-N8(1) 103.22(13), N2-Na1-N4 94.31(12), N2-Na1-N5 78.73(12), N2-Na1-O1 94.62(13), N2-Na1-
N8(1) 153.95(15), N4-Na1-N5 52.85(12), N4-Na1-O1 98.97(14), N4-Na1-N8(1) 108.15(14), N5-Na1-O1 

149.71(14), N5-Na1-N8(1) 104.14(13), O1-Na1-N8(1) 94.72(13). 

Complex 1 has undergone a three-fold transamination to release three equivalents of 

HMDS(H), incorporating three DPA ligands to furnish a new homoleptic sodium ferrate.  Two 

DPA units bridge between Na1 and Fe1, residing in syn/syn conformations as seen in 3.  

Contrastingly, the terminal DPA ligand adopts an anti/anti conformation, thus Fe1 is 

coordinated by the two pyridyl nitrogens N7 and N9 (2.127(3) and 2.101(3) Å, respectively), 

whilst bridgehead amido N8 points away to a sodium atom of a second monomer unit [at a 

distance of 2.480(4) Å] to give a novel 1D polymeric chain (Fig. 5). 
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Fig. 5  Section of polymeric chain in 4 showing propagation and selected atom labelling, Na1-N8(1) 2.480(4) 
Å.  Hydrogen atoms and co-crystallised disordered toluene omitted for clarity.  Thermal ellipsoids displayed 

at 30% probability level. 

The Fe(II) centre is hexacoordinated residing coordinating to 6 N atoms in a highly distorted 

octahedral environment [NFeN angles ranging from 60.34(13)° to 162.71(12)°].  Along with 

the pseudo-terminal DPA ligand with an anti/anti conformation (vide supra),  Fe1 completes 

its coordination by bonding to amido N2 and N5 at distances of 2.286(4) and 2.159(3) Å, 

respectively and two  further pyridyl N3 and N6 at distances of 2.177(4) and 2.262(4) Å, 

respectively.  Looking at the sodium coordination, it binds the two bridging DPA ligands 

thorough their amido N and one of their pyridyl rings (N2, N5 and N1, N4 respectively) giving 

rise to interactions of similar strength despite the different types of N atoms involved in the 

bonding [Na-N distances ranging from 2.512(4) to 2.602(4) Å].  Coordinative saturation is 

achieved by binding to a molecule of THF and by interacting with the amido N of a DPA unit 

from a neighbouring unit (N8) which allows the propagation of the polymeric structure (vide 

supra, Fig. 5).  Noticeably this supramolecular Fe-N interaction [2.480(4) Å] is shorter than 

those observed within the asymmetric unit of 4 (average Fe-N 2.549 Å). 

In addition, the bridging DPA ligands in 4 effectively mirror one another by significant twisting 

of the pyridyl rings from the {Na1-N2-Fe1-N5} core plane, maximising Npyridyl coordination 

to both metal centres (Fig. 6).  Incorporating two bridging DPA groups in syn/syn 

conformations, translates in an appreciably larger Na---Fe separation [3.4879(17) Å] in 4 when 

compared to sodium ferrates 1 [3.0131(13) Å] and 3 [3.2253(7) Å].  Whilst the interplanar Py-

Namido-Py angle of 50.465° for N2 DPA ligand is of similar size to the equivalent angles 
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observed in complexes 2 and 3, the N5 bridging DPA ligand displays a far more acute 

interplanar angle of 39.444°, whilst an acuter still angle of 24.384° is observed for the N8 

terminal DPA ligand in 4. 

 

Fig. 6  Alternate view of the Na/Fe core and two bridging DPA ligands of 4.  Hydrogen atoms omitted for 
clarity.  Thermal ellipsoids displayed at 30% probability level. 

Similarly to 3, the 1H NMR spectrum of 4 in C6D6 displayed a number of poorly resolved, 

broad and overlapping signals (between 0 and 30 ppm) which precluded a meaningful 

assignment of the resonances.  The solution-phase magnetic moment of 4 (5.30 μB) was 

determined using the Evans method and is consistent with a high-spin S = 2 configuration. 

 

As far as can be ascertained, complexes 3 and 4 constitute the first examples of ferrate 

chemistry which incorporate DPA in their constitution which have been prepared and 

structurally defined.  Within mixed-metal chemistry it should be noted Mulvey’s work on 

sodium zincates which include the synthesis of [(TMEDA)2Na2(μ-DPA)2Zn(tBu)2] and 

[Na(THF)6]+[Zn(tBu)2(DPA)Zn(tBu)2]−.53  In the former structure, one DPA bridges syn/syn 

between two Na atoms and another bridges in anti/anti conformation with Namido centred 

between the Na atoms and the pyridyl N atoms coordinating to Zn.  Whilst in the latter solvent 

separated ion pair, a single unit of DPA is sandwiched between two Zn centres in an anti/anti 

conformation.  From a more general perspective, Coronado has described the design of several 

mixed-metal chains containing oxalate ligands, including trimetallic complex [K(18-crown-

6)]+[Co(DPA)Fe(ox)3]− (ox = oxalate),70 which exhibits interesting magnetic properties 

although the DPA ligand in this system coordinates exclusively to Co.  



 14 

Magnetic Studies of DPA Complexes 

Can we perhaps comment  on the diferent magnetic properties between the new ferrates and 

those reported by us for {NaFe(HMDS)3} in Inorg. Chem. 2015, 54, 9201 

The electronic structure of Fe(II) in complexes 2, 3 and 4 was studied through bulk 

magnetisation measurements and (for 2) EPR spectroscopy. Thus, molar paramagnetic 

susceptibility (χM) data were collected on microcrystalline samples from 2 to 300 K, under a 

constant magnetic field of 0.5 T. Additionally, field dependent (0 to 5 T) magnetization 

measurements at 2 K were performed. 

The χMT vs T plot for 2 (Fig. 7) at 300 K features a value of χMT of 6.79 cm3 K mol–1, which 

is higher than expected for two non-interacting high-spin (HS; S = 2) Fe(II) centres (6.00 cm3 

K mol–1 if g = 2.0). The anomalous tail in this temperature region is attributed to marginal 

decomposition of the sample upon warming. A g factor of 2.13, revealing the coupling of an 

unquenched angular momentum to the electronic spin is estimated using the Curie Law near 

room temperature. This point is reached from a maximum of 9.37 cm3 K mol–1 at 9 K, which 

is followed by a sharp decrease that becomes smoother after 50 K. The maximum is attained 

through a sharp increase from a χMT value of 6.88 cm3 K mol–1 at 2 K. The latter pattern is 

ascribed to the effects of the zero-field splitting (ZFS). These effects are corroborated by the 

M/NμB vs H curve, which does not reach saturation at the highest magnetic field (it reaches 6.02 

μB at 5 T, while the expected value is 8 μB for g = 2.0 and S = 4 or two S = 2). 
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Fig. 7 Left: χMT vs T and M/NμB vs H (inset) curves of compound 2 with the best fit (solid line, see text for 
details). Right: Variable temperature X-band EPR spectra of a powdered sample of complex 2. 

A simultaneous fit of both curves was carried out using the program PHI71 by matrix 

diagonalisation of the (perturbative) anisotropic spin Hamiltonian defined in Equation 1: 

 𝐻𝐻� = 𝐷𝐷���̂�𝑆𝑖𝑖𝑖𝑖
2 −  

1
3 �̂�𝑆𝑖𝑖

2�
𝑖𝑖

+ 𝐸𝐸���̂�𝑆𝑖𝑖𝑖𝑖
2 −  �̂�𝑆𝑖𝑖𝑖𝑖

2�
𝑖𝑖

+  𝑔𝑔𝜇𝜇𝐵𝐵𝐵𝐵��̂�𝑆𝑖𝑖
𝑖𝑖

− 2𝐽𝐽��̂�𝑆1�̂�𝑆2� 
(1) 

In Eq. 1, J is the exchange constant, �̂�𝑆𝑖𝑖𝑖𝑖 (i = 1, 2; j = x, y, z) is the total spin operator of the 

individual Fe(II) ions, B is the magnetic induction and 𝜇𝜇𝐵𝐵 is the Bohr magneton, while D and 

E stand for axial and rhombic ZFS parameters, respectively. To avoid the overparameterization 

of the Hamiltonian, the isotropic g factor was fixed at 2.14. The best fit produced J = 1.01 cm-

1, D = 7.31 cm-1 and |E| = 1.36 cm-1, together with a small intermolecular interaction zJ = 0.02 

cm-1. Considering that negative values of D have been reported for other trigonal-pyramidal 

Fe(II) complexes,72,73 a second set of parameters with negative D was explored, yielding J = 

0.93 cm-1
, D = –5.59 cm-1 and |E| = 1.45 cm-1. The latter presents slightly higher deviations 

from the experiment at low temperature. In both cases, large values of the rhombic ZFS 

parameter E reflect significant distortions of the basal FeN3 plane from the ideal three-fold 

symmetry. However, a positive sign of D can be anticipated by the strong distortion of the 

coordination geometry of 2 with respect to the highly regular trigonal-pyramidal symmetry 

reported by Long et al.72,73 Instead, the ligand field in 2 brings it closer to a very distorted 

tetrahedral geometry, which in d6 ions is expected to cause positive D values.74 

The magnetic exchange between both Fe centres of the complex is consistent with the short 

distance (3.3611(6) Å) mediating between them. The most likely mechanism of this exchange 

is the spin polarization of ligand centred electronic clouds spread over each of the N–C–N 

moieties of DPA bridging the metals, and orthogonal to some of the magnetic orbitals of the 

latter. The unusual coordinating mode seen in 2 was also reported for the compound 

[{Fe(Mes)(DPA)}2].62 In the absence of magnetic studies, DFT calculations confirmed the HS 

state of the Fe(II) ions and local spin densities of 3.62 at these centres (thus showing the S = 4 

ground state). Ferromagnetic coupling within Fe(II) dinuclear complexes incorporating similar 

bridging motifs was also reported for [Fe2L4](ClO4)4 (L= 1,13,14-triaza-
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dibenz[a,j]anthracene)75 and [Fe2Br3(trop2AM)] (H-trop2AM= N,N′-bis-trop-

phenylamidine).76  

Variable temperature EPR (Fig. 7) mirrors the magnetic behaviour of 2 described above, thus 

confirming the Fe oxidation state of +2. The latter is obvious from the fact that the sample is 

EPR silent above 40 K. Down to 20 K, one resonance becomes apparent in the low-field region 

(g value of 12.93) increasing in intensity upon cooling.  The observed spectral feature is related 

to the S = 4 state of the Fe(II) dimer where a forbidden transition occurs between the Ms levels 

+4 and –4 (ΔMs = 8) which are split in zero magnetic field by ~E2/D.77 

For compounds 3 and 4, the χMT value at 300 K is (in the 3/4 format) 3.682/3.417 cm3Kmol–1 

(Fig. 8), higher than expected for an isolated HS (S=2) Fe(II) centre (calculated as 3.00 cm3 K 

mol–1 for g = 2.0) because of the effect of unquenched angular momentum. This yields a Curie 

Law estimated g factor of 2.22/2.13. The χMT vs T plot shows a nearly constant value with only 

a slightly positive slope as a result of temperature independent paramagnetism (TIP) estimated 

as 330/250 x10-6 cm3mol-1. Below 40 K, the curve drops abruptly down to 1.52/1.83 cm3Kmol–

1 at 2 K. The cause of this decline is the ZFS of the metal ions, which is also evident from the 

isothermal (2K) M/NμB vs H curves (Fig. 8), since the values from the latter at the highest 

magnetic fields are far from saturation (with a measured value of 3.01/2.57 μB compared to the 

expected of 4 μB for g=2 and S=2). Simultaneous fitting of both sets of data using the spin 

Hamiltonian defined in Eq. 2, yielded the parameters D=6.70/–10.48 cm–1 and |E|= 0.67/0.79 

cm–1 as well as weak intermolecular interaction constants zJ=0.02/0.01 cm–1. In these fits, an 

isotropic g factor and a TIP value were fixed at 2.17/2.10 and 330/250 x10-6 cm3mol-1, 

respectively. 

                                  𝐻𝐻� = 𝐷𝐷 ��̂�𝑆𝑖𝑖
2 −  1

3
�̂�𝑆2�+ 𝐸𝐸 ��̂�𝑆𝑖𝑖

2 −  �̂�𝑆𝑖𝑖
2� + 𝜇𝜇𝐵𝐵�̂�𝑆𝑔𝑔𝐵𝐵                         (2) 

For both compounds, attempts to simulate the data employing opposite signs for D were 

unsuccessful. The positive D value of 3 is consistent with that obtained for 2 given the large 

similarity of their coordination geometries. 
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Fig. 8 χMT vs T and M/NμB vs H (inset) curves of compounds 3 and 4 with their best fit (solid line, see text for 
details). 

Although the N6 coordination environment around the metal centre in 4 could be appropriate 

for the appearance of thermally induced spin-crossover, the experimental results show that this 

ion centre stays trapped in the HS state, as indicated by the crystal structure (Fe–N bond lengths 

at 123 K >2.1Å). The likely explanation is that the large distortions from the ideal octahedral 

geometry imposed by the ligands cause the putative LS state to possess higher enthalpy than 

the HS state.78 The evaluation of the local distortion from the ideal octahedron at the Fe(II) ion 

in 4 using the parameters Σ and Θ gave 142.4(5)° and 503.7(10)°, respectively, which fall into 

the reported ranges typical for the HS state.79-82 These findings are also consistent with reported 

magnetic data for other compounds with identical coordination geometry.83, 84  

The possibility that compounds 2 to 4 exhibit slow relaxation of the magnetization was 

evaluated by means of dynamic magnetization measurements. Thus, experiments under an 

oscillating (AC) field of 4 Oe were performed under zero or 1000 Oe applied constant field 

(Figs. S5 to S7). These measurements yielded, for all three compounds, superimposed curves 

for the in-phase magnetic susceptibility ( χM
' ) and no signal for the out-of-phase component 

( χM
'' ). The lack of single molecule magnet (SMM) behaviour for 4 (which could be anticipated, 

givent its large and axial ZFS parameter; D=–10.48 cm–1) can be rationalised with the existence 

of significant rhombic anisotropy, which likely accelerates the quantum tunnelling of 

magnetization, as is known for the non-Kramers ions such as high-spin Fe(II). 

 



 18 

Conclusions 

On studying transamination reactions of sodium ferrate [{NaFe(HMDS)3}∞] (1) and its parent 

iron bis(amide) Fe(HMDS)2 with 2,2’-dipyridylamine DPA(H), three new iron complexes have 

been isolated and structurally defined containing the N-bridged bis(heterocycle) ligand DPA.  

In stoichiometrically controlled processes, reacting 1 with 1 or 3 equivalents of DPA(H) 

accesses the sodium ferrates [(THF)2·NaFe(DPA)(HMDS)2] (3) and [{THF·NaFe(DPA)3}∞] 

(4) respectively.  Interestingly 3 can also be prepared using an alternative co-complexation 

approach by combining heteroleptic [{Fe(HMDS)(DPA)}2] (2) with the sodium amide 

NaHMDS.  Highlighting the coordination flexibility of this multifunctional amido ligand, 

structural studies revealed that while in 2 and 3 DPA adopts a syn/syn conformation, acting as 

a bridge between two metal centers, in homoleptic complex 4, two DPA ligands present the 

same type of conformation, whereas a remaining DPA group binds in an anti/anti fashion, 

facilitating formation of a novel intricate polymeric chain structure. SQUID magnetisation 

measurements confirmed the structural findings by establishing the presence of 

ferromagnetically coupled (compound 2, J=1.01 cm-1) and isolated high-spin Fe(II) centres 

(S=2) in compounds 3 and 4. Evaluation of the ZFS parameters yielded positive D values for 

the spin carriers in 2 and 3, with similar five-coordination geometries, and negative for 

compound 4, consistent with its the octahedral geometry. Despite its negative D= –10.48 cm–1 

parameter, this compound does not show slow relaxation of magnetization.  

Collectively these findings advance the synthesis of alkali-metal ferrates and the understanding 

of the intriguing structural/reactivity/magnetic correlations in this class of mixed-metal 

reagents.  While alkali-metal ferrates have already shown great promise in synthesis, the 

number of methods available to access these systems remains scarce.  These findings reveal 

the potential that transamination approaches offer, using tris(amido) sodium ferrate 1 as a 

precursor, to access novel homo- and heteroleptic heterobimetallic complexes. 
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