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†Institut de Qúımica Teòrica i Computacional, Universitat de Barcelona, Barcelona 08028, Spain
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Abstract

We report a new theoretical approach to solve adiabatic quantum molecular dy-

namics halfway between wave function and trajectory-based methods. The evolution

of a N -body nuclear wave function moving on a 3N -dimensional Born-Oppenheimer

potential-energy hyper-surface is rewritten in terms of single-nuclei wave functions

evolving non-unitarily on a 3-dimensional potential-energy surface that depends para-

metrically on the configuration of an ensemble of generally defined trajectories. The

scheme is exact, and together with the use of trajectory-based statistical techniques

can be exploited to circumvent the calculation and storage of many-body quantities

(e.g. wave function and potential-energy surface) whose size scales exponentially with

the number of nuclear degrees of freedom. As a proof of concept, we present numeri-

cal simulations of a 2-dimensional model Porphine where switching from concerted to

sequential double proton transfer (and back) is induced quantum mechanically.
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On the basis of the Born-Huang expansion of the molecular wave function,1 an exact de-

scription of adiabatic molecular dynamics requires the propagation of a nuclear wavepacket

on the ground-state Born-Oppenheimer potential-energy surface (gs-BOPES). This prop-

agation scheme is, somehow, computationally doubly prohibitive. Besides the computa-

tional burden associated with the propagation of the (many-body) nuclear wave function,

the calculation of the gs-BOPES constitutes, per-se, a time-independent problem that grows

exponentially with the number of electrons and nuclei. In this respect, two main classes of

computational methods have emerged depending on whether the knowledge of the gs-BOPES

is required in the full configuration space, i.e. full-quantum methods,2,3 or only at certain

reduced number of points, i.e. trajectory-based or direct methods.4,5 Whilst methods for

computing the energy of any configuration of nuclei have become quicker and more accu-

rate, full-quantum dynamics calculations still become rapidly unfeasible for large molecules.

Alternatively, direct dynamics notably reduce the computational cost of the simulations by

avoiding partially, sometimes completely, the calculation of the full gs-BOPES. This can be

done, for instance, by the use of reaction-path Hamiltonians.6,7 Nuclear quantum effects,

however, can be hardly included systematically in this second class of methods. Up to date,

only quantum-trajectory methods have the particularity of being able to describe all nuclear

quantum effects (just as full-quantum methods) and being on-the-fly simultaneously.8–11

Unfortunately, these methods have serious problems in dealing with the so-called Quan-

tum Potential, which gathers, by definition, all quantum information on the system. The

mathematical structure of the Quantum Potential depends on the inverse of the quantum

probability density and thus its manipulation entails serious instability problems.12–14

We report here an exact theoretical approach to solve adiabatic quantum molecular

dynamics based on the use of conditional wave functions (CWFs), halfway between full-

quantum and trajectory-based methods. Whereas the concept of CWF is owing to the

formulation of the quantum measurement problem in Bohmian Mechanics,13,15 it can still be

applied to general bipartite quantum systems. The wave function associated to N degrees of
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freedom can be exactly rewritten in terms of an ensemble of CWFs associated to a subgroup

of M(< N) degrees of freedom. The corresponding equations of motion are non-unitary and

depend parametrically on trajectories that, ideally, span the full support of the probability

density in the configuration space. This idea has been successfully applied to split-up the

many-body electronic wave function in quantum transport problems16–20 and also to rewrite

the equations of motion of electrons and nuclei for nonadiabatic molecular dynamics without

the use of BOPESs.21 We focus here on the adiabatic evolution of N nuclei on the corre-

sponding gs-BOPES and demonstrate that a conditional decomposition of its many-body

wave function leads to a new class of “quasi-direct” molecular dynamics methods.

Throughout this Letter we use atomic units, and nuclear coordinates are collectively

denoted by R = {R1, ...,RN}. In the Born-Oppenheimer limit, the Born-Huang expansion1

of the molecular wave function provides a Schrödinger-like equation of motion for the nuclear

wave function Ψ(R, t),

i∂tΨ(R, t) =
( N∑
k=1

T̂k + ε(R)
)

Ψ(R, t), (1)

where T̂k =
−∇2

k

2Mk
is the kinetic energy operator of the k-th nuclei. The scalar potential ε(R)

is the 3N−dimensional gs-BOPES defined through ĤeΦR(r) = ε(R)ΦR(r), with Ĥe(r,R)

being the standard electronic Hamiltonian and r collecting all electronic coordinates. The

nuclear wave function Ψ(R, t) in Eq. (1) can be exactly decomposed in terms of an ensemble

of single-nuclei CWFs, labeled α, defined as

χαk (Rk, t) := Ψ(R, t)|R̄α
k (t), (2)

where R̄k = {R1, ..,Rk−1,Rk+1,RN}, and the ensemble of trajectories {R̄α
k (t)} explores the

support of |Ψ(R, t)|2 at any time t. To see that, we only need to realize that the CWFs can

be used to reconstruct the full nuclear wave function as Ψ(R, t) = D̂R̄k
[χαk (Rk, t)], where
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the transformation D̂R̄k
[f(R̄α

k )] =
∑∞

α=1 δ(R̄
α
k − R̄k)f(R̄α

k )/
∑∞

α=1 δ(R̄
α
k − R̄k) connects the

(parametrized) single-nuclear subspace with the full configuration space.21 Notice that in

order to avoid singularities due to the formation of nodes, the following condition is also

required: Ψ(R, t) = 0, whenever
∑∞

α=1 δ(R̄
α
k − R̄k) = 0.

For simplicity, we omit from now on the explicit time-dependence of the trajectories,

i.e. Rα = {Rα
1 (t), ...,Rα

N(t)}, in particular R̄α
k = R̄α

k (t). By evaluating Eq. (1) at R̄α
k (t),

equations of motion for each CWF, χαk (Rk, t), are immediately found:

idtχ
α
k (Rk, t) =

{
T̂k + εα(Rk)

}
χαk (Rk, t) +

N∑
j 6=k

T̂jΨ(R, t)
∣∣
R̄α
k

+ i
N∑
j 6=k

∇jΨ(R, t)
∣∣
R̄α
k

· Ṙα
j , (3)

The conditional gs-BOPES, εα(Rk), entering Eq. (3) is now a single-nuclei quantity defined

through,

Ĥα
e ΦR̄α

k
(Rk, r) = εα(Rk)ΦR̄α

k
(Rk, r), (4)

where Ĥα
e (r,Rk) is the electronic Hamiltonian evaluated at R̄α

k . Each CWF, χαk (Rk, t), is

thus a 3-dimensional slice of the full nuclear wave function taken along the k−th coordinate

(a schematic representation of the CWF can be found in Fig.1 for a simple 2-dimensional

scenario). Each CWF constitutes in addition an open quantum system. Its evolution is

non-unitary due to the last two terms in Eq. (3), in general complex functionals of the

full wave function Ψ(R, t). In one hand, the last term in (3) is a pure advective term: it

accounts for the fact that CWFs do move in configurational space guided by the trajectories

R̄α
k (schematically depicted in Fig.1). It can be simply defined as the difference between the

total and the partial time derivative of the CWF, i.e.
∑N

j 6=k∇jΨ
∣∣
R̄α
j
· Ṙα

k = dtχ
α
k − ∂tχαk . On

the other hand, the first complex potential in Eq. (3),
∑N

j 6=k T̂jΨ
∣∣
R̄α
j
, is the kinetic correlation

accounting for the interaction among CWFs. In most general conditions, both the advective

and the kinetic correlation terms are necessary to preserve the norm of the full wave function

and also the total energy of the nuclear system.21
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Figure 1: Schematic representation of the conditional wave function for a simple 2-
dimensional scenario. The full nuclear probability-density |Ψ(R1, R2, t)|2 is plot at two dif-
ferent times t0 and tf , together with the conditional probability densities |χα1 (R1, t)|2 (in
red) and |χα2 (R2, t)|2 (in blue) for a particular trajectory {Rα

1 (t), Rα
2 (t)}. Black arrows for

the velocity field {vα1 (t), vα2 (t)}, and contour plots of the full nuclear wave function are also
shown for clarity.
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In order to propose a self-consistent propagation scheme based on Eq. (3), it still remains

to define the trajectories {Rα
k}. The only requirement to be fulfilled by these trajectories is

that they explore the support of the quantum probability density ρ = |Ψ(R, t)|2 (also shown

in Fig.1). Notice that for the simplest case where Ṙα
k = 0 there is no advection, and thus, Eq.

(3) reduces to Eq. (1). Alternatively, other choices of {Rα
k} can be used to circumvent the

use of computationally demanding fixed-grid methods. Here we choose {Rα
k} to be Bohmian

trajectories because, by definition, they do sample the quantum probability density and

provide in addition an intuitive picture of quantum dynamics.13,22–27 Specifically, since Eq.(1)

is compatible with a local conservation of particles, ∂tρ =
∑N

k=1∇k(ρvk), we can interpret the

quantum probability density, ρ, as the spatial distribution of an ensemble of trajectories with

velocities, defined through the phase of the many-body nuclear wave function, vk(R, t) =

(∇kS)/Mk, where Ψ(R, t) = |Ψ(R, t)|eiS(R,t). In practice, the reconstruction of the full

nuclear phase S(R, t) can be avoided at the expense of solving N -times the number of

equations of motion.16,17,21 In this way, quantum trajectories can be computed as

Rα
k (t) = Rα

k (t0) +

∫ t

t0

vαk (Rα
k (t′), t′)dt′, (5)

where vαk (Rα
k (t), t) = ∇kS

α
k /Mk|Rα

k (t) := vk(R
α(t), t) are called conditional velocity fields,

and Sαk (Rk, t) are the phases of the nuclear CWFs χαk = |χαk |eiS
α
k .

In the remaining part of the letter we explore a first approximation to this general method

to solve quantum adiabatic dynamics. We assume a zero order expansion of the complex

functionals in Eq. (3) around each nuclear variable, i.e. T̂jΨ|R̄α
k

+ i∇jΨ|R̄α
k
· Ṙα

j = fk(R̄
α
k , t).

Since this approximation corresponds to a Hermitian limit of Eq. (3), the time evolution of

χαk (Rk, t) becomes unitary. This means that the integration of the full Schrödinger equation is

made now slice by slice. The approximated functionals entail now only pure time-dependent

phases that can be omitted because the velocity fields, vαk (Rk, t), are invariant under global

phase transformations.16,21 We call the resulting propagation scheme, i.e. Eq. (5) together
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with the Hermitian limit of Eq. (3), Hermitian Adiabatic Approach (HAA). Remarkably, the

resulting propagation scheme does not require the computation of the quantum potential, in

this manner overcoming a bottleneck in quantum trajectory-based approaches.12,28–31

In order to demonstrate the accuracy of the HAA to describe quantum molecular dy-

namics, we chose the model Porphine as designed by Smedarchina et al. 32 and later used

by Accardi et al. 33 to describe the switch from synchronous (or concerted) to sequential (or

stepwise) double-proton transfer. This model accounts for the motions of two protons (la-

beled 1 and 2) along coordinates R1 and R2, respectively, from the domains of the reactant

(R) to the product (P) (see Fig.2). The PES model is32

V (R1, R2) =
U0

∆4
0

[
(R2

1 −∆2
0)2 + (R2

2 −∆2
0)2 − 4G∆2

0R1R2

]
+ 2G(2 +G)U0. (6)

We choose here the same parameters used by Accardi et al. 33 . The parameter U0 = 0.473eV

has been fitted in Ref. 32 in order to account for the experimental results of nuclear mag-

netic resonance and laser-induced fluorescence measurements of Refs. 34–36. The other two

parameters, ∆0 = 1.251a0 and G = 0.063 are based on density functional theory calcula-

tions of Smedarchina et al. 37 at the B3LYP/6-31G* level. The resulting 2D model PES

is illustrated in Fig.3. The barriers are labeled TS (“transition states”) for two alterna-

tive reaction paths. The reaction can lead from the reactant R via alternative transitions

states TS to the intermediates (I), and subsequently via the other two TS to the product

P. In addition, Fig.3 shows a central saddle point (of second order) labeled SP2. The com-

peting synchronous reaction mechanism leads from the reactant R via SP2 to the product

P (see Fig.2). The model potential, Eq. 6, is symmetric with respect to the diagonals

R1 = ±R2. It accommodates nearly degenerate doublets of eigenstates Ψv+(R1, R2) and

Ψv−(R1, R2), with energies below the barriers TS, plus higher excited states. Following Ac-

cardi et al. 33 , to define the initial state Ψ(R1, R2, t = 0), we determine, first of all, the wave

functions Ψ0+(R1, R2) and Ψ0−(R1, R2) of the lowest doublet (v = 0). We then chose our
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Figure 2: Double proton tranfer of the model porphine. The protons move along coordinates
R1 and R2. The four snapshots represent the transfer of the two protons from reactant (R)
to product (P), sequentially along intermediate states (I) involving four transition states
(TS), or simultaneously through a second order saddle point (SP2).
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Figure 3: Potential energy surface for the model porphine, Eq. (6), adopted from Refs.
32,33. The equidistant values of the contours range from 0eV, for the potential minima for
the reactant (R) and product (P) configurations, to 2eV. The corresponding energies of the
local minima for the intermediates (I), of the four barriers labeled TS, and of the second
order saddle point (SP2) are 0.238, 0.600, and 1.069 eV, respectively.

initial state to be Ψ(R1, R2, t = 0) = Ψ0,R(R1 + ∆R,R2 + ∆R) with ∆R = −1a0, where

Ψ0,R(R1, R2) = 1√
2
(Ψ0+ + Ψ0−) is a superposition state that represents the localized ground

state wave function of the reactant (the details on how this initial state can be experimen-

tally achieved can be read in Ref. 33). The mean energy of the initial state is 4.885eV, well

above the values of the barriers TS (0.600eV), and also the saddle point SP2, (1.069eV), so

we do not expect remarkable tunneling effects during the first forward reaction.

Starting with Ψ(R1, R2, t = 0), we first sample its probability density with trajecto-

ries13,38 and then propagate Eq. (5) together with the Hermitian limit of Eq. (3). Figures

4.a and 5.a show snapshots at different times of the one-particle reduced nuclear probability

density, computed as ρ1(R1, t) =
∫
dR2|Ψ(R1, R2, t)|2 from the solution of Eq. (1) (in black

solid line), computed as ρ1(R1, t) =
∫
dR2D̂R2 [|χα1 (R1, t)|2] for the approximated solution

(in blue circles). We gain insight into this reaction by analyzing the quantum velocity fields

vα1 (R1, t) and vα2 (R2, t) computed from the approximated conditional wave functions χα1 (R1, t)
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and χα2 (R2, t) respectively. Snapshots of these velocity fields in terms of colored arrow maps

are displayed in Figs.4.b and 5.b together with the 2-dimensional gs-BOPES. The impor-

tance of quantum effects in the nuclear dynamics is revealed in Figs.4.c and 5.c, where we

superimpose contour plots of the full probability density (in red) over the quantum potential,

computed from the exact solution as Q(R1, R2, t) = −1
2M

[(∇2
R1

√
ρ)/
√
ρ+(∇2

R2

√
ρ)/
√
ρ].13,38,39

The initial synchronous mechanism of the first forward reaction is characterized by an

initial squeezing followed by rapid dispersion of the wavepacket. At time t = 2.64fs, the

wavepacket (initially designed to seat at the minimum of the gs-BOPES) is squeezed due to

its progressive accomodation to the reactant valley. As shown in Fig.4.c, a non negligible

quantum contribution to the squeezing comes from the formation of quantum potential walls

that compress the wavepacket during its propagation. The switch from the synchronous to

sequential mechanism is mediated by two distinct effects: first, the wavepacket dispersion

(at time t = 6.96fs), and second, relief reflections of the broadened wavepacket from wide

regions of the steep repulsive wall of the PES close to the minimum for the product (at time

t = 17.76fs). The density as well as the velocity field discover relief reflections40 of different

parts of the wave function into different directions. Figure 4.c at time t = 17.76fs, shows

three major directions of the scattered waves, one of them returning back toward the direc-

tion of SP2, the other two equivalent partial waves pointing toward the two intermediates

states I. The quantum potential shows a well defined grid structure with minima surrounding

each unit cell (at t = 17.76fs). This pattern of the quantum potential can be understood as

the ultimate responsible of the rising of relief interferences and the switch from concerted

to mixed double proton transfer. The consecutive minima of the quantum potential induces

a well defined pattern of fringes in Fig.4.b corresponding to alternate fast (dark blue) and

slow (light blue) nuclear velocities. This is directly translated into the formation of relief

interferences (see Figs. 4.a and 4.c at t = 17.76fs). This situation is reminiscent of the

near field interference effect arising when periodic diffracting structures are illuminated by

highly coherent light or particle beams41 (the three partial waves pointing to I and SP2
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play here the role of a diffracted wavepacket by three slits). Later on, at t = 26.64fs, the

Figure 4: Snapshots of the nuclear dynamics for the model porphine from t = 2.64fs
to t = 17.76fs. a) reduced probability density in arbitrary units for the exact solution
in black solid-line and for the approximated solution, using CWFs, in blue circles. The
density has been renormalized as ρ1(R1, t)/max(ρ1(R1, t)). b) colored arrows, from dark
blue (minimum velocity) to dark red (maximum velocity), represent the velocity field,
{v1(R1, R2, t), v2(R1, R2, t)}, imposed over contour-plots of the gs-BOPES that range from
0eV to 2eV. c) contour-plot of the full probability density (in red) on top of the quantum
potential (limited from −2eV to 2eV). The exact solution of Eq. (1) was obtained using a
fourth-order Runge-Kutta integration scheme together with a sixth-order finite differences
representation of the system Hamiltonian on a regular square grid. The HAA propagation
scheme was identically integrated within a 1-dimensional equidistant grid. Time and spatial
steps of ∆t = 0.1a.u and ∆R1 = ∆R2 = 0.017a0 where used in both cases.

probability density at the reactant achieves its second maximum (see Fig.5). Though most

parts of the wave function are going back to the domain P of the product, there are still

some other slower parts which are lack behind. The time dilatation supported by continuous

wavepacket dispersion leads to a strong proton delocalization (at time t = 47.28fs). The

interference patterns become more and more fuzzy during the second forward reaction. This

is translated into a complicate velocity field distribution that gives rise to complex phenom-

12



ena such as quantum vortices (see the inset in Fig.5.b at time t = 47.28fs). This apparently

“chaotic” flux is however fully coherent and ultimately directs the recovery of the concerted

double proton transfer at t = 55.20fs. Due to the strong time dilatation between partial

waves, the grid structure of the quantum potential associated to the sequential double pro-

ton transfer progressively dilutes into what reminds a stationary state, showing a series of

minima disposed perpendicular to the diagonal R1 = R2. Figure 5.c at times t = 47.28fs and

t = 55.20fs exemplifies this reverse switching from sequential to synchronous double proton

transfer. The above example demonstrates that the CWF method (even in its simplest her-

mitian form) is able to capture complex quantum dynamics on gs-BOPESs by preserving

quantum coherence at relative long times. The HAA is demonstrated to capture not only the

conspicuous synchronous double proton transfer for the first forward reaction, but also the

interferences originating at later times that lead to subsequent mixed sequential-concerted

reactions.

Notice that nuclear dynamics are, for this particular model problem, highly roaming. Due

to the topology of the PES and the characteristics of the initial state, the 2D nuclear prob-

ability density rapidly spreads all over the surface. The exact nuclear trajectories are thus

identically scattered all-around. In this respect, it is worth mentioning that in our approach

we are essentially solving the time-dependent molecular Schrödinger equation as a system

of coupled, but fundamentally simpler (single-particle) equations of motion. Therefore, even

for roaming dynamics, where the scaling of the number of required points of the gs-BOPES

is not specially favorable, our method still has the advantage of dealing with single-particle

wave functions.

To summarize, we present an exact decomposition of the (adiabatic) nuclear wave func-

tion in terms of single-nuclei CWFs defined in Eq.(2). Their evolution according to Eq.

(3) does only require the manipulation of single-particle quantities such as the conditional

gs-BOPESs in Eq. (4) or the CWF itself. The resulting propagation scheme lends itself as a

rigorous starting point for developing new algorithms based on a new class of “quasi-direct”
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Figure 5: Snapshots of the nuclear dynamics for the model porphine starting from t =
26.64fs to t = 55.20fs. a) reduced probability density in arbitrary units for the exact
solution in black solid-line and for the approximated solution, using CWFs, in blue circles.
The density has been renormalized as ρ1(R1, t)/max(ρ1(R1, t)). b) colored arrows, from
dark blue (minimum velocity) to dark red (maximum velocity), represent the velocity field,
{v1(R1, R2, t), v2(R1, R2, t)}, imposed over contour-plots of the gs-BOPES that range from
0eV to 2eV. c) contour-plot of the full probability density (in red) on top of the quantum
potential (limited from −2eV to 2eV). The exact solution of Eq. (1) was obtained using a
fourth-order Runge-Kutta integration scheme together with a sixth-order finite differences
representation of the system Hamiltonian on a regular square grid. The HAA propagation
scheme was identically integrated within a 1-dimensional equidistant grid. Time and spatial
steps of ∆t = 0.1a.u and ∆R1 = ∆R2 = 0.017a0 where used in both cases.
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molecular dynamics. We thus expect it to be of particular interest in scenarios where the

involved number of nuclear degrees of freedom is large and quantum effects both complex

and conspicuous. While other kind of trajectory-based statistical techniques (e.g. Feynman

paths, geodesics, etc.) can been also used to guide the CWFs, Bohmian trajectories add

an interpretative value to the method and together with the Hermitian limit of Eq. (3)

provide a numerically stable algorithm (named HAA). We expect the validity of the HAA

to break down for systems where advection and/or kinetic correlations become important.

The solution of the equations of motion in Eq. (3) will then require the use of nonstan-

dard propagation methods. In any event, it is encouraging that even a very simplified

approximation of the method is able to reproduce complex nuclear dynamics accurately. We

envision the development of more efficient/scalable algorithms based, for instance, on the

combination of our method with density-functional-based propagation schemes or quantum-

mechanics/molecular-mechanics mixed algorithms.
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(17) Albareda, G.; Suñé, J.; Oriols, X. Many-particle Hamiltonian for open systems with full

Coulomb interaction: Application to classical and quantum time-dependent simulations

of nanoscale electron devices. Phys. Rev. B 2009, 79, 075315–075331.

(18) Albareda, G.; Marian, D.; Benali, A.; Yaro, S.; Zangh, N.; Oriols, X. Time-resolved

electron transport with quantum trajectories. J. Comp. Electr. 2013, 12, 405–419.

(19) Albareda, G.; Traversa, F. L.; Benali, A.; Oriols, X. Computation of quantum electrical

currents through the Ramo-Shockley-Pellegrini theorem with trajectories. Fluct. Noise

Lett. 2012, 11, 1242008–1242019.

17



(20) Benali, A.; Traversa, F. L.; Albareda, G.; Alarcón, A.; Agouthane, M.; Oriols, X.

Effect of gate-all-around transistor geometry on the high-frequency noise: Analytical

discussion. Fluct. Noise Lett. 2012, 11, 1241002–1241013.

(21) Albareda, G.; Appel, H.; Franco, I.; Abedi, A.; Rubio, A. Correlated electron-nuclear

dynamics with conditional wave functions. Phys. Rev. Lett. 2014, 113, 083003–083008.
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