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Skewness and kurtosis in real data samples 

 
 
 

 
Abstract 

 

Parametric statistics are based on the assumption of normality. Recent findings suggest 

that Type I error and power can be adversely affected when data are non-normal. This 

paper aims to assess the distributional shape of real data by examining the values of the 

third and fourth central moments as a measurement of skewness and kurtosis in small 

samples. The analysis concerned 693 distributions with a sample size ranging from 10 

to 30. Measures of cognitive ability and of other psychological variables were included. 

The results showed that skewness ranged between -2.49 and 2.33. The values of 

kurtosis ranged between -1.92 and 7.41. Considering skewness and kurtosis together the 

results indicated that only 5.5% of distributions were close to expected values under 

normality. Although extreme contamination does not seem to be very frequent, the 

findings are consistent with previous research suggesting that normality is not the rule 

with real data. 
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Skewness and kurtosis in real data samples 

 

 Monte Carlo computer simulation studies are used in a wide variety of 

conditions to identify the effect that the violation of assumptions, such as independence, 

normality and homoscedasticity, may have on Type I error and power. Although earlier 

studies indicated that analysis of variance is robust to normal distribution violations 

with large samples (Cochran, 1947; Pearson, 1931; Scheffé, 1959; Srivastava, 1959), 

more recent research has reported a substantial effect on the power and Type I error 

rates of parametric techniques in these situations (Bradley, 1978; Clinch & Keselman, 

1982, Levine & Dunlap, 1982, Rassmussen, 1985). For example, although several 

studies have shown that the F statistic is robust when groups have the same distribution 

with a balanced design (Sawilowsky & Blair, 1992; Schmider, Ziegler, Danay, Beyer, & 

Bühner, 2010; Wu, 2007), the Type I error rate increases and power diminishes when 

distributions differ in shape (Glass, Peckham, & Sanders, 1972; Harwell, 2003; Lix, 

Keselman, & Keselman, 1996; Tiku, 1964, 1971; Wilcox, 1995).   

 These findings indicate that a normal distribution of data cannot be assumed 

simply on the basis of the robustness of parametric statistics, and that it needs to be 

checked prior to proceeding with the selected statistical test. Furthermore, there is 

evidence to suggest that real data are often not normally distributed. Micceri (1989) 

analysed the distributional characteristics of over 400 large-sample achievement and 

psychometric measures and found several classes of contamination in addition to 

asymmetry and tail weight. Other researchers have also found a variety of non-normal 

distributions in social and health sciences data, with different shapes and degrees of 

skewness and kurtosis (Brown, Weatherholt, & Burns, 2010; Harvey & Siddique, 1999, 
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2000; Hwang & Satchell, 1999; Kobayashi, 2005; Kondo, 1977; Qazi, DuMez, & 

Uckun, 2007; Shang-Wen & Ming-Hua, 2010; Van Der Linder, 2006). 

 One of the most widely used procedures for assessing distribution shape is 

Fisher’s measure of skewness (1) and kurtosis or the coefficient of excess (2), based on 

the third and fourth central moments. Values of 1=0 indicate a symmetrical shape, 

positive values mean that the curve is skewed to the right (right-tail), and negative 

values suggest skewing to the left (left-tail). The 2  coefficient has frequently been 

considered in the literature as a measure of peakedness and flatness, although other 

interpretations have also been proposed (Bandala & MacGillivray, 1988, 1990; 

DeCarlo, 1997; Ruppert, 1987). Values of 2=0 mean that the data show the same 

kurtosis as a normal distribution, N(0,1),  whereas positive values are interpreted as 

being more peaked and negative ones as flatter than the normal. However, it has been 

argued that the information obtained from these coefficients can be misleading, above 

all with small sample sizes (An & Ahmed, 2008; Bonato, in press; Henderson, 2006; 

Hill & Dixon, 1982; Micceri, 1989), and alternative robust measures have been 

proposed (Brys, Hubert, & Struyf, 2006; Groeneveld, 1998;  Groeneveld & Meeden, 

1984; Hill & Dixon, 1982; Hogg, 1974, 1982; Hogg, Fisher, & Randles, 1975; Reed & 

Stark, 1996). Nevertheless, the majority of simulation studies are based on the 

modification of 1 and 2, with two algorithms widely used for simulating the non-

normality distribution condition: Fleishman’s power transformation method (Fleishman, 

1978), extended to the multivariate situation by Vale and Maurelli (1983), and the 

generalized lambda distribution system (Ramberg, Dudewicz, Tadikamalla, & Mykytka, 

1979).   

 In these simulation studies, researchers usually select either values of 1 and 2 

that represent a well-known distribution (e.g., exponential, double exponential or 
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lognormal distributions) or several values that define non-known distributions that are 

considered to represent the real-world situation. In these cases, absolute values of 1 and 

2 less than 1.0 tend to be categorized as slight non-normality, values between 1.0 and 

about 2.3 are regarded as moderate non-normality, and values beyond 2.3 correspond to 

severe non-normality (Lei & Lomax, 2005). 

 The aim of this paper is to assess the distributional shape of real data by 

examining the values of 1 and 2 in small samples and thereby obtain a criterion for 

selecting their proper values in Monte Carlo studies. Small samples are considered 

because they correspond to what is commonly found in social science publications 

(Keselman et al., 1998; Fernández, Vallejo, Livacic-Rojas, & Tuero, 2010). 

Specifically, the analysis concerned 693 distributions corresponding to measures of 

cognitive ability and other psychological variables that were derived from 130 different 

populations, with sample size ranging from 10 to 30.  

 

Method 

Sample 

 The analysis focused on 693 distributions derived from natural groups formed in 

institutions and corresponding to 130 different populations, with sample size ranging 

from 10 to 30. Of these distributions, 192 were obtained from archive data of high 

school pupils, 175 were from psychometric studies, and 326 were measures from 

correlational studies regarding several variables. Measures of cognitive ability (N=323) 

and other psychological variables (N=370) were considered. The measures of ability 

included scores on the Dominoes Test (D-48), the Differential Aptitudes Test, Primary 

Mental Aptitudes, Letter Squares, the Identical Forms Test, the Differences Perception 

Test, Situation-1, the Toulouse-Piéron Test, the Global/Local Attention Test, the 
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Magallanes Visual Attention Scale, and the General Intelligence Factor Test. The 

measures of psychological variables included scores on the Revised Eysenck 

Personality Questionnaire, the State-Trait Anxiety Inventory, the Family Environment 

Scale, the Big-Five Questionnaire, the Beck Depression Inventory, the State-Trait 

Anger Expression Inventory, the Self-Report Altruism Scale, and the Spanish 

Psychosocial Scale. Table 1 presents the descriptive statistics related to sample size as a 

function of the type of measurement.  

 

INSERT TABLE 1 

 

Procedure 

 

 The data were obtained by request to several research groups from Spanish 

universities and had to fulfil the following requirements: a) sample size between 10 and 

30; b) they were derived from groups formed in institutions such as classrooms, 

hospitals, etc.; c) they had not undergone any data treatment; and d) they represented 

measurements of a psychological variable. Requests for data were also made to several 

high schools for archive data that met the same conditions. 

 

Data analysis 

 For each distribution, γ1 and γ2 values were calculated as measurements of 

skewness and kurtosis based on the third and fourth central moments, respectively, as 

follows:  
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   and x the sample mean. 

 

 The results are presented in the form of descriptive statistics of γ1 and γ2, box 

plots, values as a function of sample size, and frequency of contamination from normal 

distributions. In order to determine the degree of contamination, eleven cut-off points 

were arbitrarily established to define contamination in skewness and kurtosis (see Table 

2). As regards absolute values, six cut-off points were also established to define 

contamination with respect to combined skewness and kurtosis, from near normal to 

very extreme contamination. A chi-square test was applied to compare the 

contamination between the ability measures and the measures of other psychological 

variables. 

 

INSERT TABLE 2 

 

Results 

 

 Table 3 shows the descriptive statistics of skewness and kurtosis for each type of 

variable and for all distributions. The values of skewness range between -2.49 and 2.33, 

with a mean of 0.02 and 0.52 in absolute values. The values for kurtosis range between -

1.92 and 7.41, with a mean of 0.14 and 0.92 in absolute values. 

 

INSERT TABLE 3 
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 Figures 1 and 2 show the box plots of skewness and kurtosis. Values of 

skewness greater than 1.6 and less than -1.5 are considered outliers for all distributions. 

For kurtosis, values greater than 2.7 appear as outliers. These box plots suggest a 

relatively symmetric distribution of skewness and asymmetric one of kurtosis (right-

tail). 

 

INSERT FIGURES 1 AND 2 

 

 Figure 3 shows the values of skewness and kurtosis in absolute values as a 

function of sample size. Both are independent of sample size, with correlation 

coefficients near zero: .03 and -.02, respectively. These results indicate that values of 

skewness and kurtosis are similar across the samples with between 10 and 30 

individuals.  

 

INSERT FIGURE 3 

 

 Table 4 shows the percentage of contamination according to the arbitrary cut-off 

points. In relation to skewness the results show that 30.9% of the distributions present 

negative values, 34.1% values close to a symmetrical distribution, and 35% a positive 

value. As regards kurtosis, 45.7% of the distributions present a negative value, 19.2% 

values close to a normal distribution, and 35.1% a positive value.  

 

INSERT TABLE 4 
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 Table 5 shows the joint distribution of skewness and kurtosis across the arbitrary 

cut-off points of contamination. Only 5.5% of the distributions were close to expected 

values under normality. The highest percentage of distributions found, 12.3%, 

corresponds to values of skewness between -0.25 and 0.25 and of kurtosis between -

1.25 and -0.76. 

 

INSERT TABLE 5 

 

 Of the eleven cut-off points, six were established, independently of the sign, to 

define contamination with combined skewness and kurtosis values. These six points 

correspond to the squares indicated in Table 5. The maximum values of skewness and 

kurtosis are shown in Table 6 with the percentage of distributions as a function of the 

type of variable. The results show that ability measures are less contaminated than are 

measures of other psychological variables (χ2(5) = 25.394, p < .01).  

 

INSERT TABLE 6 

 

Discussion 

 

The aim of this paper was to assess the distributional shape of real data by 

examining the values of skewness and kurtosis in small samples. A total of 693 

distributions, including measures of cognitive ability and other psychological variables, 

were analysed. For each distribution, γ1 and γ2 values were calculated as measurements 

of skewness and kurtosis based on the third and fourth central moments, respectively. 
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 The results indicate that values of γ1 ranged between -2.49 and 2.33, with   

34.1% presenting values close to a symmetrical distribution. Values of γ2 ranged 

between -1.92 and 7.41, and only 19.2% presented values close to zero. Furthermore, 

kurtosis values far from zero were more frequent than were values of skewness. Both 

coefficients were independent of sample size. 

Considering γ1 and γ2 jointly, only 5.5% of the distributions were close to 

expected values under normality. Overall, 39.9% of distributions were slightly non-

normal, with maximum values (in absolute terms) of both coefficients being in the 

range 0.26 to 0.75. A further 34.5% of distributions were moderately non-normal, with 

values in the range 0.76 to 1.25. Finally, 2.6% of distributions showed high 

contamination (range 1.26 to 1.75), while 10.4% and 7% can be considered as 

presenting extreme (range 1.76 to 2.25) and very extreme (greater than 2.25) 

contamination, respectively. Thus, 74.4% of distributions presented either slight or 

moderate contamination, while 20% showed a more extreme contamination. These 

results indicate that normality is not the rule with small samples and are consistent with 

the conclusions of other researchers who have found a variety of non-normal 

distributions in social and health sciences data (Brown et al., 2010; Harvey & Siddique, 

1999, 2000; Hwang & Satchell, 1999; Kobayashi, 2005; Kondo, 1977; Micceri, 1989; 

Qazi et al., 2007; Shang-Wen & Ming-Hua, 2010; Van Der Linder, 2006). However, 

extreme departures from the normal distribution do not seem to be very frequent in the 

distributions analysed here. The present results also indicate that ability measures are 

less contaminated than are measures of other psychological variables such as 

personality, anxiety, depression, etc., being this finding consistent with Micceri (1989) 

The real data analysed here did not represent values of skewness and kurtosis as 

those used in many Monte Carlo studies of statistical robustness. This suggests that 
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researchers might improve the relevance of their robustness findings by using a range of 

typical, for their discipline, empirical rather than theoretical distributions. At all events, 

researchers should check rather than assume that data are normally distributed, and 

should consider using the non-parametric statistics and tests with robust estimators that 

have been proposed as alternatives to parametric tests for independent groups and 

repeated measures if the power and Type I and Type II error rates are distorted (e.g., 

Akritas & Brunner, 1997a, 1997b, 2003; Brunner, Domhof, & Langer, 2002; Brunner & 

Puri, 2002; Heritier, Cantoni, Copt, & Victoria-Feser, 2009; Keselman et al., 2008;  Luh 

& Guo, 2001, 2004; Rauf, Werner, & Brunner, 2008; Shah & Madden, 2004; Wilcox, 

1993, 2001, 2002, 2003, 2005, 2009; Wilcox & Keselman, 2001). 
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Table 1. Descriptive statistics related to sample size as a function of type of 

measurement (N=693). 

 

 

Variables 
Mean Median Mode 

Standard 

Deviations
Minimum Maximum

Ability 20.57 21 24 5.09 10 30 

Other psychological variables 20.02 20 21 4.66 10 29 

 

 



SKEWNESS AND KURTOSIS IN REAL DATA 

 20

Table 2.  Arbitrary cut-off points to define contamination. 
 
 

Interval Skewness / Kurtosis  

< -2.25 Very extreme negative  

-2.25, -1.76 Extreme negative  

-1.75, -1.26 High negative  

-1.25, - 0.76 Moderate negative  

-0.75, -0.26 Slight negative  

-0.25, 0.25 Near normal 

0.26, 0.75 Slight positive  

0.76, 1.25 Moderate positive  

1.26, 1.75 High positive  

1.76, 2.25 Extreme positive  

> 2.25 Very extreme positive  
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Table 3. Descriptive statistics of skewness and kurtosis. 
 

 Mean Median Mode 
Standard 

Deviations 
Minimum Maximum Range 

Ability (N = 323) 

Skewness  -0.09 -0.04 -0.15 0.58 -2.49 1.80 4.43 

Skewness (abs)  0.45 0.37 0.05 0.39 0 2.49 2.49 

Kurtosis -0.05 -0.26 -0.71 1.17 -1.62 7.41 9.02 

Kurtosis (abs) 0.83 0.70 0.60 0.82 0.01 7.41 7.40 

Other psychological variables (N = 370) 

Skewness  0.12 0.11 0.15 0.75 -2.43 2.33 4.76 

Skewness (abs)  0.58 0.41 0.30 0.49 0 2.43 2.43 

Kurtosis 0.31 -0.03 -0.30 1.41 -1.92 6.82 8.74 

Kurtosis (abs) 1.00 0.73 0.30 1.05 0 6.82 6.82 

All distributions (N = 693) 

Skewness  0.02 0.02 0.00 0.69 -2.49 2.33 4.83 

Skewness (abs)  0.52 0.39 0.05 0.45 0 2.49 2.49 

Kurtosis 0.14 -0.17 -0.30 1.32 -1.92 7.41 9.33 

Kurtosis (abs) 0.92 0.71 0.30 0.95 0 7.41 7.41 

Note: abs: absolute value. 
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Table 4. Percentage of contamination according to the arbitrary cut-off points of 

skewness and kurtosis as a function of type of variable. 

 
  Skewness Kurtosis 

Interval Label A PV All A PV All 

< -2.25 Very extreme negative  0.3 0.3 0.3 - - - 

-2.25, -1.76 Extreme negative  0.9 0.3 0.6 - 0.3 0.1 

-1.75, -1.26 High negative  1.9 4.1 3.0 4.0 5.1 4.7 

-1.25, - 0.76 Moderate negative  9.0 5.4 6.9 24.8 17.0 20.6 

-0.75, -0.26 Slight negative  21.1 18.9 20.1 21.1 19.7 20.3 

-0.25, 0.25 Near normal 38.1 30.5 34.1 20.4 18.1 19.2 

0.26, 0.75 Slight positive  25.1 22.2 23.5 12.1 14.1 13.2 

0.76, 1.25 Moderate positive  3.4 11.1 7.5 8.0 7.0 7.6 

1.26, 1.75 High positive  - 5.1 2.8 5.3 4.3 4.7 

1.76, 2.25 Extreme positive  0.3 1.9 1.1 0.3 4.6 2.5 

> 2.25 Very extreme positive  - 0.3 0.1 4.0 9.7 7 

Notes: A: Ability; PV: Other psychological variables; All: All distributions. 
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Table 5. Percentage of distributions as a function of the arbitrary cut-off points for 

contamination by skewness and kurtosis. 

 
 

 Skewness  

Kurtosis <  
-2.25 

-2.25, 
-1.76 

-1.75, 
-1.26 

-1.25, 
- 0.76 

-0.75,  
-0.26 

-0.25, 
0.25 

0.26, 
0.75 

0.76, 
1.25 

1.26, 
1.75 

1.76, 
2.25 

> 
2.25 

< -2.25 - - - - - - - - - - - 

-2.25, -1.76 - - - - - 0.1      

-1.75, -1.26 - - - - 0.6 3.2 0.9 - - - - 

-1.25, - 0.76 - - - 0.4 3.8 12.3 4 0.1 - - - 

-0.75, -0.26 - - - 0.7 4.8 8.9 4.9 1 - - - 

-0.25, 0.25 - - - 0.4 5.5 5.5 5.8 2 - - - 

0.26, 0.75 - - - 1.6 2.6 2.5 4.9 1.3 0.3 - - 

0.76, 1.25 - - - 1.7 1.2 1.2 2 0.9 0.6 - - 

1.26, 1.75 - - 0.3 1.6 0.4 0.3 0.9 0.7 0.6 - - 

1.76, 2.25 - - 0.4 0.4 0.6 - 0.1 0.3 0.6 0.1 - 

> 2.25 0.3 0.6 2.3 0.1 0.6 0.1 
- 
 

1.2 0.7 1 0.1 
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Table 6. Percentage of distributions as a function of the arbitrary cut-off points of 

contamination. 

 
 

Maximum values of 

skewness and/or kurtosis 
Label A PV All 

0, |0.25| Near normal 6.2 4.9 5.5 

|0.26,  0.75| Slight 41.5 38.4 39.9  

|0.76,  1.25| Moderate 38.7 31.2 34.5 

|1.26,  1.75| High 9.3 11.1 2.6 

|1.76,  2.25| Extreme 0.3 4.9 10.4 

|> 2.25| Very extreme 4.0 9.7 7 

Notes: A: Ability; PV: Other psychological variables; All: All distributions. 
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 Figure 1. Box plot of skewness and kurtosis as a function of type of variable. 
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Figure 2. Box plot of skewness and kurtosis for all distributions. 
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Figure 3. Values of skewness and kurtosis in absolute values as a function of sample 

size (N) (vertical bars represent ± 2 standard deviations). 
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