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A B S T R A C T

Rheumatoid arthritis (RA) is a serious autoimmune disease that has severe impacts on both the wellbeing of
patients and the economy of the health system. Similar to many autoimmune diseases, RA concurs with a long
evolution, which eventually results in highly debilitating symptoms. Therapeutic treatments last for long periods
during RA. However, their efficiency and side effects result in suboptimal conditions. Therefore, the need for
specific, safer and nontoxic alternatives for the treatment of RA is essential.

Kv1.3 is a voltage-gated potassium channel that has a crucial role in immune system response. The pro-
liferation and activation of leukocytes are linked to differential expressions of this channel. The evidence is
particularly relevant in the aggressive T effector memory (TEM) cells, which are the main actors in the devel-
opment of autoimmune diseases. Blockage of Kv1.3 inhibits the reactivity of these cells. Furthermore, phar-
macological inhibition of Kv1.3 ameliorates symptoms in animal models of autoimmune diseases, such as ex-
perimental autoimmune encephalomyelitis or induced psoriasis with no side effects. Kv1.3 is sensitive to several
animal toxins and plant compounds, and several research groups have searched for new Kv1.3 blockers by
improving these natural molecules. The research is mainly focused on enhancing the selectivity of the blockers,
thereby reducing the potential for side effects on other related channel subunits. Higher selectivity means that
treatments will potentially be less harmful. This leads to a lower discontinuation rate of the therapy than the
current first-line treatment for RA. The molecular backgrounds of many autoimmune diseases implicate leu-
kocyte Kv1.3 and suggests that a new medication for RA is feasible. Therapies could also be later repurposed to
treat other immune system disorders.

1. Introduction

Autoimmune diseases are common maladies caused by an anom-
alous function of the immune system. Pathological activation results in
immune cells targeting cellular or organ-specific self-antigens. The
disease usually progresses to local or even systemic inflammation pro-
cesses which seriously compromise the homeostasis of the tissue, as
well as its function [1]. The consequences of autoimmune diseases are
variable as more than 80 have been reported in humans [2].

Some autoimmune diseases, such as multiple sclerosis, RA or
myasthenia gravis, cause highly debilitating effects on the wellbeing of
the patients [3–5]. Other maladies, such as type 1 diabetes mellitus or
celiac disease are equally dependent on pharmacological control [6,7].
Regardless, the total prevalence of autoimmune diseases is up to 4.5%
in the United States [8]. Therefore, autoimmune diseases do not just
threaten the wellbeing of millions of people worldwide but also present
a high socioeconomic impact.

Autoimmune diseases do not typically trigger acute illnesses;

however, their symptoms appear as an accumulation of hidden insults
to certain tissues in a chronic manner [9]. During development, T and B
lymphocytes reactive to self-antigens can be produced. These cells tend
to be wiped out or functionally silenced early on by a process of
overactivation (tolerance) [10]. Nevertheless, these mechanisms fail in
diverse ways, generating lymphocytes that should not be reactive.

Several theories claim differential onsets for this event. The cryptic
determinant theory states that some antigens or antigen determinants
are usually hidden from immune detection [11]. This could be because
an antigen is in a remote location (e.g., the eye) or because the typical
conformation of a protein normally hides the antigenic determinant.
The inaccessibility of the antigen results in self-antigen-reactive lym-
phocytes, which are not correctly silenced. Other theories support for-
eign antigens mimicking self-antigens [12], which cause cross-re-
activity from the lymphocytes and alterations of the glycosylation
profile of the immune system components [13]. The most controversial
hypothesis, though, links the high penetrance of autoimmune diseases
in developed countries with a higher level of hygiene [14].
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Theoretically, improved hygiene results in lymphocytes being exposed
to fewer antigens and are, therefore, overreactive to self-antigens.
Neither of these theories has been proven to be the main cause of au-
toimmune diseases, which suggests that it may be a combination of all
of them. Additionally, the existence of familial forms of these diseases
and differences between the familial and sporadic forms reveals a ge-
netic implication for pathogenicity [15–17]. Therefore, the

pathophysiology of autoimmune diseases shows a complexity compar-
able to those of cancer processes.

In autoimmune diseases, the voltage-dependent potassium channel
Kv1.3 plays a paramount role. T helper lymphocytes activate in contact
with an APC (antigen presenting cell), such as macrophages or B lym-
phocytes (Fig. 1). APC presents the antigen to T helper cells using MHC
II. The detection begins an intracellular signaling cascade. The antigen

Fig. 1. Summary of T lymphocyte activation im-
plicating the Kv1.3 channel. T lymphocytes and an-
tigen presenting cells (APC) share Kv1.3 expression.
However, APC exhibit a notable amount of Kv1.5 and
KCNE4 that further modulate Kv1.3. Antigen pre-
sentation by the MHC (major histocompatibility
complex)/TCR recognition initiates a signal trans-
duction cascade, which implies the activation of
phospholipase Cγ (PLC). PLC activates diacylglycerol
(DAG) and 1,4,5-inositol trisphosphate (IP3) trig-
gering the depletion of internal ER (endoplasmic re-
ticulum) Ca2+ stores. The intracellular Ca2+ aug-
mentation activates calcium release-activated
channels (CRAC), which drives more Ca2+ into the
cell producing depolarization. Kv1.3 opens by depo-
larization causing K+ efflux that hyperpolarizes the
membrane. In addition, the rise in internal Ca2+

concentration [Ca2+]
i activates the intermediate-

conductance Ca2+-activated K+ channel (KCa3.1).
The synergy of the two K+ channels keeps a negative
membrane potential adequate for a sustained Ca2+

influx through CRAC channels. Finally, a sustained
Ca2+ signal activate nuclear processes, such activa-
tion and/or proliferation. An increase of Kv1.3
abundance elevates the response increasing the ag-
gressiveness of the T cell.

Fig. 2. Mechanisms and consequences of putative
Kv1.3-based therapies against autoimmune diseases.
Potential Kv1.3 therapies could target directly either
the channel or putative associations and spatial lo-
cations. The Kv1.3 channelosome is a functional
complex that fine-tunes the Kv1.3 activity. Kv1.5,
exhibiting differential traffic, targeting and electro-
physiological and pharmacological characteristics,
heterotetramerizes with Kv1.3. By altering the stoi-
chiometry of the heteromer, the properties of the
functional complex differ. KCNE4, which negatively
modulates the activity and the surface expression of
KCNE4, could be contemplated as a therapeutical
target. The Matrix metalloproteinase-23 also inter-
acts with Kv1.3 retaining the channel at the ER.
Animal venoms (toxins) and plant derivatives (psor-
alens) are quite specific and potent Kv1.3 blockers.
Miscellaneous compounds, such as viral molecules
(VP1), defensis and antifungals, also show inhibitory
activity. Diclofenac, a nonsteroidal anti-in-
flammatory drug (NSAIDs), impairs the Kv1.3 gene
expression. Finally, during the immune system re-
sponse, Kv1.3 localizes at the immunological synapse
between APC and T cell. This synapse concentrates
lipid rafts. Controlling this spatial localization, by
disrupting rafts with methyl-beta-cyclodextrin, im-
pairs the activity of Kv1.3. IC: Intracellular; EC:
Extracellular. See text for further details.
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signal results in the production of IP3 (inositol triphosphate) and DAG
(diacylglycerol). At the same time, these molecules spark signaling
pathways which elevate the intracellular Ca2+ concentration activating
Ca2+-dependent KCa3.1 channels and Kv1.3 [18,19]. Both channels
contribute to maintain the Ca2+ influx, which triggers gene remodeling,
ending in activation and clonal expansion of lymphocytes (Fig. 1).
These channels are essential for the immune activation. While KCa3.1
dominates the immature preactivated T cells, Kv1.3 is the most im-
portant actor in the mature TEM cells [18,20,21]. TEM cells are mature T
lymphocytes which have been exposed repetitively to their antigen.
These cells are usually present in peripheric tissues and in circulating
blood and lymph [22]. Because TEM cells usually reside in inflamed
tissues, the effect is very fast facilitating their action in autoimmune
diseases once they start to proliferate. Indeed, TEM cells with high Kv1.3
expression are found in areas of inflammation related to autoimmune
diseases [23]. Therefore, TEM and Kv1.3 could be responsible for the
chronicity of autoimmune diseases [19,24]. Evidence demonstrates that
Kv1.3-inhibiting drugs also significantly improve the symptoms of au-
toimmune diseases [25–27].

RA is an autoimmune disorder that mainly targets the synovial
joints [28]. Unlike other autoimmune diseases, the trigger for RA is
unknown, which hinders its diagnosis and prognosis. Furthermore,
several different phenotypes exist, which confirms the heterogeneity of
the disease [29]. Even though the pathogenesis is not well understood,
RA follows the same pattern as other autoimmune diseases: in-
flammation, hyperplasia (by swelling) and destruction of the affected
tissue, self-antibody production and some systemic effects [28]. The
disease focuses on the synovial joints and typical symptoms are synovial
inflammation, which progresses to the cartilage, and bone destruction.
Because the joint is a structural part of the body, this also implies a
certain grade of progressive deformity [28]. In this context, the rheu-
matoid factor, tightly linked to the disease, is reactive against the Fc
portion of the IgG [30]. This interaction provokes a plethora of systemic
disorders, such as cardiovascular or pulmonary symptoms, as well as
fever [28]. Therefore, RA gradually impairs the motility of patients,
which affects them psychologically. This scenario creates a positive
feedback loop, which further aggravates the other symptoms [31].

Despite the diversity of autoimmune diseases as well as their
chronic and incapacitating nature, the present treatments are limited
and suboptimal. The existing first-line medication to treat RA and other
autoimmune diseases is methotrexate [32,33], as well as other DMARD
(Disease-modifying antirheumatic drugs) such as hydroxychloroquine.
Methotrexate is an antimetabolite for the folate molecule which binds
to DHFR (dihydrofolate reductase), an enzyme which catalyzes the
reaction of dihydrofolate to tetrahydrofolate [34,35]. Because this step
is necessary for nucleic bases biosynthesis and amino acid processing,

methotrexate inhibits the synthesis of DNA, RNA and proteins. There-
fore, the antirheumatic function is not selectively targeted but similar to
chemotherapy, a collateral side effect of toxicity. Indeed, methotrexate
was previously used for the treatment of cancer [36,37]. Although the
dose of methotrexate used in RA is lower than the dose used for on-
cology, long treatment durations often result in adverse effects, such as
hair loss, nausea or headaches [38]. Furthermore, methotrexate is a
long-known teratogen and abortifacient, which complicates the com-
bination of pregnancy and the disease [39]. Despite these side effects,
methotrexate has continued to serve as an essential medicine [40].

Other medications used for the treatment of RA depend on the se-
verity of symptoms and the course of the disease [41]. NSAIDs (Non-
steroidal anti-inflammatory drugs), such as ibuprofen, do help in re-
lieving pain and reducing inflammation. However, a sustained intake
can result in gastric damage and compromise cardiovascular safety. In
addition, steroids like prednisone have a great anti-inflammatory effect
but high doses provoke side effects such as high glycemia or fluid re-
tention [42]. Finally, biologic agents, also known as biologic response
modifiers, have been developed. However, biologic agents, targeting
the immune system, compromise the immune response elevating the
risk of cancer or infections, such as tuberculosis [43,44]. The actual
choice is DMARD, combined with NSAIDs and steroids, to control pain
and inflammation. Biologic agents are only considered once DMARDs
fail [45].

Above mentioned therapies are effective to some degree, slowing
the course of the disease, but triggering side effects. Therefore, devel-
opment of new antirheumatic compounds with better therapeutic
window and target effectivity deserves more attention.

2. Kv1.3 as a therapeutic target for autoimmune diseases

Kv1.3 is a voltage-gated potassium channel which opens at depo-
larizing membrane potentials [46]. The channel is present in different
regions of the CNS (central nervous system), such as the olfactory bulb,
and in some nonexcitable tissues, such as adipose tissue or kidneys
[47–49]. Regardless, the most essential role of Kv1.3 resides in the
immune system. Kv1.3 is expressed in lymphocytes. Kv1.3 is present in
the plasma membrane, and targets to the immune synapse during
lymphocyte activation [50], but is also detectable in different sub-cel-
lular localizations, such as cis-Golgi, nuclear membrane and mi-
tochondria. However, this review will deal mainly with Kv1.3 located at
the cell surface. T lymphocytes have their TCRs (T-cell receptors)
clustered in specific membrane microdomains, called lipid rafts, en-
riched in cholesterol [51]. The concentration of Kv1.3 in these regions
facilitates lymphocyte activation upon an antigen presentation by APCs
[52]. In fact, Kv1.3 function is highly dependent on lipid raft location

Table 1
Several agents, associations and blockers alter Kv1.3 activity. Different associations, natural molecules and inhibitors impair the Kv1.3 activity ending in a reduced
Kv1.3 function, which could be profitable for Kv1.3-based therapies against autoimmune diseases. While Kv1.5 and KCNE4 control the number of functional channels
at the cell surface, animal venoms and plant blockers are potent Kv1.3 inhibitors. Miscellaneous associations and natural molecules, including MMP23 and viral
components, affect Kv1.3 by reducing activity either retaining the channel or blocking the activity in a non-specific way. Chemical agents, such as Methyl-beta-
cyclodextrin, disrupt the Kv1.3 signaling platform required for a proper immune response.

Targeting mechanism Modifiers Mechanism of action References

Heterotetramerization Kv1.5 Intracellular retention, increase in threshold of activation, lipid raft
mistargeting

[62,108]

Oligomeric association of the complex KCNE4 Intracellular retention, channel gating modification, lipid raft mistargeting [64,65]
Miscellaneous associations MMP23 Intracellular retention [73]
Animal venoms Scorpion toxins (e.g., kaliotoxin,

margatoxin)
Extracellular blockage [86,94]

Anemone toxins (e.g., ShK) Extracellular blockage [95]
Plant blockers Psoralens (e.g., Psora-4, PAP-1) Intracellular blockage [96,97]
Miscellaneous Natural Antifungals (e.g., nystatin) Intracellular blockage [69]

Defensins (e.g., plectasin) Extracellular blockage [71]
Viral molecules Virus components (e.g., VP1) Biochemical downregulation [75]
Chemical agents Methyl-beta-cyclodextrin Lipid raft disruption [52–54]
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[52,53]. In fact, the manipulation of membrane lipid composition alters
the voltage- and time-dependent gating of the channel [54].

Kv1.3 function is predominant in lymphocyte physiology.
Therefore, a connection between Kv1.3 and immune physiology is not
surprising. NSAIDs, such as diclofenac, as well as some glucocorticoids,
like dexamethasone, reduce Kv1.3 activity in immune cells [55–57].
Moreover, inhibition of Kv1.3 activity impairs the immune response
[58]. Thus, pharmacological blockade of Kv1.3 inhibits the prolifera-
tion and cytokine production of the pathogenic TEM cells while sparing
other lymphocyte subpopulations [59]. During the last decade, Kv1.3
blockers have been developed and show a promising effect on auto-
immune diseases [60].

In addition to lymphocytes, Kv1.3 is also a predominant channel in
the APC of the macrophage lineage [61], also governing cell activation.
Furthermore, Kv1.3 abundance correlates with the activation of mac-
rophages. Thus, LPS (lipopolysaccharide)-dependent activation of
macrophages increases Kv1.3 expression, while glucocorticoids, such as
dexamethasone, reduces the amount of Kv1.3 [55]. In this scenario,
macrophages undergo a molecular remodeling of Kv isoforms, such as
Kv1.5. which heterotetramerizing with Kv1.3 modulates the channel
[62]. When Kv1.3 increases, the stoichiometry of functional tetramers
favors Kv1.3 and results in channels with molecular properties similar
to Kv1.3. In contrast, a decrease in Kv1.3 levels results in heteromers
with more Kv1.5 units, recapitulating properties of the Kv1.5 homo-
tetramer [61,62]. In this context, Kv1.5 exhibits less membrane ex-
pression and activity, and cells are also less sensitive to physiological
membrane potentials, which results in a higher threshold of APC acti-
vation. In addition, Kv1.3/Kv1.5 heterotetramers are reluctant to Kv1.3
blockers, such as margatoxin which hinders pharmacological treat-
ments [63]. In this context, only psoralens, such as Psora-4, display
similar potency for heteromers Kv1.3/Kv1.5 [48].

Kv1.3 also interacts with the regulatory subunit KCNE4, impairing
both membrane localization and activity [64,65]. Kv1.3 has notorious
membrane expression partly due to an anterograde signature (YMVIEE)
located in the C-terminus [66]. This signature interacts with Sec24 and
facilitates the forward traffic of Kv1.3 via the COPII machinery. KCNE4
association, masking this signal, impairs the COPII-mediated ante-
rograde transport and the expression of the channel at the plasma
membrane [67]. Similar to Kv1.3, KCNE4 is tightly regulated in leu-
kocytes under several insults, which could fine-tune the channel func-
tion [64,65]. Therefore, KCNE4 should be considered as a potential
target, but further research must be conducted.

Kv1.3 functional activity is modulated by a wide repertoire of an-
cillary peptides and signaling pathways. For example, NaVβ1, a reg-
ulatory subunit for NaV channels, also modifies Kv1.3 gating by pre-
sumably strengthening the coupling between activation of the voltage-
sensing domain of the channel and the opening of the pore [68]. In
addition, antifungal compounds, such as nystatin and amphotericin B,
exert a potent inhibition of Kv1.3 from the cytoplasmic side [69].
However, defensin peptides, such as plectasin, block the channel from
the extracellular side [70,71]. Sphingomyelin also favors a more elec-
tropositive threshold of activation in T-lymphocytes [72]. Therefore,
these molecules reduce the Kv1.3 aperture within the same voltages.
Furthermore, the pro-domain of MMP23 (matrix metalloprotease 23)
forces the intracellular retention of Kv1.3, thereby depleting the
membrane of channels [73]. Interestingly, MMP23 is highly expressed
in some subtypes of lymphocytes, such as the NK (natural killer) cells
[74]. Finally, components of some viruses, such as the capsid protein
VP1 of Parvovirus B19, downregulate Kv1.3, as well as other ion
channels [75].

As mentioned above, Kv1.3 can be modulated by several agents
which use completely different mechanisms. Kv1.3-based therapies are
advantageous because unlike other Kv channels, Kv1.3 has minor im-
plications in heart physiology. Thus, one of the most limiting factors in
ion channel drug development, which is the modification of heart
physiology, should not hinder Kv1.3 blockers [76]. Furthermore, the

Kv1.3 knockout (KO) animal model is viable [77]. Kv1.3 gene deletion
surprisingly does not trigger a massive effect on the immune system
likely because of a compensatory increase in Cl- currents in lympho-
cytes. However, Kv1.3 KO mice show a decrease in the severity of au-
toimmune diseases, as well as a minor prevalence of tissue-specific TEM

cells [78]. Furthermore, the deficiency of Kv1.3 favors the proliferation
of T lymphocytes with suppressive properties instead of TEM [79]. These
results correlate with several in vivo studies that have demonstrated that
genetic ablation or pharmacological inhibition of Kv1.3 greatly di-
minishes the production of proinflammatory cytokines from microglia
in an LPS-directed model [80]. This evidence justifies targeting mac-
rophage, in addition to lymphocytes for the treatment of autoimmune
diseases.

Recent work demonstrated that patients with RA also tend to pre-
sent comorbidities such as diabetes (∼15%), hypertension (∼40%),
depression (∼15%) and gastroduodenal ulcer (∼11%) [81]. Whether
these maladies are related to RA is an open debate not covered in this
review. RA patients exhibit an increased risk of suffering from certain
illnesses; therefore, these maladies should be screened, diagnosed and
treated when positive.

Surprisingly, the scope of Kv1.3 function is wider than initially
expected. Thus, blockade of Kv1.3 not only ameliorates the prognosis in
autoimmune disease models [27,82] but also shows promising results
for other physiological processes. The Kv1.3 KO mouse exhibited en-
hanced odorant ability (thus, the nickname super-smeller mouse) and
resistance to diet-induced obesity [83,84]. These effects could be a
consequence of increases in physical activity and basal metabolic rate,
which depend on the olfactory bulb. In wild type animals, a similar
effect is triggered by the activation of the insulin receptor in the ol-
factory bulb, which inhibits Kv1.3 by phosphorylation. Therefore, in-
sulin resistance hinders this process, which explains the positive feed-
back of symptoms in type 2 diabetes mellitus. Furthermore, insulin
resistance normally includes high adiposity, anxiety, and reduction in
cognitive abilities [85]. Interestingly, insulin resistance (diabetes) and
anxiety (depression) are tightly related with some comorbidities of RA.
In this context, some works corroborate that the genetic ablation or
inhibition of Kv1.3 improves mood and associative learning in rodents,
aside from triggering resistance to diet-induced obesity [83,86].
Moreover, proof-of-concept studies have demonstrated the potential use
of Kv1.3 blockers to treat other neurological syndromes such as Alz-
heimer [87]. Therefore, pharmacological blockade of Kv1.3 activity
could be beneficial for RA as well as some related disorders.

3. Kv1.3 in rheumatoid arthritis: the other side of the coin

Kv1.3 stands out as a potential target for the treatment of RA among
the autoimmune disorders. However, controversial results arguing
against Kv1.3 have opened the debate.

First, the super-smeller mouse Kv1.3 KO model exhibits minor im-
mune defects [77]. As mentioned above, the reason could be re-
modeling of the Cl- currents, which could compensate for the deficiency
in K+ currents in T lymphocytes. Additionally, murine lymphocytes
possess additional K+ channels and transporters that could drive K+ in
the absence of Kv1.3 [88–90]. Such a repertoire of channels generates a
great variety of ion channel phenotypes in these cells that could mask
the importance of Kv1.3 in rodents. In contrast, human T lymphocytes
mainly express Kv1.3, with relatively minor influence from other sub-
units. Another source of variability is that the human Kv1.3 has an
additional 5′ upstream starting codon, which produces a 52-residue
longer N-terminal domain. This sequence seems to impair the surface
membrane expression of the channel in Xenopus oocytes [68]. This
longer domain could trigger differential phenotypes in human T lym-
phocytes. No pharmacological studies have been conducted on the
longer human Kv1.3 form and Kv1.3 blockers, validated in rodents,
could trigger unexpected behaviors in humans. Therefore, additional
experiments should be conducted on the longer Kv1.3 human form as
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well as with the primate, pig or fish orthologues, which also possess the
additional N-terminal sequence [68]. Finally, additional features for the
therapeutic use of Kv1.3 in RA are the non-conducting properties of the
channels [91]. In this context, Kv1.3 regulates cell proliferation in the
vascular tissue by an ion-flux independent mechanism [92].

4. Pharmacological development

In this context, new research aims to develop Kv1.3 blockers, which
could be used in the treatment of autoimmune diseases. Kv1.3 is af-
fected by a great collection of natural toxins. Therefore, research has
focused on modification, thereby improving the specificity, pharma-
cokinetics and pharmacodynamics [82,93]. The most well-known nat-
ural toxins come from animal venoms, such as scorpions (margatoxin
and kaliotoxin) and anemones (ShK) [86,94,95]. Other blockers are
mainly small molecules (PAP-1, Psora-4, and clofazimine), mostly from
plant origin [96,97].

One promising molecule is dalazatide, a modified form of ShK
(Stichodactila toxin) [98]. ShK is a 35-residue peptide produced by the
sea anemone Stichodactila helianthus, which blocks neuronal and lym-
phocyte voltage-dependent potassium channels [95]. Because ShK ex-
hibits affinity towards Kv1.3 but also Kv1.1 and Kv1.6 [99], several ShK
analogs were developed. For instance, ShK-186 increased the selectivity
for Kv1.3 by modifying some amino acids of the structure [100]. Thus,
ShK-186, renamed dalazatide, became the first Kv1.3 blocker to be
tested on humans [98]. The primary scope for this medication is psor-
iasis, an autoimmune disease mainly targeting the skin, currently un-
dergoing phase II clinical trials. However, recent results also support
the use of dalazatide in other autoimmune diseases such as sporadic
inclusion body myositis and lupus nephritis [101,102]. The similar
etiology and molecular background of these autoimmune diseases may
also broaden the scope of the medication, as changes in the formulation
can facilitate use in many different diseases. The pharmacokinetics of
dalazatide support lasting treatments, as the medication (ClinicalTrials.
gov: NCT02435342) shows little to no accumulation after 29 days [98].
Moreover, dalazatide administration is subcutaneous [98]. In this
context, alternative administration routes are being considered by
several groups. For instance, chitosan-based gels have been proven to
improve the buccal mucosal absorption of ShK [103].

Even though dalazatide is a first-in-class medication using Kv1.3 as
target against autoimmune diseases, many advances are continuously
advancing this field. Scorpion AnTx (anurotoxin) has been modified to
reduce its affinity towards Kv1.2 in favor of Kv1.3 [104], and scorpion
Vm24, OsK1 and OdK2 have been fused with an antibody Fc (constant
fraction) to increase their plasma half-life [105,106]. Pulmonary de-
livery has also been studied as a noninvasive alternative and has al-
ready been successfully demonstrated with an HsTx1 (Heterometrus
spinifer toxin) analog [107].

In parallel, Kv1.3 modulation should not be limited to a blockade
(Fig. 2). As mentioned above, Kv1.3 heteromerizes with other isoforms,
such as Kv1.5; and regulatory subunits such as KCNE4, and the Kvβ
family [64,108,109] in native cells. Interaction with such subunits
modifies the activity and threshold of activation of the complex, thus
altering the leukocyte activation [62,63,67]. Efforts to control the ex-
pression of such proteins or to emulate their effects would be highly
advisable to modulate the channel with a less binary outcome than
blockers.

Therefore, the use of Kv1.3 as a therapeutic target for autoimmune
diseases in general and RA in particular is a novel method with huge
potential. Combinational therapies for RA deserve further attention
[110,111]. Specific Kv1.3 blockers could substitute actual medications,
such as NSAIDs or steroids, which partially targeting Kv1.3, exhibit
harmful side effects [55–57].

Finally, because most autoimmune diseases share an elevated TEM

population, which tightly depends on Kv1.3, Kv1.3-based therapies
could be repurposed and extended further than RA [18,20,101,102].

5. Concluding remarks

RA is an autoimmune disease with serious effects on the wellbeing
of patients and social environments. The progression of symptoms
greatly impairs the normal life of patients both physically and psy-
chologically. Therefore, the socioeconomic cost of this disease is very
high for the health system. Considering that RA etiology shares most
features of many autoimmune diseases, the need for an effective
treatment deserves more effort.

The current first-line treatment for RA, methotrexate, is effective
but carries potential diverse side effects similar to chemotherapy drugs.
These harmful consequences sometimes lead to a certain level of
treatment discontinuation. In persistent and long-term chronic diseases,
the adherence to the treatment may have a marked difference on the
wellbeing of the patient. Moreover, as methotrexate is a teratogen, a
pregnancy-friendly treatment could help female patients improve their
quality of life by preventing the disease from affecting their family
planning.

In this context, Kv1.3 is a promising therapeutic target for the
treatment of RA and for autoimmune diseases in general (Table 1).
Kv1.3 plays a relevant role during immune system responses. This role
is even more apparent in the TEM cells, which are the main driving force
of autoimmune progression. Consequently, the inhibition of Kv1.3
ameliorates autoimmune disease symptoms in animals. Moreover,
Kv1.3 stands out as a more specific alternative to treatments such as
methotrexate because both the pharmacological inhibition and genetic
ablation of the channel in animal models result in no pernicious effects
on the animals. Nonetheless, differences between rodent and human
lymphocytes are not irrelevant. Human lymphocytes express mainly
Kv1.3 as a unique voltage-gated potassium channel, while rodents also
possess additional Kv1 isoforms. Additionally, human Kv1.3 possesses
an additional upstream methionine codon, which adds 52 amino acids
to the protein. These differences could add variability to the develop-
ment of Kv1.3 blockers and should be considered when transitioning
newly developed drugs to the clinical stage.

Taking into account all the limitations mentioned throughout this
review, a great amount of resources is being funneled into both basic
and clinical research for Kv1.3 as a potential therapeutic agent in sev-
eral autoimmune diseases including RA.
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