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Abstract

The last decades have seen the development ofatesmurce tracking (ST) markers to
determine the source of pollution in water, but emaf them show 100% specificity and
sensitivity. Thus, a combination of several markersght provide a more accurate
classification. In this study Ichndeaoftware was improved to generate predictive ngdel
taking into account ST marker decay rates andidilufactors to reflect the complexity of
ecosystems. A total of 106 samples from 4 soura@e wollected in 5 European regions and 30
faecal indicators and ST markers were evaluateduding E. coli, enterococci, clostridia,
bifidobacteria, somatic coliphages, host-specifactbria, human viruses, host mitochondrial
DNA, host-specific bacteriophages and artificial esteners. Models based on linear
discriminant analysis (LDA) able to distinguishween human and non-human faecal pollution
and identify faecal pollution of several origins reedeveloped and tested with 36 additional
laboratory-made samples. Almost all the ST marlkkiewved the potential to correctly target
their host in the 5 areas, although some were atgrivand redundant. The LDA-based models
developed with fresh faecal samples were ablefterdntiate between human and non-human
pollution with 98.1% accuracy in leave-one-out ergalidation (LOOCV) when using 2
molecular human ST markers (HF183 and HMBIf), wher& variables resulted in 100%
correct classification. With 5 variables the mocigdrectly classified all the fresh faecal samples
from 4 different sources. Ichnde#s a machine-learning software developed to imerthe
classification of the faecal pollution source intera including in complex samples. In this
project the models were developed using samples &droad geographical area, but they can

be tailored to determine the source of faecal fiolufor any user.
I ntroduction

Since the beginning of the millennium a big reskaffort has led to the development of new

methodologies and indicators for determining thgiorof faecal pollution in water, known as
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source tracking (ST) markers. These tools compléntentraditional faecal indicator bacteria
such asEscherichia coli and enterococci, and their capacity to identify soeirce of faecal
pollution has improved the management and assesshemter bodies (Bradshaw et al., 2016;
Heaney et al., 2015). Research in this area hasfoeased mainly on the development of new
molecular markers targeting closely related hostHjg microorganisms (Hagedorn et al.,
2011), establishing protocols, and determining Ikewd specificity and sensitivity (Bernhard
and Field, 2000; Bonjoch et al., 2004; Dick et 2005; Garcia-Aljaro et al., 2017; H C Green et
al., 2014; Mieszkin et al., 2009; Reischer et 2006). Other methods rely on phage detection

by culture (Ebdon et al., 2007; Gémez-Doriate efall1).

However, ST methods have some limitations. i) Asggaphical areas differ inost genetics,
immunological factors, antibiotic usage, and dak,of which affect microbiota, ST markers
should be monitored and validated in the targeregrior to their application (Gawler et al.,
2007; Mayer et al., 2018; Reischer et al., 2013hydaet al., 2017). ii) No available marker
shows 100% sensitivity and specificity. Accuracyynmevertheless be enhanced by using a
combination of several ST markers and ratios, wiah be evaluated using predictive models
to improve decision-making strategies (Ahmed et24l07; Ballesté et al., 2010; Blanch et al.,
2006; Gourmelon et al., 2010). iii) There is a latkstandardized methods. Few studies have
focused on the standardization and validation obtqmols developed by independent
laboratories, although this is a crucial step foe ttonsolidation of feasible and reliable
approaches (Blanch et al., 2004; Stewart et all3p0OFurthermore, iv) environment factors
need to be considered when monitoring a faecaltiali event, including dilution in the water
body, inactivation of the tested parameters, arnxingiwith other potential pollution sources
(Casanovas-Massana et al., 2015). Accordingly, raévauthors have evaluated the
environmental persistence and water treatment tagsis of ST markers as factors in
management strategies (Ahmed et al., 2007; Bad\aredtz, 2009; Balleste and Blanch, 2010a;

Brooks and Field, 2017; Green et al., 2011; Hd.ePA15; Jeanneau et al., 2012; Walters and



88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

Field, 2009). The incorporation of inactivation gaieters, together with the dilution effect in
the water body, is essential for developing ST igte@ models adjusted for the complexity of

ecosystems and water flows.

Computational techniques have a wide scope of eqjn in microbiology, ranging from
predicting human health and ethnicity through therobiome to defining the microbial load of
a sea sponge (Mason et al.,, 2013; Walters et @1.4)2 Two software systems designed to
assess the source of faecal pollution in watetcimeae8 (Sanchez et al. 2011), which analyses
different markers and indicators commonly monitoredvater samples, and SourceTracker
(Knights et al., 2011), which relies on the resuwts#ained by high-throughput sequencing.
Ichnae& supports the definition and building of modelsttban predict multiple sources of
faecal pollution. It combines different ST marketisereby obtaining better sensitivity and
specificity than a single marker, and takes intocoaat the effects of dilution of the pollution
event and the aging of selected ST markers onge rdech the environment. The software
incorporates models of phenomena based on empildtal(Sanchez et al., 2011), which allows

pattern recognition, classification and predictf@arca et al., 2007).

In this international and interlaboratory studye tbombined use of culture-dependent and -
independent methods to identify pollution was téstnd a standardised approach was
developed. The ultimate aim was to provide a neaetpral, feasible and integrated approach to
pollution analysis. Environmental samples from dbee geographic, climatic and dietary
sources were used to address the issues of geagalapdriability and to carry out testing over
a broader area. Several ST markers were selecdding host-specific bacteria targeted by
molecular methods (Gomez-Donate et al., 2012; HydBreen et al., 2014; Layton et al., 2006;
Mieszkin et al., 2009; Reischer et al., 2006), humauses (Fong et al., 2005; Maunula et al.,
2012; McQuaig et al., 2012; Pina et al., 1998; Ruiset al., 2014; Wong et al., 2012; Wyn-
Jones et al., 2011), host mitochondrial DNA (mtDNA&ghill and Mathes, 2008), host-specific

bacteriophages detected by culture methods (Gémoézate et al., 2011) and artificial
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sweeteners (Scheurer et al., 2009). Standard nigdrivigicators were measured to assess the
total load of faecal pollutionE, coli, enterococci, clostridia, total bifidobacteria asmmatic
coliphages) together with ST markers. The previoudtveloped machine learning-based
software Ichnadawas adapted, trained and tested. Models basddear discriminant analysis
were obtained and the best subsets of indicatat®oa®T markers (low number and/or cost,

and high predictive ability) to discern the soun€éaecal pollution were determined.
MATERIALSAND METHODS
Selection of indicators and ST markers

Indiscriminate testing of a large number of protea@nd ST markers was not practical, given a
tight timeframe and the increasing cost of perfoigninternational and integrative ST assays.
Consequently, a careful selection of markers (cedtlependent, molecular and chemical) used
in several countries of Europe was made accordirigd following criteria: i) representation of

the diversity of currently available methods; iDrary-independent methods; iii) availability of

guantification methods; v) and of standard opegagirocedures (SOP); and vi) ample evidence
supporting applicability in an aquatic environmeiihe selection was also based on the
resources and expertise of the participant laboest@nd a previous review of the literature.

Emphasis was placed on the pre-selection of maedaécal markers as potential targets in any
further technological platforms or automated apphes. The selected ST markers used as

variables for modelling are given in Table 1.

Establishing operating principles and quality assurance

Participant laboratories agreed on the use ofnat@nal standard protocols (ISO, CEN) when
available. Other protocols of new indicators wemgtten up and added to those from the

literature, together with internal protocols useddmme of the laboratories, in a booklet of
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standard operating procedures for the use of diicgzants (http://aquavalens.org/project/latest-

results-cluster-1). The results obtained from dabloratory underwent quality control through
an initial verification test with blind water sampgl The verification test took into account
traditional microbial parameters and some cultwpethdent ST markers following the agreed
SOP:E. cali (EC), enterococciClostridium perfringens (CP), somatic coliphages (SOMCPH)
and total and fermenting-sorbitol bifidobacteridaf{Bt and BifSorb). Two raw urban sewage
samples with high and low faecal concentration weset blind to all partners. Samples were
sent at 4°C, were delivered in 24 h, and were apdlpy all the participants on the same day.

Results (enumerations) were sent to the orgaraberatory for statistical analysis.

Samples and sampling campaigns

The five research institutions participating insttstudy formed an axis across continental
Europe (Portugal, Spain, Austria, Germany, and drisl). This consortium allowed the
sampling to cover a wide diversity of geographiaatl climate situations as well as human
diets, thus addressing limitations of previous 8idies. Each participant was responsible for
collecting samples from their own region, and deteing the main culture-based indicators
(EC, enterococci, SOMCPH, CP, total BifTot and Bifty and their own selected markers. The
samples were shipped in cold conditions to thergtaetner laboratories for the analysis of the
other ST markers.

The sampling approach was similar to the procefnliewed by a previous integrative and
international ST project (Blanch et al., 2006)haiigh the latter was focused on providing
predictive models at the faecal point source astirgjuishing between human and non-human
faecal sources. In the current study, two sampiangpaigns were performed to obtain a) point
source fresh (PSF) and b) laboratory-made enviroteh@ME) samples.

The aim of the first sampling campaign was to abtiata from PSF samples to be used as a
training matrix in the mathematical modelling. Thista matrix was used to classify and select

subsets of the best indicators and develop diffepeedictive models (Fig 1). Models were
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defined to resolve different scenarios: to distisgbetween human and non-human sources or
between four sources (human, bovine, porcine anttrgbin fresh samples or those affected by
dilution and aging.

In the second sampling campaign, each partnerldiewtk faecal polluted water samples to the
other participants to be analysed and tested bygekeloped predictive models. These samples
could be from faecal point sources or have bearteatiland/or aged in the laboratory. The final
distribution of samples by sampling campaign wafbsws.

Point source fresh samples: A total of 106 faecal and wastewater samples waléected
between November 2013 and September 2014 from wakge treatment plants (WWTP),
abattoirs and farms in five different countries:séfia, Finland, Germany, Portugal and Spain.
Samples were almost exclusively composed of a enigecal source: human (35), porcine
(24), bovine (23) and poultry (24). Sewage sampése from communities with 2,100 to 4.0
million inhabitants. Wastewater was taken frometiint abattoirs processing between 400 and
8,000 porcine and ruminant animals per day, andrardl00,000 poultry specimens. Other
samples were of animal faecal slurry composed mixaproceeding from at least 10 different
individuals. Details of each sample are providedSumpplementary Materials. They were
collected in sterile containers and kept at 4°Clevim transit to the laboratory. One hundred ml
of each sample was sent to the other partner ltistits in cold conditions for the assigned

analysis.

Laboratory-made environmental samples: A total of 37 samples were laboratory-made by
diluting and aging faecal and wastewater sampledifférent sources to simulate potential
environmental samples. The original samples welleated from March to May 2015 from the
same WWTP, abattoirs, farms and countries as tiesBBples. Dilutions of faeces/wastewater
were made from 1:3 to 1:100,000 using bottled watithout faecal pollution and were kept

from O to 168 h at room temperature for aging. Detaf each sample are provided in
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Supplementary Materials. Five-hundred ml of eacim@a was sent blind to each partner
institution to be analysed for the selected marksrdescribed above.

Detection and enumer ation of general faecal indicators

Five general faecal indicators were measured i @actner laboratory: EC, enterococci, CP
spores measured by membrane filtration on 0.45-pra-pize membranes, BifTot and BifSorb
by spread-plating, and somatic coliphages by a léeadpar-layer technique. Enumeration of EC
was based on the ISO standard method 16649-1:20®law initial resuscitation stage on
MMGA (4 h at 37°C) followed by incubation in chrogenic TBX agar at 44°C (ISO, 2001a).
Enterococci were enumerated following the 1ISO saathdnethod 7899-2:2000 using Slanetz-
Bartley medium at 37°C for 48 h and confirmed biisBiEsculine Azide agar at 44°C for 4 h
(ISO, 2000a). CP was analysed according to thedt@@dard method 14189 using TSC agar
(ISO, 2013a). BifTot and BifSorb enumeration wasfgened using human bifidobacteria
sorbitol-fermenting agar (HBSA) at 37°C for 48 h amaerobic conditions as previously
described (Bonjoch et al., 200omatic coliphages were enumerated by the doulaletager
technique usinge. coli strain WG5 at 37°C for 24 h, as described in 8@ ktandard method

10705-2 (1ISO, 2000b).

Detection of sourcetracking markers
Based on the available facilities and experiencehef different laboratories, each partner

analysed different ST markers in all the sampldigcied in the 5 regions.

Detection of chemical markers
Four artificial sweeteners, acesulfame, cyclamsdecharin and sucralose, were measured by
high-performance liquid chromatography - electraggandem mass spectrometry (HPLC-ESI-

MS/MS) as previously described (Scheurer et aD920

Detection of host-specific Bacteroidegphages



214  Phages infecting host-specififacteroides species were enumerated as described in the 1SO
215  standard methodl0705-4 (ISO, 2001b). PFU of host-specifgacteroides phages were
216  enumerated by the double-agar-layer technique usiegstrains GA17, PG76, CW18 and
217  PL122 to detect human, porcine, bovine and pogtiution, respectively (Gémez-Dofiate et
218  al., 2011; Payan et al., 2005). One-ml of PSF saslas analysed directly. However, for the
219  highly diluted LME samples, 250 ml was concentratgdnembrane filtration using 0.22 um-
220  pore-size mixed cellulose ester membrane (Merchkipdile, Cork, Ireland) after adding 0.05
221 mM of MgCl,. The filters were eluted in 12 ml Elution Buffel% Beef Extract, 0.5 M NaCl
222 and 3% Tween 80) using an ultrasound bath for 4 ¢hléndez et al., 2004). The elution
223 solution pH was brought to 7 and filtered througlow protein-binding 0.2-pum-pore-size PES
224  syringe filter (Merck Millipore) to remove any remang bacterial cells. One ml of the solution

225  was titred in triplicate with the corresponding hstsain.

226 Detection of molecular ST markers
227  The genetic material of the shipped samples wam@ed in each laboratory where the

228  corresponding markers would be analysed accordimgutine protocol specifications.

229 Bifidobacterium host-specific markers

230 DNA from PSF samples was extracted directly fromllusing the QIAamp DNA Blood Mini
231  Kit (Qiagen). In LME samples, 250 ml was concertdaby filtration through a 0.22-um-pore-
232 size filter (SO-PAK, Millipore, Germany) and DNA waextracted following a previously
233  described protocol (Gourmelon et al., 2007). Rilbra and DNA extraction controls were run
234  together with the samples. Total and host-spe@ifodobacterium species (HMBIf, CWBIf,
235  PLBif and PGBIf) targeting the 16S rRNA gene weralgsed with TagMan Environmental
236  Master Mix 2.0 (Applied Biosystems) using ABI StapOReal-Time gPCR as described in the

237 literature (Gomez-Donate et al., 2012) (Table S1).

238 Host-specificBacter oidales markers

10
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Ten ml of PSF samples and 500 ml of LME sampleswencentrated by membrane filtration
through Isopore 0.2 um polycarbonate membranadil®lillipore, Bedford, MA). DNA was
extracted using phenol-chloroform-isoamyl alcormtlascribed in the literature (Reischer et al.,
2008). The respective human, ruminant and swiné-dpeific Bacteroidales markers HF183
(Hyatt C Green et al., 2014), BacR (Reischer et28l06) and Pig2Bac (Mieszkin et al., 2009)
were analysed together with gendgakteroidales marker AllBac (Layton et al., 2006) (Table
S1). The QIAGEN Rotor-Gene Multiplex PCR Kit (Qiagédilden, Germany) was used for the
gPCR reactions with a Rotor-gene cycler (Qiagem).ifternal amplification control (Applied
Biosystems, Vienna, Austria) was included for egedction and samples were always analysed
using 1:4 or 1:16 dilution extracts to avoid anygmtial reaction inhibitors. Filtration and DNA

extraction controls were run together with the sasip

Mitochondrial DNA

The analysis of mtDNA to detect faecal contamimatd human, bovine, porcine and poultry
source was performed targeting the mitochondrigdatyomeb by gPCR (Schill and Mathes,
2008). 200 ul of PSF samples was extracted diredtiyg the QlAamp DNA Blood Mini Kit
(Qiagen), and in LME samples DNA was extractedofeihg Martellini et al (Martellini et al.,
2005). Mitochondrial DNA amplification was perforchevith TagMan Environmental Master
Mix 2.0 (Applied Biosystems) and using ABI 7300 R&ame PCR (Applied Biosystems)
(Table S1). Several quality control processes veeided for the determination of mtDNA. A
blank control (filtered, sterile distilled water)aw processed in parallel with the LME samples
from the concentration stage to the qPCR. Similalylank extraction control was added for
both sampling periods. In each run, 10- and 100-tilutions of every sample were also tested
to account for inhibition. Every gPCR run also lastandard curve and a positive and negative

control.

Viral source tracking markers: Adenovirus and Nanaw

11



264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

Human adenoviruses (HAdV) were amplified followiray previously described protocol
(Hernroth et al., 2002) using the same DNA exthdtem PSF samples for the analysis of
MtDNA. As for mtDNA, in addition to the original sgles, each HAdV run was comprised of

10- and 100-fold dilutions of every sample, a staddturve and positive and negative controls.

Norovirus Gl and Gll were amplified following th8O/TS 15216-1 (ISO, 2013b; Oristo et al.,
2018) with some modifications. A sample volume of 250 gilPSF (or 500ul for diluted
samples) was used for RNA extraction. For LME das)p500 ml was first concentrated by
filtration through a positively charged Sartolonmiwane (0.45pum-pore-size disc, Sartorius).
Viruses from the membrane and the empty bottle vedweed with 100 mM Tris - 50 mM
glycine - 1 % beef extract (TGBE) buffer, pH 9.8eawhich the pH was adjusted to neutral.
RNA from both PSF and LME samples was extractedigushe NucliSens® Magnetic
Extraction Kit and NucliSens® MiniMag® instrumergi¢merieux, Boxtel, The Netherlands)
according to the manufacturer’s instructions. Tiigal sample was spiked with mengovirus to
be used as a process positive control (Table Sthptes were amplified using the QuantiTect
Probe RT-PCR Kit (Qiagen, Hilden, Germany) and Rgene PCR cycler (Corbett) (Table
S1). For every set of samples, a negative extractimtrol, positive external RNA controls, and

dilutions of purified plasmid dsDNA for the conattion of a standard curve were added.

Faecal Enterococci guantification by gPCR

Faecal enterococci were also quantified by gPCRguie DNA extractions for host-specific
Bacteroidales and following the protocol described elsewhereugdand et al., 2005) (Table

s1).

Data treatment
PSF sample data were harmonized and standardize@dte theoint source training matrix
containing 106 observations (samples) of four ahisaarces from which 42 variables were

analysed: 30 single variables derived from the ltesof each parameter (8 general faecal

12
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312

indicators, 22 ST markers) and 12 derived varialolesstituted of ratios of 2 independent
variables (Fig 1, Table 1). The results were exggéger 10 ml and data were transformed to
logio UNits. Thepoint source training matrix was instrumental for developing tlage-diluted
training matrix by in silico dilutions and aging. This matrix was generatechtong a realistic
scenario of dilution/aging that included 10,000 abations created by randomly sampling the
point source training matrix. The dilution degree was lognormal up to 4 logtsuiaf dilution
(alphas) and aging time in water was exponentialtay800 h of aging (times) (Fig S1)

considering the decay rateJKf each marker as follows:

log10(PSF random value) - alphas + K * times

Values above the limit of quantification were asedno be 10% of the limit of quantification.
The predictive models for the four sources using éixtended data matrix (dilution and aging

included) are the models covering most real expecases.

Similarly, thetesting matrix was obtained from the harmonization and standatidiz of the
results from the LME samples following the criteused to develop thgoint source training
matrix. Results were also expressed per 10 ml and vhklesv the limit of quantification were
assumed to be 10% of the limit of quantificatiorfteA developing the models using both
training matrices and before their validation, tregiables not showing significance in the
models were disregarded. Therefore, the 38 LME tsnwere analysed for just 21 of the

initial variables.

I nactivation data

The die-off regression in the environment for easbasured ST marker and indicator was
provided by the partner responsible, based on ewpatal assays or obtained from the
literature (W Ahmed et al., 2014; Balleste and Bgn2010b; Dick et al., 2010; Fallahi and
Mattison, 2011; Green et al., 2011; Hirneisen amitK 2013; Jeanneau et al., 2012; Korajkic

et al., 2014; Liang et al., 2012; Sokolova et2012; Solecki et al., 2011; Tambalo et al., 2012;

13
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Walters and Field, 2009). A first order decay models assumed for all the parameters.
Inactivation values included oJ (time required to achieve 90% reduction in thetiahi
population), Be (time required to achieve 99% reduction in théahpopulation), K and % of
degradation and they were all converted to(Kable S2). The effects of seasonality on the
environmental persistence of markers were alsoidered by using different die-off regression
models for different seasons. The die-off valuesewased to consider the decay of each

parameter when aging the faecal pollution in theeigment of predictive models.

Statistical analysis and model evaluation

Descriptive statistics were performed for eachhaf single variables using the software R (R
Core Team, 2016). For descriptive statistics, \@labove the limit of detection were not
considered. The Welch one-way test was appliedetead differences between targeted and
non-targeted hosts, and in this case values albeviinit of detection were considered as zeros.
A Kruskal-Wallis ANOVA by ranks test for non-paraime data was used to evaluate

interlaboratory differences.

Different models were developed using data from B&Hples represented in thaint source

training matrix and from theage-diluted training matrix with R software including the packets
“MASS”, “FSelector”, “rgl” “randomForest”, and “v&elRF". For both matrices, 2 different
scenarios were established: discrimination betwseman and animal pollution or between

human, bovine, porcine and poultry pollution.

Numerical analyses were performed using linearidiscation analysis (LDA). This method is
a generalization of Fisher's linear discriminamgd ds usually applied in statistics, pattern
recognition and machine learning to find a lineambination of features that characterizes or
separates two or more classes (in our study sQur€dsained results were validated with
Leave-one-out cross-validation (LOOCV), a modeidation technique for assessing how the

results of a statistical analysis will generalineain independent data set. LOOCYV is usually
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applied in analyses where the goal is predictichiaiis hecessary to estimate how accurately a

predictive model will perform in practice.

RESULTS

Before starting the sampling campaigns, standaetabion procedures were established and
interlaboratory verification tests were performeadlving all the partners. Using a Kruskal-
Wallis ANOVA by ranks test for non-parametric data, statistically significant differences (P-
value > 0.05) were observed between laboratorienwbsting EC, enterococci, SOMCPH and
CP, although higher variance was observed for HB®#al and sorbitol-fermenting

bifidobacteria (Table S3).

Indicator and marker description

The significance of variables (faecal indicators)d atheir correlations were previously
calculated to support the selection of parametbsests. Using Fisher’s test, differences in the
ST markers between target and non-target sources av@lysed. Ten of the human markers
tested (all except saccharin, for which only 3 hnresamples were positive) showed significant
differences between human and non-human sampléde(B4). The 4 pig ST markers (PGPH,
PigNeo, Pig2Bac and PGMit) showed differences betwgig and non-pig samples. For the
ruminant (CWBIf, BacR and CWMit) and poultry markefPLBif and PLMit), significant
differences between target and non-target sampdes also observed. However, no significant
differences were detected for the ruminant (CWPHRY poultry Bacteroides phages (PLPH)
analysed, probably due to their geographical sjpayif as most of the positive samples were

from Spain, where the markers were developed.

The correlation between markers was analysed uBm@yson’s test (Pearson’s correlation
coefficient r) to evaluate equivalence and redungam strong correlation was observed
between the chemical human markers: acesulfamecyiflamate and with sucralose (r = 0.885

and 0.681, respectively). GA17PH strongly correlatéth acesulfame, cyclamate, HAdV and
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HF183 (r = 0.714, 0.669, 0.665 and 0.658), whertddBif and HMMit showed a low
correlation (r < 0.650) with the remaining humanrkea. A strong correlation was detected
between the animal mitochondrial markers and diffemarkers: BacR and CWMit (r = 0.939),
PLBIif and PLMit (r = 0.816), and Pig2Bac and PGHiit 0.805). Phages infectirgacteroides
PG76 targeting pig contamination showed a low datian with norovirus, PGMit and Pig2Bac
(r < 0.650), whereas no significant correlation waserved for the ruminant and poultry host-
specificBacteroides phages.

Marker selection

Based on preliminary models evaluating the corieabetween markers and the experience of
the research laboratories, a pool of the analyseidbhlies was disregarded for further analysis.
The decision was taken after an agreement withhallproject partners to reduce laboratory
costs and efforts. Total and sorbitol-fermentindiddibacteria detected using HBSA media
were discarded because of the subjectivity of aodmalysis. Other markers were discarded for
their low sensitivity (saccharin) or low specifici{HMMit). Chemical markers, PLPH and
HAdV were considered redundant for their high datien with molecular markers and absence
in the preliminary models, and were thus also dda for further sampling and analysis. The
number of evaluated indicators was thereby redéroed 30 to 21. Additionally, ratios were no

longer considered in the models as they did nat gilditional value.

Model Development

We obtained a list of prediction models to distiisgubetween human and non-human faecal
pollution sources, and also between the main fapollition sources. Both scenarios were
tested using thepoint source training matrix obtained experimentally and trege-diluted
training matrix developedn silico considering the effect of dilution and aging. Thiowing

scenarios were evaluated:

Scenario 1: Human vs non-human faecal pollution using the point sour cetraining matrix
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When using all the 21 variables, 100 % LOOCV accymsas achieved with LDA, and all the
samples were correctly classified (Figure 2A, 2Biter reducing the number of variables,
several combinations gave a high percentage ottilmte(Table 2). LOOCV accuracy was a)
92.45 % when using only one variable (GA17PH); 438 % when combining GA17PH with
HF183; and c) 98.11 % when using HMBIf and HF18Bdge individual values were 80.19 %
and 84.91 %, respectively). To achieve 100 % corobassification, a combination of 3
variables (HMBIf, HF183 and EC) was needed, wherbadifferent options each using 4
variables achieved 100% LOOCYV accuracy: all butioctuded EC, HF183 and HMBIf and 1
other variable (SOMCPH, CP, CWPH, PGPH, Pig2Bac MiMWPLMit, PGMit, BacR, CWBIf,
PLBIf, AllBac, NoV, FEQPCR). When using only moléau markers, HMBIif, HF183 and

PLMit should be measured together with BacR or No&ble 2).

Scenario 2: Assessment of four sources using the point sour ce training matrix

When using all the 21 variables, 100% LOOCV accoumaas achieved with LDA (Figure 3A).

However, 2 combinations of 3 markers, CWMit, PLMitd Pig2Bac or BacR, PLMit and
Pig2Bac, gave a LOOCV accuracy of 97.17% and 96,28%pectively, in distinguishing

between samples from human and farm animal so(bcesne, porcine and poultry) (Table 2).
Increasing the number of variables to 4 (GA17PHBIRLPig2Bac and CWMit) increased the
correct classification to 99.06 %, whereas 11 othembinations gave 98.11% correct
classification. Five variables (GA17PH, PLBIf, PRgt, CWMit and BacR or HF183) were

needed to correctly classify 100 % of the samples.

Scenario 3: Human vs non-human faecal pollution using the aged-diluted training matrix

When testing a more realistic scenario with thedagdjluted training matrix containing 10,000
in silicoomade samples, a LOOCV accuracy of 99.78 % wasewaetli when using the 21
variables with a linear discriminant analysis (2@, Fig 2D). From a total of 3,342 human

samples, 20 were misclassified as non-human, andnzhuman samples from 6,658 were
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misclassified as human. LOOCV accuracy was 95.7@Hén the number of variables was
reduced to 2 (GA17PH and HF183), and 99.59 % wisemg8 (HMBIf, HF183 and GA17PH).

Seven more combinations with 3 variables gave amidlues of 96.81 — 98.04 % (Table 3).

Scenario 4: Four sour ces assessed with the aged-diluted training matrix

An LDA-based model using all the variables showed8 % LOOCV accuracy (Figure 3B).
All the human samples were correctly classifiedesglas 2.5 % of cow, 1.2 % of pig and 0.5 %
of poultry samples were misclassified. A model gdtiLBif and Pig2Bac showed an LOOCV
accuracy of 69.83 % (Table 3). When using 3 vagal{BacR, GA17PH and PLBIf), the
LOOCYV accuracy was 87.04 %, which increased to @38 with the addition of a fourth
variable (Pig2Bac) and 96.04 % after adding a f{ftf+183). Nine variables were needed to

reach 98 % LOOCYV accuracy (Table 3).

Model testing with laboratory-made environmental samples

The selected models were tested udedgpratory-made environmental samples, which were
sent blind to the different participant laborateri@he previously selected 21 markers were
evaluated using the models developed for the diffeiscenarios. The resulting data were
incorporated into the models developed with theitdd and aged sample matrix, as LME
samples were diluted and aged.

The different LDA-based models discriminating betwehuman and non-human pollution
(using 2 to 21 variables) correctly classified 84@2of the laboratory-made samples. The
prediction model with only 2 variables (GA17PH aH#183) achieved 95.71 % LOOCV
accuracy (Table 3). All the 6 misclassified samplese of human source identified as non-
human.

Models using different combinations of markers itidguish between the 4 sources were also
tested with thdaboratory-made environmental samples. In this case, 86.8% of the samples

were correctly classified. However, the model ablelassify the highest number of samples
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was the one using 4 variables: BacR, GA17PH, Pig2&ad PLBIf. This model correctly
classified 89.5 % of the samples with 93.88% LOO&dturacy (Table 3). Three of the 4
misclassified samples were poultry samples misifledsas human. Models with a higher

number of variables showed a lower % of correatalbn.

DISCUSSION

The immense efforts invested in designing new l@ianicrobial ST markers to determine
sources of water pollution have resulted in a towlfull of markers (Ahmed et al., 2016;
Harwood et al., 2014; Roslev and Bukh, 2011). H®veas mentioned, a single marker may
not be sensitive or specific enough to effectividigntify the source of faecal pollution, but a
combination of markers can improve the accuracyclagsification (Ballesté et al., 2010;
Jenkins et al., 2009; Mayer et al., 2018; Raitlalet2013) sometimes in the form of ratios
(Muniesa et al., 2012). Computational techniquezebeon machine-learning algorithms, like
Ichnaea® or SourceTracker, are available for S@iptien (Knights et al., 2011; Sanchez et al.,
2011). These algorithms may be based on artifioialral networks or random forests and can
be trained with known samples to classify environtaesamples of unknown origin (McLellan
and Eren, 2014; Smith et al.,, 2010). SourceTrackées on 16S rRNA gene amplicons
obtained by high throughput sequencing and comptres to a database to calculate the
probability that an operational taxonomic unit @ms in the bacterial community in
environmental water samples comes from a giverugot source. This is therefore a library-
dependent method (Henry et al., 2016; Knights et2@i11). Computational methods based on
the antibiotic resistance profile &. coli strains have also been tested, resulting in 74.6 %
correct classification when using LDA and 82.3 %hwiandom forests (Smith et al., 2010).
This approach is also library-dependent and reguhie culture oE. coli strains. In contrast,
Ichnae& relies on library-independent markers and starnizitidmethods selected for each

laboratory reporting the abundance of faecal indisaor host-specific markers. It is a prototype
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computer-based integrated system that can be draigeusers with their own data matrix
developed with the numerous ST indicators availabéeimprove classification accuracy, the
software develops models combining different magkarhich can also be chosen by the user

(Casanovas-Massana et al., 2015; Sanchez et 41).20

The main aim of this study was to adapt Ichfiasaftware to select a combination of ST
markers from the general ST toolbox and build optimodels to determine the source of faecal
pollution in a water body in a given area takingpiaccount aging and dilution. We tested a
total of 30 markers and 12 ratios in 106 fresh das@amples from 5 European regions with
different climates and cultural habits. When a nest of ST markers are developed and
presented to the scientific community, in the firgtance they are normally tested with fresh
faecal samples and sometimes with environmentapksmAlthough this is a good starting

point, assessing marker performance in the reat@ment is more challenging, because of the
impact of other factors (Cho et al., 2016): dilatim the water body and the effect of rainfall
(Sercu et al., 2011), aging of the pollution betwelischarge and sampling (Ballesté et al.,
2018; Blaustein et al., 2013; Van Kessel et alQ730or mixing with other potential faecal

sources. To approximate real conditions,imsilico matrix of 10,000 samples was generated
using faecal samples, taking into account theiemidl dilution and aging in the environment.
This proved to be an appropriate strategy for miodeland to our knowledge, it is the only

computational approach reported to date that tdile=e factors into consideration.

Although the matrix was virtual, it allowed us tohéeve our objective, as it included a large
number of samples covering different situationsnfbun the environment. A lognormal

distribution was used to dilute the samples an@xonential distribution to age them. These
distribution approaches to generdte silico matrices can be modified according to the
application context. In this case, thge-diluted training matrix showed 0.13 % negative values

(zeros), whereas thkaboratory-made testing matrix sent to the partners as blind samples

20



494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

showed 2.38 % negative values. A similar numbeneajative samples should be observed

between thén silico-created samples and real samples to indicatéadlesprediction potential.

When a large-scale study involving multiple laboregs is performed, it is crucial to address
the repeatability and reproducibility of the an#y#n this study, standard operating procedures
were established, and interlaboratory variabiligsvassessed for parameters measured in each
laboratory. On the other hand, each laboratory vemponsible for some of the selected
microbial ST markers, which they tested in all dwdlected samples, thereby avoiding inter-
laboratory differences due to protocols, equipmemii consumables (Ebentier et al., 2013;
Stewart et al., 2013). No significant differencesrevfound in the interlaboratory analysis,
although the parameters BifSorb and BifTot andtaldis. spores showed some variance. These
discrepancies were checked (confirming the heatstrent protocol and its performance) and
resolved for one parameter (clostridia spores),redeethe others were discarded from further

analysis (BifSorb and BifTot).

Models to distinguish between human and non-hunaatdl pollution sources and also to
identify faecal pollution of several origins (huméamovine, porcine and poultry) were defined
and built using linear discriminant analysis. Whessh faecal samples were used to develop the
models, 2 molecular human ST markers (HF183 and HMiere able to distinguish between
human and non-human pollution with 98.1 % LOOCVuaacy. The additional economic cost
of adding 1 complementary variable to achieve 100céfrect classification should be
considered by the end user. On the other hand, wkerg 5 variables the model correctly
classified all the fresh faecal samples of foureptal sources: human, porcine, ruminant and
poultry. It should be noted that these models dacover any other potential faecal source such

as seagulls or pets.

The models built using the aged-diluted matrix we@e complex. After a certain degree of

dilution and aging, the predicted sources of sampiay converge, making it difficult to obtain
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a correct classification. Linear discriminant as@yand random forest (data not shown) using
the aged-diluted matrix gave models with similaditators to those obtained with fresh
samples, although with lower LOOCV accuracy. Howewehen 4 variables were used, the
result was very promising, as the LOOCV accuracyg Wwgher than 99%. Random forest has
been reported to improve the accuracy of identifica(McLellan and Eren, 2014; Smith et al.,

2010), but in the current study its performance helsw that of LDA (data not shown).

A high percentage of the laboratory-made envirortaiesamples sent for blind testing by the
selected models were correctly classified, theufed being mainly in human samples. The
results highlight the dependence of the methodhenspecific set of selected markers. For
example, the 4-variable model {GA17 + PLBIif + BagRPig2Bac} gave the best predictive
performance, correctly classifying 89.50% of thengkes with 93.88% LOOCV accuracy.
Some models with more variables achieved a bettgfopnance, for example, LOOCV
accuracy was 96.04% for the 5-variable model {GA1APPLBIf + BacR + Pig2Bac + HF183}
and 98.03% for the 9-variable model {GA17PH + PLBiBacR + Pig2Bac + AllBac + HF183
+ FEQPCR + PGMit + NoV}. However, when these modedse tested, their performance level
dropped to 76.32% correctly predicted samples. Pphisnomenon is well-known in pattern
recognition and is explained by the fact that thances of (linear) separability increase with
dimension (number of markers). Redundancy (infoimnashared or conveyed by different
markers) also contributes to the phenomenon. Aftege our results suggest that some of the
selected markers may not be sufficiently indepehd@m the sense of conveying new
separability information) and therefore could bmoged. From an operational point of view,
the results highlight the importance of adding esipaony principle (in the number of selected

markers) when choosing the best model.

The development of different models allows the usieichnaea® to decide the number of

variables to be included and the desired rate ofecb classification, considering that a high
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number of variables increases not only the corckdsification but also the time and cost of

laboratory analysis.

As ST markers from different geographical areas wary in sensitivity and specificity
(Haramoto and Osada, 2018; Mayer et al., 2018; ¥atyal., 2017), a more local study using
regionally tailored ST markers with samples frosn@aller geographical range could reduce the
number of markers while increasing the power ofrtteglels. It should be born in mind that the
indicators selected here were the best in a givemdwork, but they may differ when using
another input matrix (different markers, indicatarsd source samples) or altering the given
inactivation, which can vary according to the seaaond environmental conditions (W. Ahmed
et al., 2014; Ballesté et al., 2018; Blausteinlgt213; Solecki et al., 2011). Thus, the decay
rate and dilution will vary according to the targeenario. The aged-diluted matrix in this study
covered up to 300 h (12.5 days), but other typesmgofg and dilution may occur, depending on
the environment. For example, in rainy seasondter anowmelt the dilution factor becomes
more significant, and may also influence flow véypand transport distances, thereby affecting
the age of the pollution (Jonsson and Agerberg,52@®eischer et al., 2008). Hence, the
distributions used in this Ichndeapproach to develop the aged-dilution matrix camiodified

to match regional conditions and draw scenariol wibetter fit. Tailoring models to the area of
study by using local fresh faecal samples, as aglimore accurate factors of regional and
seasonal inactivation, dilution and aging would iayg accuracy while reducing the number of

variables to be tested. Further approaches shocildde mixing of different potential sources.

CONCLUSIONS

« Almost all the ST markers tested showed the patktdi correctly target their host in
the 5 geographical areas. Redundancy among somhe ofiarkers showed they can be

used indistinctly.
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« Ichnae&, a machine-learning software based on the R s@iptides useful and easy-
to-use tools to improve the classification of fdgmalution in water, including complex
samples potentially aged and diluted. The softwame generate tailored models to

determine the source of faecal pollution.

e The creation of am silico matrix of aged and diluted samples using point@®iresh
faecal samples is an effective approach to obtaimgh amount of data covering

different scenarios and reproducing environmerdatdions.

* When a water sample is aged and diluted, the lesklhe markers decrease, and
becomes difficult to distinguish between sampleth wlifferent degrees of dilution and
aging. In this scenario, no model gives 100% LOO&uracy, although 99% was

achieved.

* Models based on linear discriminant analysis usingpw number of ST markers
(between 2 and 5) can achieve LOOCV accuracievef 85%. Different models can
be generated to discriminate between human anchaom@n pollution or identify 4

potential sources: human, porcine, bovine and poult

* Testing with real samples is a crucial step in gaiireg models with better

performance.

Acknowledgements

This study was supported by the European Projedt RBBE AQUAVALENS, Grant
agreement no: 311846, Spanish Government reseamgjecip CGL2011-25401 and the
2017SGR170 project by the Catalan Government. Vé@kttKirsi Séderberg for technical

support at UH, Nathalie Schuster for her laboragqyertise and Gerhard Lindner for providing

24



592

593

594

595

596
597
598

599
600
601

602
603
604

605
606
607
608

609
610

611
612
613

614
615
616

617
618
619

620
621
622

623
624
625

626
627
628
629
630

lab support at Institute of Chemical, Environmerdald Bioscience Engineering (Vienna);

Laura Sala and Marta Gomez for her lab suppotténiB.

References

Ahmed, W, Gyawali, P., S Sidhu, J.P., Toze, S.42Rklative Inactivation of Faecal Indicator
Bacteria and Sewage Markers in Freshwater and $eaMarocosms. Lett. Appl.
Microbiol. nfa-n/a. doi:10.1111/lam.12285

Ahmed, W., Gyawali, P., Sidhu, J.P.S., Toze, S142Relative inactivation of faecal indicator
bacteria and sewage markers in freshwater and seamecrocosms. Lett. Appl.
Microbiol. 59, 348-354. doi:10.1111/lam.12285

Ahmed, W., Hughes, B., Harwood, V.J., 2016. Curstatus of marker genes of bacteroides
and related taxa for identifying sewage pollutiorenvironmental waters. Water
(Switzerland) 8, 231. doi:10.3390/w8060231

Ahmed, W., Stewart, J., Gardner, T., Powell, Dgdks, P., Sullivan, D., Tindale, N., 2007.
Sourcing faecal pollution: a combination of libratgpendent and library-independent
methods to identify human faecal pollution in newsred catchments. Water Res. 41,
3771-3779. doi:10.1016/j.watres.2007.02.051

Bae, S., Wuertz, S., 2009. Rapid decay of hostispéecal Bacteroidales cells in seawater as
measured by quantitative PCR with propidium momb@ziWater Res. 43, 4850-4859.

Balleste, E., Blanch, A.R., 2010a. Persistenceanft®oides species populations in a river as
measured by molecular and culture techniques. Eppl Microbiol 76, 7608—7616.
doi:10.1128/AEM.00883-10

Balleste, E., Blanch, A.R., 2010b. Persistenceaift®oides species populations in a river as
measured by molecular and culture techniques. Eppl Microbiol 76, 7608—7616.
doi:10.1128/AEM.00883-10

Ballesté, E., Bonjoch, X., Belanche, L.A.L.A., B&dm A.R., 2010. Molecular indicators used in
the development of predictive models for microlialirce tracking. Appl. Environ.
Microbiol. 76, 1789-1795. doi:10.1128/AEM.02350-09

Ballesté, E., Garcia-Aljaro, C., Blanch, A.R., 20A8sessment of the decay rates of microbial
source tracking molecular markers and faecal indidaacteria from different sources. J.
Appl. Microbiol. 125, 1938-1949. doi:10.1111/jan0b8

Bernhard, A.E., Field, K.G., 2000. A PCR assayisoriminate human and ruminant feces on
the basis of host differences in Bacteroides-Pedlogienes encoding 16S rRNA.
Appl.Environ.Microbiol. 66, 4571-4574.

Blanch, A.R., Belanche-Mufioz, L., Bonjoch, X., Ebdd., Gantzer, C., Lucena, F., Ottoson, J.,
Kourtis, C., Iversen, A., Kuhn, 1., Moce, L., Mus& M., Schwartzbrod, J., Skraber, S.,
Papageorgiou, G., Taylor, H.D., Wallis, J., Jofe2004. Tracking the origin of faecal
pollution in surface water: an ongoing project Wwitthe European Union research
programme. J. Water Health 2, 249-60.

25



631
632
633
634
635

636
637
638

639
640
641

642
643
644
645

646
647
648
649
650

651
652
653

654
655
656
657

658
659
660
661

662
663
664

665
666
667

668
669
670

671
672
673
674

Blanch, A.R., Belanche-Munoz, L., Bonjoch, X., Ebdd., Gantzer, C., Lucena, F., Ottoson, J.,
Kourtis, C., Iversen, A., Kuhn, I., Moce, L., Mus& M., Schwartzbrod, J., Skraber, S.,
Papageorgiou, G.T., Taylor, H., Wallis, J., Jo&e 2006. Integrated analysis of
established and novel microbial and chemical mettiodmicrobial source tracking.
Appl.Environ.Microbiol. 72, 5915-5926.

Blaustein, R. a., Pachepsky, Y., Hill, R.L., She|tD.R., Whelan, G., 2013. Escherichia coli
survival in waters: Temperature dependence. Water K7, 569-578.
doi:10.1016/j.watres.2012.10.027

Bonjoch, X., Ballesté, E., Blanch, A.R., 2005. Emuation of bifidobacterial populations with
selective media to determine the source of watedofecal pollution. Water Res. 39,
1621-1627.

Bonjoch, X., Ballesté, E., Blanch, A.R.R., Balledte, Blanch, A.R.R., Ballesté, E., Blanch,
A.R.R., 2004. Multiplex PCR with 16S rRNA gene-tated primers of bifidobacterium
spp. to identify sources of fecal pollution. ApBhviron. Microbiol. 70, 3171-3175.
doi:10.1128/AEM.70.5.3171-3175.2004

Bradshaw, J.K., Snyder, B.J., Oladeinde, A., SpidleBerrang, M.E., Meinersmann, R.J.,
Oakley, B., Sidle, R.C., Sullivan, K., Molina, M016. Characterizing relationships
among fecal indicator bacteria, microbial souregking markers, and associated
waterborne pathogen occurrence in stream wates@gichents in a mixed land use
watershed. Water Res. 101, 498-509. doi:10.101#/es.2016.05.014

Brooks, L.E., Field, K.G., 2017. Global model fitji to compare survival curves for faecal
indicator bacteria and ruminant-associated gemediders. J. Appl. Microbiol. 122, 1704—
1713. doi:10.1111/jam.13454

Casanovas-Massana, A., Gomez-Donate, M., SancheBel@nche-Munoz, L.A., Muniesa,
M., Blanch, A.R., 2015. Predicting fecal sourcesvaters with diverse pollution loads
using general and molecular host-specific indicagord applying machine learning
methods. J Env. Manag. 151, 317-325. doi:10.1046yyman.2015.01.002

Cho, K.H., Pachepsky, Y.A., Oliver, D.M., Muirhe®lW., Park, Y., Quilliam, R.S., Shelton,
D.R., 2016. Modeling fate and transport of feca@rived microorganisms at the
watershed scale: State of the science and futyreramities. Water Res. 100, 38-56.
doi:10.1016/j.watres.2016.04.064

Dick, L.K., Bernhard, A.E., Brodeur, T.J., Santoringo, J.W., Simpson, J.M., Walters, S.P.,
Field, K.G., 2005. Host distributions of uncultigdtfecal Bacteroidales bacteria reveal
genetic markers for fecal source identificationpARnviron.Microbiol. 71, 3184-3191.

Dick, L.K., Stelzer, E.A., Bertke, E.E., Fong, D.Stoeckel, D.M., 2010. Relative decay of
Bacteroidales microbial source tracking markersauitivated Escherichia coli in
freshwater microcosms. Appl Env. Microbiol 76, 323362. doi:10.1128/AEM.02636-09

Ebdon, J., Muniesa, M., Taylor, H., 2007. The agatlon of a recently isolated strain of
Bacteroides (GB-124) to identify human sourcesaetél pollution in a temperate river
catchment. Water Res. 41, 3683—-3690. doi:10.10d#fes.2006.12.020

Ebentier, D.L., Hanley, K.T., Cao, Y., Badgley, B.Boehm, A.B., Ervin, J.S., Goodwin, K.D.,
Gourmelon, M., Griffith, J.F., Holden, P. a., Kely. a., Lozach, S., McGee, C., Peed, L.
a., Raith, M., Ryu, H., Sadowsky, M.J., Scott, EDopmingo, J.S., Schriewer, A.,
Sinigalliano, C.D., Shanks, O.C., Van De WerfhatsE., Wang, D., Wuertz, S., Jay, J. a.,

26



675
676
677

678
679
680

681
682
683

684
685
686

687
688
689
690
691

692
693
694

695
696
697
698

699
700
701
702

703
704
705
706

707
708
709
710
711

712
713
714
715
716

717
718

2013. Evaluation of the repeatability and reprotlility of a suite of gJPCR-based
microbial source tracking methods. Water Res. 83966848.
doi:10.1016/j.watres.2013.01.060

Fallahi, S., Mattison, K., 2011. Evaluation of VngiNorovirus Persistence in Environments
Relevant to Food Production and Processing. J. Pood 74, 1847-1851.
doi:10.4315/0362-028X.JFP-11-081

Fong, T.T., Griffin, D.W., Lipp, E.K., 2005. Moletar assays for targeting human and bovine
enteric viruses in coastal waters and their apjptindor library-independent source
tracking. Appl. Environ. Microbiol. doi:10.1128/AEM.4.2070-2078.2005

Garcia-Aljaro, C., Ballesté, E., Muniesa, M., Jofte 2017. Determination of crAssphage in
water samples and applicability for tracking hurfeecal pollution. Microb. Biotechnol.
10, 1775-1780. d0i:10.1111/1751-7915.12841

Gawler, A.H., Beecher, J.E., Brandao, J., CardM., Falcao, L., Gourmelon, M., Masterson,
B., Nunes, B., Porter, J., Rince, A., Rodrigues,TRorp, M., Walters, J.M., Meijer, W.G.,
2007. Validation of host-specific Bacteriodales IB8IA genes as markers to determine
the origin of faecal pollution in Atlantic Rim courres of the European Union. Water Res.
41, 3780-3784.

Gomez-Donate, M., Balleste, E., Muniesa, M., BlaiklR., 2012. New Molecular Quantitative
PCR Assay for Detection of Host-Specific Bifidob&taceae Suitable for Microbial
Source Tracking. Appl. Environ. Microbiol. 78, 578 95. doi:10.1128/AEM.00895-12

Gomez-Dofate, M., Payan, A., Cortés, |., BlanciR.ALucena, F., Jofre, J., Muniesa, M.,
2011. Isolation of bacteriophage host strainBamfteroides species suitable for tracking
sources of animal faecal pollution in water. Enmiricrobiol. 13, 1622—-1631.
doi:10.1111/j.1462-2920.2011.02474.x

Gourmelon, M., Caprais, M.P., Mieszkin, S., MaRi, Wery, N., Jarde, E., Derrien, M., Jadas-
Hecart, A., Communal, P.Y., Jaffrezic, A., Pourc®eM., 2010. Development of
microbial and chemical MST tools to identify thégim of the faecal pollution in bathing
and shellfish harvesting waters in France. Watex. B¢, 4812-4824.

Gourmelon, M., Caprais, M.P., Segura, R., Le, ML@zach, S., Piriou, J.Y., Rince, A., 2007.
Evaluation of two library-independent microbial smeitracking methods to identify
sources of fecal contamination in French estua#ippl.Environ.Microbiol. 73, 4857—
4866.

Green, H C, Haugland, R.A., Varma, M., Millen, H.Borchardt, M.A., Field, K.G., Walters,
W.A., Knight, R., Sivaganesan, M., Kelty, C.A., 8kg, O.C., 2014. Improved HF183
Quantitative Real-Time PCR Assay for Characteriratf Human Fecal Pollution in
Ambient Surface Water Samples. Appl. Environ. Migob. 80, 3086—-3094.
doi:10.1128/AEM.04137-13

Green, Hyatt C, Haugland, R.A., Varma, M., MilléhT., Borchardt, M.A., Field, K.G.,
Walters, W.A., Knight, R., Sivaganesan, M., KeltyA., Shanks, O.C., 2014. Improved
HF183 quantitative real-time PCR assay for chareetiéon of human fecal pollution in
ambient surface water samples. Appl. Environ. Migob 80, 3086—94.
doi:10.1128/AEM.04137-13

Green, H.C., Shanks, O.C., Sivaganesan, M., HadgRuA\., Field, K.G., 2011. Differential
decay of human faecal Bacteroides in marine arghivater. Env. Microbiol 13, 3235—

27



719

720
721
722
723
724

725
726
727

728
729
730
731

732
733
734
735

736
737
738

739
740
741

742
743
744
745

746
747
748
749

750
751

752
753
754

755
756
757

758
759
760
761

3249. d0i:10.1111/].1462-2920.2011.02549.x

Hagedorn, C., Blanch, A.R., Harwood, V.J., Farnkif A.H., Reischer, G.H., Stadler, H.,
Kollanur, D., Sommer, R., Zerobin, W., Bloschl, Barrella, K.M., Truesdale, J.A.,
Casarez, E.A., Giovanni, G.D., 2011. Microbial Smufracking: Methods, Applications,
and Case Studies, Source. Springer New York, Nek,YY, NY. doi:10.1007/978-1-
4419-9386-1

Haramoto, E., Osada, R., 2018. Assessment anccappti of host-specific Bacteroidales
genetic markers for microbial source tracking @ériwater in Japan. PLoS One 13,
e0207727. doi:10.1371/journal.pone.0207727

Harwood, V.J., Staley, C., Badgley, B.D., Borges,Korajkic, A., 2014. Microbial source
tracking markers for detection of fecal contamioatin environmental waters:
relationships between pathogens and human hedltbraas. FEMS Microbiol Rev 38, 1—
40. doi:10.1111/1574-6976.12031

Haugland, R.A., Siefring, S.C., Wymer, L.J., BreneP., Dufour, A.P., 2005. Comparison of
Enterococcus measurements in freshwater at tweatonal beaches by quantitative
polymerase chain reaction and membrane filter ceibnalysis. Water Res. 39, 559-568.
doi:10.1016/j.watres.2004.11.011

He, X., Chen, H., Shi, W., Cui, Y., Zhang, X.-X.20Q15. Persistence of mitochondrial DNA
markers as fecal indicators in water environme®ts.Total Env. 533, 383—390.
doi:10.1016/j.scitotenv.2015.06.119

Heaney, C.D., Myers, K., Wing, S., Hall, D., Barén, Stewart, J.R., 2015. Source tracking
swine fecal waste in surface water proximal to niancentrated animal feeding
operations. Sci. Total Environ. 511, 676-83. dat0Q6/j.scitotenv.2014.12.062

Henry, R., Schang, C., Coutts, S., Kolotelo, PosBer, T., Crosbie, N., Grant, T., Cottam, D.,
O’Brien, P., Deletic, A., McCarthy, D., 2016. Iritee deep: Evaluation of SourceTracker
for assessment of faecal contamination of coastitdns. Water Res. 93, 242-253.
doi:10.1016/j.watres.2016.02.029

Hernroth, B.E., Conden-Hansson, A.-C., RehnstamyH4l.-S., Girones, R., Allard, A.K.,
2002. Environmental Factors Influencing Human Virathogens and Their Potential
Indicator Organisms in the Blue Mussel, Mytilus kslithe First Scandinavian Report.
Appl. Environ. Microbiol. 68, 4523-4533. doi:10. BIAEM.68.9.4523-4533.2002

Hirneisen, K. a, Kniel, K.E., 2013. Comparing hunmamovirus surrogates: murine norovirus
and Tulane virus. J. Food Prot. 76, 139-43. dat316/0362-028X.JFP-12-216

ISO, 2013a. Water Quality — Detection and Enumenadif Clostridium perfringens — Part 2:
Method by Membrane filtration (ISO/CD 6461-2). Intational Organization of
Standardization, Geneve, Switzerland.

ISO, 2013b. Microbiology of food and animal feedHerizontal method for determination of
hepatitis A virus and norovirus in food using réaile RT-PCR -- Part 1: Method for
quantification. Geneva, Switzerland.

ISO, 2001a. Microbiology of food and animal feedstgffs - Horizontal method for the
enumration of B-glucoronidase-positive Escheriduh - Part 1: Colony-count technique
at 44C using membranes and 5-bromo-4-chloro-3-indolgl&:uronide. (ISO 16649-
1:2001 04. International Organization of Standaatilim, Geneva, Switzerland.

28



762
763

764
765
766

767
768
769

770
771
772
773

774
775
776

777
778

779
780
781

782
783
784
785

786
787
788

789
790
791

792
793
794

795
796
797

798
799
800
801

802
803

ISO, 2001b. ISO 10705-4: Water quality - Detectimd enumeration of bacteriophages. Part 4:
Enumeration of bacteriophages infecting Bacterofchegilis.

ISO, 2000a. Water Quality — Detection and Enumenadf Intestinal Enterococci — Part 2:
Membrane Filtration Method (ISO 7899-2: 2000). insgional Organization of
Standardization, Geneve, Switzerland.

ISO, 2000b. Water quality - Detection and enumenatif bacteriophages - Part 2: Enumeration
of somatic coliphages. (ISO 10705-2). Internatiddajanization of Standardization,
Geneva, Switzerland.

Jeanneau, L., Solecki, O., Wery, N., Jarde, E.r@elon, M., Communal, P.Y., Jadas-Hecart,
A., Caprais, M.P., Gruau, G., Pourcher, A.M., 2(R@&lative decay of fecal indicator
bacteria and human-associated markers: a microstgiyg simulating wastewater input
into seawater and freshwater. Env. Sci TechnoR3885—-2382. doi:10.1021/es203019y

Jenkins, M.W., Tiwari, S., Lorente, M., GichabalViCG.Wuertz, S., 2009. Identifying human
and livestock sources of fecal contamination iny&ewith host-specific Bacteroidales
assays. Water Res 43, 4956—-4966. doi:10.1016/pa@(09.07.028

Jonsson, A., Agerberg, S., 2015. Modelling of Hi ttansport in an oligotrophic river in
northern Scandinavia. Ecol. Modell. 306, 145-1%1:1d.1016/j.ecolmodel.2014.10.021

Knights, D., Kuczynski, J., Charlson, E.S., Zandyél, Mozer, M.C., Collman, R.G.,
Bushman, F.D., Knight, R., Kelley, S.T., 2011. Bsigg community-wide culture-
independent microbial source tracking. Nat Metii@l,—763.

Korajkic, A., McMinn, B.R., Shanks, O.C., SivagaaesM., Fout, G.S., Ashbolt, N.J., 2014.
Biotic interactions and sunlight affect persistentéecal indicator bacteria and microbial
source tracking genetic markers in the upper naggsriver. Appl. Environ. Microbiol.
80, 3952-3961. doi:10.1128/AEM.00388-14

Layton, A., McKay, L., Williams, D., Garrett, V., &try, R., Sayler, G., 2006. Development of
Bacteroides 16S rRNA gene TagMan-based real-tinie #3ays for estimation of total,
human, and bovine fecal pollution in water. AppkEon.Microbiol. 72, 4214-4224.

Liang, Z., He, Z., Zhou, X., Powell, C.A., Yang,, Roberts, M.G., Stoffella, P.J., 2012. High
diversity and differential persistence of fecal acidales population spiked into
freshwater microcosm. Water Res 46, 247-257. ddidli®/j.watres.2011.11.004

Martellini, A., Payment, P., Villemur, R., 2005. &ef eukaryotic mitochondrial DNA to
differentiate human, bovine, porcine and ovine sesiin fecally contaminated surface
water. Water Res. 39, 541-8. doi:10.1016/j.watf#211.012

Mason, M.R., Nagaraja, H.N., Camerlengo, T., JoghiKumar, P.S., 2013. Deep Sequencing
Identifies Ethnicity-Specific Bacterial Signatuieshe Oral Microbiome. PLoS One 8.
doi:10.1371/journal.pone.0077287

Maunula, L., Séderberg, K., Vahtera, H., VuorilehfdP., Von Bonsdorff, C.H., Valtari, M.,
Laakso, T., Lahti, K., 2012. Presence of human nano adenoviruses in river and treated
wastewater, a longitudinal study and method corspariJ. Water Health.
do0i:10.2166/wh.2011.095

Mayer, R.E., Reischer, G.H., Ixenmaier, S.K., DdrxBlaschke, A.P., Ebdon, J.E., Linke, R.,
Egle, L., Ahmed, W., Blanch, A.R., Byamukama, Dayi8, M., Mushi, D., Cristobal,

29



804
805
806
807
808

809
810

811
812
813
814

815
816
817
818

819
820
821

822
823
824

825
826
827
828

829
830
831
832

833
834
835

836
837

838
839
840
841
842

843
844
845
846
847

H.A., Edge, T.A., Schade, M.A., Aslan, A., BrooksM., Sommer, R., Masago, Y., Sato,
M.l., Taylor, H.D., Rose, J.B., Wuertz, S., Shan®s:., Piringer, H., Mach, R.L., Savio,
D., Zessner, M., Farnleitner, A.H., 2018. Globadtbbution of Human-Associated Fecal
Genetic Markers in Reference Samples from Six @ents. Environ. Sci. Technol. 52,
5076-5084. doi:10.1021/acs.est.7b04438

McLellan, S.L., Eren, A.M., 2014. Discovering newdicators of fecal pollution. Trends
Microbiol. 22, 697-706. doi:10.1016/j.tim.2014.0&0

McQuaig, S., Griffith, J., Harwood, V.J., 2012. Asmtion of fecal indicator bacteria with
human viruses and microbial source tracking marec®astal beaches impacted by
nonpoint source pollution. Appl. Environ. Microhi@18, 6423—-6432.
doi:10.1128/AEM.00024-12

Méndez, J., Audicana, A., Isern, A., Llaneza, Joyé&ho, B., Tarancon, M.L., Jofre, J., Lucena,
F., 2004. Standardised evaluation of the performaf@ simple membrane filtration-
elution method to concentrate bacteriophages fronkidg water. J. Virol. Methods 117,
19-25. do0i:10.1016/j.jviromet.2003.11.013

Mieszkin, S., Furet, J.P., Corthier, G., Gourmeldn,2009. Estimation of pig fecal
contamination in a river catchment by real-time R@ihg two pig-specific Bacteroidales
16S rRNA genetic markers. Appl.Environ.Microbiok, B045—-3054.

Muniesa, M., Lucena, F., Blanch, A.R., Payan, Aftel J., 2012. Use of abundance ratios of
somatic coliphages and bacteriophages of Bacteydiddaiotaomicron GA17 for
microbial source identification. Water Res. 46, ®844. doi:10.1016/j.watres.2012.09.015

Oristo, S., Lee, H.-J., Maunula, L., 2018. Perfano®wof pre-RT-qPCR treatments to
discriminate infectious human rotaviruses and niouges from heat-inactivated viruses:
applications of PMA/PMAXxx, benzonase and RNasApjl. Microbiol. 124, 1008-1016.
doi:10.1111/jam.13737

Payan, A., Ebdon, J., Taylor, H., Gantzer, C., €itg J., Papageorgiou, G.T., Blanch, A.R.,
Lucena, F., Jofre, J., Muniesa, M., 2005. Methaddolation of Bacteroides
bacteriophage host strains suitable for trackingces of fecal pollution in water. Appl.
Environ. Microbiol. 71, 5659-5662. doi:10.1128/AEM.9.5659-5662.2005

Pina, S., Puig, M., Lucena, F., Jofre, J., GiroRes1998. Viral pollution in the environment
and in shellfish: Human adenovirus detection by RGRn index of human viruses. Appl.
Environ. Microbiol.

R Core Team, 2016. R: A Language and Environmerfatistical Computing, R Foundation
for Statistical Computing. doi:10.1007/978-3-54(688-7

Raith, M.R., Kelty, C.A., Griffith, J.F., Schriewek., Wuertz, S., Mieszkin, S., Gourmelon, M.,
Reischer, G.H., Farnleitner, A.H., Ervin, J.S., ki, P.A., Ebentier, D.L., Jay, J.A.,
Wang, D., Boehm, A.B., Aw, T.G., Rose, J.B., Ballek., Meijer, W.G., Sivaganesan,
M., Shanks, O.C., 2013. Comparison of PCR and dfatine real-time PCR methods for
the characterization of ruminant and cattle fecdlyion sources. Water Res. 47, 6921-8.

Reischer, G.H., Ebdon, J.E., Bauer, J.M., SchusteAhmed, W., Astrém, J., Blanch, A.R.,
Bléschl, G., Byamukama, D., Coakley, T., FergusonGoshu, G., Ko, G., de Roda
Husman, A.M., Mushi, D., Poma, R., Pradhan, B.aR&., Schade, M.A., Sommer, R.,
Taylor, H., Toth, E.M., Vrajmasu, V., Wuertz, S.abh, R.L., Farnleitner, A.H., 2013.
Performance Characteristics of gPCR Assays Tageétirman- and Ruminant-Associated

30



848
849

850
851
852
853

854
855
856
857

858
859

860
861
862
863
864

865
866

867
868
869

870
871
872

873
874
875

876
877
878

879
880
881
882

883
884
885
886

887
888
889
890

Bacteroidetes for Microbial Source Tracking act®sgeen Countries on Six Continents.
Environ. Sci. Technol. 47, 8548-8556. doi:10.10230<367t

Reischer, G.H., Haider, J.M., Sommer, R., StatlerKeiblinger, K.M., Hornek, R., Zerobin,
W., Mach, R.L., Farnleitner, A.H., 2008. Quantitatimicrobial faecal source tracking
with sampling guided by hydrological catchment dyies. Environ. Microbiol. 10, 2598—
2608. d0i:10.1111/j.1462-2920.2008.01682.x

Reischer, G.H., Kasper, D.C., Steinborn, R., M&h,, Farnleitner, A.H., 2006. Quantitative
PCR method for sensitive detection of ruminantlfec#lution in freshwater and
evaluation of this method in alpine karstic regiofgpl.Environ.Microbiol. 72, 5610—
5614.

Roslev, P., Bukh, A.S., 2011. State of the art owbr markers for fecal pollution source
tracking in water. Appl.Microbiol.Biotechnol. 89341-1355.

Rusifiol, M., Fernandez-Cassi, X., Hundesa, A.,dieC., Kern, A., Eriksson, 1., Ziros, P.,
Kay, D., Miagostovich, M., Vargha, M., Allard, A/antarakis, A., Wyn-Jones, P., Bofill-
Mas, S., Girones, R., 2014. Application of humad animal viral microbial source
tracking tools in fresh and marine waters from fiNerent geographical areas. Water
Res. doi:10.1016/j.watres.2014.04.013

Sanchez, D., Belanche, L., Blanch, A.R., 2011. Avare System for the Microbial Source
Tracking Problem. J. Mach. Learn. Res. 17, 7.

Scheurer, M., Brauch, H.-J., Lange, F.T., 2009.lysa and occurrence of seven artificial
sweeteners in German waste water and surface aaden soil aquifer treatment (SAT).
Anal. Bioanal. Chem. 394, 1585-1594. doi:10.100724®-009-2881-y

Schill, W.B., Mathes, M. V, 2008. Real-time PCRat#ion and quantification of nine potential
sources of fecal contamination by analysis of nhitoalrial cytochrome b targets.
Environ. Sci. Technol. 42, 5229-34. doi:10.10210865612

Sercu, B., Van De Werfhorst, L.C., Murray, J.L. Ithm, P.A., 2011. Terrestrial sources
homogenize bacterial water quality during rainiiaftwo urbanized watersheds in Santa
Barbara, CA. Microb Ecol 62, 574-583. doi:10.1000248-011-9874-z

Smith, A., Sterba-Boatwright, B., Mott, J., 201wl application of a statistical technique,
Random Forests, in a bacterial source trackingystter Res. 44, 4067—4076.
doi:10.1016/j.watres.2010.05.019

Sokolova, E., Astrom, J., Pettersson, T.J., Bedgs@., Hermansson, M., 2012. Decay of
Bacteroidales genetic markers in relation to tradél fecal indicators for water quality
modeling of drinking water sources. Env. Sci Tedi& 892-900.
doi:10.1021/es2024498

Solecki, O., Jeanneau, L., Jarde, E., GourmelonMdrin, C., Pourcher, A.M., 2011.
Persistence of microbial and chemical pig manurekera as compared to faecal indicator
bacteria survival in freshwater and seawater mmsots. Water Res 45, 4623-4633.
doi:10.1016/j.watres.2011.06.012

Stewart, J.R., Boehm, A.B., Dubinsky, E. a., Fond,, Goodwin, K.D., Griffith, J.F., Noble,
R.T., Shanks, O.C., Vijayavel, K., Weisberg, SA]13. Recommendations following a
multi-laboratory comparison of microbial sourceckimg methods. Water Res. 47, 6829—
6838. d0i:10.1016/j.watres.2013.04.063

31



891
892
893

894
895

896
897
898

899
900

901
902

903
904
905

906
907
908
909
910

911
912
913
914

Tambalo, D.D., Fremaux, B., Boa, T., Yost, C.K.120Persistence of host-associated
Bacteroidales gene markers and their quantitateation in an urban and agricultural
mixed prairie watershed. Water Res 46, 2891-29041@1016/].watres.2012.02.048

Tarca, a L., Carey, V.J., Chen, X.W., Romero,[Raghici, S., 2007. Machine learning and its
applications to biology. PLoS Comput. Biol. 3, €1d6i:10.1371/journal.pcbi.0030116

Van Kessel, J.S., Pachepsky, Y.A., Shelton, D.RrpK, J.S., 2007. Survival of Escherichia
coli in cowpats in pasture and in laboratory cdondi. J Appl Microbiol 103, 1122-1127.
doi:10.1111/j.1365-2672.2007.03347 .x

Walters, S.P., Field, K.G., 2009. Survival and gesce of human and ruminant-specific
faecal Bacteroidales in freshwater microcosms. ienvMicrobiol. 11, 1410-1421.

Walters, W.A., Xu, Z., Knight, R., 2014. Meta-arsdg of human gut microbes associated with
obesity and IBD. FEBS Lett. 588, 4223-4233. dott0Q6/j.febslet.2014.09.039

Wong, K., Fong, T.T., Bibby, K., Molina, M., 2012pplication of enteric viruses for fecal
pollution source tracking in environmental watétsviron. Int.
doi:10.1016/j.envint.2012.02.009

Wyn-Jones, A.P., Carducci, A., Cook, N., D’Agostii., Divizia, M., Fleischer, J., Gantzer,
C., Gawler, A., Girones, R., Holler, C., de Rodashian, A.M., Kay, D., Kozyra, I.,
Lopez-Pila, J., Muscillo, M., Nascimento, M.S., Bgeorgiou, G., Rutjes, S., Sellwood, J.,
Szewzyk, R., Wyer, M., 2011. Surveillance of adenmes and noroviruses in European
recreational waters. Water Res 45, 1025-1038. @di016/j.watres.2010.10.015

Yahya, M., Blanch, A.R., Meijer, W.G., Antoniou,,Kdmaied, F., Ballesté, E., 2017.
Comparison of the Performance of Different Micrél8aurce Tracking Markers among
European and North African Regions. J. Environ.IQ4& 760.
doi:10.2134/jeq2016.11.0432

32



915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

Fig 1. Schematic representation of the computatiprecess used to generate and

validate microbial source tracking models with lab&.

Fig 2. Histograms of sample projections onto tinedr discriminant (projection vector) given

by linear discriminant analysis according to humamd non-human sources. This
discriminant represents the linear combination ariables that best separate the sources.
Shown are four different scenarios: A) point soudega matrix using all variables, B)
point source data matrix using molecular varialoiely, C) diluted and aged sample data
matrix using all variables and D) diluted and ageth matrix using molecular variables
only. These scenarios show a variable degree aftscseparability (or, alternatively,

source overlap), from non-existent in A to a sigifit one in D.

Fig 3. 3D plots showing sample projections ontottiree linear discriminants given by linear

discriminant analysis, according to the four pddatsources considered (red: human,
green: pig, black: cow, blue: poultry). These dis@mants (named LD1 to LD3) represent
different linear combinations of variables that tbesparate the sources, LD1 being the
discriminant achieving the highest separabilitylofwed by LD2 and then LD3. Shown
are two different scenarios: A) point source dagdrix using all variables and B) diluted
and aged data matrix using all variables. Agaire fhots reflect two very diverse
situations of source separability. In A, the fowusces form compact and cleanly
separated data clusters. As the samples are psogrigsdiluted and aged, separability
slowly decreases until it becomes impossible: tiferimation content in the sample

vanishes and the data sample converges towardsata®rigin, regardless of the source.
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Table 1. List of 30 initially selected parameters (micilndicators and MST markers) for the
definition of single and derived variables (ratios}he statistical and machine learning methods
of this study. Their labels are indicated.

L abel Parameter M ethod
(1SO, 20014a)
EC Escherichia cali ISO 16649-1:2001
(1SO, 2000a)
FE Faecal enterococci ISO 7899-2:2000
CP Clostridium perfringens spores ISO/DIS 14189
(1SO, 2000b)
SOMCPH Somatic coliphages ISO 10705-2:2000
(Gémez-Dofiate et al., 2011;
GA17PH Human-specifiBacteroides phages ISO, 2001b)
(Gémez-Dofiate et al., 2011;
CWPH Cow-specificBacteroides phages ISO, 2001b)
(Gémez-Dofiate et al., 2011;
PGPH Pig-specificBacteroides phages ISO, 2001b)
(Gémez-Dofiate et al., 2011;
PLPH Poultry-specificBacteroides phages ISO, 2001b)
BifSorb HumarBifidobacterium Sorbitol Agar (HBSA yellow colonies) (Bonjoch et al., 2005)
BifTot Total Bifidobacterium Sorbitol Agar (HBSA total colonies) (Bonjoch et al., 2005)
HMBIf Human-specific Bifidobacteria by qPCR (Gomez-Donate et al., 2012)
CWBIf Cow-specific Bifidobacteria by gPCR (Gomez-Donate et al., 2012)
PGNeo Pig-specifitleoscardovia by qPCR (Gomez-Donate et al., 2012)
PLBIf Poultry-specific Bifidobacteria by gPCR (Gomez-Donate et al., 2012)
TLBIf Total Bifidobacteria by gPCR (Gomez-Donate et al., 2012)
BacR Ruminant-specific Bacteroidetes by qPCR (Reischer et al., 2006)
Pig2Bac  Pig-specific Bacteroidetes by qPCR (Mieszkin et al., 2009)
AllBac All Bacteroidetes by gPCR (Layton et al., 2006)
HF183 Human-specific Bacteroidetéy qPCR (H C Green et al., 2014)
FEgQPCR Faecal enterococci by gPCR (Haugland et al., 2005)
HMMit Human-specific Mitochondrial marker by gPCR (Schill and Mathes, 2008)
CWMit Cow-specific Mitochondrial marker by gPCR (Schill and Mathes, 2008)
PGMit Pig-specific Mitochondrial marker by gPCR (Schill and Mathes, 2008)
PLMit Poultry-specific Mitochondrial market by gPCR (Schill and Mathes, 2008)

Acesulfame Artificial sweetener

(Scheurer et al., 2009)

Cyclamate Artificial sweetener (Scheurer et al., 2009)
Saccharin Artificial sweetener (Scheurer et al., 2009)
Sucralose Artificial sweetener (Scheurer et al., 2009)
HAdV Human-specific Adenovirus by gPCR (Hernroth et al., 2002)
ISO/TS 15216-1
NoV Norovirus (Gl and GllI) by gPCR (Oristo et al., 2018)
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Table 2. Selected subsets of parameters providmdest prediction models using 4, 2 or 1 vari&dnieéhe different scenarios: distinguishing betwbeeman
(HM) and non-human (Non-HM) pollution or four pdilon sources (human, bovine, poultry and porcimglyzing thePoint Source Training Matrix with

linear discriminant analysis.

All Markers Molecular
Np. o Variables Loocv Variables Loocv
variables Accuracy Accuracy
HF183 + HMBIf + PLMit + 0
4 1 variable (BacR or NoV) 100 %
. BacR + HF183 + HMBIf or
0, 0,
3 EC + HF183 + HMBIf 100 % PGNeo or PLMit 99.06 %
HM vs . .
Non-HM 2 HF183 + HMBIf 98.11 % HF183 + HMBIf 98.11 %
1 GA17PH 92.45 % HF183 84.91 %
CWMit + GA17PH + Pig2Bac + BacR + CF\)’Y_'I\\"A'; : Pig2Bac +
T 0 0,
S BacPRLSrIfHF183 100 % 1 variable (i. e.: HF183, HMBif, 2006 %
NoV)
CWMit + GAL7PH + Pig2Bac + CWMIit + Pig2Bac + PLMit + 1
4 Sour ces 4 PLBif 99.06 % variable (i. e.: BacR, HF183, 98.11 %
HMBIf, NoV)
3 CWMit + Pig2Bac + PLMit 97.17% CWMIit + Pig2BacPLMit 97.17%
2 Pig2Bac + CWMit or PLMit 76.42% Pig2Bac + CWMit or PLMit 76.42%
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948 Table 3. Selected prediction models obtained bgalirdiscriminant analysis using different numbédrgaviables. Models to evaluate the different scesa
949  distinguishing between human (HM) and non-humam{N®) pollution or four pollution sources (humargvine, poultry and porcine) analyzing thged-

950 Diluted Training Matrix.

951
All Markers Molecular
No. of variables Variables Loocv Variables Loocv
Accuracy Accuracy
4 HF183 + |—_|MB|f + PLBIf + 99.14%
Pig2Bac
HM vs . . .
Non-HM 3 EC + HF183 + HMBIf 99.59% HF183 + HMBIf + TLBif 93.34 %
2 GA17 + HF183 95.71% HF183 + HMBIf 91.98 %
BacR + GA17PH + HF183 + Pi o HMBIf + NoV + PGMit + 0
5 g2Bac + PLBiIf 96.04% PLBIif + PLMit 98.8%
4 BacR + GA17PH + Pig2Bac + 93.88% | 'T183+ CWMit+Pig2Bac o, 5 ¢
. + PLBIf
PLBif
4 Sour ces
3 BacR + GAL7PH + PLBIf  87.040 | 183 +Pig2Bac+PLBIf g7 70
2 Pig2Bac + PLBIf 69.83 % Pig2Bac + PLBIf 69.83 %
952
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Highlights

Samples from 5 geographical sources were analys#d 30 faecal markers and
indicators.

A machine learning software was used to developalasource discriminant models.

An in-silico matrix was generated using faecal samples, addiihgtion and
inactivation.

LDA models’ output was a combination of markerseatd improve the accuracy of
classification.

Models using between 2 and 5 source tracking msutan achieve LOOCV accuracies

of over 95%.
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