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Abstract 37 

The last decades have seen the development of several source tracking (ST) markers to 38 

determine the source of pollution in water, but none of them show 100% specificity and 39 

sensitivity. Thus, a combination of several markers might provide a more accurate 40 

classification. In this study Ichnaea® software was improved to generate predictive models, 41 

taking into account ST marker decay rates and dilution factors to reflect the complexity of 42 

ecosystems. A total of 106 samples from 4 sources were collected in 5 European regions and 30 43 

faecal indicators and ST markers were evaluated, including E. coli, enterococci, clostridia, 44 

bifidobacteria, somatic coliphages, host-specific bacteria, human viruses, host mitochondrial 45 

DNA, host-specific bacteriophages and artificial sweeteners. Models based on linear 46 

discriminant analysis (LDA) able to distinguish between human and non-human faecal pollution 47 

and identify faecal pollution of several origins were developed and tested with 36 additional 48 

laboratory-made samples. Almost all the ST markers showed the potential to correctly target 49 

their host in the 5 areas, although some were equivalent and redundant. The LDA-based models 50 

developed with fresh faecal samples were able to differentiate between human and non-human 51 

pollution with 98.1% accuracy in leave-one-out cross-validation (LOOCV) when using 2 52 

molecular human ST markers (HF183 and HMBif), whereas 3 variables resulted in 100% 53 

correct classification. With 5 variables the model correctly classified all the fresh faecal samples 54 

from 4 different sources. Ichnaea® is a machine-learning software developed to improve the 55 

classification of the faecal pollution source in water, including in complex samples. In this 56 

project the models were developed using samples from a broad geographical area, but they can 57 

be tailored to determine the source of faecal pollution for any user. 58 

Introduction 59 

Since the beginning of the millennium a big research effort has led to the development of new 60 

methodologies and indicators for determining the origin of faecal pollution in water, known as 61 
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source tracking (ST) markers. These tools complement the traditional faecal indicator bacteria 62 

such as Escherichia coli and enterococci, and their capacity to identify the source of faecal 63 

pollution has improved the management and assessment of water bodies (Bradshaw et al., 2016; 64 

Heaney et al., 2015). Research in this area has been focused mainly on the development of new 65 

molecular markers targeting closely related host-specific microorganisms (Hagedorn et al., 66 

2011), establishing protocols, and determining levels of specificity and sensitivity (Bernhard 67 

and Field, 2000; Bonjoch et al., 2004; Dick et al., 2005; García-Aljaro et al., 2017; H C Green et 68 

al., 2014; Mieszkin et al., 2009; Reischer et al., 2006). Other methods rely on phage detection 69 

by culture (Ebdon et al., 2007; Gómez-Doñate et al., 2011).  70 

However, ST methods have some limitations. i) As geographical areas differ in host genetics, 71 

immunological factors, antibiotic usage, and diet, all of which affect microbiota, ST markers 72 

should be monitored and validated in the target region prior to their application (Gawler et al., 73 

2007; Mayer et al., 2018; Reischer et al., 2013; Yahya et al., 2017). ii) No available marker 74 

shows 100% sensitivity and specificity. Accuracy may nevertheless be enhanced by using a 75 

combination of several ST markers and ratios, which can be evaluated using predictive models 76 

to improve decision-making strategies (Ahmed et al., 2007; Ballesté et al., 2010; Blanch et al., 77 

2006; Gourmelon et al., 2010). iii) There is a lack of standardized methods. Few studies have 78 

focused on the standardization and validation of protocols developed by independent 79 

laboratories, although this is a crucial step for the consolidation of feasible and reliable 80 

approaches (Blanch et al., 2004; Stewart et al., 2013). Furthermore, iv) environment factors 81 

need to be considered when monitoring a faecal pollution event, including dilution in the water 82 

body, inactivation of the tested parameters, and mixing with other potential pollution sources 83 

(Casanovas-Massana et al., 2015). Accordingly, several authors have evaluated the 84 

environmental persistence and water treatment resistance of ST markers as factors in 85 

management strategies (Ahmed et al., 2007; Bae and Wuertz, 2009; Balleste and Blanch, 2010a; 86 

Brooks and Field, 2017; Green et al., 2011; He et al., 2015; Jeanneau et al., 2012; Walters and 87 
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Field, 2009). The incorporation of inactivation parameters, together with the dilution effect in 88 

the water body, is essential for developing ST predictive models adjusted for the complexity of 89 

ecosystems and water flows.  90 

Computational techniques have a wide scope of application in microbiology, ranging from 91 

predicting human health and ethnicity through the microbiome to defining the microbial load of 92 

a sea sponge (Mason et al., 2013; Walters et al., 2014). Two software systems designed to 93 

assess the source of faecal pollution in water are Ichnaea® (Sánchez et al. 2011), which analyses 94 

different markers and indicators commonly monitored in water samples, and SourceTracker 95 

(Knights et al., 2011), which relies on the results obtained by high-throughput sequencing. 96 

Ichnaea® supports the definition and building of models that can predict multiple sources of 97 

faecal pollution. It combines different ST markers, thereby obtaining better sensitivity and 98 

specificity than a single marker, and takes into account the effects of dilution of the pollution 99 

event and the aging of selected ST markers once they reach the environment. The software 100 

incorporates models of phenomena based on empirical data (Sánchez et al., 2011), which allows 101 

pattern recognition, classification and prediction (Tarca et al., 2007).  102 

In this international and interlaboratory study, the combined use of culture-dependent and -103 

independent methods to identify pollution was tested and a standardised approach was 104 

developed. The ultimate aim was to provide a new practical, feasible and integrated approach to 105 

pollution analysis. Environmental samples from diverse geographic, climatic and dietary 106 

sources were used to address the issues of geographical variability and to carry out testing over 107 

a broader area. Several ST markers were selected, including host-specific bacteria targeted by 108 

molecular methods (Gomez-Donate et al., 2012; Hyatt C Green et al., 2014; Layton et al., 2006; 109 

Mieszkin et al., 2009; Reischer et al., 2006), human viruses (Fong et al., 2005; Maunula et al., 110 

2012; McQuaig et al., 2012; Pina et al., 1998; Rusiñol et al., 2014; Wong et al., 2012; Wyn-111 

Jones et al., 2011), host mitochondrial DNA (mtDNA) (Schill and Mathes, 2008), host-specific 112 

bacteriophages detected by culture methods (Gómez-Doñate et al., 2011) and artificial 113 
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sweeteners (Scheurer et al., 2009). Standard microbial indicators were measured to assess the 114 

total load of faecal pollution (E. coli, enterococci, clostridia, total bifidobacteria and somatic 115 

coliphages) together with ST markers. The previously developed machine learning-based 116 

software Ichnaea® was adapted, trained and tested. Models based on linear discriminant analysis 117 

were obtained and the best subsets of indicators and/or ST markers (low number and/or cost, 118 

and high predictive ability) to discern the source of faecal pollution were determined.  119 

MATERIALS AND METHODS 120 

Selection of indicators and ST markers 121 

Indiscriminate testing of a large number of protocols and ST markers was not practical, given a 122 

tight timeframe and the increasing cost of performing international and integrative ST assays. 123 

Consequently, a careful selection of markers (culture-dependent, molecular and chemical) used 124 

in several countries of Europe was made according to the following criteria: i) representation of 125 

the diversity of currently available methods; ii) library-independent methods; iii) availability of 126 

quantification methods; v) and of standard operating procedures (SOP); and vi) ample evidence 127 

supporting applicability in an aquatic environment. The selection was also based on the 128 

resources and expertise of the participant laboratories and a previous review of the literature. 129 

Emphasis was placed on the pre-selection of molecular faecal markers as potential targets in any 130 

further technological platforms or automated approaches. The selected ST markers used as 131 

variables for modelling are given in Table 1. 132 

 133 

Establishing operating principles and quality assurance 134 

Participant laboratories agreed on the use of international standard protocols (ISO, CEN) when 135 

available. Other protocols of new indicators were written up and added to those from the 136 

literature, together with internal protocols used by some of the laboratories, in a booklet of 137 
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standard operating procedures for the use of all participants (http://aquavalens.org/project/latest-138 

results-cluster-1). The results obtained from each laboratory underwent quality control through 139 

an initial verification test with blind water samples. The verification test took into account 140 

traditional microbial parameters and some culture-dependent ST markers following the agreed 141 

SOP: E. coli (EC), enterococci, Clostridium perfringens (CP), somatic coliphages (SOMCPH) 142 

and total and fermenting-sorbitol bifidobacteria (BifTot and BifSorb). Two raw urban sewage 143 

samples with high and low faecal concentration were sent blind to all partners. Samples were 144 

sent at 4ºC, were delivered in 24 h, and were analysed by all the participants on the same day. 145 

Results (enumerations) were sent to the organizer laboratory for statistical analysis. 146 

Samples and sampling campaigns 147 

The five research institutions participating in this study formed an axis across continental 148 

Europe (Portugal, Spain, Austria, Germany, and Finland). This consortium allowed the 149 

sampling to cover a wide diversity of geographical and climate situations as well as human 150 

diets, thus addressing limitations of previous ST studies. Each participant was responsible for 151 

collecting samples from their own region, and determining the main culture-based indicators 152 

(EC, enterococci, SOMCPH, CP, total BifTot and BifSorb) and their own selected markers. The 153 

samples were shipped in cold conditions to the other partner laboratories for the analysis of the 154 

other ST markers. 155 

The sampling approach was similar to the procedure followed by a previous integrative and 156 

international ST project (Blanch et al., 2006), although the latter was focused on providing 157 

predictive models at the faecal point source and distinguishing between human and non-human 158 

faecal sources. In the current study, two sampling campaigns were performed to obtain a) point 159 

source fresh (PSF) and b) laboratory-made environmental (LME) samples.  160 

The aim of the first sampling campaign was to obtain data from PSF samples to be used as a 161 

training matrix in the mathematical modelling. This data matrix was used to classify and select 162 

subsets of the best indicators and develop different predictive models (Fig 1). Models were 163 
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defined to resolve different scenarios: to distinguish between human and non-human sources or 164 

between four sources (human, bovine, porcine and poultry) in fresh samples or those affected by 165 

dilution and aging. 166 

In the second sampling campaign, each partner sent blind faecal polluted water samples to the 167 

other participants to be analysed and tested by the developed predictive models. These samples 168 

could be from faecal point sources or have been diluted and/or aged in the laboratory. The final 169 

distribution of samples by sampling campaign was as follows. 170 

Point source fresh samples: A total of 106 faecal and wastewater samples were collected 171 

between November 2013 and September 2014 from wastewater treatment plants (WWTP), 172 

abattoirs and farms in five different countries: Austria, Finland, Germany, Portugal and Spain. 173 

Samples were almost exclusively composed of a unique faecal source: human (35), porcine 174 

(24), bovine (23) and poultry (24). Sewage samples came from communities with 2,100 to 4.0 175 

million inhabitants. Wastewater was taken from different abattoirs processing between 400 and 176 

8,000 porcine and ruminant animals per day, and around 100,000 poultry specimens. Other 177 

samples were of animal faecal slurry composed of a mix proceeding from at least 10 different 178 

individuals. Details of each sample are provided in Supplementary Materials. They were 179 

collected in sterile containers and kept at 4°C while in transit to the laboratory. One hundred ml 180 

of each sample was sent to the other partner institutions in cold conditions for the assigned 181 

analysis. 182 

 183 

Laboratory-made environmental samples: A total of 37 samples were laboratory-made by 184 

diluting and aging faecal and wastewater samples of different sources to simulate potential 185 

environmental samples. The original samples were collected from March to May 2015 from the 186 

same WWTP, abattoirs, farms and countries as the PSF samples. Dilutions of faeces/wastewater 187 

were made from 1:3 to 1:100,000 using bottled water without faecal pollution and were kept 188 

from 0 to 168 h at room temperature for aging. Details of each sample are provided in 189 
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Supplementary Materials. Five-hundred ml of each sample was sent blind to each partner 190 

institution to be analysed for the selected markers as described above. 191 

Detection and enumeration of general faecal indicators 192 

Five general faecal indicators were measured in each partner laboratory: EC, enterococci, CP 193 

spores measured by membrane filtration on 0.45-µm-pore-size membranes, BifTot and BifSorb 194 

by spread-plating, and somatic coliphages by a double-agar-layer technique. Enumeration of EC 195 

was based on the ISO standard method 16649-1:2001 with an initial resuscitation stage on 196 

MMGA (4 h at 37ºC) followed by incubation in chromogenic TBX agar at 44ºC (ISO, 2001a). 197 

Enterococci were enumerated following the ISO standard method 7899-2:2000 using Slanetz-198 

Bartley medium at 37ºC for 48 h and confirmed by Bilis Esculine Azide agar at 44ºC for 4 h 199 

(ISO, 2000a). CP was analysed according to the ISO standard method 14189 using TSC agar 200 

(ISO, 2013a). BifTot and BifSorb enumeration was performed using human bifidobacteria 201 

sorbitol-fermenting agar (HBSA) at 37ºC for 48 h in anaerobic conditions as previously 202 

described (Bonjoch et al., 2005). Somatic coliphages were enumerated by the double-agar-layer 203 

technique using E. coli strain WG5 at 37ºC for 24 h, as described in the ISO standard method 204 

10705-2 (ISO, 2000b). 205 

Detection of source tracking markers 206 

Based on the available facilities and experience of the different laboratories, each partner 207 

analysed different ST markers in all the samples collected in the 5 regions. 208 

Detection of chemical markers 209 

Four artificial sweeteners,  acesulfame, cyclamate, saccharin and sucralose, were measured by 210 

high-performance liquid chromatography - electrospray tandem mass spectrometry (HPLC-ESI-211 

MS/MS) as previously described (Scheurer et al., 2009). 212 

Detection of host-specific Bacteroides phages  213 
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Phages infecting host-specific Bacteroides species were enumerated as described in the ISO 214 

standard method 10705-4 (ISO, 2001b). PFU of host-specific Bacteroides phages were 215 

enumerated by the double-agar-layer technique using the strains GA17, PG76, CW18 and 216 

PL122 to detect human, porcine, bovine and poultry pollution, respectively (Gómez-Doñate et 217 

al., 2011; Payan et al., 2005). One-ml of PSF samples was analysed directly. However, for the 218 

highly diluted LME samples, 250 ml was concentrated by membrane filtration using 0.22 µm-219 

pore-size mixed cellulose ester membrane (Merck Millipore, Cork, Ireland) after adding 0.05 220 

mM of MgCl2. The filters were eluted in 12 ml Elution Buffer (1% Beef Extract, 0.5 M NaCl 221 

and 3% Tween 80) using an ultrasound bath for 4 min (Méndez et al., 2004). The elution 222 

solution pH was brought to 7 and filtered through a low protein-binding 0.2-µm-pore-size PES 223 

syringe filter (Merck Millipore) to remove any remaining bacterial cells. One ml of the solution 224 

was titred in triplicate with the corresponding host strain. 225 

Detection of molecular ST markers 226 

The genetic material of the shipped samples was extracted in each laboratory where the 227 

corresponding markers would be analysed according to routine protocol specifications. 228 

Bifidobacterium host-specific markers 229 

DNA from PSF samples was extracted directly from 1 ml using the QIAamp DNA Blood Mini 230 

Kit (Qiagen). In LME samples, 250 ml was concentrated by filtration through a 0.22-µm-pore-231 

size filter (SO-PAK, Millipore, Germany) and DNA was extracted following a previously 232 

described protocol (Gourmelon et al., 2007). Filtration and DNA extraction controls were run 233 

together with the samples. Total and host-specific Bifidobacterium species (HMBif, CWBif, 234 

PLBif and PGBif) targeting the 16S rRNA gene were analysed with TaqMan Environmental 235 

Master Mix 2.0 (Applied Biosystems) using ABI StepOne Real-Time qPCR as described in the 236 

literature (Gomez-Donate et al., 2012) (Table S1).  237 

Host-specific Bacteroidales markers 238 
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Ten ml of PSF samples and 500 ml of LME samples were concentrated by membrane filtration 239 

through Isopore 0.2 µm polycarbonate membrane filters (Millipore, Bedford, MA). DNA was 240 

extracted using phenol-chloroform-isoamyl alcohol as described in the literature (Reischer et al., 241 

2008). The respective human, ruminant and swine host-specific Bacteroidales markers HF183 242 

(Hyatt C Green et al., 2014), BacR (Reischer et al., 2006) and Pig2Bac (Mieszkin et al., 2009) 243 

were analysed together with general Bacteroidales marker AllBac (Layton et al., 2006) (Table 244 

S1). The QIAGEN Rotor-Gene Multiplex PCR Kit (Qiagen, Hilden, Germany) was used for the 245 

qPCR reactions with a Rotor-gene cycler (Qiagen). An internal amplification control (Applied 246 

Biosystems, Vienna, Austria) was included for each reaction and samples were always analysed 247 

using 1:4 or 1:16 dilution extracts to avoid any potential reaction inhibitors. Filtration and DNA 248 

extraction controls were run together with the samples. 249 

Mitochondrial DNA  250 

The analysis of mtDNA to detect faecal contamination of human, bovine, porcine and poultry 251 

source was performed targeting the mitochondrial cytochrome b by qPCR (Schill and Mathes, 252 

2008). 200 µl of PSF samples was extracted directly using the QIAamp DNA Blood Mini Kit 253 

(Qiagen), and in LME samples DNA was extracted following Martellini et al (Martellini et al., 254 

2005). Mitochondrial DNA amplification was performed with TaqMan Environmental Master 255 

Mix 2.0 (Applied Biosystems) and using ABI 7300 Real-Time PCR (Applied Biosystems) 256 

(Table S1). Several quality control processes were added for the determination of mtDNA. A 257 

blank control (filtered, sterile distilled water) was processed in parallel with the LME samples 258 

from the concentration stage to the qPCR. Similarly, a blank extraction control was added for 259 

both sampling periods. In each run, 10- and 100-fold dilutions of every sample were also tested 260 

to account for inhibition. Every qPCR run also had a standard curve and a positive and negative 261 

control. 262 

Viral source tracking markers: Adenovirus and Norovirus 263 
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Human adenoviruses (HAdV) were amplified following a previously described protocol 264 

(Hernroth et al., 2002) using the same DNA extracted from PSF samples for the analysis of 265 

mtDNA. As for mtDNA, in addition to the original samples, each HAdV run was comprised of 266 

10- and 100-fold dilutions of every sample, a standard curve and positive and negative controls.  267 

Norovirus GI and GII were amplified following the ISO/TS 15216-1 (ISO, 2013b; Oristo et al., 268 

2018) with some modifications. A sample volume of 250 µl of PSF (or 500µl for diluted 269 

samples) was used for RNA extraction.  For LME samples, 500 ml was first concentrated by 270 

filtration through a positively charged Sartolon membrane (0.45µm-pore-size disc, Sartorius). 271 

Viruses from the membrane and the empty bottle were eluted with 100 mM Tris - 50 mM 272 

glycine - 1 % beef extract (TGBE) buffer, pH 9.5, after which the pH was adjusted to neutral. 273 

RNA from both PSF and LME samples was extracted using the NucliSens® Magnetic 274 

Extraction Kit and NucliSens® MiniMag® instrument (Biomerieux, Boxtel, The Netherlands) 275 

according to the manufacturer’s instructions. The initial sample was spiked with mengovirus to 276 

be used as a process positive control (Table S1). Samples were amplified using the QuantiTect 277 

Probe RT-PCR Kit (Qiagen, Hilden, Germany) and Rotor-gene PCR cycler (Corbett) (Table 278 

S1). For every set of samples, a negative extraction control, positive external RNA controls, and 279 

dilutions of purified plasmid dsDNA for the construction of a standard curve were added. 280 

Faecal Enterococci quantification by qPCR  281 

Faecal enterococci were also quantified by qPCR using the DNA extractions for host-specific 282 

Bacteroidales and following the protocol described elsewhere (Haugland et al., 2005) (Table 283 

S1). 284 

Data treatment 285 

PSF sample data were harmonized and standardized to create the point source training matrix 286 

containing 106 observations (samples) of four animal sources from which 42 variables were 287 

analysed: 30 single variables derived from the results of each parameter (8 general faecal 288 
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indicators, 22 ST markers) and 12 derived variables constituted of ratios of 2 independent 289 

variables (Fig 1, Table 1). The results were expressed per 10 ml and data were transformed to 290 

log10 units. The point source training matrix was instrumental for developing the age-diluted 291 

training matrix by in silico dilutions and aging. This matrix was generated creating a realistic 292 

scenario of dilution/aging that included 10,000 observations created by randomly sampling the 293 

point source training matrix. The dilution degree was lognormal up to 4 log units of dilution 294 

(alphas) and aging time in water was exponential up to 300 h of aging (times) (Fig S1) 295 

considering the decay rate (Ks) of each marker as follows: 296 

���10�PSF	random	value�	-	alphas	�	�� ∗ �� !" 

Values above the limit of quantification were assumed to be 10% of the limit of quantification. 297 

The predictive models for the four sources using this extended data matrix (dilution and aging 298 

included) are the models covering most real expected cases. 299 

Similarly, the testing matrix was obtained from the harmonization and standardization of the 300 

results from the LME samples following the criteria used to develop the point source training 301 

matrix. Results were also expressed per 10 ml and values below the limit of quantification were 302 

assumed to be 10% of the limit of quantification. After developing the models using both 303 

training matrices and before their validation, the variables not showing significance in the 304 

models were disregarded. Therefore, the 38 LME samples were analysed for just 21 of the 305 

initial variables.  306 

Inactivation data 307 

The die-off regression in the environment for each measured ST marker and indicator was 308 

provided by the partner responsible, based on experimental assays or obtained from the 309 

literature (W Ahmed et al., 2014; Balleste and Blanch, 2010b; Dick et al., 2010; Fallahi and 310 

Mattison, 2011; Green et al., 2011; Hirneisen and Kniel, 2013; Jeanneau et al., 2012; Korajkic 311 

et al., 2014; Liang et al., 2012; Sokolova et al., 2012; Solecki et al., 2011; Tambalo et al., 2012; 312 
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Walters and Field, 2009). A first order decay model was assumed for all the parameters. 313 

Inactivation values included T90 (time required to achieve 90% reduction in the initial 314 

population), T99 (time required to achieve 99% reduction in the initial population), Ks and % of 315 

degradation and they were all converted to Ks (Table S2). The effects of seasonality on the 316 

environmental persistence of markers were also considered by using different die-off regression 317 

models for different seasons. The die-off values were used to consider the decay of each 318 

parameter when aging the faecal pollution in the development of predictive models. 319 

Statistical analysis and model evaluation 320 

Descriptive statistics were performed for each of the single variables using the software R (R 321 

Core Team, 2016). For descriptive statistics, values above the limit of detection were not 322 

considered. The Welch one-way test was applied to detect differences between targeted and 323 

non-targeted hosts, and in this case values above the limit of detection were considered as zeros. 324 

A Kruskal-Wallis ANOVA by ranks test for non-parametric data was used to evaluate 325 

interlaboratory differences.  326 

Different models were developed using data from PSF samples represented in the point source 327 

training matrix and from the age-diluted training matrix with R software including the packets 328 

“MASS”, “FSelector”, “rgl” “randomForest”, and “varSelRF”. For both matrices, 2 different 329 

scenarios were established: discrimination between human and animal pollution or between 330 

human, bovine, porcine and poultry pollution. 331 

Numerical analyses were performed using linear discrimination analysis (LDA). This method is 332 

a generalization of Fisher's linear discriminant, and is usually applied in statistics, pattern 333 

recognition and machine learning to find a linear combination of features that characterizes or 334 

separates two or more classes (in our study sources). Obtained results were validated with 335 

Leave-one-out cross-validation (LOOCV), a model validation technique for assessing how the 336 

results of a statistical analysis will generalize to an independent data set. LOOCV is usually 337 
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applied in analyses where the goal is prediction and it is necessary to estimate how accurately a 338 

predictive model will perform in practice.  339 

RESULTS 340 

Before starting the sampling campaigns, standard operation procedures were established and 341 

interlaboratory verification tests were performed involving all the partners. Using a Kruskal-342 

Wallis ANOVA by ranks test for non-parametric data, no statistically significant differences (P-343 

value > 0.05) were observed between laboratories when testing EC, enterococci, SOMCPH and 344 

CP, although higher variance was observed for HBSA total and sorbitol-fermenting 345 

bifidobacteria (Table S3). 346 

Indicator and marker description 347 

The significance of variables (faecal indicators) and their correlations were previously 348 

calculated to support the selection of parameter subsets. Using Fisher’s test, differences in the 349 

ST markers between target and non-target sources were analysed. Ten of the human markers 350 

tested (all except saccharin, for which only 3 human samples were positive) showed significant 351 

differences between human and non-human samples (Table S4). The 4 pig ST markers (PGPH, 352 

PigNeo, Pig2Bac and PGMit) showed differences between pig and non-pig samples. For the 353 

ruminant (CWBif, BacR and CWMit) and poultry markers (PLBif and PLMit), significant 354 

differences between target and non-target samples were also observed. However, no significant 355 

differences were detected for the ruminant (CWPH) and poultry Bacteroides phages (PLPH) 356 

analysed, probably due to their geographical specificity, as most of the positive samples were 357 

from Spain, where the markers were developed. 358 

The correlation between markers was analysed using Pearson’s test (Pearson’s correlation 359 

coefficient r) to evaluate equivalence and redundancy. A strong correlation was observed 360 

between the chemical human markers: acesulfame with cyclamate and with sucralose (r = 0.885 361 

and 0.681, respectively). GA17PH strongly correlated with acesulfame, cyclamate, HAdV and 362 
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HF183 (r = 0.714, 0.669, 0.665 and 0.658), whereas HMBif and HMMit showed a low 363 

correlation (r < 0.650) with the remaining human marker. A strong correlation was detected 364 

between the animal mitochondrial markers and other ST markers: BacR and CWMit (r = 0.939), 365 

PLBif and PLMit (r = 0.816), and Pig2Bac and PGMit (r = 0.805). Phages infecting Bacteroides 366 

PG76 targeting pig contamination showed a low correlation with norovirus, PGMit and Pig2Bac 367 

(r < 0.650), whereas no significant correlation was observed for the ruminant and poultry host-368 

specific Bacteroides phages. 369 

Marker selection  370 

Based on preliminary models evaluating the correlation between markers and the experience of 371 

the research laboratories, a pool of the analysed variables was disregarded for further analysis. 372 

The decision was taken after an agreement with all the project partners to reduce laboratory 373 

costs and efforts. Total and sorbitol-fermenting Bifidobacteria detected using HBSA media 374 

were discarded because of the subjectivity of colour analysis. Other markers were discarded for 375 

their low sensitivity (saccharin) or low specificity (HMMit). Chemical markers, PLPH and 376 

HAdV were considered redundant for their high correlation with molecular markers and absence 377 

in the preliminary models, and were thus also discarded for further sampling and analysis. The 378 

number of evaluated indicators was thereby reduced from 30 to 21. Additionally, ratios were no 379 

longer considered in the models as they did not give additional value. 380 

 381 

Model Development 382 

We obtained a list of prediction models to distinguish between human and non-human faecal 383 

pollution sources, and also between the main faecal pollution sources. Both scenarios were 384 

tested using the point source training matrix obtained experimentally and the age-diluted 385 

training matrix developed in silico considering the effect of dilution and aging. The following 386 

scenarios were evaluated: 387 

Scenario 1: Human vs non-human faecal pollution using the point source training matrix 388 
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When using all the 21 variables, 100 % LOOCV accuracy was achieved with LDA, and all the 389 

samples were correctly classified (Figure 2A, 2B). After reducing the number of variables, 390 

several combinations gave a high percentage of detection (Table 2). LOOCV accuracy was a) 391 

92.45 % when using only one variable (GA17PH); b) 94.34 % when combining GA17PH with 392 

HF183; and c) 98.11 % when using HMBif and HF183 (whose individual values were 80.19 % 393 

and 84.91 %, respectively). To achieve 100 % correct classification, a combination of 3 394 

variables (HMBif, HF183 and EC) was needed, whereas 14 different options each using 4 395 

variables achieved 100% LOOCV accuracy: all but one included EC, HF183 and HMBif and 1 396 

other variable (SOMCPH, CP, CWPH, PGPH, Pig2Bac, CWMit, PLMit, PGMit, BacR, CWBif, 397 

PLBif, AllBac, NoV, FEqPCR). When using only molecular markers, HMBif, HF183 and 398 

PLMit should be measured together with BacR or NoV (Table 2).  399 

 400 

Scenario 2: Assessment of four sources using the point source training matrix 401 

When using all the 21 variables, 100% LOOCV accuracy was achieved with LDA (Figure 3A). 402 

However, 2 combinations of 3 markers, CWMit, PLMit and Pig2Bac or BacR, PLMit and 403 

Pig2Bac, gave a LOOCV accuracy of 97.17% and 96.23%, respectively, in distinguishing 404 

between samples from human and farm animal sources (bovine, porcine and poultry) (Table 2). 405 

Increasing the number of variables to 4 (GA17PH, PLBif, Pig2Bac and CWMit) increased the 406 

correct classification to 99.06 %, whereas 11 other combinations gave 98.11% correct 407 

classification. Five variables (GA17PH, PLBif, Pig2Bac, CWMit and BacR or HF183) were 408 

needed to correctly classify 100 % of the samples. 409 

 410 

Scenario 3: Human vs non-human faecal pollution using the aged-diluted training matrix  411 

When testing a more realistic scenario with the aged-diluted training matrix containing 10,000 412 

in silico-made samples, a LOOCV accuracy of 99.78 % was achieved when using the 21 413 

variables with a linear discriminant analysis (Fig 2C, Fig 2D). From a total of 3,342 human 414 

samples, 20 were misclassified as non-human, and 2 non-human samples from 6,658 were 415 
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misclassified as human. LOOCV accuracy was 95.71 % when the number of variables was 416 

reduced to 2 (GA17PH and HF183), and 99.59 % when using 3 (HMBif, HF183 and GA17PH). 417 

Seven more combinations with 3 variables gave similar values of 96.81 – 98.04 % (Table 3). 418 

 419 

Scenario 4: Four sources assessed with the aged-diluted training matrix  420 

An LDA-based model using all the variables showed 99.08 % LOOCV accuracy (Figure 3B). 421 

All the human samples were correctly classified, whereas 2.5 % of cow, 1.2 % of pig and 0.5 % 422 

of poultry samples were misclassified. A model using PLBif and Pig2Bac showed an LOOCV 423 

accuracy of 69.83 % (Table 3). When using 3 variables (BacR, GA17PH and PLBif), the 424 

LOOCV accuracy was 87.04 %, which increased to 93.88 % with the addition of a fourth 425 

variable (Pig2Bac) and 96.04 % after adding a fifth (HF183). Nine variables were needed to 426 

reach 98 % LOOCV accuracy (Table 3).  427 

 428 

Model testing with laboratory-made environmental samples 429 

The selected models were tested using laboratory-made environmental samples, which were 430 

sent blind to the different participant laboratories. The previously selected 21 markers were 431 

evaluated using the models developed for the different scenarios. The resulting data were 432 

incorporated into the models developed with the diluted and aged sample matrix, as LME 433 

samples were diluted and aged. 434 

The different LDA-based models discriminating between human and non-human pollution 435 

(using 2 to 21 variables) correctly classified 84.2 % of the laboratory-made samples. The 436 

prediction model with only 2 variables (GA17PH and HF183) achieved 95.71 % LOOCV 437 

accuracy (Table 3). All the 6 misclassified samples were of human source identified as non-438 

human.  439 

Models using different combinations of markers to distinguish between the 4 sources were also 440 

tested with the laboratory-made environmental samples. In this case, 86.8% of the samples 441 

were correctly classified. However, the model able to classify the highest number of samples 442 
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was the one using 4 variables: BacR, GA17PH, Pig2Bac and PLBif. This model correctly 443 

classified 89.5 % of the samples with 93.88% LOOCV accuracy (Table 3). Three of the 4 444 

misclassified samples were poultry samples misclassified as human. Models with a higher 445 

number of variables showed a lower % of correct validation.  446 

 447 

DISCUSSION 448 

The immense efforts invested in designing new reliable microbial ST markers to determine 449 

sources of water pollution have resulted in a toolbox full of markers (Ahmed et al., 2016; 450 

Harwood et al., 2014; Roslev and Bukh, 2011). However, as mentioned, a single marker may 451 

not be sensitive or specific enough to effectively identify the source of faecal pollution, but a 452 

combination of markers can improve the accuracy of classification (Ballesté et al., 2010; 453 

Jenkins et al., 2009; Mayer et al., 2018; Raith et al., 2013), sometimes in the form of ratios 454 

(Muniesa et al., 2012). Computational techniques based on machine-learning algorithms, like 455 

Ichnaea® or SourceTracker, are available for ST prediction (Knights et al., 2011; Sánchez et al., 456 

2011). These algorithms may be based on artificial neural networks or random forests and can 457 

be trained with known samples to classify environmental samples of unknown origin (McLellan 458 

and Eren, 2014; Smith et al., 2010). SourceTracker relies on 16S rRNA gene amplicons 459 

obtained by high throughput sequencing and compares them to a database to calculate the 460 

probability that an operational taxonomic unit present in the bacterial community in 461 

environmental water samples comes from a given pollution source. This is therefore a library-462 

dependent method (Henry et al., 2016; Knights et al., 2011). Computational methods based on 463 

the antibiotic resistance profile of E. coli strains have also been tested, resulting in 74.6 % 464 

correct classification when using LDA and 82.3 % with random forests (Smith et al., 2010). 465 

This approach is also library-dependent and requires the culture of E. coli strains. In contrast, 466 

Ichnaea® relies on library-independent markers and standardized methods selected for each 467 

laboratory reporting the abundance of faecal indicators or host-specific markers. It is a prototype 468 
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computer-based integrated system that can be trained by users with their own data matrix 469 

developed with the numerous ST indicators available. To improve classification accuracy, the 470 

software develops models combining different markers, which can also be chosen by the user 471 

(Casanovas-Massana et al., 2015; Sánchez et al., 2011).  472 

The main aim of this study was to adapt Ichnaea® software to select a combination of ST 473 

markers from the general ST toolbox and build optimal models to determine the source of faecal 474 

pollution in a water body in a given area taking into account aging and dilution. We tested a 475 

total of 30 markers and 12 ratios in 106 fresh faecal samples from 5 European regions with 476 

different climates and cultural habits. When a new set of ST markers are developed and 477 

presented to the scientific community, in the first instance they are normally tested with fresh 478 

faecal samples and sometimes with environmental samples. Although this is a good starting 479 

point, assessing marker performance in the real environment is more challenging, because of the 480 

impact of other factors (Cho et al., 2016): dilution in the water body and the effect of rainfall 481 

(Sercu et al., 2011), aging of the pollution between discharge and sampling (Ballesté et al., 482 

2018; Blaustein et al., 2013; Van Kessel et al., 2007), or mixing with other potential faecal 483 

sources. To approximate real conditions, an in silico matrix of 10,000 samples was generated 484 

using faecal samples, taking into account their potential dilution and aging in the environment. 485 

This proved to be an appropriate strategy for modelling and to our knowledge, it is the only 486 

computational approach reported to date that takes these factors into consideration.  487 

Although the matrix was virtual, it allowed us to achieve our objective, as it included a large 488 

number of samples covering different situations found in the environment. A lognormal 489 

distribution was used to dilute the samples and an exponential distribution to age them. These 490 

distribution approaches to generate in silico matrices can be modified according to the 491 

application context. In this case, the age-diluted training matrix showed 0.13 % negative values 492 

(zeros), whereas the laboratory-made testing matrix sent to the partners as blind samples 493 
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showed 2.38 % negative values. A similar number of negative samples should be observed 494 

between the in silico-created samples and real samples to indicate a reliable prediction potential. 495 

When a large-scale study involving multiple laboratories is performed, it is crucial to address 496 

the repeatability and reproducibility of the analysis. In this study, standard operating procedures 497 

were established, and interlaboratory variability was assessed for parameters measured in each 498 

laboratory. On the other hand, each laboratory was responsible for some of the selected 499 

microbial ST markers, which they tested in all the collected samples, thereby avoiding inter-500 

laboratory differences due to protocols, equipment and consumables (Ebentier et al., 2013; 501 

Stewart et al., 2013). No significant differences were found in the interlaboratory analysis, 502 

although the parameters BifSorb and BifTot and clostridia spores showed some variance. These 503 

discrepancies were checked (confirming the heat-treatment protocol and its performance) and 504 

resolved for one parameter (clostridia spores), whereas the others were discarded from further 505 

analysis (BifSorb and BifTot). 506 

Models to distinguish between human and non-human faecal pollution sources and also to 507 

identify faecal pollution of several origins (human, bovine, porcine and poultry) were defined 508 

and built using linear discriminant analysis. When fresh faecal samples were used to develop the 509 

models, 2 molecular human ST markers (HF183 and HMBif) were able to distinguish between 510 

human and non-human pollution with 98.1 % LOOCV accuracy. The additional economic cost 511 

of adding 1 complementary variable to achieve 100 % correct classification should be 512 

considered by the end user. On the other hand, when using 5 variables the model correctly 513 

classified all the fresh faecal samples of four potential sources: human, porcine, ruminant and 514 

poultry. It should be noted that these models do not cover any other potential faecal source such 515 

as seagulls or pets. 516 

The models built using the aged-diluted matrix were more complex. After a certain degree of 517 

dilution and aging, the predicted sources of samples may converge, making it difficult to obtain 518 
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a correct classification. Linear discriminant analysis and random forest (data not shown) using 519 

the aged-diluted matrix gave models with similar indicators to those obtained with fresh 520 

samples, although with lower LOOCV accuracy. However, when 4 variables were used, the 521 

result was very promising, as the LOOCV accuracy was higher than 99%. Random forest has 522 

been reported to improve the accuracy of identification (McLellan and Eren, 2014; Smith et al., 523 

2010), but in the current study its performance was below that of LDA (data not shown).  524 

A high percentage of the laboratory-made environmental samples sent for blind testing by the 525 

selected models were correctly classified, the failures being mainly in human samples. The 526 

results highlight the dependence of the method on the specific set of selected markers. For 527 

example, the 4-variable model {GA17 + PLBif + BacR + Pig2Bac} gave the best predictive 528 

performance, correctly classifying 89.50% of the samples with 93.88% LOOCV accuracy. 529 

Some models with more variables achieved a better performance, for example, LOOCV 530 

accuracy was 96.04% for the 5-variable model {GA17PH + PLBif + BacR + Pig2Bac + HF183} 531 

and 98.03% for the 9-variable model {GA17PH + PLBif + BacR + Pig2Bac + AllBac + HF183 532 

+ FEqPCR + PGMit + NoV}. However, when these models were tested, their performance level 533 

dropped to 76.32% correctly predicted samples. This phenomenon is well-known in pattern 534 

recognition and is explained by the fact that the chances of (linear) separability increase with 535 

dimension (number of markers). Redundancy (information shared or conveyed by different 536 

markers) also contributes to the phenomenon. Altogether, our results suggest that some of the 537 

selected markers may not be sufficiently independent (in the sense of conveying new 538 

separability information) and therefore could be removed. From an operational point of view, 539 

the results highlight the importance of adding a parsimony principle (in the number of selected 540 

markers) when choosing the best model. 541 

The development of different models allows the user of Ichnaea® to decide the number of 542 

variables to be included and the desired rate of correct classification, considering that a high 543 
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number of variables increases not only the correct classification but also the time and cost of 544 

laboratory analysis.  545 

As ST markers from different geographical areas can vary in sensitivity and specificity 546 

(Haramoto and Osada, 2018; Mayer et al., 2018; Yahya et al., 2017), a more local study using 547 

regionally tailored ST markers with samples from a smaller geographical range could reduce the 548 

number of markers while increasing the power of the models. It should be born in mind that the 549 

indicators selected here were the best in a given framework, but they may differ when using 550 

another input matrix (different markers, indicators and source samples) or altering the given 551 

inactivation, which can vary according to the season and environmental conditions (W. Ahmed 552 

et al., 2014; Ballesté et al., 2018; Blaustein et al., 2013; Solecki et al., 2011). Thus, the decay 553 

rate and dilution will vary according to the target scenario. The aged-diluted matrix in this study 554 

covered up to 300 h (12.5 days), but other types of aging and dilution may occur, depending on 555 

the environment. For example, in rainy seasons or after snowmelt the dilution factor becomes 556 

more significant, and may also influence flow velocity and transport distances, thereby affecting 557 

the age of the pollution (Jonsson and Agerberg, 2015; Reischer et al., 2008). Hence, the 558 

distributions used in this Ichnaea® approach to develop the aged-dilution matrix can be modified 559 

to match regional conditions and draw scenarios with a better fit. Tailoring models to the area of 560 

study by using local fresh faecal samples, as well as more accurate factors of regional and 561 

seasonal inactivation, dilution and aging would improve accuracy while reducing the number of 562 

variables to be tested. Further approaches should include mixing of different potential sources.  563 

 564 

CONCLUSIONS 565 

• Almost all the ST markers tested showed the potential to correctly target their host in 566 

the 5 geographical areas. Redundancy among some of the markers showed they can be 567 

used indistinctly. 568 
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• Ichnaea®, a machine-learning software based on the R script, provides useful and easy-569 

to-use tools to improve the classification of faecal pollution in water, including complex 570 

samples potentially aged and diluted. The software can generate tailored models to 571 

determine the source of faecal pollution. 572 

• The creation of an in silico matrix of aged and diluted samples using point source fresh 573 

faecal samples is an effective approach to obtain a high amount of data covering 574 

different scenarios and reproducing environmental conditions. 575 

• When a water sample is aged and diluted, the levels of the markers decrease, and 576 

becomes difficult to distinguish between samples with different degrees of dilution and 577 

aging. In this scenario, no model gives 100% LOOCV accuracy, although 99% was 578 

achieved. 579 

• Models based on linear discriminant analysis using a low number of ST markers 580 

(between 2 and 5) can achieve LOOCV accuracies of over 95%. Different models can 581 

be generated to discriminate between human and non-human pollution or identify 4 582 

potential sources: human, porcine, bovine and poultry. 583 

• Testing with real samples is a crucial step in generating models with better 584 

performance. 585 
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Fig 1. Schematic representation of the computational process used to generate and 915 

validate microbial source tracking models with Ichnaea®. 916 

 917 

Fig 2. Histograms of sample projections onto the linear discriminant (projection vector) given 918 

by linear discriminant analysis according to human and non-human sources. This 919 

discriminant represents the linear combination of variables that best separate the sources. 920 

Shown are four different scenarios: A) point source data matrix using all variables, B) 921 

point source data matrix using molecular variables only, C) diluted and aged sample data 922 

matrix using all variables and D) diluted and aged data matrix using molecular variables 923 

only. These scenarios show a variable degree of source separability (or, alternatively, 924 

source overlap), from non-existent in A to a significant one in D. 925 

 926 

Fig 3. 3D plots showing sample projections onto the three linear discriminants given by linear 927 

discriminant analysis, according to the four pollution sources considered (red: human, 928 

green: pig, black: cow, blue: poultry). These discriminants (named LD1 to LD3) represent 929 

different linear combinations of variables that best separate the sources, LD1 being the 930 

discriminant achieving the highest separability, followed by LD2 and then LD3. Shown 931 

are two different scenarios: A) point source data matrix using all variables and B) diluted 932 

and aged data matrix using all variables. Again, the plots reflect two very diverse 933 

situations of source separability. In A, the four sources form compact and cleanly 934 

separated data clusters. As the samples are progressively diluted and aged, separability 935 

slowly decreases until it becomes impossible: the information content in the sample 936 

vanishes and the data sample converges towards the data origin, regardless of the source. 937 

 938 

  939 
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Table 1. List of 30 initially selected parameters (microbial indicators and MST markers) for the 940 

definition of single and derived variables (ratios) in the statistical and machine learning methods 941 

of this study. Their labels are indicated. 942 

Label Parameter Method 

EC Escherichia coli 
(ISO, 2001a)  
ISO 16649-1:2001  

FE Faecal enterococci 
(ISO, 2000a) 
ISO 7899-2:2000 

CP Clostridium perfringens spores 
 
ISO/DIS 14189 

SOMCPH Somatic coliphages 
(ISO, 2000b) 
ISO 10705-2:2000 

GA17PH Human-specific Bacteroides phages 
(Gómez-Doñate et al., 2011; 
ISO, 2001b) 

CWPH Cow-specific Bacteroides phages 
(Gómez-Doñate et al., 2011; 
ISO, 2001b) 

PGPH Pig-specific Bacteroides phages 
(Gómez-Doñate et al., 2011; 
ISO, 2001b) 

PLPH Poultry-specific Bacteroides phages 
(Gómez-Doñate et al., 2011; 
ISO, 2001b) 

BifSorb Human Bifidobacterium Sorbitol Agar (HBSA yellow colonies) (Bonjoch et al., 2005)  

BifTot Total Bifidobacterium Sorbitol Agar (HBSA total colonies) (Bonjoch et al., 2005) 

HMBif Human-specific Bifidobacteria by qPCR (Gomez-Donate et al., 2012) 

CWBif Cow-specific Bifidobacteria by qPCR (Gomez-Donate et al., 2012) 

PGNeo Pig-specific Neoscardovia by qPCR (Gomez-Donate et al., 2012) 

PLBif Poultry-specific Bifidobacteria by qPCR (Gomez-Donate et al., 2012) 

TLBif  Total Bifidobacteria by qPCR (Gomez-Donate et al., 2012) 

BacR Ruminant-specific Bacteroidetes by qPCR (Reischer et al., 2006) 

Pig2Bac Pig-specific Bacteroidetes by qPCR (Mieszkin et al., 2009) 
AllBac All Bacteroidetes by qPCR (Layton et al., 2006) 
HF183 Human-specific Bacteroidetes by qPCR (H C Green et al., 2014) 

FEqPCR Faecal enterococci by qPCR (Haugland et al., 2005) 
HMMit  Human-specific Mitochondrial marker by qPCR (Schill and Mathes, 2008) 
CWMit Cow-specific Mitochondrial marker by qPCR (Schill and Mathes, 2008) 
PGMit Pig-specific Mitochondrial marker by qPCR (Schill and Mathes, 2008) 
PLMit Poultry-specific Mitochondrial market by qPCR (Schill and Mathes, 2008) 
Acesulfame Artificial sweetener (Scheurer et al., 2009) 
Cyclamate Artificial sweetener (Scheurer et al., 2009) 
Saccharin  Artificial sweetener (Scheurer et al., 2009) 
Sucralose Artificial sweetener (Scheurer et al., 2009) 
HAdV Human-specific Adenovirus by qPCR (Hernroth et al., 2002) 

NoV Norovirus (GI and GII) by qPCR 
ISO/TS 15216-1  
(Oristo et al., 2018) 
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Table 2. Selected subsets of parameters providing the best prediction models using 4, 2 or 1 variable for the different scenarios: distinguishing between human 943 

(HM) and non-human (Non-HM) pollution or four pollution sources (human, bovine, poultry and porcine) analyzing the Point Source Training Matrix with 944 

linear discriminant analysis. 945 

 946 

 
All Markers Molecular 

 
No. of 

variables Variables 
LOOCV 
Accuracy 

Variables 
LOOCV 
Accuracy 

 4   
HF183 + HMBif + PLMit +           
1 variable (BacR or NoV) 

100 % 

HM vs 
Non-HM 

3 EC + HF183 + HMBif  100 % 
BacR + HF183 + HMBif or 

PGNeo or PLMit  
99.06 % 

2 HF183 + HMBif 98.11 % HF183 + HMBif 98.11 % 

1 GA17PH 92.45 % HF183 84.91 % 

4 Sources 

5 
CWMit + GA17PH + Pig2Bac + 

PLBif + 
BacR or HF183 

100 % 

BacR + CWMit + Pig2Bac + 
PLMit + 

1 variable (i. e.: HF183, HMBif, 
NoV) 

99.06 % 

4 
CWMit + GA17PH + Pig2Bac + 

PLBif 
99.06 % 

CWMit + Pig2Bac + PLMit + 1 
variable (i. e.: BacR, HF183, 

HMBif, NoV) 
98.11 % 

3 CWMit + Pig2Bac + PLMit 97.17% CWMit + Pig2Bac + PLMit 97.17% 

2 Pig2Bac + CWMit or PLMit  
76.42% Pig2Bac + CWMit or PLMit 76.42% 

 947 
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Table 3. Selected prediction models obtained by linear discriminant analysis using different numbers of variables. Models to evaluate the different scenarios: 948 

distinguishing between human (HM) and non-human (Non-HM) pollution or four pollution sources (human, bovine, poultry and porcine) analyzing the Aged-949 

Diluted Training Matrix. 950 

 951 

  All Markers Molecular 

 No. of variables Variables 
LOOCV 
Accuracy 

Variables 
LOOCV 
Accuracy 

HM vs 
Non-HM 

4   
HF183 + HMBif + PLBif + 

Pig2Bac 
99.14% 

3 EC + HF183 + HMBif  99.59% HF183 + HMBif + TLBif 93.34 % 

2 GA17 + HF183 95.71% HF183 + HMBif 91.98 % 

4 Sources 

5  
BacR + GA17PH + HF183 + Pi

g2Bac + PLBif   
96.04% 

HMBif + NoV + PGMit + 
PLBif + PLMit  

98.8% 

4 
 

BacR + GA17PH + Pig2Bac +  
PLBif   

93.88% 
HF183 + CWMit + Pig2Bac 

+ PLBif  
92.26 % 

3 BacR + GA17PH + PLBif   87.04 % 
HF183 + Pig2Bac + PLBif 

87.07 % 

2 Pig2Bac + PLBif  69.83 % 
Pig2Bac + PLBif 

69.83 % 
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A) B)

C) D)

Non-Human Non-Human

Non-Human Non-Human

Human Human

Human Human



A) B)





Highlights 

• Samples from 5 geographical sources were analysed with 30 faecal markers and 

indicators. 

• A machine learning software was used to develop faecal source discriminant models. 

• An in-silico matrix was generated using faecal samples, adding dilution and 

inactivation.  

• LDA models’ output was a combination of markers able to improve the accuracy of 

classification. 

• Models using between 2 and 5 source tracking markers can achieve LOOCV accuracies 

of over 95%. 
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