
	   1	  

 The origin of bistability in the butyl-substituted spiro-
biphenalenyl-based neutral radical material 

 
	  

Maria Fumanal¶, Juan J. Novoa, Jordi Ribas-Arino* 

 

 

 

 

Departament de Química Física and IQTCUB, Facultat de Química, Universitat 

de Barcelona, Av. Diagonal 645, 08028-Barcelona (Spain) 

 

 

 

 

* jordi.ribas.jr@gmail.com, j.ribas@ub.edu 

 

 
¶Present address: Laboratoire de Chimie Quantique, Institut de Chimie UMR7177 

CNRS-Université de Strasbourg, 1 Rue Blaise Pascal BP 296/R8, F-67007 Strasbourg, 

France 

 

	  

	  



	   2	  

	  
Abstract 
 

One of the most remarkable bistable materials so far reported is made of π-dimers of a 

butyl-substituted spiro-biphenalenyl boron radical (butyl-SBP). The phase transition of 

this material, which is accompanied by changes in its optical, conductive and magnetic 

properties, occurs with a hysteretic loop 25-K wide and is centered at 335 K. Here, we 

present a computational study aimed at deciphering the origin of this hysteresis. We 

show that the phase transition of butyl-SBP consists of a spin transition of their 

constituent π-dimers coupled with an order-disorder transition involving the butyl 

chains linked to the N atoms of the superimposed phenalenyl rings of the π-dimer. 

Below 335 K, the terminal methyl group of the butyl chains adopts a gauche 

conformation with respect to the methylene unit bonded to the N atom. Above 335 K, 

the methyl group is in an anti conformation and exhibits dynamic disorder. The gauche 

à anti conformational rearrangement triggers the spin transition of the π-dimers and is 

responsible for the hysteretic behavior of butyl-SBP. Specifically, the onset of the 

phase transition in the heating mode and, thus, the width of the hysteresis loop, are 

governed by the high energy cost and the strong structural cooperative effects 

associated with this conformational change. Our results show that coupling a spin 

switch with a conformational switch in a molecular crystal provides a promising strategy 

in the design of new bistable materials.    
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Introduction 
 

Bistability is an intriguing phenomenon exhibited by a few materials that present two 

stable phases that can both exist within a given range of temperatures. Molecule-

based bistable materials have been the subject of intense research during the last 

years because they hold great promise for application in sensors, displays and 

switching devices. 1,2 ,3 ,4 ,5 The numerous examples of molecular bistable materials 

include: materials based on transition metal complexes undergoing spin 

transitions6,7,8,9,10,11,12,13,14, organic spin-transition materials15,16,17,18,19,20,21,22, compounds 

whose phase transition is induced by a charge transfer between an electron-donor and 

an electron-acceptor23 ,24 ,25 ,26 ,27 , compounds featuring charge-transfer-induced spin 

transitions 28 , 29 , 30 , inorganic-organic hybrid frameworks undergoing phase 

transitions31,32, molecular crystals whose phase transitions are triggered by changes in 

the orientation of molecules33. The transition temperature and the hysteresis loop width 

of a bistable material are crucial parameters in determining whether its bistability can 

be harnessed in technological applications. These two parameters, in turn, depend on 

the intermolecular interactions within the crystal and on the energy barriers associated 

with the lattice reorganization upon phase transition. For most of the bistable 

compounds reported so far, very little is known about either the origin of the energy 

barriers associated with their phase transitions (i.e, whether the energy barrier of the 

overall phase transition is dominated by a single molecular rearrangement or whether 

the barrier is the result of the contributions of different reorganization events) nor the 

role of structural cooperativity in promoting such phase transitions. It is clear that the 

lack of this sort of information poses a major obstacle for the rational design of new 

derivatives of a given bistable parent compound with the goal of fine tuning its 

transition temperature and its hysteresis loop width. Therefore, the studies aimed at 

elucidating the origin of these barriers and at establishing the role of cooperative 

effects have the potential to offer most valuable hints on how to devise new bistable 

materials with improved properties. Here, on the basis of a computational study, we 

disclose the origin of the hysteretic phase transition of a phenalenyl-based butyl-

substituted neutral radical, which is one of the most prominent compounds within the 

family of bistable materials.  

 

Phenalenyl (PLY) is an odd-alternant hydrocarbon neutral radical arising from a 

triangular fusion of three benzene rings. This open-shell molecule has emerged in the 

past years as one of the most versatile building blocks for functional molecular devices 
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and materials.16,34,35,36,37,38,39,40 The numerous spiro-biphenalenyl (SBP) boron radicals 

reported by Haddon and coworkers constitute a very important class of PLY 

derivatives.41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57 SBPs present two nearly perpendicular 

phenalenyl units connected through a boron spiro-linkage. The N- and O-functionalized 

SBPs (ie, SBPs in which each phenalenyl unit is bonded to the central boron atom via 

an oxygen and a nitrogen atom) exhibit diverse packing motifs in the solid state, and 

hence different physical properties, depending on the substituents attached to the 

nitrogen atom. Ethyl (1) and butyl-substituted (2) SBPs (see Figure 1) present a crystal 

structure containing π-dimers as the basic building block (see Figure 2 and Figure S1). 

These two compounds undergo a phase transition that is accompanied by a change in 

their optical, conductive and magnetic properties.16,42 The phase transition of ethyl-SBP 

is reversible and occurs at about 140 K, while that of butyl-SBP occurs with an 

hysteretic loop 25-K wide and is centered at a much higher temperature (~ 335 K). At 

this point, it is worth mentioning that butyl-SBP is one of the few multifunctional bistable 

materials that switch the response in multiple physical channels upon phase 

transition.25,30,32,26 Besides, the volume of the crystals of butyl-SBP significantly change 

upon phase transition; specifically, a notable expansion of the crystal is observed when 

the system switches from its low-temperature (LT) phase to its high-temperature (HT) 

phase.58 This volume change in response to external stimuli is currently a sought-after 

phenomenon in the context of new functional materials due to its potential applicability 

to microscale or nanoscale actuators.33 

 

The experimental58,59 and theoretical studies60,61,62,63,64 conducted over the last years on 

ethyl- and butyl-SBP have culminated in a clear understanding of their electronic 

structure and the different magnetic and conducting properties of their phases. Upon 

phase transition in the heating mode, the constituent π-dimers of these materials 

undergo a spin transition from a closed-shell diamagnetic singlet state to an open-shell 

paramagnetic state. Below the spin transition temperature, the structures of the π-

dimers are governed by the potential energy surface (PES) of the ground singlet state 

(1Ag state), whose minimum structure features a partial localization of the unpaired 

electrons of each SBP radical in the superimposed phenalenyl (sup-PLY) rings, that is, 

on the phenalenyl (PLY) units directly involved in the π-dimer (see Figure 2a). The 

strong coupling between the SBP unpaired electrons in this configuration leads to a 

magnetically silent state, and, thus, to a diamagnetic LT phase. Above the spin 

transition temperature, the π-dimers adopt a configuration characterized by a 

localization of the SBP unpaired electrons in the nonsuperimposed phenalenyl (non-

PLY) units, that is, on the PLYs not directly involved in the π-dimer (see Figure 2b), 
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which leads to a paramagnetic phase. This configuration is exclusively governed by the 

PES of the ground triplet state (3Au state) because the corresponding open-shell singlet 

does not feature any minimum in that region of the PES even if it lies slightly below in 

energy than the triplet state. In a recent article64, we have shown that the high-spin 

(HS) state is energetically competitive with the low-spin (LS) state because the 

electrostatic component of the interaction energy between SBP radicals in the π-

dimers is more attractive in the high-temperature 3Au state than in the low-temperature 
1Ag state. This electrostatic stabilization of the high-temperature 3Au state was ascribed 

to the zwitterionic nature of the SBP moieties, in particular, to the interaction between 

the positively-charged superimposed PLYs in the triplet state (Figure 2b) and the 

negatively-charged spiro-linkages with the central boron atom. These electrostatic 

interactions also explain why the unpaired electrons prefer to localize on the 

nonsuperimposed PLYs in the high-temperature triplet state.64  

 

Despite the current good understanding of the electronic structure of the π-dimers of 

ethyl- and butyl-SBP and several theoretical studies on other phenalenyl-based 

systems65,66,67,68,69,70,71,72,73,74,75,76,77,78, there are two crucial questions concerning the 

phase transitions of ethyl- and butyl-SBP that remain unsettled, namely: i) why is the 

transition temperature of butyl-SBP so much higher than that of ethyl-SBP?, and ii) why 

does butyl-SBP display an hysteretic phase transition, in contrast with ethyl-SBP, 

which features a smooth phase transition? A meticulous study carried out by Haddon 

and coworkers in Ref. 58 on numerous crystal structures of butyl-SBP at different 

temperatures led to the suggestion that the HT phase is the thermodynamically stable 

phase within the bistability region, while the existence of the LT phase within the 

hysteretic loop was rationalized on the basis of the large energy barrier that the system 

needs to overcome when switching from LT to HT. Even if this barrier was estimated to 

be larger than 24 kcal/mol, the specific molecular rearrangements responsible for that 

barrier were not identified. In the computational study herein presented, not only do we 

provide a rationale for the higher spin-transition temperature of butyl-SBP but also 

disclose the hitherto elusive origin of its hysteresis loop. In particular, our study reveals 

that the bistability arises from a very simple molecular rearrangement, namely, a 

conformational rearrangement of the butyl groups attached to the SBP radicals.  
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Results and discussion 
 

The presentation of the results is organized as follows. We will first demonstrate that 

the higher phase-transition temperature of compound 2 (compared to that of 1) arises 

from a coupling of its spin transition with a conformational rearrangement of the butyl 

groups (subsection 1). Then, we will disclose that the significant expansion of crystals 

of 2 upon LT→HT phase transition is governed by this very conformational 

rearrangement of butyl groups (subsection 2). After that, we will show that the dynamic 

disorder exhibited by the butyl chains in the high-temperature phase of 2 implies that 

the conformational change of these chains brings about an order-disorder transition 

(subsection 3). Finally, we will decipher the mechanism of the coupling between the 

spin transition and the conformational rearrangement, we will demonstrate that the 

LT→HT phase transition is assisted by structural cooperative effects, and we will reveal 

that the hysteresis loop featured by 2 originates in the high-energy penalty associated 

with the conformational change of the butyl groups in the crystal lattice of the low-

temperature phase (subsection 4).  

 

1) Phase transition of butyl-SBP: a spin transition coupled with a conformational 

rearrangement of the butyl groups. 

 

As mentioned in the Introduction, the phase transition undergone by 1 and 2 is a spin 

transition in which the corresponding SBP π-dimers switch between two states: a 

singlet state (1Ag) and a triplet state (3Au). The low-spin (LS) state is the 

thermodynamically stable state at low temperatures (LT), while the high-spin (HS) state 

is the thermodynamically stable state at high temperatures (HT). In the LS state the 

unpaired electrons of the SBP are strongly coupled and mainly localized in the 

superimposed PLY units (see HOMO in Figure S2a), while in the HS state they move 

to the non-superimposed PLYs (see one of the two SOMO in Figure S2b). 

 

In this subsection, we shall first investigate why the spin-transition of 2 is shifted 200 K 

towards higher temperatures with respect to the spin-transition temperature of 1. The 

key quantity to rationalize this behavior is the adiabatic energy gap between the LS 

and HS minima (ΔEadia = ELS − EHS). The values of ΔEadia in the gas phase and in the 

solid state for 1 and 2 were evaluated upon geometry optimization of the corresponding 

isolated π-dimers and the π-dimers in the crystalline phases. The initial configurations 

for these geometry optimizations were taken from the LT and HT X-Ray nuclear 
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coordinates (Table S1 and Table 1, respectively). As previously reported64, the ΔEadia 

obtained for compound 1 in the solid state is -2.6 kcal/mol. This value is virtually 

identical to that found in the gas phase, which means that ΔEadia is not affected by the 

crystal packing. On the other hand, the ΔEadia values for an isolated π-dimer and for a 

π-dimer in the solid-state of compound 2 are -3.6 and -9.5 kcal/mol, respectively. The 

larger adiabatic gap in the solid state for 2 (compared to that of 1) is in line with its 

higher spin-transition temperature. The large difference between the solid-state and 

gas-phase ΔEadia values of 2, in turn, reflects the notable influence exerted by crystal-

packing effects on the spin-transition properties of this material. It is worth mentioning 

that such effects have already been observed in Fe(II)-based spin crossover 

compounds.79,80,81 In the following, we shall examine the origin of the different ΔEadia 

values of ethyl and butyl-SBP. 

 

A close inspection of the X-ray crystal structures of 1 and 2 brings to light a notable 

difference in the conformational behavior of their alkyl chains. While the conformation 

of the ethyl group of 1 is the same below and above the phase transition temperature, 

the butyl group of 2 changes its conformation upon phase transition. Specifically, in the 

LT structures of 2, the terminal methyl groups of the butyl chains attached to the N 

atoms of the superimposed PLYs are in a gauche arrangement with respect to the 

methylene groups linked to the N atoms (see Figure 2a). Conversely, in the HT 

structures of 2, the terminal methyl groups of the butyl chains attached to the N atoms 

of the superimposed PLYs are in anti with respect to the methylene groups linked to 

the N atoms (see Figure 2b). The different conformations adopted by the butyl chains 

of 2 in its LT and HT phases raise the question of which is the role of the 

conformational flexibility of the butyl chains in the phase transition of this compound. 

We shall now turn our attention to this issue. Note that the butyl chains linked to the N 

atoms of the non-PLY rings do not change their conformation in going from LT to HT. 

Hence, in what follows we will not deal with the conformations of these particular butyl 

chains. 

 

So far, we have shown that the LS state of the π-dimers of 2 in combination with the 

gauche conformation of the butyl chains give rise to a minimum energy configuration 

that will hereafter be referred to as LS(gau) configuration. We have also shown that the 

combination of the HS state of the π-dimers and the anti conformation of the butyl 

chains gives rise to another minimum energy configuration, which will be referred to as 

HS(anti) configuration. We only considered these two configurations since they 

correspond to the experimental observation. However, at this point, one could 
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hypothesize that the LS(anti) and the HS(gau) configurations might also exist as 

minima even if they have not been experimentally detected. Variable-cell optimizations 

demonstrated that the LS(anti) and HS(gau) configurations correspond indeed to 

minima. A scheme of the relative energies of the different polymorphs of 2 considered 

in this work is presented in Figure 3. The most stable polymorph of 2 is the LS(gau) 

polymorph, in agreement with the fact that this is the phase detected at low 

temperatures for compound 2. Concerning the polymorphs containing π-dimers in their 

HS state, our calculations bring to light that HS(gau) is lower in energy than HS(anti), 

even if the polymorph experimentally detected at high temperatures is the latter one. 

The energetic preference for the gauche conformations in the condensed phase 

(irrespective of the spin state of the π-dimers) is also observed for isolated π-dimers 

(see Figure 3) 82.  

 

The different ΔEadia values reported in Figure 3 shed light on the origin of the different 

spin transition temperatures of compounds 1 and 2. Interestingly, the ΔEadia value 

between the polymorphs featuring anti conformations of their butyl chains is equal to 

the ΔEadia value of compound 183. This proves that the large difference between the 

LS(gau)-HS(anti) adiabatic gap in compound 2 (-9.5 kcal/mol) and the adiabatic gap of 

compound 1 (-2.6 kcal/mol) is due to the conformational rearrangement of the butyl 

chains in the former compound upon phase transition. The large values of the LS(gau)-

LS(anti) and HS(gau)-HS(anti) gaps provide further evidence that the conformational 

changes of the butyl chains bring about important modifications of the intermolecular 

interactions in the condensed phase, which lead to a notable destabilization of the anti 

polymorphs. It is thus concluded that the higher phase-transition temperature of 2 

(compared to that of 1) stems from the coupling between an electronic transition and a 

conformational change.  

 

 

2) Origin of the main structural differences between the two polymorphs of 2. 

 

The detailed structural analysis reported by Haddon and coworkers in Ref.58 showed 

that the main structural differences between the LT and HT polymorphs of 2 are the 

interplanar distance between the sup-PLY units of the π-dimers (D) and the distance 

associated with a CH···π interaction formed by an aromatic C-H of one π-dimer and 

one of the sup-PLY rings of a neighboring π-dimer (see Figure S3 for definition). Both 

types of distances increase by 0.1 Å upon LT→HT phase transition. Furthermore, this 
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phase transition is accompanied by a large change in the unit cell volume, which 

increases by 3.5% in going from LT to HT. As shown in Table 2, all these structural 

changes detected in the X-ray crystals are properly captured by the optimized 

structures of the LS(gau) and HS(anti) polymorphs. We shall now trace the origin of 

these structural changes.   

 

The results collected in Table 2 show that for a given conformation of the butyl groups 

(be it either gauche or anti) the D value (see Figure S3 for its definition) of the π-dimers 

in the optimized HS polymorphs is ca. 0.08 Å larger than in the optimized LS 

polymorphs. On the other hand, for a given spin state of the π-dimers (be it either LS or 

HS), the D value in the optimized anti polymorphs is ca. 0.05 Å larger than in the 

optimized gauche polymorphs. It then follows that the increase of D upon LT→HT 

phase transition is due to both the change in the spin state of the π-dimers and the 

conformational rearrangement of the butyl chains, the former effect being the dominant 

one. On the contrary, the increase of the CH···π distance upon LT→HT phase 

transition should be mainly ascribed to the conformational rearrangement of the butyl 

groups (see Table 2).  

 

Finally, the results of Table 2 show that a LS→HS spin transition by itself (ie, a spin 

transition that is not accompanied by any conformational change of the butyl chains) 

entails only a very small volume cell increase (ca. 0.4%), similarly to that reported for 

compound 1. In stark contrast, Table 2 discloses that for a given spin state (be it either 

LS or HS) the gauche→anti conformational rearrangement of the butyl chains brings 

about an increase of ca. 4% in the volume unit cell. It is thus concluded that the 

remarkable volume increase of compound 2 upon LT→HT phase transition originates 

in the conformational change of its butyl chains. As shown in Table S2, the 

experimentally observed increase in the volume unit cell mainly originates in the 

increase of the cell parameter b, which lengthens by about 0.3 Å upon LT→HT phase 

transition. The notable elongation of b can be understood on the basis of the fact that 

the butyl chains lie parallel to this axis when they adopt the anti conformation.  

 

 

3) Driving forces of the phase transition of butyl-SBP. Order-disorder transition 

involving the butyl chains. 
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We shall now focus on the driving force of the complex phase transition undergone by 

2. In our previous study of compound 164, we demonstrated that the HS state of the π-

dimers have a larger vibrational and electronic entropy than the LS state, as a result of 

which the HS state become the thermodynamically stable state above a certain 

temperature. As observed in Figure 4 (red curve), the HS(gau) state of an isolated π-

dimer of 2 is also entropically stabilized with respect to the LS(gau) state. The key 

question at this point is whether the gauche à anti conformational change is 

accompanied by any extra change in the vibrational entropy of the system. The green 

curve of Figure 4 proves that this is indeed the case for isolated π-dimers. Such trend 

is not only maintained but also enhanced in the solid state (dashed green line of Figure 

4). As a result of the extra gain in vibrational entropy in going from a gauche to an anti 

conformation, the entropic stabilization of the HS(anti) configuration of the π-dimers of 

2 with respect to the LS(gau) configuration as the temperature increases is much larger 

than the entropic stabilization of the HS state with respect to the LS state in compound 

1 (see dark blue curve in Figure 4). The large vibrational entropy gained by the π-

dimers of 2 when their butyl chains adopt an anti conformation is thus crucial in 

enabling this compound to clear a HS(anti)-LS(gau) adiabatic gap that is much larger 

than the HS-LS adiabatic gap of compound 1. 

 

The fact that the hysteretic phase transition of butyl-SBP is centered at a high 

temperature (~335 K), together with the large thermal ellipsoids of the carbon atoms of 

the butyl chains observed in the X-ray crystal structure of the HT phase of 258, strongly 

suggest that going beyond the static perspective so-far adopted in this article by 

explicitly considering the thermal fluctuations of the system might offer an improved 

description of the phase transition of butyl-SBP. The thermal fluctuations of the system 

were considered by performing ab initio molecular dynamics simulations (AIMD) for the 

LT and HT phases of compound 2. These AIMD simulations, which span a time interval 

of more than 60 picoseconds, were done at 340 K because this temperature is within 

the hysteresis loop. The simulation box of the unit cell employed in the simulations 

includes four spiro-biphenalenyls monomers, which gives rise to two π-dimers, such 

that the dynamics of four non-equivalent butyl-ligands bonded to the sup-PLY was 

followed along the trajectories (see Figure S3). The conformational dynamics of the 

butyl chains can be analyzed by monitoring the time-resolved evolution of the dihedral 

angle (θ) between the carbon atom bonded to the N atom and the carbon atom of the 

terminal methyl group along the central C-C bond of the butyl chain (see Figure 5 for 

the definition of θ). For practical purposes, the anti conformer will hereafter be 

considered as the reference conformation, which means that the anti conformation will 
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be associated with a dihedral angle of θ=0 and the rest of θ values will be given with 

respect to the position of the terminal methyl group in the anti conformation (Figure 5).  

 

The AIMD simulations of LT-340 (Figure 6a) show that the butyl groups present most 

of the time a conformation for which θ ≈ -107º. As shown in Figure 5, this value of θ 

corresponds to a gauche conformation in which the terminal methyl group is pointing to 

a non-PLY unit (gauche-IN conformation). Sporadic transitions to another conformation 

for which θ ≈ 107º took place individually on three of the four butyl-groups. In this 

conformation, the butyl chain is in another gauche conformation in which the terminal 

methyl group is not pointing to a non-PLY (gauche-OUT conformation, see Figure 5). 

The simulations also show that the probability of a given butyl chain to be in the anti 

conformation is of ca. 4%, thus suggesting that this spatial arrangement is energetically 

disfavored in the unit cell of the LT phase at 340 K. 

 

Two simulations were performed for the HT-340 structure. One simulation was 

computed starting from the anti polymorph, whereas the second one was performed by 

initially defining a gauche-IN position for all butyl-ligands bonded to the sup-PLY units. 

This strategy allows us to ensure that the conformational sampling is independent from 

the starting configuration defined. The trajectory of the HT-340 structure that evolves 

from an initial anti conformation shows that, after 15-20 ps, two of the butyl-groups 

abruptly change their positions adopting a gauche-IN conformation whereas the other 

two go to gauche-OUT positions (Figure 6b). Thereafter, eventual transitions between 

the three possible conformations are detected. On the other hand, the trajectory that 

starts from the gauche-IN polymorph shows that, as in the previous simulation, the four 

butyl-groups adopt the three possible conformations at some point during the dynamics 

(Figure 6c). Therefore, our simulations demonstrate that the butyl chains of the HT 

phase feature a dynamic disorder between three different conformations: gauche-IN, 

anti and gauche-OUT. This dynamic disorder is in line with the elongated thermal 

ellipsoids observed for the carbon atoms of the butyl chains in the crystal structures of 

HT for compound 258. In contrast, the LT phase of 2 does not exhibit conformational 

disorder. The appearance of a small amount of disorder in the latter phase during our 

simulations is ascribed to the proximity to the transition temperature. In light of this 

analysis, the LS(gau) à HS(anti) phase transition undergone by 2 should be described 

as a spin transition coupled with an order-disorder transition. In the next subsection we 

shall rationalize the different dynamics featured by the butyl chains in the LS(gau) and 

the HS(anti) polymorphs of 2.  
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The dynamic disorder found for the butyl chains in the HT phase of 2 strongly suggests 

that the vibrational entropy of HT is largely underestimated when using the harmonic 

approximation, as done to obtain the results displayed in Figure 4. It thus follows that 

the TΔST values of the blue and both the green curves of Figure 4 would be larger (in 

absolute value) if the anharmonic effects associated with the dynamic disorder had 

been taken into account in the calculations. The extra entropic stabilization of the 

HS(anti) polymorph by virtue of the dynamic disorder of its chains supports the 

mechanism proposed by Haddon and coworkers58, which ascribes the presence of the 

LT polymorph within the hysteresis loop due to the existence of an energy barrier to 

reach the HT phase, which is the thermodynamic free energy minimum in the range of 

temperatures of the bistability mainly due to its large vibrational entropy term. The key 

question that needs to be addressed at this point (see next subsection) is which is the 

origin of the barrier that LT needs to overcome to transform into the HT phase.  

 
 
4) Origin of the hysteresis and the coupling between the spin transition and the 

conformational change in the phase transition of butyl-SBP  

 

In this subsection we shall first rationalize the different dynamics exhibited by 

the butyl chains of 2 in its LT and HT polymorphs at 340 K. This analysis will also 

reveal the origin of the energy barrier responsible for the hysteretic phase transition in 

butyl-SBP. In the last part of this subsection, we shall disclose the origin of the coupling 

between the spin transition and the conformational rearrangement of the butyl chains in 

the phase transition of 2.  

 

The dynamic behavior of the butyl chains can be understood on the basis of the 

potential energy profile of a butyl chain along the θ dihedral angle. The energy profiles 

were evaluated by means of a set of constrained optimizations in the solid state in 

which the θ dihedral angle of one butyl chain of the unit cell was kept fixed at different 

values while allowing the rest of coordinates to relax. We first computed two energy 

profiles: one of them using the cell parameters associated with the LT-340 crystal 

structure and the other one using the cell parameters of the HT-340 crystal structure. 

Since the separation between adjacent radicals along the cell vector b increases in 

going from LT-340 to HT-340, the use of these two unit cells enables the investigation 

of how the conformational landscape of the butyl groups changes upon expansion of 

the crystal.   
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As displayed in Figure 7, the most stable conformation of the butyl chain in LT-340 is 

the gauche-IN (θ = -107º) conformation. This explains why this is the most sampled 

conformer during the AIMD simulations (Figure 6a). The anti conformation (θ = 0º) in 

turn features a shallow minimum that lies ca. 4 kcal/mol above the gauche-IN 

conformer. For this reason, this particular conformation is seldom sampled during the 

AIMD simulations (Figure 6a). The significant increase of the cell vector b in going from 

LT-340 to HT-340 brings about a change in the energetic ordering of the conformers. 

As shown in Figure 7, the anti conformer is the most stable conformation in HT-340, 

while the gauche-IN conformer lies only ~2 kcal/mol above. The flatter conformational 

landscape of HT-340 (as compared with that of LT-340) provides a rationale for the 

dynamic disorder of the butyl chains observed in the AIMD simulations of HT-340.  

 

The red profile of Figure 7 reveals that there exists a significant energy barrier of ca. 5 

kcal/mol for the conversion of the gauche-IN conformer of a butyl chain into its anti 

conformer in the LT-340 crystal. This result led us to hypothesize that this activated 

conformational rearrangement is the origin of the energy barrier associated with the 

LTàHT phase transition of compound 2, and, thus, the origin of its bistability. At first 

glance, a barrier of ~5 kcal/mol would seem too small for a phase transition that occurs 

at a temperature as high as ~350 K in the heating mode. However, the green profile of 

Figure 7 demonstrates that this barrier markedly increases upon lowering the 

temperature. Specifically, this barrier goes up to ~12 kcal/mol when the confomational 

rearrangement of a butyl group takes place in the LT-0 crystal (i.e, in the optimized LT 

polymorph at 0 K). Such an increase of the barrier upon lowering the temperature 

originates in the thermal contraction of the crystal. 

 

The X-ray resolved structures of the LT phase at 100 and 340 K (see Table S3) show 

that the shrinkage of the vector cell c is one of the main structural changes undergone 

by the LT phase upon cooling. This is in line with our computational results, which 

show that the computed vector cell c at 0 K is significantly smaller than that of the 

crystal structures refined at finite temperatures (Table S3). Concomitantly with this 

variation, some key intermolecular distances also decrease upon cooling. As shown in 

Figure 8, the thermal contraction of the crystal in the c direction results in a shorter 

H···H contact between one hydrogen atom of the terminal methyl group of a butyl chain 

and one hydrogen atom of a PLY ring of the adjacent SBP radical (the H···H distance 

decreases 0.25 Å upon cooling). This H···H contact thus exerts a notable influence on 

the profiles of Figure 7 and, more specifically, plays a crucial role in modulating the 

energy barrier that separates the gauche-IN and anti conformations. At lower 
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temperatures, the shorter intermolecular contacts give rise to a large steric hindrance, 

which results in a large energy barrier for the conformational rearrangement. 

Therefore, the butyl chains cannot undergo the gauche-IN à anti conformational 

change until the LT phase of 2 reaches a sufficiently high temperature such that the 

accompanying thermal expansion of the crystal leads to a sufficiently small energy 

barrier that can be surmounted. It is thus concluded that the barrier associated with this 

very conformational rearrangement is responsible for the hysteretic phase transition of 

2.  

 

Having reached this point, it should be stressed that the energy barrier discussed in the 

two previous paragraphs corresponds to the conformational switch of a single butyl 

chain. The phase transition of 2 entails many of these conformational switches and 

each of them is an activated process. Therefore, this phase transition cannot be 

rationalized by means of a single energy barrier. The key question at this point is 

whether the phase transition is assisted by cooperativity, that is to say, whether the 

conformational switch of a given butyl chain favors the conformational switch of the 

butyl chain of a neighboring SBP radical. In order to explore the role of cooperativity, 

the LS(gau) à LS(anti) phase transition was driven by successively rotating the butyl 

chains of our simulation cell from a gauche-IN to an anti conformation (overall, we 

manually induced four conformational rearrangements). After every rotation to an anti 

conformation, the system was allowed to relax by means of a variable-cell optimization 

and the change in energy of the system due to the conformational switch was then 

evaluated. As shown in Figure 9, the first conformational switch of a butyl chain entails 

a large energy penalty of 10.6 kcal/mol (the energy barrier associated with this process 

is 12 kcal/mol; see Table S4). Among the three different existing possibilities for the 

rotation of a second butyl group, the one requiring a smaller energy cost is the 

conformational switch of the butyl group belonging to the same π-dimer of the butyl 

group that underwent the first switch. Should the conformational rearrangements of the 

butyl chains occur independently from each other, the rotation of the second butyl 

chain would entail an energy penalty of 10.6 kcal/mol. In stark contrast with this 

scenario, our calculations reveal that the rotation of the second butyl chain entails an 

extra energy penalty as small as 1.8 kcal/mol (Figure 9). The conformational switch of 

a third butyl chain, in turn, has an associated extra cost of 4.1 kcal/mol (Figure 9). 

Finally, the rotation of the fourth butyl group causes a stabilization of the system 

(Figure 9). It is thus concluded that cooperativity plays a key role in driving the phase 

transition of 2. The strong cooperative effects in the LS(gau) à LS(anti) phase 

transition have also been evaluated by means of the calculation of intermolecular 
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couplings84 and by means of the Slichter-Drickamer model85, as was previously done to 

assess the cooperativity and the hysteretic phase transitions of Fe(II)-based spin-

crossover materials86,87 (see Supporting Note 1 for a detailed explanation).   

 

We shall now focus on the origin of the coupling between the spin transition and the 

conformational rearrangement in the phase transition of 2. The existence of this 

coupling means that one of these switches (either the spin switch or the conformational 

switch) triggers the other one. Should the two switches take place independently of 

each other, either the HS(gau) or LS(anti) polymorphs would have been detected as 

intermediate phases in the phase transition of 2. Therefore, elucidating the origin of this 

coupling amounts to addressing the following question: why does the LT à HT phase 

transition bring the system from LS(gau) directly to HS(anti) without either HS(gau) or 

LS(anti) being detected as intermediate phases? Obviously, this question is analogous 

to the following one: why does the HT à LT phase transition drive the system from 

HS(anti) directly to LS(gau) without either HS(gau) or LS(anti) being detected as 

intermediate phases? As explained in detail below, the different energy gap between 

the HS and LS states of the π-dimers of 2 in the solid state depending on the 

conformation of the butyl chains is key to understand why neither the HS(gau) nor the 

LS(anti) polymorphs are observed. While the energy gap between the HS and LS 

states when the butyl chains adopt an anti conformation is 2.6 kcal/mol, this gap 

increases up to 3.7 kcal/mol when the butyl chains adopt a gauche-IN conformation 

(Figure 3). For our purposes, it is important to remember that the gap of 2.6 kcal/mol 

coincides with the HS-LS gap found for compound 164, whose phase transition takes 

place at ~140 K.16  

 

Let us now consider the mechanism of the HTàLT phase transition of 2. Starting from 

the HS(anti) polymorph, there are two conceivable mechanisms for the phase transition 

in the cooling mode: i) HS(anti) à LS(anti) à LS (gau), or ii) HS(anti) à HS(gau) à 

LS(gau). Note that the first mechanism entails a spin switch as a first step, followed by 

a conformational switch. The second mechanism, in turn, entails a conformational 

switch as a first step, followed by a spin switch. Should the phase transition of 2 occur 

via the first mechanism, such phase transition would have been observed at 

temperatures around 140 K because the energy gap between HS(anti) and LS(anti) 

coincides with the HS-LS gap for compound 1. Yet the phase transition in the cooling 

mode of 2 occurs at much higher temperatures (~320 K), i.e, in a temperature range in 

which HS(anti) should still be more stable (in terms of free energy) than LS(anti). This 

means that we can safely rule out the first mechanism. It is thus concluded that the first 
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step in the phase transition of 2 in the cooling mode is the HS(anti) à HS(gau) 

transformation. Having established which is the first step in the phase transition of 2 

upon cooling, we shall now explain why the conformational switch induces the spin 

switch of the π-dimers of 2. As mentioned above, the conformation adopted by the 

butyl chains exerts a notable influence on the HS-LS energy gap of these π-dimers. 

When switching from the anti to the gauche conformation of the butyl chains, the HS-

LS energy gap increases by 1.1 kcal/mol. As a consequence of the larger HS-LS gap, 

the LS state is the thermodynamically stable state over a wider range of temperatures 

that extends much beyond 140 K. In particular, as inferred from the red curve of Figure 

4, which accounts for the entropy that is needed to clear the energy gap upon phase 

transition, an increase of 1.1 kcal/mol in the energy gap leads to a large broadening of 

about 200 K of the temperature range in which the LS state is the thermodynamically 

stable state. As a result of this, at the phase transition temperature in the cooling mode 

(~320 K), the LS state is more stable than the HS state and, consequently, once the π-

dimers find themselves in the HS(gau) configuration after the HS(anti) à HS(gau) 

conformational switch, they readily undergo a spin switch that brings them to the 

LS(gau) configuration. In other words, the coupling between the conformational and the 

spin switches in the phase transition of 2 upon cooling arises from the fact that the 

intermediate phase generated after the conformational rearrangement is not 

thermodynamically stable at the temperature at which it is generated.  

 

The coupling between the conformational change and the spin transition in the LT à 

HT phase transition of 2 can be rationalized by means of similar arguments as those 

used in the paragraph above. Starting from the LS(gau) polymorph, there are two 

conceivable mechanisms for the phase transition in the heating mode: i) LS(gau) à 

HS(gau) à HS(anti), or ii) LS (gau) à LS(anti) à HS(anti). As explained above, the 

large HS-LS energy gap when the butyl chains are in their gauche conformation results 

in the LS(gau) polymorph being more stable than the HS(gau) polymorph over a broad 

range of temperatures that extends much beyond room temperature. This strongly 

suggests that the phase transition cannot be initiated by the spin transition, which 

means that the phase transition takes place via the second mechanism, that is to say, 

the conformational switch precedes the spin transition88. The LS(anti) polymorph is not 

detected as an intermediate phase in the phase transition because the HS-LS gap 

substantially decreases when the butyl chains go from the gauche to the anti 

conformation. Due to this small gap, HS is the thermodynamically stable spin 

configuration at the temperature at which LS(anti) is generated (~340 K), and, 
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therefore, the conformational switch is readily followed by a spin transition that brings 

the system to the HS(anti) polymorph. 

 

Overall, our computational work offers new insights into the mechanism of the 

hysteretic phase transition of butyl-SBP. The phase transition of this material involves 

both a spin switch of its constituent π-dimers and a conformational switch of the butyl 

chains attached to these dimers. In both the heating and cooling modes of the phase 

transition, the conformational rearrangement of the butyl chains precedes the spin 

transition of the π-dimers. The spin transition occurs readily after the conformational 

change (i.e, without the detection of any intermediate phase) as a result of a coupling 

between the two types of switch, which arises from the strong dependence of the HS-

LS energy gap of the π-dimers on the conformation adopted by the butyl chains. Given 

that the conformational rearrangement of the butyl chains is the first step in the phase 

transition of 2, the onset of such phase transition is governed by the conformational 

energy landscape of the butyl chains in the crystal. Remarkably, the conformational 

energy landscape of the butyl chains in the LT phase of 2 (i.e, in the LS(gau) 

polymorph) is drastically different from that of the HT phase (i.e, the HS(anti) 

polymorph). This difference originates in the expansion of the crystal in going from LT 

to HT, which in turn is caused by the conformational change that brings the butyl 

chains from the gauche-IN conformation to an anti conformation. In fact, the butyl 

chains in HT exhibit dynamic disorder by virtue of the extra free space in the expanded 

crystal. The pronounced differences between the conformational energy landscapes of 

the butyl chains in the LT and HT phases are key to understanding the origin of the 

hysteresis observed in the phase transition of 2. As displayed in Figure 7, the barrier 

that needs to be overcome to go from the gauche-IN to the anti conformer in LT is 

larger than the barrier that needs to be surmounted in going from the anti conformer to 

the gauche-IN conformer in HT. In addition, the energy separation between the two 

conformational minima is larger in LT (where the gauche-IN conformer is the most 

stable one) than in HT (where the anti conformer is the most stable one). For these 

reasons, the LT à HT phase transition occurs at higher temperatures than the HT à 

LT phase transition, thereby opening a hysteresis loop. The higher temperature of the 

phase transition in the heating mode is determined by the energetic cost associated 

with the gauche-IN à anti conformational rearrangement and structural cooperative 

effects by virtue of which the conformational switch of a butyl chain facilitates the 

subsequent rotation of neighboring butyl chains. 
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Finally, it is worth commenting on the solid-state properties of the propyl-SBP radical, 

which also forms π-dimers in the solid state.43 Given that the π-dimers of both ethyl-

SBP and butyl-SBP feature spin-transitions, one might expect that the π-dimers of 

propyl-SBP should also present such behavior. However, magnetic susceptibility 

measurements showed that the dimers of propyl-SBP are in their HS state over the 

whole temperature range (T > 30 K), thus giving rise to a paramagnetic material 

without switching properties.43 The adiabatic energy gap between the LS and HS 

minima, ΔEadia, of the π-dimers of propyl-SBP in the solid state is -1.9 kcal/mol, which 

is considerably smaller than the ΔEadia values for 1 and 2 (-2.6 and -9.5 kcal/mol, 

respectively). This small ΔEadia value explains why the π-dimers of propyl-SBP remain 

in their HS state in the whole range of temperatures without undergoing any spin 

transition89. The ΔEadia value for an isolated π-dimer of propyl-SBP is significantly larger 

in absolute value (-2.7 kcal/mol) and very close to the ΔEadia value found for ethyl-SBP, 

which means that the absence of any spin-transition in the material originates in solid-

state effects. In order to get more insight into such effects, we carried out single point 

energy calculations of an isolated π-dimer excised from the optimized LS polymorph 

and an isolated π-dimer excised from the optimized HS polymorph. The difference in 

energy between these two π-dimers (-2.9 kcal/mol) is almost identical to the ΔEadia 

value obtained in gas phase (-2.7 kcal/mol). This is not suprising in view of the fact that 

the structure of the π-dimers in the optimized polymorphs is very similar to the 

structure of the optimized isolated π-dimers (see Figure S4). It is thus concluded that 

the absence of any spin-transition in the butyl-SBP material is due to intermolecular 

interactions between π-dimers and not to the fact that crystal-packing effects impose a 

particular structure of the π-dimers that favors the HS state.  
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Conclusions 
 

Our computational study on the phase transition of butyl-SBP puts the spotlight on the 

conformational changes of the butyl chains bonded to the N atoms of the 

superimposed PLY rings. Neither the thermodynamics of its phase transition nor its 

hysteretic behavior can be understood without considering the conformational degrees 

of freedom of the butyl groups. Indeed, the phase transition of butyl-SBP occurs at 

temperatures higher than room temperature because of the coupling of the spin-

transition of its π-dimers with an order-disorder transition involving the butyl chains. 

This order-disorder transition in the heating mode is triggered by a rotation of the 

terminal methyl group of the butyl chains, which drives the methyl group from a gauche 

conformation (with respect to the methylene unit of the butyl bonded to the N atom of 

the superimposed PLY) to an anti conformation. The significant expansion of the 

crystal upon phase transition in the heating mode is due to this particular gauche à 

anti conformational rearrangement. The phase transition of butyl-SBP is initiated via 

the conformational rearrangement of the butyl chains both upon heating and cooling. 

Such conformational switch is readily followed by the spin switch of the π-dimers due 

to the coupling between the two types of switch, which arises from the strong influence 

exerted by the conformation adopted by the butyl chains in the crystal on the energy 

difference between the high- and low-spin states of the π-dimers. In particular, this 

energy gap considerably decreases upon the gauche à anti transition, which means 

that the crystal packing associated with the anti conformation tends to favor the high-

spin states of the π-dimers, whereas the crystal packing associated with the gauche 

conformation tends to favor the low-spin states.  

 

Our investigations reveal that the hysteresis observed in the phase transition of butyl-

SBP originates in the fact that the conformational energy landscape of the butyl chains 

in the crystal lattice of the LT phase is completely different from that found in the crystal 

lattice of the HT phase. Specifically, the gauche à anti conformational switch in the 

crystal lattice of LT entails a larger energy penalty, which is mainly due to the steric 

repulsion associated with a short H···H contact between the terminal methyl group of a 

butyl chain in its anti conformation and the PLY ring of the adjacent SBP radical. The 

large energy penalty associated with this conformational switch and the strong 

structural cooperativity that assists the order-disorder transition of the butyl chains 

control the temperature at which the LT à HT phase is initiated and, as a result, the 

width of the hysteresis loop.  
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The herein unveiled key role of the conformational changes of the butyl changes in 

controlling the phase transition of butyl-SBP not only provides a rationale for its 

intriguing and enigmatic bistable behavior but also provides valuable information that 

might serve for the rational design of new spirobiphenalenyl-based bistable materials. 

Transcending the specific material herein studied, our results highlight the great 

potential of coupling a conformational rearrangement of a flexible moiety with an 

electronic transition for the design and preparation of new bistable materials.   
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Computational details 
 

All the electronic structure calculations performed in this work were carried out using 

the PBE exchange-correlation functional90 within the spin-unrestricted formalism. The 

semiempirical dispersion potential introduced by Grimme 91  was added to the 

conventional Kohn-Sham DFT energy in order to properly describe the van der Waals 

interactions. The parametrization employed in this work is the so-called DFT-D2. The 

use of PBE together with the Grimme correction is known to lead to good predictions 

for the structure and cohesive energies of molecular crystals.92 In the following, we 

provide further details of the methodology employed to obtain the results presented in 

each subsection of the Results and Discussion.  

 

1) Phase transition of butyl-SBP: a spin transition coupled with a conformational 

rearrangement of the butyl groups. 

 

The optimized structures of the LT and HT polymorphs were obtained by means of 

variable-cell geometry relaxations, in which the atomic positions and the lattice 

parameters are optimized simultaneously. Plane wave pseudopotential calculations 

using Vanderbilt ultrasoft pseudopotentials93 and Γ-point sampling of the Brillouin zone 

were employed for these relaxations. In these calculations, the number of plane waves 

was kept constant at a kinetic energy cutoff of 60 Ry. A constant number of plane 

waves imply no Pulay stress but a decreasing precision of the calculation as the 

volume of the cell increases.94 The large cutoff employed in these calculations ensures 

that the artifacts arising from this change of precision are negligible. The starting 

atomic positions and initial lattice parameters for the relaxation of the LS(gau) and HS 

(anti) polymorphs were taken from the X-ray resolved structures of the LT and HT 

phases of 2 at 100 and 360 K, respectively. For the relaxation of the LS(anti) and 

HS(gau) polymorphs, the same starting coordinates were used except for the initial 

dihedral angles defined for the butyl-ligands bonded to the sup-PLY units (θ), which 

were manually changed.  

 

The optimizations of the isolated π-dimers of 2 (carried out with the goal of evaluating 

the gas-phase ΔEadia values) were also done with plane wave pseudopotential 

calculations using Vanderbilt ultrasoft pseudopotentials. In these calculations, in which 

the plane wave basis set was expanded at a kinetic energy cutoff of 60 Ry, the π-
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dimers were placed in a cell of 60-30-30 Bohr length sides trying to minimize the 

interactions between the equivalent images. 

 

All the results presented in this subsection were obtained with the QUANTUM 

ESPRESSO package.95 

 

2) Origin of the main structural differences between the two polymorphs of 2. 

 

The analysis presented in this subsection was done using the results obtained in the 

previous subsection 

 

3) Driving forces of the phase transition of butyl-SBP. Order-disorder transition 

involving the butyl chains. 

 

The vibrational entropy of the different polymorphs and the isolated π-dimers was 

evaluated after computing the vibrational frequencies of these systems in the harmonic 

approximation. The analytical frequencies of the isolated LS and HS π-dimers of 2 

were computed using the re-optimized geometries obtained with the 6-31g(d) atomic 

basis96 set within the Gaussian09 package.97 For these optimizations, the previous 

optimized structures obtained with QUANTUM ESPRESSO were used as the initial 

atomic coordinates. The vibrational frequencies in the condensed phase were 

calculated by means of a finite-difference normal-mode analysis of the optimized 

structures. After the variable-cell relaxation of the HS(anti) and HS(gau) polymorphs at 

a cutoff of 60 Ry, the corresponding optimized atomic positions and optimized lattice 

parameters were used to define the initial geometries for a subsequent optimization at 

a cutoff of 45 Ry in which the lattice parameters were kept fixed. These new 

optimizations with a smaller cutoff were performed to be able to carry out finite-

difference normal mode analysis of these two solid-state minima at a reasonable 

computational cost. It should be mentioned that switching from a cutoff of 60 Ry to a 

cutoff of 45 Ry results in negligible differences in both structures and energies of both 

polymorphs. It thus follows that the computational strategy has been properly set up. 

 

The AIMD simulations were carried out using the efficient Car-Parinello propagation 

scheme98 as implemented in the CPMD package.99 In these simulations the plane 

wave basis set was expanded at a kinetic energy cutoff of 25 Ry. The molecular 

dynamics time step was set to 4 a.u. and the fictitious mass for the orbitals was chosen 

to be 400 a.u. All dynamic simulations were performed in the canonical ensemble using 
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the Nosé-Hoover chain thermostats100 in order to control the kinetic energy of the 

nuclei and the fictitious kinetic energy of the orbitals. The lattice parameters employed 

in the AIMD simulations of the LT and HT phases at 340 K were taken directly from the 

X-ray crystals refined at 340 K of the LT and HT polymorphs, respectively. In the 

simulations of the LT phase, the electronic structure of the π-dimers was that 

corresponding to their singlet ground state. Conversely, in the simulations of the HT 

phase, the electronic structure of the π-dimers was that corresponding to their triplet 

ground state. 

 

4) Origin of the hysteresis and the coupling between the spin transition and the 

conformational change in the phase transition of butyl-SBP  

 

All the calculations of this section were performed using Vanderbilt ultrasoft 

pseudopotentials93 and Γ-point sampling of the Brillouin zone. 

 

The three profiles for the conformational rotation of the butyl ligand bonded to the sup-

PLY unit (Figure 7) were evaluated by means of constrained optimizations in the solid 

state using three different sets of cell vectors to define the periodic boundary 

conditions: the cell vectors associated with the LT-340 crystal structure, the cell vectors 

of the HT-340 crystal structure and the cell vectors of LS(gau) polymorph, which were 

obtained upon variable-cell optimization (i.e., they correspond to the structure at 0 K). 

Nine constrained optimizations were performed for the first two profiles along the 

rotation coordinate of the θ dihedral angle fixing its value between -107º and +107º. For 

the LS(gau) polymorph, in turn, five calculations were performed along the same 

rotation coordinate between the -107° and 0° values of the θ dihedral angle. These 

calculations were done using a kinetic energy cutoff of 35 Ry. 

 

To study the elementary steps of the LS(gau) à LS(anti) phase transition, the 

intermediate states connecting these two polymorphs (3gauche-1anti, 2gauche-2anti 

and 1gauche-3anti) were obtained by means of variable-cell geometry relaxations, in 

which the atomic positions and the lattice parameters are optimized simultaneously. In 

these calculations, the number of plane waves was kept constant at a kinetic energy 

cutoff of 60 Ry. 
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Supporting Information 
 

Figure S1. X-ray crystal structures of the LT and HT phases of the ethyl and 

butyl radicals showing their characteristic crystal-packing motif: the π-dimers. Figure 

S2. Highest occupied molecular orbitals of the lowest singlet state (1Ag) and the triplet 

state (3Au) of the π-dimer of butyl-SBP. Figure S3. Definition of the parameter that 

corresponds to the interplanar distance between sup-PLY units, and the parameter that 

corresponds to the CH···π distance depicted in the unit cell of the butyl-SBP system. 

Figure S4. Optimized structures of the π-dimers (both in the solid state and in the gas 

phase) of propyl-SBP. Table S1. Selected structural parameters for the SBP π-dimers 

present in two different X-ray crystal structures of ethyl-SBP and the corresponding 

structural parameters obtained upon geometry optimization of these SBP π-dimers in 

their 1Ag and 3Au states. Table S2. Cell parameters of the reported LT-340 and HT-340 

X-ray crystal structures of 2. Table S3. Cell parameters of the LT-0 minimum energy 

structure of butyl-SBP and of the LT crystallographic structures resolved at 100 and 

340 K. Table S4. Potential energy of the butyl substituted SBP crystallographic unit cell 

at 0K when considering the rotation from -107º (gauche) to 0º (anti) of one N-linked 

butyl ligand and the corresponding unit cell distortion. Supporting Note 1. Detailed 

explanation of how the cooperativity of the LS(gau) à LS(anti) phase transition was 

assessed.  
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(a) (b) 

  
 
Figure 1. Schemes of the ethyl-substituted (a) and the butyl-substituted (b) N- and O-
functionalized spiro-bis(1,9-disubstitutedphenalenyl) boron radicals. The radical displayed on 
the left (right) is referred to as compound 1 (2) in the text.  
 
 
 

(a) 

 
(b) 

 
 
Figure 2. X-ray crystal structures at 340 K of the LT (a) and HT (b) phases of the butyl-SBP π-
dimers. Hydrogen atoms are hidden for clarity.  
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Figure 3. Scheme of the relative energy of the different minimum energy configurations of 
compound 2 in gas phase (left) and solid-state (right). All adiabatic energy gaps are given, per 
π-dimer, in kcal/mol. 
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Figure 4. Temperature dependence of the difference in entropy (expressed as TΔST, where ΔST 
includes both the electronic and vibrational contributions of the entropy) between different 
configurations of the π-dimers of 2. The solid curves correspond to calculations carried out for 
isolated π-dimers, while the dashed curve corresponds to calculations in the solid state.  
 
 

 

 

 
 
Figure 5. Scheme for the gauche-IN, anti and gauche-OUT conformations of the butyl chain of 
compound 2. 
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(a) 

 
(b) 

 
(c) 

 
Figure 6. Time-resolved evolution of the θ dihedral angle of the butyl-ligands attached to the 
sup-PLY (see Figure 5) for the four spiro-phenalenyl units included in the cell of the AIMD 
simulations. The values that correspond to the trajectory of the LT-340 (LS) phase are shown in 
(a), whereas (b) and (c) show the values for the HT-340 (HS) trajectories, starting from anti and 
gauche-IN polymorphs, respectively. Note that in our simulations 10000 steps amount to ca. 10 
picoseconds.  
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Figure 7. Potential energy profiles as a function of the θ dihedral angle of one butyl chain of the 
unit cell of 2. The three profiles were evaluated by means of constrained optimizations using 
three different sets of cell vectors: the cell vectors associated with the LT-340 crystal structure 
(red curve), the cell vectors of the HT-340 crystal structure (blue curve) and the cell vectors of 
LS(gau) polymorph (green curve), which were obtained upon variable-cell optimization (i.e., 
they correspond to the structure at 0 K). In all profiles, the energy of the gauche-IN 
conformation (θ = -107º) was taken as the reference energy. 
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Figure 8. A short H···H contact between a hydrogen atom of the terminal methyl group of a 
butyl chain in an anti conformation and a hydrogen atom of a phenalenyl group of an adjacent 
SBP radical. The distance associated with this contact is shown for the LT-340 crystal structure 
(left) and for the optimized LS(gau) structure (right), i.e., the LT structure at 0 K. The values of 
the distances displayed in the Figure correspond to optimized structures. In the LT-340 case, 
one of the butyl chains was rotated to an anti conformation and all the atomic coordinates were 
allowed to relax while keeping the X-ray cell parameters of the LT-340 crystal structure. In the 
LS(gau) case, one of the butyl chains was rotated to an anti conformation and all the atomic 
coordinates were allowed to relax while keeping the cell parameters obtained from a previous 
variable-cell optimization in which no butyl chain was manually rotated to an anti conformation.  
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Figure 9. Scheme showing the energy changes (given in kcal/mol) involved in all the 
elementary steps of the LS(gau) à LS(anti) phase transition. In LS(gau), which is denoted by 
“4gauche” in the Figure, there are four butyl groups in the gauche-IN conformation in the 
simulation cell. In LS(anti), which is denoted by “4anti” in the Figure, all the butyl chains adopt 
an anti conformation. The name employed to define the intermediate states connecting these 
two polymorphs denote how many butyl groups of those four originally adopting a gauche-IN 
conformation are still in a gauche-IN conformation and how many of them have switched to an 
anti conformation. Note that the second intermediate state actually comprises three different 
states because there are three different configurations with two butyls in a gauche-IN 
conformation and two butyls in an anti conformation. All the energies are given relative to the 
optimized structure of the LS(gau) polymorph.    
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Table 1. Selected structural parameters for the SBP π-dimers present in (a) the X-ray crystal 
structures of butyl-SBP at two different temperatures and the corresponding structural 
parameters obtained upon geometry optimization of these SBP π-dimers in their 1Ag and 3Au 
states in (b) solid-state and in (c) gas-phase conditions. All distances are given in Angstrom. 
 

 (a) X-Ray (b) SS (c) GP 

 100K LS (1Ag) LS (1Ag) 

Da 3.193 3.157 3.210 

C-N (S)b 1.369 1.362 1.362 

C-O (S) 1.352 1.343 1.343 

C-N (NS) 1.336 1.349 1.356 

C-O (NS) 1.330 1.336 1.335 

 360K HS (3Au) HS (3Au) 

D 3.489 3.281 3.297 

C-N (S) 1.328 1.350 1.355 

C-O (S) 1.327 1.338 1.338 

C-N (NS) 1.377 1.360 1.361 

C-O (NS) 1.365 1.342 1.341 

 
a D refers to the interplanar distance between the superimposed PLYs. D has been measured as the 
distance between the central carbon (i.e., the carbon atom shared by the three fused benzene rings) of the 
two superimposed PLYs. 
 
b C-N (S) and C-N (NS) denote the C-N bond distance of the superimposed and nonsuperimposed PLYs, 
respectively. C-O (S) and C-O (NS) denote the C-O bond distance of the superimposed and 
nonsuperimposed PLY rings, respectively. 
 

 

 

 



	   33	  

 
 
Table 2. (a) Volume cell (V), CH···π distance, and interplanar distance between sup-
PLYs (D) obtained for the butyl-SBP crystal at the optimized gauche-IN and anti 
structures in their 1Ag and 3Au states in solid-state conditions. All distances are given in 
Angstrom and the volume cell is given in bohr3. (b) Difference between the V, CH···π, 
and D values of various polymorphs of the butyl-SBP crystal.   
 

(a) Absolute values 
 LS(gau) LS(anti) HS(gau) HS(anti) 

V 2357.7438 2456.9682 2370.5952 2465.7967 
CH···π 2.575 2.688 2.590 2.700 

D 3.154 3.206 3.238 3.281 
(b) Differences 

 LS(anti-gau)a HS(anti-gau)b HS-LS(gau)c HS-LS(anti)d 
V 4.04% 3.86% 0.54% 0.36% 

CH···π 0.113 0.110 0.015 0.012 
D 0.052 0.043 0.084 0.075 

 
a Difference between the LS(anti) and LS(gau) polymorphs 
b Difference between the HS(anti) and HS(gau) polymorphs 
c Difference between the HS(gau) and LS(gau) polymorphs 
d Difference between the HS(anti) and LS(anti) polymorphs 
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