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Abstract 

Telematics data from usage-based motor insurance provide valuable information – including 

vehicle usage, attitude towards speeding, time and proportion of urban/non-urban driving – that 

can be used for ratemaking. Additional information on acceleration, braking and cornering can 

likewise be usefully employed to identify near-miss events, a concept taken from aviation that 

denotes a situation that may have resulted in an accident. We analyze near-miss events from a 

sample of drivers in order to identify the risk factors associated with a higher risk of near-miss 

occurrence. Our empirical application with a pilot sample of real usage-based insurance data 

reveals that certain factors are associated with a higher expected number of near-miss events, but 

that the association differs depending on the type of near-miss. We conclude that nighttime 

driving is associated with a lower risk of cornering events, urban driving increases the risk of 

braking events and speeding is associated with acceleration events. These results are relevant for 

the insurance industry in order to implement dynamic risk monitoring through telematics, as well 

as preventive actions. 
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1. Introduction and motivation 

 

Before the emergence of telematics, insurers had no verifiable information on the driving patterns 

and real vehicle usage of the insured. Driving circumstances and styles could only be determined, 

and then indirectly, in the specific case of an accident. Today, in contrast, telematics provides a 

novel source of data for risk classification before an accident, or even before a dangerous event, 

occurs, in what insurers refer to as a ‘near-miss’. A near-miss – a name taken from aviation safety, 

where reports cover potentially dangerous practices or mistakes that could have led to a fatal 

accident – can be defined as a narrowly avoided accident, such as when a driver has to brake 

suddenly or make rapid steering operations (Arai et al., 2001). The occurrence of near-misses 

though seems to be related to a higher risk of being involved in future accidents.  

  

Although, defining a near miss is straight forward enough, being able to verify its occurrence in 

real life is not. Insurance claims require that actual accidents be reported to the insurer, but near-

misses can only be measured if they are well defined and measured on the spot. In the pilot dataset 

analyzed here, only near-miss events were observed, and no data on claims were available. As a 

matter of fact, we believe that near-misses, as defined in this study, could be used to predict real 

accident events, but at present we are not able to confirm this because we do not have real 

accidents in our sample. Future studies drawing on actual insurance data could therefore 

distinguish between a near-miss, as captured by telematics data, and an actual accident, which 

could exhibit similar characteristics to those of a near-miss. 

 

This study focuses on near-misses identified in a sample of drivers that have a telematics sensor 

fitted in their vehicles. We estimate the number of three types of near-miss events: namely, 

accelerations, braking and cornering (see Section 4 for full definitions), as a function of two types 

of variable. First, we consider the traditional risk factors of age, gender, driving experience and 

vehicle power; and, second, we consider telematics information describing driving patterns, that 

is, urban and nighttime driving and speed behavior. Among the traditional risk factors, we 

conclude that age is relevant in predictions of near-miss events, but we do not see significant 

differences between men and women’s expected risks of near-misses in our sample. Importantly, 

the impact of the risk factors on the expected number of near-miss events differs depending on 

the type of near-miss event being analyzed. Thus, it would be incorrect to model the sum of all 

near-miss events as opposed to each type of event separately, because the impacts are confounded. 

For instance, engine power presents a significant association with a higher frequency of cornering 

and acceleration events; nighttime driving is associated with a lower risk of cornering events than 

daytime driving; urban driving is associated with a higher frequency of braking events; and, in 
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line with expectations, excess speed increases the expected frequency of abnormal acceleration 

events. 

 

These results are valuable for risk classification in insurance companies offering usage-based 

insurance (UBI) motor policies. Moreover, monitoring and predicting the risk of each near-miss 

can serve to construct alerts that can warn drivers when their levels are approaching a dangerous 

threshold or risk level. The conclusions are also of interest to traffic authorities concerned with 

accident prevention. 

 

The rest of this paper is organized as follows. In the following section, we provide a brief 

description of the background to this study and of recent research in this field. In section 3, we 

outline the methods used. Section 4 describes the real dataset employed in the paper for the 

analysis of near-miss events. The model results are presented in section 5 and, finally, section 6 

concludes. 

 

 

2. Background 

 

The use of telematics in the insurance industry provides insurers with information that can be 

used for risk classification. In addition to the traditional risk factors considered for insurance 

ratemaking (such as age, driving experience, type of vehicle, etc.), GPS-based technology 

provides a new wave of data with details about a driver’s mileage, speeding, braking, cornering, 

and location as well as about road and traffic conditions. The insurance industry now faces the 

challenge of integrating this information correctly in its ratemaking schemes, which is far from 

straightforward. Apart from the high costs of the technology, insurers need to familiarize 

themselves with insurance telematics data (Ma et al., 2018) and the value of the information 

contained in data streams obtained from sensor sources. Moreover, in order to use telematics 

factors as rating factors, the response variable has to be at least evidently associated with 

accidents. In that sense, Quddus et al. (2002) found that a rapid acceleration, deceleration 

(braking) and sharp turns may increase driving risk and damage levels. Similarly, af Wåhlberg 

(2004) found evidences of a significant correlation between driver acceleration behavior and 

accident frequency. Jun et al. (2011) also found that drivers who had crash experiences tended to 

drive at higher speeds than crash-not-involved drivers, and concluded that there is a real potential 

to identify at-risk drivers based on in-vehicle data collection technologies. More recently, Bian et 

al. (2018) investigated how behavioral data of drivers affects driving risk and how driver behavior 

should affect UBI pricing schemes. Based on empirical data, Bian et al. (2018) found that their 

driver risk classification model achieves a good accuracy in terms of risk-level classification. 
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Additionally, the link between near-misses and accident risk has been investigated. Wang et al. 

(2015) carried out the assessment of driving risk associated to near-crash events. Their results 

indicated that the speed when braking and the potential crash type, among other factors, exerted 

the greatest influence on the driving-risk level of a near-crash.  

 

Telematics-based data have been shown to be valuable for risk classification purposes in the 

insurance industry (Ayuso et al., 2014, 2016, 2018; Baecke, 2017; Gao and Wüthrich, 2019 and 

Gao et al., 2019), allowing insurers to consider the concept of risk exposure, no longer measured 

solely in terms of duration of policy coverage, but also of distance and time travelled. Although 

mileage was used as a ratemaking factor before telematics data became available (e.g. in US, 

France and Germany), telematics allows insurers to measure a driver’s exact exposure so they do 

not have to rely on the insured’s declaration on their initial application. In this sense, Boucher et 

al. (2017) show, using generalized additive models (GAM), that the simultaneous effect of 

distance travelled and exposure time on the risk of accident can be highly informative in the 

context of usage-based insurance. Likewise, Verbelen et al. (2018) recently analyzed a data set 

from a Belgian telematics product aimed at young drivers and report their development of 

generalized additive models and compositional predictors to quantify and interpret the effect of 

telematics variables on expected claim frequencies. They found that such variables increase the 

predictive power and render the use of gender as a rating variable redundant. Ayuso et al. (2016) 

obtained similar results in a data set for drivers in Spain. Telematics information has also been 

used to explain the excess of zeros observed in the frequency of claims. For example, Guillen et 

al. (2019) included the distance travelled per year as part of an offset in a zero-inflated Poisson 

model to predict the excess of zeros, which may reflect the fact that some insureds make little use 

of their vehicle. The authors showed the existence of a learning effect for large values of distance 

travelled, so that while drivers driving more should pay higher premiums, there should be a 

discount for drivers that accumulate longer distances over time. They also confirmed that speed 

limit violations and driving in urban areas increase the expected number of accident claims. 

 

Ma et al. (2018) show that vehicle mileage, hard brakes, hard starts, peak time travel and speeding 

are strongly correlated with higher accident rates. They also find that contextual driving factors 

(such as driving at a speed significantly different from that of traffic flow) are also relevant risk 

factors. As a result, the authors show how second-by-second GPS data can be integrated into 

existing or new auto insurance pricing structures. They also analyze how usage-based insurance 

solution providers have chosen different measurements to evaluate driver performance. Among 

them, the authors describe the Progressive Insurance UBI program, where a combination of hard 

braking (deceleration over 7 mph/s), number of miles driven, time and day, fast starts and trip 

regularity are used to calculate each driver’s risk level. Ma et al. (2018) also examine the Allstate 
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Drivewise program that rewards drivers that limit high speed driving, late-night trips and hard 

braking (in this case, driving at speeds above 80 mph is considered unsafe). 

 

Recently, Stipancic et al. (2018) analyze hard braking and accelerating events and compare them 

with historical crash data. Both maneuvers are positively correlated with crash frequency at the 

link and intersection levels. Locations with more braking and accelerating are also associated with 

more collisions. Higher numbers of vehicle maneuvers are also related to increased collision 

severity, though this relationship is not always statistically significant. Previously, Wahlström et 

al. (2015) detected dangerous vehicle cornering events, based on statistics related to the no-sliding 

and no-rollover conditions. 

 

Osafune et al. (2017) analyze aggressive driving behavior using a large dataset of accelerometer 

readings collected from drivers’ smartphones. Their objective is to explore accident risk indexes 

that statistically separate safe drivers from risky drivers. They conclude that the frequency of 

acceleration exceeding 2.4 m/s2, that of deceleration exceeding 1.4 m/s2, and that of left 

acceleration exceeding 1.1 m/s2 separate safe from risky drivers. 

 

The distinction between accidents and near-misses has also been investigated in the context of 

car-to-cyclist crashes and near crashes (Ito et al., 2018). Here, the factors that differentiate near 

crashes from crashes are examined and the causes of the latter are identified. Ito et al. (2018) 

conclude that car-to-cyclist crashes are unavoidable when the car approaching the cyclist enters 

an area in which the average deceleration required to stop the car is more than 4.4 m/s2. Finally, 

Sanders (2015) has analyzed the impact of near miss and collision experiences in the perceived 

traffic risk for cyclists.  

 

According to Arai et al. (2001), near-miss data can be useful for diagnosing driving behavior and 

developing driving safety programs and driver assistance devices and, as such, near-miss events 

have attracted researcher attention in recent years. Indeed, it is our contention that insurance 

companies need to analyze occurrences of both accidents and near-misses and the circumstances 

in which they take place. In this regard, the expected number of near-misses should become a 

standard risk index for drivers, thus helping to personalize motor insurance rates.  

 

 

3. Methods 
 

 
We use the negative binomial (NB) regression to model the number of near-miss events observed 

over a period of time. The NB distribution is a Poisson-gamma mixture, i.e., the NB is a Poisson 
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(λ) distribution, where λ is itself a random variable, distributed as a gamma distribution. Given 

the gamma parameter, the NB regression is a special type of generalized linear model where the 

mean of the dependent variable y, µ, depends on a set of k independent variables (x1, … , xk) 

according to 
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where α is the inverse of the scale parameter of the gamma distribution. The parameter estimates 

of the NB regression model can be easily estimated by maximum likelihood using PROC 

GENMOD of SAS. 

 

Here, we have a small sample of drivers that are observed over a maximum period of up to 15 

weeks. This period varies from one driver to another in relation to their participation in the sample. 

We also consider a panel model in our analysis. In essence, the method is simply a generalization 

of the Poisson or negative binomial model, in which we consider time and individual fixed effects, 

in order to account for the driver correlations observed over time. For the sake of simplicity, we 

do not include any more details, but a complete overview of panel data for counts can be found 

in Frees (2004) and Boucher and Guillen (2009), and for specific applications to the insurance 

industry in Boucher et al. (2009). 

 
 

4. The data set 
 

A pilot study was conducted to collect telematics information on drivers in Greece during 2017. 

All drivers agreed to provide data from car sensors that measured all three types of near-miss 

event. A weekly summary allowed us to analyze the relationship between the response, defined 

as the observed number of near-miss counts of each type, and the explanatory factors, that is,  

personal information (the traditional risk factors) and behavioral values (telematics covariates).  

The traditional risk factors include driver’s gender, age, experience and vehicle age and engine 

power. Telematics covariates measure the total distance travelled per week, nighttime and urban 

driving, and provide information about speeding and the near-miss events of each type, that is, 
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acceleration, braking and cornering events, as defined below. Table 1 presents and describes the 

variables in the dataset. 

 

We have analyzed pre-defined what a near-miss event is for the purpose of this study. 

Unfortunately, the number of observations is far from enough if we want to let near-miss patterns 

to be naturally defined by searching for some specific structure in the data. The identification of 

each near-miss is based on the calculation of a severity score for each event type, which lies 

between [0,10]. For example, in the case of acceleration events, the calculation takes into 

consideration the difference between the maximum acceleration reading and the acceleration 

detected in the first reading above the acceleration event detection threshold (set at 6m/s2). This 

threshold was chosen in accordance with previous studies. Note that Hynes & Dickey (2008) 

considered 5.7m/s2 as the threshold for a low peak acceleration event during rear-end impacts. 

We calculate the ratio between this difference and the corresponding timestamps of the latter 

readings. The final severity score is a transformation of this ratio multiplied by 10, which means 

we obtain a final score between [0,10]. Acceleration is also used to determine the severity of 

braking events, given that negative acceleration can essentially be considered as deceleration. In 

the case of cornering events, severity depends on the ratio between the speed of a reading and the 

maximum speed possible during a turn for the vehicle to stay on track (note that this definition is 

similar to the no-sliding condition used by Wahlström et al., 2015, in their study on dangerous 

cornering events). Here acceleration events are considered near-misses because of the high 

severity of the event, but in real life, in most cases, an acceleration event results in a braking event 

rather than an accident. In this analysis, we also consider the total number of near-miss events, 

defined as the sum of acceleration, braking and cornering events.  

 

The final dataset comprises 1,225 observations, corresponding to 157 drivers observed over an 

average period of 8 weeks in years 2016-2017. This means that the number of data points per 

driver equals on average 8 (the number of observed weeks). 75% of the drivers were observed 

during a period of 10 weeks as maximum. Table 2 shows the descriptive statistics and frequency 

tables of the non-telematics variables. There are 24.2% women in the sample. Almost all drivers 

do not have private overnight parking facility (only 1.91% have a car park). The average customer 

age is 43.76 years, with an age range from 16 to 68 years. On average, drivers have 17.93 years 

of driving experience and cars are 10.34 years old. The mean vehicle engine power is 159.56 hp. 
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Table 1. Variables in the near-misses dataset. 
 

Variable Description 
Traditional risk factors  

CustomerGender 0  male 
1  female 

CustomerAge Customer age 
CustomerYearsHavingL Number of years of driving experience. 
VehicleAge Age of the vehicle 
VehicleEnginePower Engine power 
VehicleNightParking Is the vehicle left in a car park over night? 

0 no 
1 yes    

Telematics covariates  
Night Percentage of kilometers travelled during night 

hours 
Urban Percentage of kilometers travelled in urban areas 
Speed 
 
Km 

Percentage of kilometers travelled at speeds 
above the limits 
Total number of kilometers travelled over one 
week 

TotalNumberofAccelerationE Number of observed accelerating events over one 
week. 

TotalNumberofBrakingE Number of observed braking events over one 
week. 

TotalNumberofManeuveringE Number of observed maneuvering events over 
one week. 

Night Percentage of kilometers travelled during night 
hours 

 
Table 2 also shows the descriptive statistics for urban and nighttime driving and speeding. On 

average, 30% of the kilometers driven are done so at night, 13% on urban roads and 3% at speeds 

above the limits. The average distance travelled per week is 147.27 km. 

 

Table 2. Descriptive statistics of the explanatory variables in the dataset of near-misses. 

 

 By individuals 
 
Traditional ratemaking factors 

 
Mean 

 
Std. dev. 

 
Min 

 
Q1 

 
Q3 

 
Max 

    CustomerAge 43.76 10.49 16.00 37.00 51.00 68.00 
    CustomerYearsHavingLicense 17.93 9.70 0.00 12.00 23.00 49.00 
    VehicleAge 10.34 8.63 0.00 6.00 12.00 51.00 
    VehicleEnginePower 159.56 98.96 44.00 105.00 184.00 635.00 
       %     
    CustomerGender (female)                  24.20     
    VehicleNightParking    1.91     

 By weeks 
New telematics ratemaking 
factor 

Mean Std. dev. Min Q1 Q3 Max 

    Urban 0.13 0.13 0.00 0.05 0.16 1.00 
    Night 0.30 0.27 0.00 0.04 0.49 1.00 
    Speed 0.03 0.06 0.00 0.00 0.03 0.70 
    Km 147.27 139.91 0.18 38.15 217.62 1197.16 
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Figures 1, 2 and 3 represent the distribution of the total number of near miss events (by weeks) 

for the three types of event (acceleration, braking and cornering) considered here1. In 

approximately 73% of the weeks no acceleration events were recorded, while this percentage was 

67.92% in the case of braking and 74% in the case of cornering events. Table 3 shows the 

descriptive statistics of the total number of near-miss events (by weeks) in the dataset. Braking 

was the most frequent near-miss event, followed by accelerations and cornering. Note that the 

standard deviation of braking and acceleration events is high, indicating that the drivers in the 

sample are quite heterogeneous with respect to these occurrences. 

 

Figure 1. Distribution of the number of acceleration events per week. 

 

 

Figure 2. Distribution of the number of braking events per week. 
 

 
 
 

                                                           

1
 In the cases of acceleration and braking, we only considered drivers with a maximum number of near 

misses per week equal to 50. A few drivers presented very extreme values: thus, approximately 1% present 
between 50 and 290 acceleration events per week and 1.5% present between 50 and 195 braking events per 
week. 
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Figure 3. Distribution of the number of cornering events per week. 

 

Table 3. Descriptive statistics of the total number of near-miss events in the data set. 

 By weeks 

Variable Mean 
Std 
Dev Minimum 

Lower 
Quartile 

Upper 
Quartile 

95th 
Pctl Maximum 

Number of acceleration events 2.78 11.88 0 0 1 15 290 
Number of braking events 4.49 12.86 0 0 2 27 195 
Number of cornering events 1.10 3.14 0 0 1 6 34 
Sum of the three types of event 8.37 25.03 0 0 5 44 512 

 
 

5. Results  

 

Table 4 shows the parameter estimates of the NB regression models for the acceleration, braking 

and cornering events, when pooling all observations in the sample. There are three model 

specifications: for each type of event, we consider the model with only the traditional rating 

factors, then with only the telematics covariates and, finally, with all the covariates. The results 

have been obtained by using the GENMOD procedure of SAS. 

 

In the case of acceleration events (first three columns in Table 4), the Akaike information criterion 

(AIC) shows that the best model is the one that includes all the explanatory variables. Customer 

age and vehicle engine power are associated with a higher number of acceleration events, while 

vehicle age and vehicle night parking are associated with a lower number. Among the telematics 

variables, speed, as expected, is associated with a higher number of acceleration events. Thus, as 

a driver increases the percentage distance driven above the speed limits by one per cent, the 

expected number of acceleration events increases by about 6%. Here, the coefficient in the model 

with all variables is equal to 5.63, which means that ().+,·
.
� = 1.06 which is the impact on the 

expected number of acceleration events. That excessive speed is associated with abrupt 

accelerations is unsurprising, but what is important is the magnitude of the association when 
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controlling for all other factors. By using the best model, the one that includes all variables, we 

have computed the fitted values and calculated the Chi Squared Test Statistic for a theoretical NB 

distribution (with an expected value for each individual equal to the corresponding fitted value), 

and it results in a value of 20.45.
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Table 4. Negative Binomial regression model for Acceleration, Braking and Cornering Events. Parameter estimates for three models: only traditional 
variables, only telematics and all variables. Sample size = 1,225 observations. 

 Acceleration events Braking events Cornering events 
 Only traditional 

variables 
Only telematics All variables Only traditional 

variables 
Only telematics All variables Only traditional 

variables 
Only telematics All variables 

 Estimate p-value Estimate p-value Estimate p-value Estimate p-value Estimate p-value Estimate p-value Estimate p-value Estimate p-value Estimate p-value 

Intercept -6.1770 <.0001 -4.0349 <.0001 -6.3754 <.0001 -4.8691 <.0001 -3.5529 <.0001 -5.3354 <.0001 -6.2985 <.0001 -3.9394 <.0001 -6.0141 <.0001 

CustomerGender -0.3040 0.1916   -0.3014 0.1924 -0.0221 0.9245   -0.0186 0.9352 0.2150 0.3984   0.2256 0.3766 

CustomerAge 0.0571 <.0001   0.0598 <.0001 0.0523 0.0001   0.0581 <.0001 0.0786 <.0001   0.0777 <.0001 

CustomerYearsHavingL 0.0052 0.7223   -0.0038 0.8021 -0.0087 0.5331   -0.0193 0.1826 -0.0487 0.0032   -0.0526 0.0013 

VehicleAge -0.0895 <.0001   -0.0852 <.0001 -0.0798 <.0001   -0.0760 <.0001 -0.0071 0.5962   -0.0099 0.4473 

VehicleEnginePower 0.0031 0.0016   0.0030 0.0018 0.0013 0.1908   0.0014 0.1449 -0.0031 0.0015   -0.0022 0.0245 

VehicleNightParking -2.5067 0.0326   -2.5970 0.0317 -1.6327 0.0297   -1.8934 0.0138 -1.5184 0.1062   -1.2649 0.1872 

Night   0.0224 0.9486 -0.1044 0.7621   -0.1353 0.6764 -0.2028 0.5347   -1.3342 <.0001 -1.2201 0.0006 

Urban   0.4973 0.5960 0.4976 0.5755   2.1830 0.0174 2.4071 0.0078   -0.6057 0.4662 -0.1961 0.8218 

Speed   7.7295 0.0004 5.6297 0.0073   5.0161 0.0105 3.4406 0.0782   1.2529 0.5004 1.6207 0.4002 

Dispersion 8.2716  9.5149  8.0622  8.0626  8.6934  7.9159  7.6532  7.7559  7.3912  

AIC 3357.7679 3426.0730 3354.6005 4205.1090 4243.9908 4199.8954 2872.5670 2883.7823 2866.5042 
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In the case of braking events, the results of the parameter estimates of the negative binomial 

regression model are shown in the central columns of Table 4. Here, again, the model with the 

lowest AIC is the one that includes all the variables. It can be seen that customer age increases 

the number of braking events, while the older the vehicle, the lower the number of braking events. 

Vehicle night parking also reduces the number of braking events. The remaining traditional risk 

factors (CustomerGender, CustomerYearsHavingL and VehicleEnginePower) do not present a 

significant effect. Among the telematics variables, urban is the only factor presenting a significant 

effect, being associated with a higher number of braking events. This is also expected due to the 

density of traffic in urban areas. Again, we used the best model, the one that includes all variables, 

and we computed the fitted values and calculated the Chi Squared Test Statistic for a theoretical 

NB distribution, which results in a value equal to 20.65. 

 
In the case of cornering events, the model presenting the lowest AIC is the one that includes both 

telematics and non-telematics variables. Among the traditional rating variables, customer age 

presents a positive and significant coefficient, indicating that cornering events are more frequent 

among older drivers. As expected, driving experience reduces the number of cornering events 

(the coefficient being significant and negative), while the greater the vehicle engine power, the 

lower the number of cornering events. The remaining traditional risk factors (CustomerGender, 

VehicleAge and VehicleNightParking) do not present a significant effect. Among the telematics 

variables, nighttime driving is the only factor presenting a significant effect. Driving during the 

night is associated with a lower expected number of cornering events, probably reflecting that 

drivers drive more carefully and more smoothly in the nighttime hours, compared to the daytime 

hours. As we did before, we used the model that includes all variables and computed the fitted 

values and calculated the Chi Squared Test Statistic for a theoretical NB distribution, which 

results in a value equal to 26.26. 

 

When we consider the sum of near-miss events as the response variable presented in Table 5, the 

model results are not as clear as before and the influence of each driving pattern on the aggregate 

number cannot be interpreted. Table 5 shows that only the effect of excess speed is significant at 

the 5% level of significance for the model based on telematics covariates. Again, we used the 

model in Table 5 (the one that includes all variables) to compute the fitted values and calculated 

the Chi Squared Test Statistic for a theoretical NB distribution, which results in a value equal to 

60.32. However, we recommend analyzing near-misses by type rather than in an aggregate form 

in order to detect the influence of urban versus non-urban driving, as well as the effects of 

nighttime driving.  
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Table 5. Negative binomial regression model for all three events considered together. Parameter 
estimates for three models: only traditional variables, only telematics and all variables.  

 Only traditional variables Only telematics All variables 
 Estimate p-value Estimate p-value Estimate p-value 

Intercept -4.4150 <.0001 -2.4945 <.0001 -4.6481 <.0001 

CustomerGender 0.0299 0.8961   -0.0015 0.9947 

CustomerAge 0.0524 <.0001   0.0598 <.0001 

CustomerYearsHavingL 0.0009 0.9506   -0.0098 0.5126 

VehicleAge -0.0593 <.0001   -0.0584 <.0001 

VehicleEnginePower 0.0007 0.4537   0.0009 0.3471 

VehicleNightParking -1.7454 0.0132   -1.7745 0.0157 

Night   -0.4737 0.1154 -0.5404 0.0749 

Urban   0.6906 0.4095 1.3074 0.1245 

Speed   3.6911 0.0460 2.2134 0.2332 

Dispersion 8.2819  8.8321  8.1700  

AIC 5179.1298 5216.5981 5176.9686 

 

 
As an alternative to the NB models presented here, we have also fitted a Poisson, Zero Inflated 

Poisson, Zero Inflated NB, Generalized Additive Model (GAM) with Poisson response and GAM 

regression with NB response. Tweedie was not used, as we do not have any information about 

costs or severities. These models have been used to estimate acceleration, braking, cornering and 

total number of events (four different response variables) by using traditional and telematics risk 

factors as explanatory variables. In the four cases, the best model was the GAM regression with 

NB response, as it was the one with the lowest AIC (see Table A1 in the Appendix). We also 

calculated the Chi Squared Test Statistic for a theoretical NB distribution with an expected value 

equal to the fitted values of the alternative GAM regressions. The Chi Squared Test Statistic was 

34.27, 40.99 and 82.28 for acceleration, braking and total number of near-miss events, 

respectively. These values are higher than those corresponding to the traditional NB regression. 

In the case of cornering events, the Chi Squared Test Statistic was 19.71, which is lower than the 

corresponding to the traditional NB model. This means that, according to the Chi Squared Test 

Statistic, the NB model performs better than the alternative GAM regression in all cases, except 

for cornering events. Nevertheless, we should be careful with the interpretation of these results, 

as the distributions on the response variables had a heavy tail and we grouped the extreme 

observations in order to calculate the test statistic. As a consequence, we decided to focus on the 

results of the NB regression model for simplicity of interpretation of the linear component.  

 

We also used a panel data analysis using Poisson regression, but the results are not included here 

(but are available from the authors on request) because, although most of the coefficient signs of 
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the telematics variables are the same as those obtained in the regression models without a panel 

approach, they are quite unstable and depend heavily on the number of observed weeks 

considered. In most cases, no substantial changes are seen with regards to the influence of the 

telematics covariates, but the regressors that do not change over the weeks of observation, the 

case of age (in years), gender, vehicle power and age, cannot be included if individual effects 

have already been considered. A more sophisticated analysis with observational periods longer 

than 15 weeks is recommended to assess the effect of time trends on the observed responses. 

  

6. Conclusions 
 
The occurrence of near-miss events, and not only accidents, needs the attention of traffic 

authorities and insurers. Knowing the circumstances in which near-misses occur is relevant for 

risk quantification and also for accident prevention, given that such incidents are informative 

about narrowly avoided accidents and, more importantly, about the type of accident that could 

have occurred under a set of known circumstances.   

 

The main conclusion to be drawn from our analysis is the different impact of a range of behavioral 

factors on the occurrence of different types of near-miss events. This clearly suggests that 

analyzing near-misses without distinguishing the type of event is likely to lead to a confounding 

of the factors influencing an increase in the expected number of near-misses. 

 

In this paper we have analyzed three types of near-miss events: cornering, braking and 

accelerating, and we have shown that both traditional and telematics variables are relevant risk 

factors. Among the former, we conclude that the driver’s age is associated with a higher risk of 

all three types of near-miss event. Specifically, older drivers present a higher risk of near-misses, 

perhaps owing to an excess of self-confidence at the wheel. Having said that, driving experience 

decreases the risk of cornering events. Among the other factors, vehicle power is associated with 

a higher risk of acceleration events but with a lower risk of cornering events. Finally, vehicle age 

is associated with a lower risk of braking and acceleration events, perhaps owing to limitations in 

the technical characteristics of older vehicles compared to those of newer automobiles.  

 

Telematics risk factors have been found to be relevant for predicting the risk of each specific near-

miss event. Nighttime driving is associated with a lower risk of cornering events. This is probably 

due to smoother driving at night, compared to daytime driving. Speeding is associated with a 

higher risk of acceleration events, which is as expected. Finally, urban driving is associated with 

a higher risk of braking events, which is not surprising if we take into account traffic conditions 

in cities. We believe that these results are relevant for traffic authorities, for example, pointing to 
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the need to promote actions encouraging drivers to maintain a safe following distance, not only 

on highways, but also in cities, where there is a higher risk of braking events. 

  

Given that the average number of near-misses differs according to the event type, insurers could 

usefully establish benchmarks so that whenever a driver exceeds one of the factors (for instance, 

driving a high percentage of travelled distance in urban areas), this would trigger an alarm 

indicating a greater risk of near-miss events and, therefore, a higher risk of accident. However, 

one of the limitations of this analysis is that, while the methodology seems transferable from one 

portfolio to another, some of the estimated models may only be valid for the country and situation 

in which these data were collected.  

 

According to the findings of this study, near-miss count data modelling shows considerable 

potential for the setting of personalized benchmark levels and for offering motor insurance 

premium rewards, based on a driver’s expected number of near-misses. As such, count models 

can be used as predictive tools to calculate the expected level of near-miss events dynamically – 

that is, as the telematics measurements are processed – and drivers can be warned if the predicted 

levels exceed a dangerous threshold and be rewarded for good driving when near-miss counts are 

observed below their predicted level. 
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Appendix 
 
 

Table A1. Parameter estimates for the GAM Regression with Negative Binomial response variable for four models: Acceleration, Braking, Cornering and 
Total Number of Events. All explanatory variables (traditional and telematics) are considered. Sample size = 1,225 observations. 

 Acceleration Events 
All variables 

Braking Events 
All variables 

Cornering Events 
All variables 

Total Number of Events 
All variables 

Parameter coefficients   Estimate p-value   Estimate p-value   Estimate p-value   Estimate p-value 

Intercept   -4.7627 <.0001   -4.0137 <.0001   -4.9411 <.0001   -3.1317 <.0001 

CustomerGender   0.2448 0.3024   0.2650 0.243   0.4173 0.0561   0.25510 0.2504 

VehicleNightParking    -2.3831 0.0397   -1.9671 0.008   -2.0611 0.0237   -2.3366 0.0007 

Smooth terms EDF* Ref. 
DF** 

Chi Sq. p-value EDF* Ref. 
DF** 

Chi Sq. p-value EDF* Ref. 
DF** 

Chi Sq. p-value EDF* Ref. 
DF** 

Chi Sq. p-value 

CustomerAge  2.802  3.618 33.890 <.0001 3.228  4.125 40.86 <.0001 4.089  5.058 31.155 <.0001 3.636  4.547 42.76 <.0001 

CustomerYearsHavingL  7.020  7.922 62.633 <.0001 7.693  8.410 76.80 <.0001 4.883  5.966 43.659 <.0001 4.982  6.038 53.78 <.0001 

VehicleAge  4.215  5.003 56.889 <.0001 3.535  4.240 41.64 <.0001 1.444  1.726 2.625 0.1641 2.218  2.632 23.36 <.0001 

VehicleEnginePower 7.627  8.324 82.621 <.0001 7.014  7.872 53.49 <.0001 2.728  3.433 6.698 0.1254 6.722  7.638 36.38 <.0001 

Night 3.373  4.173 24.158 <.0001 3.083  3.823 22.26 0.0002 3.254  4.030 40.654 <.0001 3.333   4.117 34.15 <.0001 

Urban 2.189  2.773 7.727 0.0387 3.116  3.917 27.14 <.0001 5.005 6.059 27.878 <.0001 3.582  4.480 20.14 0.0007 

Speed 4.284  5.292 30.122 <.0001 4.709  5.720 19.65 0.0030 3.093  3.878 17.704 0.0014 2.940  3.666 15.80 0.0028 

Dispersion 5.494 6.061 5.880 6.757 
AIC 3197.687 4072.255 2752.962 5058.856 

Chi Squared Statistic 34.267 40.096 19.710 84.280 

* Estimated degrees of freedom, ** Reference degrees of freedom. 
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