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Abstract

Telematics data from usage-based motor insuranméder valuable information — including
vehicle usage, attitude towards speeding, timepaoportion of urban/non-urban driving — that
can be used for ratemaking. Additional informat@mnacceleration, braking and cornering can
likewise be usefully employed to identify near-m@&gents, a concept taken from aviation that
denotes a situation that may have resulted in am@at. We analyze near-miss events from a
sample of drivers in order to identify the risktfars associated with a higher risk of near-miss
occurrence. Our empirical application with a piatmple of real usage-based insurance data
reveals that certain factors are associated whilyfzer expected number of near-miss events, but
that the association differs depending on the typaear-miss. We conclude that nighttime
driving is associated with a lower risk of cornegrievents, urban driving increases the risk of
braking events and speeding is associated witHexet®n events. These results are relevant for
the insurance industry in order to implement dyransk monitoring through telematics, as well

as preventive actions.

Key words. usage-based insurance, pay-how-you-drive, piiedicnodels, acceleration,

braking, speeding.

Acknowledgements. We would like to thanknnovativeApplicatiorfor the development of a
mobile phone telematics device that provided uk wifr near-misses datanovativeApplication

is a world leader in this type of data collectiodave look forward to future co-operation in
developing this approach to private auto insuragopport from the Spanish Ministry and ERDF
grant ECO02016-76203-C2-2-P is gratefully acknowestlg The first author gratefully
acknowledges the financial support by ICREA untlerlCREA Academia programme.



1. Introduction and motivation

Before the emergence of telematics, insurers hagrifiable information on the driving patterns
and real vehicle usage of the insured. Drivingwinstances and styles could only be determined,
and then indirectly, in the specific case of anigartt. Today, in contrast, telematics provides a
novel source of data for risk classification befareaccident, or even before a dangerous event,
occurs, in what insurers refer to as a ‘near-missiear-miss — a name taken from aviation safety,
where reports cover potentially dangerous practaresiistakes that could have led to a fatal
accident — can be defined as a narrowly avoidedl@et; such as when a driver has to brake
suddenly or make rapid steering operations (Arailet2001). The occurrence of near-misses

though seems to be related to a higher risk ofgoivolved in future accidents.

Although, defining a near miss is straight forwartbugh, being able to verify its occurrence in
real life is not. Insurance claims require thauataccidents be reported to the insurer, but near-
misses can only be measured if they are well defamel measured on the spot. In the pilot dataset
analyzed here, only near-miss events were obseaveldno data on claims were available. As a
matter of fact, we believe that near-misses, as@gfn this study, could be used to predict real
accident events, but at present we are not ablnfirm this because we do not have real
accidents in our sampld-uture studies drawing on actual insurance datddctherefore
distinguish between a near-miss, as captured byntgics data, and an actual accident, which

could exhibit similar characteristics to those ofear-miss.

This study focuses on near-misses identified iarapde of drivers that have a telematics sensor
fitted in their vehicles. We estimate the numberttoke types of near-miss events: namely,
accelerations, braking and cornering (see Sectionfdll definitions), as a function of two types
of variable. First, we consider the traditionakrfactors of age, gender, driving experience and
vehicle power; and, second, we consider telematfosmation describing driving patterns, that
is, urban and nighttime driving and speed behavanong the traditional risk factors, we
conclude that age is relevant in predictions ofrimizs events, but we do not see significant
differences between men and women'’s expected ofsksar-misses in our sample. Importantly,
the impact of the risk factors on the expected remab near-miss events differs depending on
the type of near-miss event being analyzed. Thwsould be incorrect to model the sum of all
near-miss events as opposed to each type of exgaiadely, because the impacts are confounded.
For instance, engine power presents a significestcation with a higher frequency of cornering
and acceleration events; nighttime driving is aisged with a lower risk of cornering events than

daytime driving; urban driving is associated withigher frequency of braking events; and, in



line with expectations, excess speed increaseexihected frequency of abnormal acceleration

events.

These results are valuable for risk classificaiimimnsurance companies offering usage-based
insurance (UBI) motor policies. Moreover, monitgriand predicting the risk of each near-miss
can serve to construct alerts that can warn driwben their levels are approaching a dangerous
threshold or risk level. The conclusions are alsmirest to traffic authorities concerned with

accident prevention.

The rest of this paper is organized as followstha following section, we provide a brief

description of the background to this study andestnt research in this field. In section 3, we
outline the methods used. Section 4 describesdhedataset employed in the paper for the
analysis of near-miss events. The model resultp@®ented in section 5 and, finally, section 6

concludes.

2. Background

The use of telematics in the insurance industryigdes insurers with information that can be
used for risk classification. In addition to theditional risk factors considered for insurance
ratemaking (such as age, driving experience, typ&eticle, etc.), GPS-based technology
provides a new wave of data with details aboutiaeds mileage, speeding, braking, cornering,
and location as well as about road and traffic ¢@ws. The insurance industry now faces the
challenge of integrating this information corredttyits ratemaking schemes, which is far from
straightforward. Apart from the high costs of tlexhnology, insurers need to familiarize
themselves with insurance telematics data (Ma.et2808) and the value of the information
contained in data streams obtained from sensoicesuMoreover, in order to use telematics
factors as rating factors, the response variabte thabe at least evidently associated with
accidents. In that sense, Quddus et al. (2002)dfdhat a rapid acceleration, deceleration
(braking) and sharp turns may increase driving aisk damage levels. Similarly, af Wahlberg
(2004) found evidences of a significant correlatmmtween driver acceleration behavior and
accident frequency. Jun et al. (2011) also fouatldhivers who had crash experiences tended to
drive at higher speeds than crash-not-involvedeadsivand concluded that there is a real potential
to identify at-risk drivers based on in-vehiclealabllection technologies. More recently, Bian et
al. (2018) investigated how behavioral data ofehdvaffects driving risk and how driver behavior
should affect UBI pricing schemes. Based on englidi@ata, Bian et al. (2018) found that their

driver risk classification model achieves a gooduaacy in terms of risk-level classification.
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Additionally, the link between near-misses and @i risk has been investigated. Wang et al.
(2015) carried out the assessment of driving rsdoaeiated to near-crash events. Their results
indicated that the speed when braking and the patemash type, among other factors, exerted

the greatest influence on the driving-risk leveaafear-crash.

Telematics-based data have been shown to be valdablisk classification purposes in the
insurance industry (Ayuso et al., 2014, 2016, 2@k cke, 2017; Gao and Withrich, 2019 and
Gao et al., 2019), allowing insurers to considerabncept of risk exposure, no longer measured
solely in terms of duration of policy coverage, bigo of distance and time travelled. Although
mileage was used as a ratemaking factor beforené¢ies data became available (e.g. in US,
France and Germany), telematics allows insurensgasure a driver’s exact exposure so they do
not have to rely on the insured’s declaration airtimitial application. In this sense, Boucher et
al. (2017) show, using generalized additive mod&aM), that the simultaneous effect of
distance travelled and exposure time on the riskogident can be highly informative in the
context of usage-based insurance. Likewise, Venbeleal. (2018) recently analyzed a data set
from a Belgian telematics product aimed at youniyeds and report their development of
generalized additive models and compositional pteds to quantify and interpret the effect of
telematics variables on expected claim frequendibey found that such variables increase the
predictive power and render the use of genderrasrgy variable redundant. Ayuso et al. (2016)
obtained similar results in a data set for drivarSpain. Telematics information has also been
used to explain the excess of zeros observed ifreégaency of claims. For example, Guillen et
al. (2019) included the distance travelled per yw=apart of an offset in a zero-inflated Poisson
model to predict the excess of zeros, which mdgetthe fact that some insureds make little use
of their vehicle. The authors showed the existeri@learning effect for large values of distance
travelled, so that while drivers driving more shbyplay higher premiums, there should be a
discount for drivers that accumulate longer distsnaver time. They also confirmed that speed

limit violations and driving in urban areas incredise expected number of accident claims.

Ma et al. (2018) show that vehicle mileage, haekes, hard starts, peak time travel and speeding
are strongly correlated with higher accident ratd®y also find that contextual driving factors
(such as driving at a speed significantly differigam that of traffic flow) are also relevant risk
factors. As a result, the authors show how secgnrslbond GPS data can be integrated into
existing or new auto insurance pricing structuidsey also analyze how usage-based insurance
solution providers have chosen different measur¢srenevaluate driver performance. Among
them, the authors describe the Progressive InsafdBt program, where a combination of hard
braking (deceleration over 7 mph/s), number of sndeven, time and day, fast starts and trip

regularity are used to calculate each driver’s leskl. Ma et al. (2018) also examine the Allstate
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Drivewise program that rewards drivers that limighhspeed driving, late-night trips and hard

braking (in this case, driving at speeds above Bb i considered unsafe).

Recently, Stipancic et al. (2018) analyze hardibgknd accelerating events and compare them
with historical crash data. Both maneuvers aretpety correlated with crash frequency at the
link and intersection levels. Locations with moraling and accelerating are also associated with
more collisions. Higher numbers of vehicle manes\vane also related to increased collision
severity, though this relationship is not alwayatistically significant. Previously, Wahlstrom et
al. (2015) detected dangerous vehicle corneringtsybased on statistics related to the no-sliding

and no-rollover conditions.

Osafune et al. (2017) analyze aggressive drivifgbier using a large dataset of accelerometer
readings collected from drivers’ smartphones. Thbjective is to explore accident risk indexes

that statistically separate safe drivers from rigkivers. They conclude that the frequency of

acceleration exceeding 2.4 #/shat of deceleration exceeding 1.4 in/and that of left

acceleration exceeding 1.1 méeparate safe from risky drivers.

The distinction between accidents and near-misassalso been investigated in the context of
car-to-cyclist crashes and near crashes (Ito €2@1.8). Here, the factors that differentiate near
crashes from crashes are examined and the causles laitter are identified. Ito et al. (2018)
conclude that car-to-cyclist crashes are unavo@uaiblen the car approaching the cyclist enters
an area in which the average deceleration reqtirstbp the car is more than #s’. Finally,
Sanders (2015) has analyzed the impact of nearangollision experiences in the perceived

traffic risk for cyclists.

According to Arai et al. (2001), near-miss data lbamuseful for diagnosing driving behavior and
developing driving safety programs and driver aaeise devices and, as such, near-miss events
have attracted researcher attention in recent y&adeed, it is our contention that insurance
companies need to analyze occurrences of botheadsidnd near-misses and the circumstances
in which they take place. In this regard, the expeaiumber of near-misses should become a

standard risk index for drivers, thus helping tespealize motor insurance rates.

3. Methods

We use the negative binomial (NB) regression toehtdte number of near-miss events observed

over a period of time. The NB distribution is a $&min-gamma mixture, i.e., the NB is a Poisson
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(2) distribution, wheré! is itself a random variable, distributed as a gandistribution. Given
the gamma parameter, the NB regression is a sggpelof generalized linear model where the
mean of the dependent varialjley, depends on a set kfindependent variablesq( ... , %)

according to

Wi = kmy - exp(Bo + P1X1; + - + BrXpi)-

wherei = 1,...n, wheren is the sample sizé&km is the total distance travelled during the
observation period (which is one week for all oliagons) and it is used as an offset variable,

Bo, B1, -, B @are unknown parameters that need to be estimated,

M(y: + o) ( 1 )“_1 (-2 )Yf
F(a~ DI (y; + DH\1 + ay; 14+ ou;

Pr(Y = yilu;, @) =

wherea is the inverse of the scale parameter of the gadigtdbution. The parameter estimates
of the NB regression model can be easily estimégdnaximum likelihood using PROC
GENMOD of SAS.

Here, we have a small sample of drivers that asemied over a maximum period of up to 15
weeks. This period varies from one driver to anoitheelation to their participation in the sample.
We also consider a panel model in our analysiessence, the method is simply a generalization
of the Poisson or negative binomial model, in whighconsider time and individual fixed effects,
in order to account for the driver correlationserved over time. For the sake of simplicity, we
do not include any more details, but a completevoses of panel data for counts can be found
in Frees (2004) and Boucher and Guillen (2009), fangpecific applications to the insurance
industry in Boucher et al. (2009).

4, Thedata set

A pilot study was conducted to collect telematid®imation on drivers in Greece during 2017.
All drivers agreed to provide data from car sensbed measured all three types of near-miss
event. A weekly summary allowed us to analyze #iationship between the response, defined
as the observed number of near-miss counts of typeh and the explanatory factors, that is,
personal information (the traditional risk factoas)d behavioral values (telematics covariates).
The traditional risk factors include driver's gendage, experience and vehicle age and engine
power. Telematics covariates measure the totadmiisttravelled per week, nighttime and urban

driving, and provide information about speeding #mel near-miss events of each type, that is,



acceleration, braking and cornering events, andéfbelow. Table 1 presents and describes the

variables in the dataset.

We have analyzed pre-defined what a near-miss eigeffior the purpose of this study.
Unfortunately, the number of observations is fanfrenough if we want to let near-miss patterns
to be naturally defined by searching for some djgesiructure in the data. The identification of
each near-miss is based on the calculation of ariggscore for each event type, which lies
between [0,10]. For example, in the case of acagter events, the calculation takes into
consideration the difference between the maximuoelacation reading and the acceleration
detected in the first reading above the accelerati@nt detection threshold (set at Gn/Ehis
threshold was chosen in accordance with previoudiest. Note that Hynes & Dickey (2008)
considered 5.7m/s2 as the threshold for a low jpeakleration event during rear-end impacts.
We calculate the ratio between this difference @r@dcorresponding timestamps of the latter
readings. The final severity score is a transfolonadf this ratio multiplied by 10, which means
we obtain a final score between [0,10]. Accelerai® also used to determine the severity of
braking events, given that negative accelerationessentially be considered as deceleration. In
the case of cornering events, severity dependseoratio between the speed of a reading and the
maximum speed possible during a turn for the vehizistay on track (note that this definition is
similar to the no-sliding condition used by Waltistr et al., 2015, in their study on dangerous
cornering events). Here acceleration events arsidered near-misses because of the high
severity of the event, but in real life, in mosses, an acceleration event results in a brakingteve
rather than an accident. In this analysis, we atswider the total number of near-miss events,

defined as the sum of acceleration, braking anderorg events.

The final dataset comprises 1,225 observationsgsponding to 157 drivers observed over an
average period of 8 weeks in years 2016-2017. mieians that the number of data points per
driver equals on average 8 (the number of obsemesks). 75% of the drivers were observed
during a period of 10 weeks as maximum. Table 2vshtbe descriptive statistics and frequency
tables of the non-telematics variables. There 4r2%2 women in the sample. Almost all drivers
do not have private overnight parking facility (pdl91% have a car park). The average customer
age is 43.76 years, with an age range from 16 tpe@8s. On average, drivers have 17.93 years

of driving experience and cars are 10.34 yearsTdld.mean vehicle engine power is 159.56 hp.



Table 1. Variables in the near-misses dataset.

Variable Description
Traditional risk factors
CustomerGender 0 male
1 female
CustomerAge Customer age
CustomerYearsHavingL Number of years of drivingerignce.
VehicleAge Age of the vehicle
VehicleEnginePower Engine power
VehicleNightParking Is the vehicle left in a carlpaver night?
0 no
1yes
Telematics covariates
Night Percentage of kilometers travelled during night
hours
Urban Percentage of kilometers travelled in urban areas
Speed Percentage of kilometers travelled at speeds
above the limits
Km Total number of kilometers travelled over one
week
TotalNumberofAccelerationE  Number of observed accelerating events over one
week.
TotalNumberofBrakingE Number of observed braking events over one
week.
TotalNumberofManeuveringeE  Number of observed maneuvering events over
one week.
Night Percentage of kilometers travelled during night
hours

Table 2 also shows the descriptive statistics foan and nighttime driving and speeding. On
average, 30% of the kilometers driven are doné s@ht, 13% on urban roads and 3% at speeds

above the limits. The average distance travelledveek is 147.27 km.

Table 2. Descriptive statistics of the explanatagiables in the dataset of near-misses.

By individuals
Traditional ratemaking factors Mean Std. dev. Min Q1 Q3 Max
CustomerAge 43.76 10.49 16.00 37.00 51.00 68.00
CustomerYearsHavingLicense 17.93 9.70 0.00 (@2.023.00 49.00
VehicleAge 10.34 8.63 0.00 6.00 12.00 51.00
VehicleEnginePower 159.56 98.96 44.00 105.004.a8 635.00
%
CustomerGender (female) 24.20
VehicleNightParking 1.91
By weeks
New telematics ratemaking Mean Std. dev. Min Q1 Q3 Max
factor
Urban 0.13 0.13 0.00 0.05 0.16 1.00
Night 0.30 0.27 0.00 0.04 0.49 1.00
Speed 0.03 0.06 0.00 0.00 0.03 0.70
Km 147.27 139.91 0.18 38.15 217.62 1197.16
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Figures 1, 2 and 3 represent the distribution efttital number of near miss events (by weeks)
for the three types of event (acceleration, brakamyl cornering) considered herdn
approximately 73% of the weeks no acceleration &sweare recorded, while this percentage was
67.92% in the case of braking and 74% in the cdseomering events. Table 3 shows the
descriptive statistics of the total number of neéss events (by weeks) in the dataset. Braking
was the most frequent near-miss event, followeddnelerations and cornering. Note that the
standard deviation of braking and acceleration &venhigh, indicating that the drivers in the

sample are quite heterogeneous with respect te thexurrences.

Figure 1. Distribution of the number of acceleratévents per week.
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Figure 2. Distribution of the number of braking eteper week.
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!In the cases of acceleration and braking, we oahsidered drivers with a maximum number of near
misses per week equal to 50. A few drivers preseviéey extreme values: thus, approximately 1% priese
between 50 and 290 acceleration events per week.&ft present between 50 and 195 braking events per
week.



Figure 3. Distribution of the number of corneringests per week.
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Table 3. Descriptive statistics of the total numbienear-miss events in the data set.

By weeks
Std Lower Upper  95th
Variable Mean Dev Minimum Quartile Quartile Pctl Maximum
Number of acceleration events 2.78 11.88 0 0 1 15 290
Number of braking events 449 12.86 0 0 2 27 195
Number of cornering events 1.10 3.14 0 0 1 6 34
Sum of the three types of event 8.325.03 0 0 5 44 512
5. Results

Table 4 shows the parameter estimates of the Ni@sspn models for the acceleration, braking
and cornering events, when pooling all observationshe sample. There are three model
specifications: for each type of event, we consitier model with only the traditional rating
factors, then with only the telematics covariated, dinally, with all the covariates. The results
have been obtained by using the GENMOD procedu8Ad.

In the case of acceleration events (first threaroals in Table 4), the Akaike information criterion
(AIC) shows that the best model is the one thdudes all the explanatory variables. Customer
age and vehicle engine power are associated withheer number of acceleration events, while
vehicle age and vehicle night parking are assatiaith a lower number. Among the telematics
variables, speed, as expected, is associated witthar number of acceleration events. Thus, as
a driver increases the percentage distance drikereathe speed limits by one per cent, the
expected number of acceleration events increasaebdiyt 6%. Here, the coefficient in the model
with all variables is equal to 5.63, which mearet #3-3'°°1 = 1.06 which is the impact on the
expected number of acceleration events. That exeesgpeed is associated with abrupt

accelerations is unsurprising, but what is impdriarthe magnitude of the association when
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controlling for all other factors. By using the bewdel, the one that includes all variables, we
have computed the fitted values and calculate€the&Squared Test Statistic for a theoretical NB
distribution (with an expected value for each indial equal to the corresponding fitted value),

and it results in a value of 20.45.
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Table 4. Negative Binomial regression model for élecation, Braking and Cornering Events. Paramegemates for three models: only traditional
variables, only telematics and all variables. Sansje = 1,225 observations.

Acceleration events Braking events Cornering events
Only traditional Only telematics All variables Only traditional Only telematics All variables Only traditional Only telematics All variables
variables variables variables

Estimate p-value Estimate p-valye  Estimate p-valu&stimate p-value Estimate  p-valye Estimate p-valu&stimate p-valug Estimate p-valie  Estimate p-value
Intercept -6.1770  <.0001]  -4.0349 <0001  -6.3754 <.0001  -41869<.0001| -3.5529 <.000]  -5.3354 <.00p1  -6.2985 G&IOD0 -3.9394 <.000]  -6.0141 <.0001
CustomerGender -0.3040 0.1916 -0.3014 0.1p24 220.0 0.9245 -0.0186  0.9352 0.2150 0.3984 0.2256 0.3766
CustomerAge 0.0571  <.000[L 0.0598 <.0001 0.0523 000 0.0581 <.0001 0.0786 <.0001 0.0777 <.0po1
CustomerYearsHavingly 0.0052 0.7223 -0.0038 0.8p21-0.0087 0.5331 -0.0193  0.1826 -0.0487 0.0032 0.0526 0.0013
VehicleAge -0.0895 <.0001 -0.0852  <.0001 -0.0798.0001 -0.0760  <.0001 -0.0071 0.5962 -0.0099 4418
VehicleEnginePower 0.0031 0.0016 0.0030 0.0018 001B 0.1908 0.0014 0.1449 -0.0031 0.0015 -2002 0.0245
VehicleNightParking -2.5067  0.032p -2.5970 0.0317 -1.6327 0.0297| -1.8934  0.0138 -1.5184 0.1062 1.2649 0.1872
Night 0.0224  0.9486 -0.1044  0.7621 -0.1353 0.6764 208  0.5347 -1.3342  <.0001 -1.2201 0.0906
Urban 0.4973 0.5960 0.4976 0.5735 2.1830 0.0174 2.4070.0078 -0.6057 0.466p -0.1961 0.8218
Speed 7.7295  0.0004 5.6297 0.0073 5.0161 0.0105 8.4400.0782 1.2529 0.5004 1.6207 0.4002
Dispersion 8.2716 9.5149 8.0622 8.0626 8.6934 7.9159 7.6532 7.7559 9123
AlC 3357.7679 3426.0730 3354.6005 4205.1090 4243.9908 199.8954 2872.5670 2883.7823 2866.5042
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In the case of braking events, the results of t@meter estimates of the negative binomial
regression model are shown in the central colunifi&able 4. Here, again, the model with the
lowest AIC is the one that includes all the vamrgblit can be seen that customer age increases
the number of braking events, while the older thieiele, the lower the number of braking events.
Vehicle night parking also reduces the number aking events. The remaining traditional risk
factors (CustomerGender, CustomerYearsHavingL asldidleEnginePower) do not present a
significant effect. Among the telematics variabl@a®an is the only factor presenting a significant
effect, being associated with a higher number akipg events. This is also expected due to the
density of traffic in urban areas. Again, we udeglliest model, the one that includes all variables,
and we computed the fitted values and calculatedCtii Squared Test Statistic for a theoretical

NB distribution, which results in a value equaRt65.

In the case of cornering events, the model prasgiitie lowest AIC is the one that includes both
telematics and non-telematics variables. Amongttaditional rating variables, customer age
presents a positive and significant coefficiendjéating that cornering events are more frequent
among older drivers. As expected, driving experereduces the number of cornering events
(the coefficient being significant and negativehile the greater the vehicle engine power, the
lower the number of cornering events. The remaimiaditional risk factors (CustomerGender,
VehicleAge and VehicleNightParking) do not presesignificant effect. Among the telematics
variables, nighttime driving is the only factor peating a significant effect. Driving during the
night is associated with a lower expected numberoofiering events, probably reflecting that
drivers drive more carefully and more smoothlyhia highttime hours, compared to the daytime
hours. As we did before, we used the model thdudss all variables and computed the fitted
values and calculated the Chi Squared Test Stafstia theoretical NB distribution, which

results in a value equal to 26.26.

When we consider the sum of near-miss events aggpense variable presented in Table 5, the
model results are not as clear as before and themnte of each driving pattern on the aggregate
number cannot be interpreted. Table 5 shows tHgttba effect of excess speed is significant at
the 5% level of significance for the model basedalamatics covariates. Again, we used the
model in Table 5 (the one that includes all vaeapto compute the fitted values and calculated
the Chi Squared Test Statistic for a theoreticaldii#ribution, which results in a value equal to
60.32. However, we recommend analyzing near-misgagpe rather than in an aggregate form
in order to detect the influence of urban versus-udpan driving, as well as the effects of

nighttime driving.
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Table 5. Negative binomial regression model fottaibe events considered together. Parameter
estimates for three models: only traditional vadgabonly telematics and all variables.

Only traditional variables| Only telematics | All ianles

Estimate p-value Estimate p-vaILIJe Estimate p-value
Intercept -4.4150 <.0001 -2.4945 <.00q1 -4.6481 <.0001
CustomerGender 0.0299 0.8961 -0.0015 0.9947
CustomerAge 0.0524 <.0001 0.0598 <.0001
CustomerYearsHavingL 0.0009 0.9506 -0.0098 0.5126
VehicleAge -0.0593 <.0001 -0.0584 <.0001
VehicleEnginePower 0.0007 0.4537 0.0009 0.3471
VehicleNightParking -1.7454 0.0132 -1.7745 0.0157
Night -0.4737 0.1154 -0.5404 0.0749
Urban 0.6906 0.4095 1.3074 0.1245
Speed 3.6911 0.0460 2.2134 0.2332
Dispersion 8.2819 8.8321 8.1700
AIC 5179.1298 5216.5981 5176.9686

As an alternative to the NB models presented lveeehave also fitted a Poisson, Zero Inflated
Poisson, Zero Inflated NB, Generalized Additive Mb@>AM) with Poisson response and GAM
regression with NB response. Tweedie was not useaye do not have any information about
costs or severities. These models have been usstitmate acceleration, braking, cornering and
total number of events (four different responseéaldes) by using traditional and telematics risk
factors as explanatory variables. In the four cabesbest model was the GAM regression with
NB response, as it was the one with the lowest k& Table Al in the Appendix). We also
calculated the Chi Squared Test Statistic for artecal NB distribution with an expected value
equal to the fitted values of the alternative GAddnessions. The Chi Squared Test Statistic was
34.27, 40.99 and 82.28 for acceleration, braking &stal number of near-miss events,
respectively. These values are higher than thogsesmonding to the traditional NB regression.
In the case of cornering events, the Chi Squaretl Statistic was 19.71, which is lower than the
corresponding to the traditional NB model. This neethat, according to the Chi Squared Test
Statistic, the NB model performs better than therahtive GAM regression in all cases, except
for cornering events. Nevertheless, we should befawith the interpretation of these results,
as the distributions on the response variablesah&gavy tail and we grouped the extreme
observations in order to calculate the test statids a consequence, we decided to focus on the

results of the NB regression model for simplicifyragerpretation of the linear component.

We also used a panel data analysis using Poisgogsseon, but the results are not included here

(but are available from the authors on requestabige, although most of the coefficient signs of
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the telematics variables are the same as thosmetta the regression models without a panel
approach, they are quite unstable and depend fkeawilthe number of observed weeks
considered. In most cases, no substantial changesean with regards to the influence of the
telematics covariates, but the regressors thatoti@imange over the weeks of observation, the
case of age (in years), gender, vehicle power ged @annot be included if individual effects
have already been considered. A more sophistiGtatysis with observational periods longer

than 15 weeks is recommended to assess the effiattectrends on the observed responses.

6. Conclusions

The occurrence of near-miss events, and not ontydewts, needs the attention of traffic
authorities and insurers. Knowing the circumstarineshich near-misses occur is relevant for
risk quantification and also for accident prevemtigiven that such incidents are informative
about narrowly avoided accidents and, more impdgtaabout the type of accident that could

have occurred under a set of known circumstances.

The main conclusion to be drawn from our analysthé different impact of a range of behavioral
factors on the occurrence of different types ofrimees events. This clearly suggests that
analyzing near-misses without distinguishing theetgf event is likely to lead to a confounding

of the factors influencing an increase in the efg@aumber of near-misses.

In this paper we have analyzed three types of mess- events: cornering, braking and
accelerating, and we have shown that both traditiand telematics variables are relevant risk
factors. Among the former, we conclude that theedis age is associated with a higher risk of
all three types of near-miss event. Specificallgeodrivers present a higher risk of near-misses,
perhaps owing to an excess of self-confidenceeatieel. Having said that, driving experience
decreases the risk of cornering events. Among tther dactors, vehicle power is associated with
a higher risk of acceleration events but with adovisk of cornering events. Finally, vehicle age
is associated with a lower risk of braking and &region events, perhaps owing to limitations in

the technical characteristics of older vehicles parad to those of newer automobiles.

Telematics risk factors have been found to be eglefor predicting the risk of each specific near-
miss event. Nighttime driving is associated withwaer risk of cornering events. This is probably
due to smoother driving at night, compared to dagtdriving. Speeding is associated with a
higher risk of acceleration events, which is aseexgd. Finally, urban driving is associated with
a higher risk of braking events, which is not sisipg if we take into account traffic conditions

in cities. We believe that these results are relefa traffic authorities, for example, pointing t
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the need to promote actions encouraging driversaimtain a safe following distance, not only

on highways, but also in cities, where there iggaédr risk of braking events.

Given that the average number of near-misses sdliffecording to the event type, insurers could
usefully establish benchmarks so that wheneveivardexceeds one of the factors (for instance,
driving a high percentage of travelled distanceuihan areas), this would trigger an alarm
indicating a greater risk of near-miss events #imerefore, a higher risk of accident. However,
one of the limitations of this analysis is that,lelthe methodology seems transferable from one
portfolio to another, some of the estimated modelyg only be valid for the country and situation

in which these data were collected.

According to the findings of this study, near-migsunt data modelling shows considerable
potential for the setting of personalized benchmaslels and for offering motor insurance

premium rewards, based on a driver's expected nuwfbeear-misses. As such, count models
can be used as predictive tools to calculate thea®d level of near-miss events dynamically —
that is, as the telematics measurements are peatesand drivers can be warned if the predicted
levels exceed a dangerous threshold and be rewfdgdod driving when near-miss counts are

observed below their predicted level.
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Appendix

Table Al. Parameter estimates for the GAM Regrassith Negative Binomial response variable for fowvdels: Acceleration, Braking, Cornering and
Total Number of Events. All explanatory variableaditional and telematics) are considered. Samigke= 1,225 observations.

Acceleration Events Braking Events Cornering Events Total Number of Events
All variables All variables All variables All variables
Parameter coefficients Estimate p-value Estimate p-value Estimate p-value Estimate p-value
Intercept -4.7627  <.0001 -4.0137  <.0001 -4.9411  <.0001 -3.1317  <.0001
CustomerGender 0.2448  0.3024 0.2650  0.243 0.4173  0.0561 0.25510  0.2504
VehicleNightParking -2.3831 0.0397 -1.9671 0.008 -2.0611 0.0237 -2.3366 0.0007
Smooth terms EDF* Ref. Chi Sq. p-value EDF* Ref. Chi Sq. p-value EDF* Ref.  Chi Sq. p-value EDF* Ref.  Chi Sq. p-value
DF** DF** DF** DF**
CustomerAge| 2.802 3.618 33.890 <.0001 3.228 4.125 40.86 <.0001 4.089 5.058 31.155 <.0001 3.636 4.547 42.76 <.0001
CustomerYearsHavingllL 7.020 7.922 62.633 <.0001 7.693 8.410 76.80 <.0001 4.883 5.966 43.659 <.0001 4.982 6.038 53.78 <.0001
VehicleAge| 4.215 5.003 56.889 <.0001 3.535 4.240 41.64 <.0001 1.444 1.726 2.625 0.1641 2.218 2.632 23.36 <.0001
VehicleEnginePowe 7.627 8.324 82.621 <.0001 7.014 7.872 53.49 <.0001 2.728 3.433 6.698 0.1254 6.722 7.638 36.38 <.0001
Night | 3373 4.173 24.158 <.0001 3.083 3.823 22.26 0.0002 3.254 4.030 40.654 <.0001 3.333 4.117 34.15 <.0001
Urban| 189 2773 7.727 0.0387 3.116 3.917 27.14 <.0001 5.005 6.059 27.878 <.0001 3.582.480 20.14 0.0007
Speed 4284 5.292 30.122 <.0001| 4.709 5.720 19.65 0.003 3.093 3.878 17.704 0.0014  2.940 3.666 15.80 0.0028
Dispersion 5.494 6.061 5.880 6.757
AIC 3197.687 4072.255 2752.962 5058.856
Chi Squared Statistic 34.267 40.096 19.710 84.280

* Estimated degrees of freedom, ** Reference degoédreedom.
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