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Abstract 

Electron transport properties of single-molecule devices based on the [Fe(tzpy)2(NCS)2] complex 

placed between two gold electrodes have been explored using three different atomistic DFT 

methods. This kind of single-molecule devices are quite appealing because they can present 

magnetoresistance effects at room temperature. The three employed computational approaches are: 

(i) self-consistent non-equilibrium Green functions (NEGF) with periodic models that can be 

described as the most accurate between the state-of-art methods, and two non self-consistent NEGF 

approaches using either periodic or non periodic description of the electrodes (ii and iii). The 

analysis of the transmission spectra obtained with the three methods indicate that they provide 

similar qualitative results. To obtain a reasonable agreement with the experimental data, it is 

mandatory to employ density functionals beyond the commonly employed GGA (i.e. hybrid) or to 

include on-site corrections for the Coulomb repulsion (GGA+U method). 
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Introduction 

The field of Molecular Electronics has been developed with the goal to provide a miniaturization of 

the electronic devices beyond the limit of the silicon technology.[1] Nowadays, the development of 

new devices that can overcome the Moore law is mandatory because the actual size of the gates (14 

nm in last technologies) of the silicon-based transistors is close to the limits. Thus, new 

technologies “More than Moore” and “beyond CMOS”[2] are required to achieve future 

generations of computing devices. Under this perspective, heterogeneous devices replacing some 

silicon components by nanometric 2D or 1D-systems and molecules are a good alternative. 

Furthermore, the possibilities for controlling electron spin in molecular systems open many 

opportunities and challenges in the Molecular Spintronics field.[3,4] Several examples of devices 

based on multilayer systems exploiting spin properties have been developed (e.g. spin filter, spin 

valves, negative differential resistance devices).[5-7] Most of the devices are based on a non-

magnetic layer sandwiched between two magnetic electrodes showing among other 

magnetoresistance properties. Such property consists in a change of the conductivity when the 

magnetic polarization of one of the magnetic electrodes in switched.  The use of molecules in this 

research field is relatively new and most of the experiments were performed far from room 

conditions, such as ultrahigh vacuum and low temperatures.[8-11] The development of new 

devices has been done basically using break-junction or scanning tunneling microscope (STM) 

experiments with the magnetic molecule (mainly single-molecule magnets and spin-crossover 

systems) placed between the two metal electrodes. Recently, some of us reported molecular-based 

devices displaying room-temperature spin-dependent transport; single-molecule STM junctions 

built by bridging individual small magnetic molecules such as spin-crossover FeII complexes 

[Fe(tzpy)2(NCX)2], (X = S or Se) in a high-spin S = 2 configuration deposited on a gold substrate 

using a magnetic nickel tip.[12] 
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From the computational point of view, many theoretical models have been proposed for the study 

of Molecular Electronic systems. Atomistic calculations remain restricted to DFT methods,[13-15] 

due to the complexity and large number of atoms (two metal electrodes plus the magnetic 

molecule) present in the devices.[16,17] DFT approaches are commonly based on the assumption 

that the electrons travel through the molecule rapidly (tunneling) without causing reduction or 

oxidation of the molecule. In the experiments, such conditions can be achieved with small 

molecules and good molecule-electrode contacts. The opposite mechanism is the Coulomb 

blockade regime where the conduction electron remains captured in the molecule (usually with 

larger molecules and bad contacts) has been mainly explored using Master Equation formalism but 

also time-dependent DFT methods.[18,14] Furthermore, DFT-based approaches consider that the 

electron transport in the scattering region (molecule and surface electrode in the contacts) is 

coherent (no change in the wavefunction phase) and elastic if not change in the energy in the 

transport process despite that some inelastic corrections can be mainly included to take into 

account the electron-phonon interactions. 

 

The most common procedure to analyze the phase coherent transport in molecular transport 

junctions is based on the work of Landauer, Imry and Buttiker.[19] Their expression for the 

conductance (G) for a given system with current I and voltage V is, 

    G =
#$

#%
	= 2

()

*
+,,,             (1) 

 
where Tii, e and h are the transmission through the channel i, the electron charge and the Planck’s 

constant. Usually, the pre-factor combination of constants 2e2/h is defined as the quantum of 

conductance, G0 (conductance through a single-atom metal wire). From the practical point of view, 

the sum in Eq. 1 is considered in terms of the molecular orbitals of the molecule that can provide 

an electron pathway channel between the two electrodes. The energy of such orbitals must be 

closer to the Fermi level of the metal electrodes than the applied voltage. During the travel through 
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the molecule, there is a scattering process but there are not significant changes in the electronic 

structure of the molecule (tunneling) and the process is energy conserving (in the original Landauer 

formulation, the scattering was always considered elastic). Eq. 1 cannot be directly applied by 

quantum chemistry methods. However, using non-equilibrium Green functions (NEGF),[20] the 

current (I) can be expressed as the integral over some voltage- and energy-dependent magnitudes. 

 

I =
.(

*
/0	+1 Γ3 0, 5 67 0, 5 Γ8 0, 5 69 0, 5 (;3 0, 5 − ;8 0, 5 )      (2) 

 

where Gr (Ga) is the retarded (advanced) Green function, Γ is the spectral density of the electrodes 

(twice of the imaginary component of the self-energies) and f is the Fermi distribution of the 

electrodes (left and right). From Eq. 2, the transmission can be expressed as: 

 
T E, V = +1 Γ3 0, 5 67 0, 5 Γ8 0, 5 69 0, 5          (3) 

 
The terms needed to apply Eq. 3 can be extracted from the corresponding Hamiltonian, and the 

overlap matrices from any electronic structure method, for instance, extended-Hückel (tight-

binding) or DFT. Thus, the retarded Green’s function matrix for the whole system: 

 
67 0 = 0	A − B CD               (4)  

 
such expression is difficult to handle and basically it can by decompose in term of the central 

scattering region and electrodes, thus the Green’s function for the central part 

6E7	 0 = 0AE − BE − (0)3 − (0)8
CD           (5)  

 
and the self-energy of the left and right electrodes can be calculated from the coupling matrices 

VL/R between electrode surface and the molecule and the Green’s functions of the electrode surface 

(0)3/8 = 	53/8
G 0 63/8

H (0)53/8(0)
          (6)  

 
as the density matrix D is related with the Green’s function, through the contour integral 
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I = −
D

J
KL (67 0

M
CM

;(0 − N))/0           (7)  

 
f is the Fermi distribution and µ the chemical potential, as Hamiltonian is also dependent of the 

electron density, the final density matrix and Green’s functions should be calculated in a self-

consistent manner using the previous equations. The most useful magnitudes to analyze the 

transport properties of single-molecule devices using theoretical methods are the zero-bias 

transmission obtained with Eq. 3 and the inclusion of voltage allows also the calculation of the I/V 

characteristics, by integrating Eq. 2 at each voltage. 

 

 

Figure 1. Model structure of the single-molecule junction with the trans [Fe(tzpy)2(NCS)2] 

complex (tzpy: 3-(2-pyridyl)(1,2,3)triazolo(1-5)pyridine) with the Au-S(thiocyanato) molecule-

electrode contacts. 

 

The goal of this paper is to analyze three different DFT approaches and their accuracy to study 

coherent elastic spin-polarized transport through a magnetic single-molecule device (see Figure 1, 

the spin-crossover FeII complex, [Fe(tzpy)2(NCS)2], mentioned above between gold electrodes): (i) 

The first approach employs a combination of NEGF technique with density functional theory to 

obtain the self-consistent mean-field Hamiltonian of the system subject to a finite bias voltage and 

from it, the Green’s functions providing the non-equilibrium electronic density and current.[21,14] 
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This approach is available in several computer codes, for instance Transiesta,[21] ADF-

BAND,[22,23] Smeagol[24] or ATK,[25] and allows a periodic description of the electrodes, 

normally associated with large computational demands. Magnetic molecules can pose additional 

complications for this approach, as correct orbital occupations must be retained in the device 

system, which include a large portion of electrode atoms and the central molecule. Normally, 

available functionals include only LDA and GGA, which can be eventually corrected by the 

inclusion of an on-site Coulomb term (DFT+U method)[26] are available. However, it seems that 

there are not universal U values for most of the elements to provide a proper correction of the 

limitations of the pure funcionals. DFT methods with a large self-interaction error (local 

approximations and GGA, for a complete discussion of the influence of this error on tranport 

calculations see ref. [27]) will result in small energy gaps between empty and occupied orbitals, 

thus, giving wrong transmission curves and conductance values that are often too large. This can be 

improved by using more sophisticate functionals that partially remove such error (for instance, 

hybrid or long-range corrected functionals). (ii) The second approach tries to solve the main 

drawbacks of the first approach but paying the price of describing the electrodes as a relatively 

small finite cluster of metal atoms, which allows to perform a common quantum chemical 

molecular calculation on them (Gaussian,[28] Q-Chem,[29] ADF,[30] Turbomole[31] or FHI-

aims[32]). Thus, hybrid or long-range corrected exchange-correlation functionals can be employed 

to provide better orbital energies, and consequently transport properties. This kind of computer 

codes have also control over the electronic structure of the magnetic molecule once placed in 

between the electrodes to have correct open shell electron distribution. The Green’s functions are 

calculated in the less–accurate wide band limit approximation, which assumes that the density of 

states (DOS) of the electrode is independent of the energy.[22] Thus, the Green’s functions of the 

electrode surface (in Eq. 6) are just a constant value under the Fermi level. In these codes, the 

transport module is often implemented as a post-processing tool (Artaios,[33] AITRANSS[34]) and 

are usually restricted to zero-bias, however, other codes as Alacant[35] also allow a fully self-
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consistent NEGF approach implemented in the Gaussian code. (iii) Finally, the third approach 

adopted in the GOLLUM computer code[36] that uses periodic tight-binding calculations or 

mapping DFT Hamiltonian matrix (calculated with other code, for instance Siesta[37,38] that can 

incorporate DFT+U and dispersion corrected functionals and also can provide a good control of the 

electronic structure of magnetic open-shell systems) with a tight-binding approach. Next in a post-

processing step with simpler equilibrium transport theory can provide a large variety of transport 

properties with less computational resources than with the self-consistent NEGF codes. 

 
 
Computational details 

Calculations were performed with ATK,[25] Gaussian[28]-Artaios [33] and Siesta[38]-Gollum[36] 

packages. The self-consistent NEGF were performed with the ATK code using periodic models 

using PBE[39] and PBE+U functionals and double-zeta basis set with polarization for all the 

elements with the exception of gold that a single-zeta basis with polarization was used combined 

with an 11-electron pseudopotential. The periodic model structure has the thiocyanato S atoms 

located in threefold hollow sites of the Au(111) surface[40] (distance S-surface of 2.5 Å, Figure 1). 

The calculations were carried out with the molecule sandwiched between three gold layers with a 6 

× 6 surface unit cell. 

 

The Gaussian calculations were performed with the release D01 using the pure GGA (PBE),[39] 

hybrid (B3LYP), [41] hybrid meta-GGA (TPSSh),[42] and long-range corrected (ωB97X)[43] 

exchange-correlation functionals with a lanl2dz basis set including pseudopotentials for all the 

elements.[44] The choice of the TPSSh functional is due to the well-know problems of most of 

DFT functionals[45] to reproduce correctly the energy difference of high- and low-spin states of 

spin-crossover complexes and such exchange-correlation functional provides the best results.[46-

48] The post processing procedure to obtain the transmission curves was performed with the 
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Artaios code (version 1.9).[33] The non periodic model has the same structure that the periodic 

model used with ATK but the gold electrode is cut just keeping 22 gold atoms (3,7,12 atoms in the 

first, second and third layer, respectively). 

 

Calculations with the Siesta code[38,37] were performed using the version 3.0 using PBE[39] and 

PBE+U functionals with and double-zeta basis set for all the elements with the exception of gold 

that a single-zeta basis was used combined with an 1-electron pseudopotential.[49] This 1-electron 

pseudopotential gives wrong structures if it is employed for geometry optimization but reasonable 

transport properties in single-point calculations. Transport properties were obtained by post 

processing with the Gollum package[36] mapping in a tight-binding Hamiltonian, the DFT 

Hamiltonian and overlap matrices obtained with Siesta. The calculations were carried out in a 

periodic model with the molecule sandwiched between five gold layers with a 4 × 5 surface unit 

cell. 

 

Results and Discussion 

Previously, some of us have analyzed using PBE functional and periodic calculations with the self-

consistent NEGF Transiesta code the transport properties of the high and low-spin states of the 

[Fe(tzpy)2(NCS)2] complex placed between two gold electrodes.[40] The high-spin state (S = 2, 

t2g
4eg

2), with five alpha and one beta electrons, shows a much higher conductance than the low spin 

(S = 0, t2g
6eg

0).[40,50] The reason for the high-spin large conductivity, considering that there is 

only one beta electron in a t2g orbital, can be found in the fact that the orbital bearing this electron, 

as well as the first unoccupied beta t2g orbital, are those closer in energy to the Fermi level of the 

gold electrodes providing effective channels for transport through the molecule (see Figure 2). 

However, in the low-spin state, both sets of orbitals (t2g and eg) are relatively distant from the Fermi 

level, thus resulting in a lower conductivity. As in the high-spin state, the transport is due to the 
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beta orbitals. The current is highly spin polarized of minority beta carriers being such property 

crucial for the magnetoresistance behavior found experimentally using STM measurements of such 

systems.[12] 

 
Self-consistent NEGF with periodic models 

 

The calculations were performed using the ATK code[25] and the PBE[39] (and PBE+U with 

U=4.0 eV a recommended value for FeII complexes[51]) functionals.  The transmission spectra for 

the high-spin S=2 FeII complex for PBE and PBE+U functionals are represented in Fig. 2. There is 

a clear influence of the inclusion of the electron repulsion through the U parameter resulting in a 

much larger gap between occupied and empty orbitals. Thus, the t2g levels are more distant of the 

Fermi level of the electrodes and also logically a smaller intensity is obtained for such method (see 

Fig. 3). The comparison with the experimental data[12] for the conductance (around 5·10-4 G0 at 

low bias) indicates that the PBE+U (G = 8·10-3 G0) is closer than the PBE (G = 0.25 G0) showing 

that the correction of the energy levels reducing the self-interaction error allows to achieve a better 

agreement with the experimental data. The larger concentration of molecular levels close to the 

Fermi level with the PBE functional due the deficiencies in the calculation of the eigenvalues 

results in an overestimation of the calculated intensity (and conductance) using Eq. 2. 

 

Figure 2. Transmission spectra calculated at PBE level (left) and PBE+U (U = 4.0 eV for iron 3d 

orbitals) for [Fe(tzpy)2(NCS)2] complex place between flat gold electrodes using the ATK 
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program. Green and orange colors correspond to the alpha and beta contributions, respectively.  

 

Figure 3. I/V characteristics calculated at PBE level (left) and PBE+U (U = 4.0 eV for iron 3d 

orbitals) of single-molecule device based on the [Fe(tzpy)2(NCS)2] complex and gold electrodes. 

 

The typical representation to analyze the transport properties in single-molecule devices are the 

transmission spectra and the I/V characteristics. However, it is also possible to extract other 

representations that provide more graphical information about the physical device structure. The 

analysis of the projected local density of state combined with the transmission spectrum provides a 

spatial description of the channels corresponding to the transmission peaks (see Figure 4). Thus, 

the DOS representation shows in the device which are the atoms that are participating to each 

conduction channel. For the [Fe(tzpy)2(NCS)2] complex clearly, there are contributions in all 

channels (transmission peaks) close to the Fermi level of the metal center that is the atom placed in 

the middle of the device. The transmission pathway (see Figure 5) shows a realistic view of how 

the carriers are moving through the single-molecule device, in this case that electrons jump on the 

molecule through the metal center but also through the ligands. 
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Figure 4. Representation of the spatially projected local DOS together with the transmission 

spectrum calculated at PBE+U (U= 4.0 eV) for the minority (beta) and majority (alpha) electrons, 

left and right, respectively. 

 

 

Figure 5. Transmission pathway through the [Fe(tzpy)2(NCS)2] complex on gold electrodes 

calculated at PBE+U (U= 4.0 eV). The color scale is the direction of the transport in radians: 0 

(blue) is for rightward transport; π (red) is for leftward transport; and π/2 is transport perpendicular 

to the electrode plane. 
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Non Self-Consistent NEGF with cluster models 

 

As mentioned above, the non self-consistent NEGF methods using cluster structural methods have 

the limitations of the structural model and also the simplifications in the calculation of the surface 

Green functions. However, it is possible to employ common Quantum Chemistry codes (i.e., 

Gaussian09 [28]) opening the possibility to use a wide range of exchange-correlation functionals 

and to extract the transport properties (only transmission spectra) in a post-processing procedure 

(Artaios code[33]). In the previous section, we have shown the usual overestimation of the 

transport properties provided by the GGA functionals. Thus, in our analysis we will compare four 

different functionals: (i) PBE functional Perdew, 1996 #51} to have the same reference than in the 

self-consistent NEGF periodic method, (ii) the popular hybrid B3LYP functional,[41] (iii) the 

hybrid meta-GGA functional, TPSSh,[42] usually recommended to provide a good description of 

spin state stabilities in metal complexes and (vi) the long-range corrected ωB97X functional[43] 

that should improve the asymptotic behavior and consequently, to reduce the self-interaction error 

to give a better description of the excitations. 

The comparison of the PBE transmission spectra (Figures 2 and 6) shows very similar results with 

two broad beta transmission peaks close to the Fermi level (indicating strong contact interaction 

with the gold electrode) with a distance between them around 0.5 eV (2 eV for PBE+U U=4.0 eV) 

while the alpha gap is around 2 eV. The position of the beta transmission peaks is the key 

parameter for the transport properties; thus, the gap between both peaks (with large contribution of 

t2g-like metal orbitals, see Figure 6) is around 3, 2.3 and 8 eV, for B3LYP, TPSSh and ωB97X 

functionals. Thus, the two hybrid functionals give similar results (slightly higher energy gap for 

B3LYP due to the larger exact-type exchange contribution) and close to those obtained with the 

self-consistent NEGF periodic PBE+U calculations. However, the long-range corrected ωB97X 

functional gives a much higher energy gap. Concerning the position of these two peaks compared 

with the Fermi level, the empty t2g-like orbital remains relatively close with all the functionals 
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while the occupied one is considerably shifted to low energy values. Thus, such result would 

indicate that the transport would be through the unoccupied levels as it is usually found for this 

kind of single-molecule devices. 

 

 

 

Figure 6. Transmission spectra of the [Fe(tzpy)2(NCS)2] complex on gold finite electrodes (cluster 

with 22 atoms) using the pure GGA (PBE), hybrid (B3LYP), hybrid meta-GGA (TPSSh), and 

long-range corrected (ωB97X) functionals. Green and orange colors correspond to the alpha and 

beta contributions, respectively. The two orbitals calculated at B3LYP level involve in the transport 

properties are also plotted. 

 

Non Self-Consistent NEGF with periodic models 

 

This method allows to perform the calculation of transport properties in a post-processing way but 

using periodic boundary conditions for the description of the electrodes. Thus, the option to 

improve the results with DFT+U methods is available using regular calculations with the Siesta 
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code[38,37] and obtaining lately the transport properties with the Gollum package.[36] 

Furthermore, the fact to be based on a non self-consistent approach results in a considerable 

reduction of computational resources. The calculated transmission spectra at PBE level (Figure 7 

left) and PBE+U (U = 4.0 eV for iron 3d orbitals, Figure 7 right) for [Fe(tzpy)2(NCS)2] complex 

show similar peaks than those provided for the previously analyzed method with equivalent 

functionals. It is worth noting that another representation of transport properties commonly 

employed with the Gollum program is to analyze the dependence of the G conductance with the 

Fermi level value.[52,53] This representation is employed because it is well-known drawback that 

the calculated Fermi level values with common DFT functionals are usually non-accurate, 

especially taking into account that the transport properties are highly dependent of a small energy 

shift of the transmission peaks. Thus, it is possible to easily choose the Fermi level value that 

provides a reasonable agreement with the experimental data 

 

 

Figure 7. Transmission spectra calculated at PBE level (left) and PBE+U (U = 4.0 eV for iron 3d 

orbitals) for [Fe(tzpy)2(NCS)2] complex placed between flat gold electrodes using the Siesta and 

Gollum codes. Green and orange colors correspond to the alpha and beta contributions, 

respectively.  
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It is worth noting that another representation of transport properties commonly employed with the 

Gollum program is to analyze the dependence of the G conductance with the Fermi level 

value.[52,53] This representation (see Fig. 8) is often employed because it is well-known drawback 

that the calculated Fermi level values with common DFT functionals are usually non-accurate, 

especially taking into account that the transport properties are highly dependent of a small energy 

shift of the transmission peaks. Thus, it is possible to easily choose the Fermi level value that 

provides a reasonable agreement with the experimental data if not the Fermi level is fixed at zero. 

The I/V characteristics can also be calculated (see Fig. 9) with such post-processing approach 

leading to almost identical results than those obtained with the self-consistent NEGF approach. 

 

 

Figure 8. Conductance spectra calculated at PBE level (left) and PBE+U (U = 4.0 eV for iron 3d 

orbitals) for [Fe(tzpy)2(NCS)2] complex placed between flat gold electrodes using the Siesta and 

Gollum codes. Green and orange colors correspond to the alpha and beta contributions, 

respectively.  
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Figure 9. I/V characteristics calculated at PBE and PBE+U (U = 4.0 eV for iron 3d orbitals) levels 

of single-molecule device based on the [Fe(tzpy)2(NCS)2] complex and gold electrodes using the 

Gollum post-processing code from a previous periodic Siesta calculation. 

 

Concluding Remarks 

 

Theoretical methods can provide very useful information about the transport mechanism in single-

molecule devices. The presence of magnetic molecules in such devices opens the field of 

Molecular Spintronics to new physical properties. We have analyzed three different theoretical 

approaches to study devices based on the [Fe(tzpy)2(NCS)2] complex that shows room temperature 

magnetoresistance in single-molecule devices. Due to the small size of the molecule and the 

relative good molecule-gold electrode contact, the transport mechanism in such system is basically 

by tunneling. Hence, such mechanism can be analyzed using theoretical methods using atomistic 

DFT calculations using the non-equilibrium Green function approach to calculate transmission and 

current properties using Landauer equation. The most accurate approach is the self-consistent 

NEGF using a periodic description of the electrodes. The calculations were performed using PBE 

and PBE+U (U=4.0 eV for Fe d orbitals). Due to the well-know drawback of the large self-

interaction error of the PBE functional, the presence of occupied and empty molecular levels too 

close to the Fermi level of the electrode results in a considerable overestimation of the current. 

Thus, the PBE+U approach improves considerably the results in such methodology. The inclusion 
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of the +U correction shifts the orbitals far of the Fermi level, increasing the energy gap, and 

consequently the overestimation of the current obtained with the PBE functional is corrected. 

The second employed theoretical approach allows to perform the calculations with a general 

computer code where many different flavors of the functional are available (i.e. Gaussian09). The 

transport properties are non self-consistently calculated using NEGF with a post-processing tool 

using small finite metal clusters to model the electrodes. The results using the same functional that 

the first approach provide similar results and again, the use of hybrid functionals to reduce the self-

interaction error is needed to obtain a similar transmission curves that the obtained with the 

periodic self-consistent NEGF DFT+U calculations. 

Finally, the third approach is also based on a periodic description of the electrodes but also with a 

post-processing tool the transport properties are obtained in a non self-consistent NEGF method. 

The comparison of the same functionals (PBE and PBE+U) than with the self-consistent NEGF 

periodic method give actually very similar transmission curves with considerable smaller 

computational resources. Hence, we can conclude that qualitatively the three theoretical approaches 

can achieve a right semi-quantitative description if the appropriate functional is employed and, 

qualitatively even the simplest GGA functional provides a correct description of the orbitals 

involved in the transport channels despite a strong overestimation of the calculated current.  
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