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Abstract  
Identifying integrated urban areas is an important issue for urban analysis and policy 
evaluation. In this paper, we extend the OECD’s methodology to identify Functional Urban 
Areas to countries where there is not commuting data. We do so substituting such 
socioeconomic flows by available information on road structure, which allow us to work 
with accessibility based on travel time. The main advantage of our procedure is its 
applicability to most countries in the world, as it only uses GIS data. In this paper we apply 
the procedure two border countries: Colombia, which has a recent census with commuting 
data, to calibrate our approach, and Ecuador, where there is not commuting census. We 
perform several sensitivity analysis and robustness checks to Ecuador with alternative 
sources of socioeconomic flows.  
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1. Introduction 
 
The physical and functional expansion of urban areas beyond their administrative 
boundaries results in the creation of integrated cities. Several approaches are used to define 
cities, usually resulting in alternative results. Ferreira et al. (2010) systematize a set of 
methodologies used in the literature with the aim of delineating urban agglomerations. 
They divide the methodologies into two groups. First, they describe methodologies based 
on morphology, demography, economic, and social structures. From a morphological point 
of view, cities are high-density agglomerations with contiguous urban building, such as the 
Urban Morphological Zones created by the European Environment Agency, which are 
defined areas composed of continously built-up areas with a maximum spacing of 200m 
(Milego 2007, Bretagnolle et al. 2010, Guerois et al. 2012). And second, they describe 
methodologies based on functional delimitation, which consider commuting patterns 
between locations and is, by far, the most popular means of defining cities or Functional 
Urban Areas (FUAs). This kind of analysis is the basis of the first systematic approach to 
defining local labor markets, developed in the US in the 1940s to identify zones in which 
workers can change jobs without changing their residence. Coombes et al. (1986), among 
others, systematize this procedure by developing algorithms that are widely used in many 
countries and regions (see Casado-Díaz and Coombes, 2011 for a review). Commuting data 
is the basis of the Eurostat definition of Larger Urban Zones, building on the methodology 
established by the OECD in collaboration with the European Commission (OECD, 2012; 
Djikstraa and Poelman, 2012), with a view to facilitating the construction of a commuting 
zone around a core city.  
 
In the joint initiative of the European Commission and the OECD, the functional approach is 
used to define cities as FUAs. This initiative increases international comparability and helps 
in the collection of statistical data. The methodology identifies 1,251 FUAs of different sizes 
in 30 OECD countries and Colombia, which gave as a further result the OECD metropolitan 
dataset, which considers close to 300 cities with populations of 500,000 or more. 1 
 
The OECD’s method uses population density to identify urban cores and commuting flows 
to identify policentricity and urban hinterlands. The latter data is available in most (if not 
all) developed countries, but this is usually not the case in developing countries. 
Consequently, additional work is needed to deal with the lack of data and to adapt the FUAs 
identification to other circumstances, as the OECD has worked in preliminar approaches to 
specific cases, such as China (OECD, 2015). 
 

                                                 
1 The list of FUAs is available at http://www.oecd.org/cfe/regional-
policy/functionalurbanareasbycountry.htm, while the statistical information is available at 
http://www.oecd.org/cfe/regional-policy/regionalstatisticsandindicators.htm   

http://www.oecd.org/cfe/regional-policy/functionalurbanareasbycountry.htm
http://www.oecd.org/cfe/regional-policy/functionalurbanareasbycountry.htm
http://www.oecd.org/cfe/regional-policy/regionalstatisticsandindicators.htm


We take the witness in this paper, and we aim at providing a set of FUAs suitable for 
monitoring urbanization in a less developed country, such as Ecuador, without suitable 
commuting data. Ecuador, is a developing country without any previous urban functional 
delimitation. We look for the maximum number of representative economic urban areas 
across the country, what allows policy makers to monitor urbanization and to perform 
improved economic analysis.  
 
To reach our goal, we use GIS data: LandScan stores information about the density of a 
country in grid cells of 1 km2, which allows us to identify urban areas, while Google Maps 
and Open Street Maps provide information on road network systems connecting urban 
areas, what we use to capture policentricity and to define urban hinterlands. Contrary to 
other studies defining cities using satellite data from a morphological point of view (as in 
Van de Voorde et al., 2011), we use travel time information to proxy accessibility, which can 
be a reasonable substitute for commuting information, as we allow the time threshold to 
vary according the size of each urban core. We calibrate several parameters by using data 
of Colombia, a neighbouring country that shares many similarities with Ecuador in 
geographical, economic and sociocultural terms, and for which we have commuting 
information. Once we validate our approach to Colombia, we apply it to Ecuador. We finally 
compare our results for Ecuador with alternative methodologies to estimate commuting 
data, such as the gravity model, the radiation model, and migration patterns. We conclude 
that the use of GIS data and calibrated thresholds provide a set of FUAs similar to the ones 
that would result of using commuting information.  
 
The rest of the paper is structured as follows. Section 2 presents the background of the 
study. Section 3 presents the methodology. Section 4 introduces the case study. Results are 
provided in section 5, and Section 6 presents robustness checks. Section 7 concludes by 
summarizing the main outcomes of our work. 
 

2. Functional Urban Areas  
 
Administrative regions are “the expression of a political will: their limits are fixed according 
to the tasks allocated to the territorial communities, according to the sizes of population 
necessary to carry out these tasks efficiently and economically, and according to historical, 
cultural and other factors” (Eurostat, 1999, p.7). Although they are not spatially random 
units, administrative regions are not the best spatial units for socioeconomic analyses. One 
way to overcome the problems associated with administrative units is to identify and 
modify political divisions in order to shape them into an existing socioeconomic 
relationship (Cörvers et al., 2009; Karlsson & Olsson, 2006). In this line, a FUA can be 
understood as the harmonized economic definition of “city”: a functional economic unit 
(OECD, 2012). FUAs are preferable to political definitions in analysing, designing, and 
considering urban policies, although this creates tensions and causes planning problems, 



since several local governments are responsible for planning, which calls for cooperation 
among agents within an integrated space.  
 
Cities are not only large and dense areas, but they are also integrated environments. Urban 
agglomerations are the result of urbanization processes, including the transformation of 
land cover and land use to re-categorize non-developed areas as developed (Pham et al., 
2011; Weber, 2000). The final extension of every area is defined in terms of socioeconomic 
flows among spatial units, the most common being daily interactions in the labor market 
(Casado-Díaz & Coombes, 2011; Smart, 1974). The process of clustering spatial units 
according to similar characteristics or attributes is generally considered a regionalization 
procedure (Duque et al., 2007; Kim et al., 2013). Kim et al. (2016) identify three types of 
regionalization: districts, coverage, and incomplete coverage. Metropolitan areas are 
usually associated with incomplete coverage, as they are based on centers of spatial 
concentration that are not exhaustive in space. In addition, within a given country or 
territory, such urban areas present a hierarchycal structure (Batty, 2006; Mazzeo, 2012; 
Semboloni, 2008; and Soto & Paredes, 2016). We find different approaches to defining 
integrated areas as spatial clusters. See Davoudi (2008) for a critical review.  
 
The OECD follows a three-step process to identify FUAs. First, urban cores are identified 
according to density measures. All areas above the minimum threshold of population 
density are then characterized as potential urban cores. Thresholds vary for every country; 
the OECD applies a threshold of 1,500 inhabitants per km2, which is lowered to 1,000 
inhabitants per km2 for the US and Canada. The OECD often refers to satellite imagery to 
assess land cover in this identification step. Today, this information is available and easy to 
gather for most countries in the world (some recent examples of its use are Gisbert & Marti, 
2014; OECD, 2012, Goerlich et al., 2016). The quality of such data depends of the quality of 
satellite images and the further recognition of density.  
 
In this first step, a second condition must be fulfilled: areas need to have a minimum 
population to be considered an urban core. These minimum thresholds are established by 
the OECD at 50,000 inhabitants for Europe, US, Chile, and Canada and 100,000 for Japan, 
Korea, and Mexico where cities are, on average, larger. In addition, as geographic areas 
usually do not coincide with administrative areas, the method assumes that a municipality 
is part of an urban core if the majority (at least 50%) of its population lives within the urban 
cluster. It is important to report that FUAs will be finally the result of aggregations of 
administrative spatial units, as they are the definitions being considered not only for 
collecting data but also to implement policy actions. 
 
The second identification step connects the urban areas found in the first step, which may 
not be contiguous, but they may belong to the same integrated space. In this way, FUAs 
account for polycentric urban structures. Two non-contiguous areas are associated if they 



show some degree of accessibility: two urban cores are integrated and belong to the same 
FUA if at least 15% of the population of any of the cores commutes to work in the other core. 
 
The third and final step defines the hinterland or worker catchment area—the area of 
influence of the urban cores—considering accessibility according to labor commuting. The 
OECD defines this hinterland as all municipalities with at least 15% of employed residents 
working in a certain urban core. 

 
Nowadays, many researchers prefer the use functional definition of cities such as FUAs to 
perform economic analyses instead of administrative delimitations. We find analysis of Zip’s 
law and urbanization descentralization using FUAs definition (Schmidheiny and Suedekum, 
2015; Veneri, 2016; 2017), or for analysizs agglomeration economies under the FUAs 
delimitation (Ahrend et al., 2017). 

 
In the developing world, data scarcity is a significant barrier to identify these spatial 
relationships. Carrying out any kind of analysis related to urban policies, planning, or 
socioeconomics is extremely difficult. Hence, the developing world is excluded from most 
applied socioeconomic analyses. Coombes (2004) proposes alternative approaches to the 
use of commuting data to integrate urban systems, such as internal migration flows, 
concentration indexes, or cluster analysis. Internal migration requires a broad range of data, 
and it presents some problems, the most significant being that migration not only takes 
place within urban areas, which can be interpreted as a substitute for commuting, but also 
between them. Concentration indexes require detailed information that is generally 
unavailable. Finally, cluster analyses do not consider integration links, which makes them a 
poor proxy.  
 
To overcome the lack of commuting data, the gravity approach is a common option in 
territorial studies, including migration and trade (Ahlfeldt & Wendland, 2016; Wang & 
Guldmann, 1996). The simplest expression of the gravity model derives flows from limited 
data, including masses of population and distance between units. Recently, Simini et al., 
(2012) and Masucci et al., (2013) have used the radiation model to estimate flows such as 
commuting or migration. Such models appeared first in physics to study the travel process 
of energetic particles or waves through a vacuum. The model is parameter free, which 
makes it suitable for predicting flows when there is no data for setting parameters in 
gravitational models.  
  
Some authors have performed the task of identifying FUAs in developing countries. 
Commuting data is available in a few recent cases. Duranton (2015) uses the commuting 
census of 2005 to define local labor markets in Colombia, and Sanchez-Serra (2016) uses 



the OECD methodology to identify FUAs in Colombia, again with labor market flows.2 
Rodrigues da Silva, et al. (2014) use cluster analysis and the road supply index in the 
Brazilian region of Bahia to identify functional regions. Gajovic (2013) uses artificial neural 
networks, isochrones, and cluster analysis in Serbia. Apart from the cases using commuting 
information, other methods are either highly dependent on data (such as the self-organizing 
maps that Gajovic proposes), do not report good approximations for urban centers (K-
means clustering), or are case specific, using city-specific clusters based on population 
density and not on accessibility.  
 
As Arsanjani et al. (2014) propose, new techniques for FUA identification should be easy to 
apply, require little data, and be able to predict urban boundaries precisely. In our view, the 
OECD methodology deserves the attention of researchers such that it can be expanded with 
few data requirements. Some exercises have been developed for the case of China based on 
the concept of accessibility, such as the OECD’s (2015) use the gradient density and the road 
accessiblity between areas, to connect and to identify FUAs. However, this work is based on 
limited steps to connect urban cores (contiguity) and to define hinterlands, mostly based on 
density rather than accessibility. 
 
We propose using the concept of accessibility expressed in terms of travel time on the road 
network system. This allows us to measure and define proximity between urban cores and 
the extension of the worker catchment areas. This alternative has been considered in other 
multinational contexts, such as in the ESPON Project “Study on Urban Functions” (ESPON, 
2005), where isochrones were fixed at 45 minutes to determine the boundaries. Travel time 
has also been considered in coverage analysis, where the main purpose is to identify the 
spatial extent of the functional form.  
 

3. Methodology  
 
We follow the three steps proposed in the OECD’s methodology, described as follows: 
 
1. Identifying urban cores: We first identify high population density areas using satellite data 
reporting grid cells, which are classified in terms of inhabitants per km2. An area is 
categorized as high density if it is beyond a minimum threshold. We identify clusters of 
contiguous grid cells of high population density according to the majority rule: if at least five 
out to the eight cells surrounding a cell belong to the same high-density cluster, the lower-
density cell will be added. This procedure is repeated until no more cells are merged. The 
resulting high-density area is required to have a minimum population size to be considered 

                                                 
2 The literature propose the use of different thresholds. Here, we do not provide an extent debate 
about the minimum thresholds. However, we include some discussion about our preferred 
thresholds later in the paper. 



an urban core. Finally, an administrative unit, e.g. a municipality, is included as part of an 
urban core if at least 50% of its population lives within the urban cluster. 
 
2. Connecting non-contiguous urban cores that belong to the same functional area: two non-
contiguous urban cores belong to the same FUA if they are connected, allowing for poly-
centricity in FUAs. This step requires the estimation of travel time between urban cores to 
infer if they are close enough to have socioeconomic interactions. Next, we introduce the 
assumption that urban cores follow a hierarchical pattern in space, with some areas having 
a superior role to others. Then, a clustering algorithm sorts urban cores using the 
hierarchical variable of population size. Starting with the largest urban core, we test 
iteratively if any urban core is within a time threshold t, defined as the travel time from 
centroid to centroid of each urban core. The travel time can be fixed for all urban cores or 
vary as a function of the area of each urban core. For the latter, we propose using a generic 
expression such as  𝑇𝑇𝑇𝑇𝑖𝑖 = 𝛼𝛼1 ∗ 𝐴𝐴𝐴𝐴𝑖𝑖𝛽𝛽1 , where 𝑇𝑇𝑇𝑇𝑖𝑖  is the time in minutes between urban cores 
within the same FUA, and 𝐴𝐴𝐴𝐴𝑖𝑖 is the geographic area of the largest urban core (we assume 
they are hierarchycally clustered). Parameters α1 and β1 will vary according to every 
analyzed case, which calls for some calibration. Parameters α1 and β1 will capture aspects 
such as average speed, geography, etc. This procedure is repeated until there are no possible 
additional merges.  
 
3. Identifying the hinterlands or fringe: The worker catchment area uses a new threshold, 
defined as travel time from the centroid of each urban core to surrounding political 
divisions that are not covered by urban cores. Again, such threshold can be fixed (e.g. 60 
minutes), or can be proportional to the urban core. We follow Ahlfeldt & Wendland (2016) 
and derive a city-specific hinterland related to the dimension of each urban core by means 
of the following formula: 𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖 = 𝛼𝛼2 ∗ 𝐴𝐴𝐴𝐴𝑖𝑖𝛽𝛽2 , where 𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖is the time in minutes between the 
centroid of the FUA and the farthest point of the hinterland (which captures the total radius 
of the FUA), 𝐴𝐴𝐴𝐴𝑖𝑖 is the geographical area of the urban core, and parameters α2 and β2, again, 
require some calibration. If one area is linked to two urban cores, it will be associated with 
the largest FUA, as it represents the highest position in the urban hierarchy.  
 
Our hierarchical procedure avoids overlapping: two urban cores can be connected and form 
a unique FUA. On the contrary, two alternative FUAs are not supposed to be connected. If 
they were, they would form a unique FUA (step 2). Still, two FUAs can be contiguous: they 
will be far enough not to constitute a unique FUA, but they can be close enough so that their 
respective hinterlands are contiguous (step 3). Figure 1 summarises the methodology in a 
diagram.3 
 

                                                 
3 The code for reproducing this methodology is available at the following link: 
http://hdl.handle.net/2445/127614 
 

http://hdl.handle.net/2445/127614


 
Figure 1. Diagram of the proposed methodology 

 
 

4. The Case study: FUAs in Ecuador and Colombia 
 
We use two South American countries Ecuador and Colombia as our case study. Ecuador 
has 16 million inhabitants and a total territorial extension of 283,560 km2, close to the size 
of Great Britain or Italy, although each of these countries has about 60 million inhabitants. 
Colombia is much a bigger country, with 47 million inhabitants and 1,141,748 km2, twice 
the size of Spain. The urbanization rate is around 65% for Ecuador and 75% for Colombia; 
the Latin American average is around 70%.4  
 
Commuting data is unavailable in Ecuador and, consequently, is the focus of our work. 
Analyzing Colombia allows us to work with a developing country with available commuting 
data from its 2005 census, gathered from the Departamento Administrativo Nacional de 
Estadística (DANE). In addition, the Colombian case allows to calibrate the parameters for 
Ecuador, because they share common characteristics: both Ecuador and Colombia are 
countries of regions with large disparities and idiosyncratic geographical, economic, and 
sociocultural characteristics, and roads are the main network connection systems. Colombia 

                                                 
4 See Llungo Ortiz (2018) for a review of spatial concentration in Latin America. 



has five natural regions: two on the coast (Pacific and Caribe), one on the Andean central 
highlands (Andes), and two on the plains (Amazonia and Orinoquia), while Ecuador has four 
natural regions: the coastal plain (Costa), the inter-Andean central highlands (Sierra), the 
eastern jungle (Oriente), and the Galapagos Islands (Insular). Large cities are found both in 
the mountainous areas (Bogotá, Medellín, and Cali for Colombia and Quito for Ecuador) and 
in coastal areas (Barranquilla and Cartagena for Colombia and Guayaquil for Ecuador). In 
addition, both countries have an Amazon region, which are less populated than the other 
two regions. These similarities make them a good pair for comparison purposes.  
 
Landscan datasets provide satellite data on population density. We use Google Maps for the 
second step considering policentrycity and Open Street Maps in the third step to build the 
hinterland, as the second option is less computationally intensive. The technical appendix 
reports detailed information on the sources of information and on several characteristics of 
both countries, including maps showing the density spatial distribution.  

5. Results 
 
Colombia is the first country we analyze. We can use here the OECD methodology using 
commuting data, what allows us to calibrate several parameters for the second procedure 
based on road accessibility, which we ultimately use for the Ecuadorean case. 
 
We must first decide on minimum thresholds for population density and urban size. Such 
decision depends on the type of policy considered. In our case, given the fact that we work 
with a developing country involved in an urbanization process, we aim to capture the 
maximum presence of urban settlements in the country, including the less populated 
regions that may have representative urban settlements. This allows policy makers to 
monitor urbanization and to perform improved economic analysis. 
 
For Colombia, previous examples are Metropolitan Areas with more than 100,000 
inhabitants (Duranton, 2015) and FUAs with minimum populations in clusters of 50,000 
inhabitants and minimum densities of 1,500 inhabitants per km2 (Sanchez-Serra, 2016). 
Duranton (2015) considers a 10% preferred threshold for commuting flows, while Sánchez-
Serra (2016) follows the standard OECD criterion of 15%, although he also experiments 
with lower thresholds, such as 10%, which is the threshold set in Colombia’s national 
methodology to delimit FUAs (DNP, 2012). Consequently, as less developed countries are 
usually less urbanized, we lower the minimum threshold for density at 500 inhabitants per 
km2 (which represents 2.5% of total grid cells for Colombia); the minimum threshold of 
population size of the urban core at 25,000 inhabitants; and the minimum threshold for 
commuting flows at 10%. Such low thresholds allow us to identify urban settlements in 
most parts of the country; otherwise, small urban settlements would be invisible. 
 



We assume that all techniques and thresholds are at some point arbitrary. Nevertheless, our 
decisions are not far from other studies. ESPON (2005) uses 650 inhabitants per km2 at the 
NUTS-5 level (municipalities) to identify level urban areas in Europe. OECD (2015) applies 
a minimum threshold of 550 inhabitants per km2 in China. Some authorities have even 
considered an urban density of 400 inhabitants per km2 (Demographia, 2015). In the same 
vein, the minimum size threshold is flexible: Toribio (2008) argues that the typical 
population size to define a municipality as the central core inside of a Metropolitan Area is 
50,000 inhabitants. However, he uses a minimum of population size of 100,000 inhabitants, 
because he considered that Spain is a big country in demographic terms. The OECD uses 
50,000 for all European countries, the United States, Chile, Canada, Colombia and Australia, 
while a larger population threshold of 100,000 inh. was applied in Japan, Korea and Mexico. 
Gisbert & Martí (2014) used the minimum threshold of 1,500 inhabitants per km2 and 
50,000 inhabitants for urban centers for Spain. Our decisions are consistent with the 
objective of maximizing the number of FUAs in developing countries, where small and 
medium cities are expected to grow in the near future (a process that is taking place in 
Ecuador, as explained in Royuela & Ordóñez, 2018). Later, we analyze our procedure’s 
sensitivity compared to alternative thresholds.  
 
Table 1 shows the results of the OECD methodology using commuting flows on the number 
of FUAs in Colombia based on 500 inhabitants per km2 as a threshold for density. We 
present the number of FUAs identified at three different minimum sizes for urban cores: 
25,000, 50,000, and 100,000 inhabitants. The results are also presented for two alternative 
thresholds for commuting flows: 10% and 15%. Sánchez-Serra (2016) identifies 53 FUAs 
for a minimum population size of 50,000, 15% commuting links, and 1,500 inhabitants per 
km2, while we identify 58 FUAs with a lower density threshold (500 inhabitants per km2). 
Increasing the minimum population size of urban cores significantly reduces the number of 
FUAs, and increasing the threshold of commuting for merging urban cores results in more 
isolated FUAs. 
 
With our preferred thresholds, we obtain 76 FUAs in Colombia, which we use to calibrate 
the parameters of connectivity of step 2 of our methodology. Urban cores resulting from the 
first step can be linked by a fixed travel time or vary as a function of the area of each urban 
core. We compute the average travel time of connected urban cores using the OECD 
methodology that considers commuting data. This average figure is about 40 minutes: on 
average, urban cores within 40 minutes of travel time belong to the same FUA. Alternatively, 
we allow that the time threshold varies with city size. By using the information of connected 
urban cores we estimate this expression and get 𝑇𝑇𝑇𝑇𝑖𝑖 = 13 ∗ 𝐴𝐴𝐴𝐴𝑖𝑖1/4.  
 
Step 3 computes the hinterland of the FUAs. Only 19 FUAs report hinterlands adding 
municipalities to the original urban cores. Larger urban cores have hinterlands, as they 
usually have better road connectivity. Again, we use this outcome, to calibrate travel time 



as an expression of accessibility. As in the previous step, we use a fixed travel time or a 
threshold that depends of the area of the urban core. In the Colombian case, this formula 
becomes 𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖 = 4.5 ∗ 𝐴𝐴𝐴𝐴𝑖𝑖1/3.5 
 

Table 1: FUAs in Colombia based on commuting flows and travel time 
approaches in Colombia (population in miles) 

Min Urban Used  Total 
FUAs 

Total Mean Median Min Max St. 
Desv. Pop cores Link Pop 

       Commuting based approach  
25 88 

Commuting 
at least 10% 

76 27,493 361 83 25 7,606 995 
50 64 57 26,791 470 121 50 7,606 1,131 

100 35 34 25,237 742 322 101 7,606 1,407 
25 88 

Commuting 
at least 15% 

80 27,195 339 82 25 7,539 954 
50 64 58 26,374 454 116 50 7,539 1,099 

100 35 34 24,741 721 328 100 7,539 1,372 
       Accessibility based approach 

25 88 Fixed  69 27,214 494 149 25 7,654 1,156 
50 64 travel 54 26,211 569 190 50 7,608 1,237 

100 35 time 32 24,642 794 354 100 7,597 1,449 
25 88 Varying 76 27,253 363 90 25 7,703 1,008 
50 64 travel   56 26,390 471 121 50 8,674 1,229 

100 35 time 34  24,709 726   298  100 7,636  1,410  
 
The bottom panel of table 1 displays the results based on road accessibility. We obtain the 
same number of FUAs than using the commuting-based connectivity approach (76), being 
the descriptive statistics reasonably close. Such similarities hold while increasing the 
threshold for population size. We obtain better aggregate summary statistics using a 
varying travel time approach rather than considering fixed thresholds. 
 
Relying on the calibrated the parameters of our procedure for the Colombian case, we 
compute the Ecuadorean FUAs. Figure 2 displays the map of Ecuador indicating high 
population density cells (which represent 3% of total) together with a higher detail for the 
example of the largest city in the country, Guayaquil, which is composed of three 
administrative boundaries.  
 
Using our preferred thresholds, we identify 34 urban cores in Ecuador, which cover about 
50% of total population and 80% of total urban population in the country in the considered 
year. Given its specific characteristics, we treat the Galapagos Islands as a special case, 
setting the density threshold at 200 inhabitants per km2 and a minimum population size of 
10,000 inhabitants.6  
 

                                                 
5 Sections 2 and 3 of the Supplementary Material display the details of the calibration of the 
parametres. 
6 Section 4 of the Supplementary Material displays the descriptive statistics of those urban cores, 
and the map of the urban cores and the network system. 



Figure 2. Grid cells of high population density. Detail for Guayaquil.  

 
 
 
The second step connects non-contiguous urban cores belonging to the same functional 
area. Every urban core identified above is shaped into a polygon, for which we identify the 
centroid.7 We then define the distance matrix by computing the time distance by road from 
centroid to centroid. In order to verify the travel time threshold for connecting urban cores, 
we have analysed the 2014 SHLC. Such survey is only representative the national and 
regional level. Similarly, this survey is not designed to capture commuting patterns. It 
contains information about 110,000 individuals, and around 50,000 are workers. We do not 
consider commuters within a city, and we disregard workers younger than 15 years old and 
those who do not return home the same day. Finally, 6,763 workers commute to another 
city per day, and 3,917 do so by bus, the most popular transportation mode. The median 
and mean of all commute times are 46 and 68 minutes respectively (the median for bus 
commuters is 60 minutes, while for car users is about 30 minutes).8  
 
Like in Colombia, Google Maps does not report actual travel time by public transport in 
Ecuador, but only by private car, assuming roads are in good condition and traffic is fluid. 
Developing countries usually have poor quality roads, congested traffic, and bus networks 
lacking in efficiency. Consequently, we need to translate the 60 minutes by bus inferred 

                                                 
7 One alternative is the use of the coordinates of the highest populated grid cell as the center of an 
urban core. We did not find significant changes using either option. 
8 The global average, then, is close to one hour of travel time, supported with Marchetti’s constants 
that fix the average commute time to approximately one hour (Marchetti, 1994). 



from the SHLC into time distance by road reported by Google Maps. We do so by comparing 
commutes reported at the SHLC with the time indicated by Google Maps. We verify that 30 
minutes by private car, reported by Google Maps, is equivalent to one hour by bus. Once we 
set this threshold, we apply our algorithm based on a hierarchical varying travel time 
approach. By applying the clustering algorithm, we identify 28 FUAs for Ecuador using the 
same equation. The SHLC only identifies 326 people commuting between urban cores, and 
only three urban cores can be connected using this information. In this case, applying the 
accessibility approach is preferred to use incomplete survey data.  
 
The final step identifies the hinterland of every FUA, using the equation calibrated above. 
Any municipality at a lower distance of the threshold is set to be part of the FUA. For 
instance, under a velocity of 60 km per hour, the threshold for Quito, the urban core with 
the largest area, greater than 474 km2, is set at 35 minutes by car, and for the smallest FUA, 
San Jacinto de Buena Fe, at just 10 km2, the threshold is set at 10 minutes by car.  Figure 2 
shows the hinterland analysis on the left side and the result in terms of administrative 
boundaries on the right side (different FUAs by color).9  

 
Figure 3: Results of FUAs in Ecuador  

  

 
 

5.1. Sensitivity analysis 
 
This section explores the changes in our results for alternative minimum thresholds in 
Ecuador. Table 2 reports the number of urban cores when the minimum thresholds for 
density, population size, and fixed travel time are increased. As expected, such increases 
imply a reduction in the total number of urban cores. No definition should be preferred a 
priori, although, in our view, in a country where urbanization is taking place the 
identification of the maximum number of FUAs is preferred.    

                                                 
9 Section 5 of the Supplementary Material reports the detailed list of FUAs. 



 
Our results display interesting threshold combinations. The highest minimum threshold of 
population density (1,500 inhabitants per km2) with a minimum population size of 25,000 
inhabitants results in the fragmentation of large urban cores and the creation of new and 
independent urban cores when compared to a lower threshold for density (1,000). 
Consequently, we believe that in the Ecuadorean case the chosen lowest minimum 
threshold of population density is more representative of urban cores across the country.  
 
We also check the influence of fixed versus varying travel time thresholds for connecting 
urban cores. Using varying travel time thresholds, we connect more urban cores than using 
a fixed travel time threshold of 30 minutes. The connected urban cores reporte having 
significant commuting flows according to the SHLC. Consequently, as in the Colombian case, 
varying travel time thresholds are preferred over fixed time thresholds.  
 

Table 2: Sensitivity test of urban cores based on travel time 

  
  Initial 

Number 
of 

Urban  
Cores 

Results: # FUAs  

Varying 
travel time  

 

Fixed travel time  
(in minutes) 

Density  
threshold Grid cells 

Minimum 
Size 

Threshold 
30m 60m 90m 

500  
inh./km2 

3,699 25,000 34 28 30 23 16 
(3%) 50,000 21 20 20 16 14 

  100,000 16 15 15 13 12 
1,000 2,114 25,000 29 27 28 22 15 

inh./km2 (1.75%) 50,000 20 20 20 16 14 
    100,000 16 15 15 13 12 

1,500 1,532 25,000 33 29 31 22 15 
inh./km2 (1.25%) 50,000 21 20 20 16 14 

    100,000 16 14 15 13 12 
 
 

6. Robustness checks 
 
In this section, we compare the FUAs obtained for Ecuador using our accessibility approach 
against urban clusters derived from actual and generated socioeconomic flows, as there is 
no commuting data available. Next, we describe all considered alternatives to use or 
generate such flows:10 
 

                                                 
10 Additional details for every robustness check alternative, are reported in section 6 of 
Supplementary Material. 



- Survey of Household Living Conditions 2014: This survey includes information about 
commuters, although it is not designed as a representative picture at the local level. There 
is information on 6,763 commuters among around 50,000 workers. It is a matrix of 641 
parishes of origin by 540 parishes of destination, but only 2,800 origin-destination pairs 
have non-zero values. The percentage of commuting flows is obtained from the total outflow 
of commuters from origin i to destination j divided by total interviewed in i. 
 
- Gravitational Approach: We use a gravitational approach to estimate the full matrix of 
commuting for the whole country at the local level. The parameters of the gravitational 
function are obtained by using the commuting information of the SHLC 2014 and the 
National Census of Population 2010. The specification is a Zero Inflated Negative Binomial 
model of the between-urban mobility. The considered variables in this model are rescaled 
commuting flow, total population, and geographical distance. 
 
- Radiation model: We consider the radiation model (Simini et al., 2012), which reports 
flows between municipalities without any parameterization. This method requires the total 
outflow of commuters from the origin municipality and population at the origin and 
destination, which we obtain from the National Census of Population of 2010.  
 
- Internal Migration: We use a matrix of internal migration among parishes between 2005 
and 2010, acquired from the 2010 Census. Migration flows within FUAs, which proxy 
commuting flows, are mixed together with migration between cities. Consequently, we have 
to differentiate between “movers” and migrants (Zax, 1994). The number of parishes in the 
migration matrix considers 1,149 origins and 1,211 destinations. We impose a geographical 
distance restriction between urban cores so that any move beyond this threshold will 
constitute a migration between FUAs rather than within them. The restriction of distance 
was 30 minutes by car, which, according to Google Maps, is, on average, 35 km.  
 
As expected, the results (not shown here for brevity) are relatively similar. The rescaled 
number of commuters from the SHLC 2014 reports several outliers. Similarly, migration 
flows are heterogeneous compared with what we find in gravity and radiation models.  
 
Every described alternative report different flows between municipalities. We use as a 
starting point the 34 urban cores resulting from the first step of the procedure, which is 
identified using the minimum density of 500 inhabitants per km2 and minimum population 
size of 25,000 inhabitants. We incorporate the computed flows into the OECD procedure to 
create alternative FUAs, which we compare with those obtained using our accessibility 
approach. The OECD procedure using commuting flows assumes a minimum threshold of at 
least 10%, while it is set at least 15% for internal migration (in line with other works 
comparing these methodologies, Royuela & Vargas, 2009).  
 



Table 3 displays the comparison table of FUAs in Ecuador. Column (1) shows the number of 
identified FUAs. Columns (2) to (6) present descriptive statistics of the population included 
in those FUAs. Column (7) is the total population of those FUAs and the percentage of 
population with respect of the country. Differences arise when using computed commuting 
flows, usually connecting fewer FUAs than our accessibility procedure. On the contrary, 
when using internal migration flows, more urban cores are connected, as expected, due to 
the presence of longer distance migrations. Similarly, the migration option captures more 
population living in FUAs (over 11 million), while the other methods report about 10 million 
inhabitants. The hinterlands resulting from every method may differ in spatial terms, 
although the differences in population terms will be small, as every additional spatial unit 
can be expected to be small. 
 
Table 3: Comparative analysis of results among all applied methodologies in 

terms of population included in each FUA 

 
 

FUAs 
(1) 

 
Min 
(2) 

 
Max 
(3) 

 
Mean 

(4) 

 
Median 

(5) 

 
St. Dev. 

(6) 

Population 
in FUAs 

(% of Total) 
(7) 

Accessibility 
(varying 

travel time) 
28 37,663 2,812,609 357,320 172,578 663,008 

10,004,967 
(63.80%) 

Commuting 
SHLC (10%) 

31 53,237 2,930,848 340,763 150,258 658,285 
10,222,899 
(65.15%) 

Commuting 
Gravitational 

(10%) 
33 37,663 2,769,539 295,143 107,129 618,271 

9,739,748 
(62.07%) 

Commuting 
Radiation (10%) 

32 33,186 2,492,869 296,305 161,022 572,811 
9,481,786 
(60.05%) 

Migration flows 
(15%) 

29 59,312 2,558,798 417,070 280,325 634,405 
11,260,940 
(71.77%) 

 

 
7. Conclusions 

This paper provides the definition of Functional Urban Areas in Ecuador, a developing 
country for which the researcher has no data on commuting flows. We use the accessibility 
and proximity expressed in travel time rather than actual flow data. Our starting point is the 
use of satellite imagery to identify urban cores. Next, we use a varying travel time in a 
hierarchical approach to define potential interaction between urban cores and their 
hinterlands. We calibrate our method by considering the case of Colombia, a country with 
many similarities to Ecuador. 
 



We test different minimum thresholds to identify cities. Low thresholds seem to better 
identify the largest number of cities in a country where urbanization is taking place. We 
identify 34 urban cores in Ecuador, which result in 28 FUAs using a size-varying travel time, 
being Quito and Guayaquil significantly large (2.5 and 2.8 million inhabitants respectively) 
and the remaining of smaller size. Such areas account for more than 60% of Ecuador’s total 
population.  
 
We perform robustness checks for Ecuador based on survey and census data. We compute 
commuting flows resulting from gravitational and radiation models. We also compare our 
results with algorithms using internal migration flows. All methodologies report similar 
results, highlighting an important concentration of urban population in those identified 
urban cores.  
 
Our approach provides a set of FUAs in Ecuador, what allows researchers, policy makers, 
and planners to have a better perspective of the urbanization in this developing country. 
Still, several drawbacks are present. First of all, any approach based on accessibility is 
actually mixing labor market outcomes with other socioeconomic flows, such as leisure or 
education commuting. A detailed calibration with labor data of a similar country is advisable 
to overcome this potential problem. In addition, we admit that our approach is based on GIS 
Google and Open Street Maps assumptions for speed. For example, we do not model 
explicitly for congestion in larger cities, even though we try to calibrate our approach 
comparing survey and map travel time to partially overcome this problem. Clearly, both 
aspects could be tailored with improved data. 
 
Further research could be applied by adopting the sample of the OECD defined FUAs to 
obtain global calibrations for some of the parameters of our proposed procedure. Of course, 
in our view, using the current FUAs definition to analyse urban, social and economic trends 
in Ecuador is the next step we aim to develop.  
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Technical appendix “Identifying Functional Urban Areas in Ecuador using a 
varying travel time approach” 

 
We use land cover information, transport networks, and demographic information at the 
lowest political division: municipalities for Colombia and parishes for Ecuador. The 
LandScan datasets, developed by Oak Ridge National Laboratory (available at 
https://web.ornl.gov/sci/landscan/), provide land cover information based on Satellite 
Imagery. In this regard, we follow OECD, as they also use the LandScan database. The 
database uses approximately 1 km2 resolution (30” x 30”) and represents an ambient 
population (average over 24 hours). It is practically Raster information vectorized into SHP 
format. The roadway information we use to compute travel times comes from Google Maps 
and Open Street databases (2013).  
 
We use Google maps in the second step and Open Street Maps 
(http://download.geofrabrik.de) in the third part of our procedure. We consider the former 
source to be more precise, although it comes at the cost of being much more 
computationally intensive, what drives us to use the latter for performing isochrones 
analysis. In any case, both alternatives report very similar results, as shown in section 2 of 
Supplementary Materials.  
 
Political divisions at the local level come from INEC (Instituto Nacional de Estadística y 
Censo) for Ecuador and DANE (Departamento Administrativo Nacional de Estadística) for 
Colombia.  
 
The Landscan datasets report in Colombia 334,215 grid cells of population density, with a 
poorer coverage in the Amazonian region. The final Landscan dataset considers for Ecuador 
122,544 valid grid cells of 1 km2 of population density. These are mainly concentrated in 
the coastal plain and inter-Andean central highlands regions in two specific urban poles, 
one located in the coastal plain region (Guayaquil) and the other in the inter-Andean central 
highlands region (Quito). The maps for both Colombia and Ecuador displaying the high 
population density cells are shown below. 
 
In 2013 there were 1,046 parishes in Ecuador, and in 2005 there were 1,120 municipalities 
in Colombia. The mean (median) of population density is around 120 (35) inhabitants per 
km2 in Ecuador and 128 (10) inhabitants per km2 in Colombia. In line with other countries, 
the distribution of population over municipalities follows a very lumpy and concentrated 
distribution. In addition, they are largely spatially heterogeneous.  
 
In order to perform further robustness analysis in Ecuador, where there is no commuting 
data, we consider the Survey of Households’ Living Conditions (SHLC) of 2014. Even though 
this survey is not designed to map the commuting patterns of the whole country, it reports 
information of this variable for a large sample of individuals. We use this source to report 
the average commuting time in Ecuador. Finally, we use the Ecuadorean National Census of 
Population 2010 to perform additional robustness checks based of the analysis of internal 
migration patterns and the computation of commuting flows based on the gravity and 
radiation models. 
 
 
 

https://web.ornl.gov/sci/landscan/
http://download.geofrabrik.de/


Figure A.1: Colombia: Population Distribution of High Population Density: cells 
with at least 500 inhabitants.  

 
Figure A1.2: Ecuador: Population Distribution of High Population Density: cells 

with at least 500 inhabitants.  

 
  



Appendix for “Computing Functional Urban 
Areas Using a Hierarchical Travel Time 
Approach: An Applied Case in Ecuador” 

 
 



Appendix 1. Colombia and Ecuador description 
 
Colombia: the data came from the Departamento Administrativo Nacional de Estadística (DANE). We use LandScan 2005 
to identify urban cores municipalities. See figure A1.1.  

Figure A1.1: Colombia: Population Distribution of High Population Density: cells with at least 500 inhabitants.  

 



 
 
 
 

Figure A1.2: Ecuador: Population Distribution of High Population Density: cells with at least 500 
inhabitants.  
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Appendix 2. Colombia and Ecuador description 
We consider up to three possibilities to compute geographic distances: 
 
1. API Google maps: It is useful when the distance between urban cores there is not computed yet, so it computes 

at that moment using the Google maps service. We compute these distances by means of the traveltime3 Stata 
command. We notice that Google maps service has a limitation in the computation of distance per day, around 
5,000 distances. See  
http://jearl.faculty.arizona.edu/sites/jearl.faculty.arizona.edu/files/traveltime3%20geocode3_b.pdf  

2. Open Street Maps: It works in a similar way, but using the OSRM database. We use osrmtime Stata command. 
While there is not a limitation in the computation of time per day, the database needs to be downloaded, and 
installed previously (also updated). Consequently, it needs more minimum hardware requirements for 
working. See https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=2691551  

3. Origin-destination matrix: we leave open the possibility to upload a self-computed distances matrix, for 
instance coming from surveys or alternative data sources. 

 

We compare the differences in travel time between the Open Street Maps and Google time. On average Open 
Street Maps distances travel time are faster. Our preferred option is the use of Google maps. However, its 
limitation in use per day and the unavailability to download the roads makes OSRM the best complementary data 
base. Consequently, we suggest using Google time in the second step and OSRM time in the third step.  

Figure A2.1: Google Maps vs Open Street Maps travel time between urban cores 
(a) Colombia    (b) Ecuador 

 

 

  

http://jearl.faculty.arizona.edu/sites/jearl.faculty.arizona.edu/files/traveltime3%20geocode3_b.pdf
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=2691551
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Appendix 3. Calibration of parameters for connecting urban 
cores (step 2) 
Table A3.1 reports the 12 urban cores (origin) that are connected with other urban cores of higher hierarchical 
level (destination). This information allows us to display the average travel time of connected urban cores, that 
we set at 40 minutes. A fixed travel time can be a good proposal, but it may be not the optimal one. We explore 
the relationship between commuting patterns and urban size. Figure A3.1 shows the scatterplot between the log 
of the area of the destination urban core and the log of time between connected urban cores. 

Table A3.1. Connected urban cores at 10% commuting flow (identified at 500 inh., 25,000 inh.) 

Origin 
ID 

Dest 
ID 

Urban Core 
Origin Name 

Populatio
n 

Size Origin 

Urban Core 
Destination 

Name 

Population 
Size 

Destination 

Origin- 
Destination 

Commuting Flow 

Origin- 
Destinatio

n 
Time 

Area (size) 
Destinatio

n 
5308 5001 Girardota 42566 Medellin 2214494 0.1891 44 263.22 
5148 5615 El Carmen 41012 Rionegro 100502 0.1331 27 14.03 
8638 8001 Sabanalarga 86631 Barranquilla 1146359 0.1285 60 156.87 
8078 8001 Baranoa 51571 Barranquilla 1146359 0.2665 41 156.87 

8634 8001 
Sabanagrand

e 25399 Barranquilla 1146359 0.2921 44 156.87 
25175 11001 Cha 97896 Bogota 6840116 0.2301 57 620.78 
13052 13001 Arjona 60407 Cartagena 892545 0.1831 43 106.56 
13836 13001 Turbaco 63046 Cartagena 892545 0.3362 30 106.56 
63401 63001 La Tebaida 33504 Armenia 280930 0.1241 28 33.15 
63130 63001 Calarca 73741 Armenia 280930 0.1818 20 33.15 

68547 68001 Piedecuesta 117364 
Bucaramang

a 516512 0.2411 30 190.48 
19573 76001 Puerto Tejada 44324 Cali 2119908 0.1137 44 213.54 

 

Figure A3.1. Log(time) vs log(area) between connected urban cores 

 

We finally regress log of time and the log of the area of the head of the FUA. We have a reasonable adjustment (R2 
about 60%). The constant is 2.473152 and the parameter 0.2417572, both significant at 1%. The final expression 
is: 𝑇𝑇𝑇𝑇𝑖𝑖 = 13 ∗ 𝐴𝐴𝑖𝑖1/4.  
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Appendix 4. Calibration of parameters for computing 
hinterlands (step 3) 
Figures A4.1 display the hinterlands for five Colombian cities: Barranquilla, Bogotá, Cartagena, Medellín and Cali. 
Every blue-point reports a municipality that belongs to the hinterland of every FUA. We consider as the 
hinterland distance the one of the farthest municipality of every FUA.  
 

Figure A4.1. Hinterland zones in Colombia  
    Hinterland of Barranquilla                                        Hinterland of Bogota 

 
 

      Hinterland of Cartagena                                 Hinterland of Medellin 
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Hinterland of Cali 

 
 
 
We now consider the relationship between the area of the urban core, and the distance of the farthest 
municipality in the hinterland. We assume that every FUA will have a hinterland (low density area) out of the 
urban core (characterised by high density). The administrative division of space, i.e. municipalities or parishes, 
makes that these hinterlands are usually within municipalities. We have computed the distance between the 
centroid of every urban core and the farthest coordinate of the FUA. Figure A4.2 plots the linear relationship 
between the size of the urban core of all FUAs and the maximum distance to every hinterland. Blue triangles 
represent those FUAs capturing alternative municipalities in the hinterland, while red crosses characterize FUAs 
where the hinterland is included in a single municipality. Consequently, in practical terms we only have to 
capture the hinterland of those FUAs adding new municipalities.  
 

Figure A4.2. Hinterland zones in Colombia  
 

 
 
Then, we look for a relationship where the area of the urban core is used to find the size of the hinterland (see 
figure A4.3.)  
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Figure A4.3. Hinterland approach 

 
 
We can say that the hinterland area, 𝐴𝐴ℎ, is a function the urban core area, 𝐴𝐴𝑢𝑢.  
 

𝐴𝐴ℎ = 𝛼𝛼2𝐴𝐴𝑢𝑢𝛽𝛽2       (A4.1a) 
or 

log(𝐴𝐴ℎ) = ln (𝛼𝛼2) + 𝛽𝛽2ln (𝐴𝐴𝑢𝑢)       (A4.1b) 
 

Where, 𝛼𝛼2 is an expansion factor and 𝛽𝛽2is an adjustment factor. We may obtain the radius of the hinterland area 
as a function of the urban core, where the radius measured in distance is equal to time multiplied by a given 
velocity.  
 

𝑟𝑟ℎ = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ = 𝑇𝑇ℎ ∗ 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = �𝐹𝐹ℎ
2𝜋𝜋

= �𝛼𝛼2𝐹𝐹𝑢𝑢𝛽𝛽2

2𝜋𝜋
    (A4.2) 

 
Considering speed is constant, i.e. 60km/h, we get an expression that allows estimating the maximum of travel 
time as a function of the area of the urban core. The empirical model becomes as: 
 

log(𝑇𝑇ℎ) = �1
2

ln �𝛼𝛼2
2𝜋𝜋
� − log (𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)� + 𝛽𝛽2

2
ln (𝐴𝐴𝑢𝑢)    (A4.3) 

 
log(𝑇𝑇ℎ) = 𝛼𝛼2′ + 𝛽𝛽2′ ln (𝐴𝐴𝑢𝑢)     (A4.4) 

 
Equation (A4.4) is a simple linear equation that allows computing the size of the hinterland as a function of the 
size (area) of the urban core, what is particularly useful when there is not commuting data of the hinterland, as 
happens in the Ecuadorean case. To estimate equation (A4.4), we need the hinterland generated by urban cores 
and, for those hinterlands, we need the maximum travel time by urban core.11 As can be expected, the areas of 
both urban cores and hinterlands, are not even close to a circle. In addition, administrative boundaries are 
relatively large compared to real settlements of those municipalities that belong to the hinterland. These 
characteristics are very close to the Ecuadorean case, where the administrative boundaries are relatively large 
compared with the municipalities extension as well.  Finally, the radius using travel time, generated by using 
road network measured in extension of Km, tend to be larger than the geographical radius.  Figure A4.4.a) shows 
the relationship between the areas of urban core and urban hinterland, while A4.4.b) shows the relationship 
between maximum of hinterland time and the area of urban core.  
 
 

                                                 
11 We use maximum of travel time because to the mean or the minimum of the hinterland time do not have a significant slope 
with the size of urban core. 
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Figure A4.4. Relationship between size of the urban core and size of the hinterland. 
 a) Total area vs urban core area   b) Time hinterland vs urban core area

 
 
Distances were computed using the road network of Open Street Maps with a fixed speed of 60km/h in order to 
make the computations easier. In the same context, the area was expressed in km2 and the travel time was 
recorded in minutes.  
 
Table A4.1 introduces the results of estimate equation (A4.4) in column (1), equation (A4.1b) in column (2) and 
the radius of the hinterland against the total size of the hinterland (computed as the total area of all municipalities 
in the FUA) as robust check in column (3). All parameters are statistically significant and their values are the 
expected values within the confidence of interval. The adjustment of all regressions is quite similar, being larger  
 

Table A4.1. Hinterland estimation 
  (1) (2) (3) 
VARIABLES ln(timeh) ln(areah) ln(ltimeh) 
ln(areau) 0.334*** 0.459***  
 (0.0862) (0.114)  
ln(areah)   0.501*** 
   (0.133) 
Constant 1.498*** 4.752*** -0.462 
 (0.364) (0.480) (0.888) 
Observations 19 19 19 
R-squared 0.469 0.490 0.453 
Standard errors in parentheses  
*** p<0.01, ** p<0.05, * p<0.1 

 
Using the parameters of column (1) find the final expression of the hinterland equation: 𝑇𝑇ℎ = 4.5 ∗ 𝐴𝐴𝑢𝑢1/3. This 
time hinterland equation is an equivalent function of the maximum travel time, on average, that an urban core 
may have according its geographical extension.   
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Appendix 5. Ecuador: urban cores description 
Table A5.1: Descriptive Statistics of Core Population (threshold of 500 inhabitants per grid cell) 

Reference Pop. Pop. Pop. Pop. Pop. Pop. Total Fringe Area Reference 
Name Size Mean Median Max Min St.Dev. cells (minutes) km2 Region 
Guayaquil 2553993 8238.69 5008.5 39800 0 9150.31 310 30 297 Coastal 
Quito 2166700 4142.83 1753 41536 3 4950.62 523 35 474 Highland 
Cuenca 347371 3581.14 1770 39473 92 4809.74 97 21 93 Highland 
Manta 294618 3682.73 1910.5 21696 11 4337.59 80 19 70 Coastal 
Santo Domingo 286186 8943.31 5531 31110 58 9217.87 32 14 29 Highland 
Ambato 276507 2248.02 729 19390 7 3589.86 123 22 113 Highland 
Machala 250088 6099.71 4272 43145 91 8935.10 41 15 36 Coastal 
Portoviejo 212192 4330.45 1891 35823 112 7233.95 49 16 42 Coastal 
Loja 180342 4293.86 1318 36652 392 7853.18 42 15 37 Highland 
Esmeraldas 174433 4714.41 1849 19467 28 5388.00 37 15 32 Coastal 
Riobamba 169165 4572.03 2008 24266 275 5950.39 37 15 33 Highland 
Otavalo 167157 1168.93 893 5528 10 1229.94 143 23 127 Highland 
Quevedo 158623 6100.88 2091 37498 563 1474.82 26 13 22 Highland 
Libertad 157929 4644.97 2353 34035 0 6560.96 34 14 31 Coastal 
Milagro 131806 5272.24 5213 12202 525 3317.68 25 13 22 Coastal 
Ibarra 130131 3173.93 1755 19276 0 4062.01 41 15 37 Highland 
Latacunga 79710 4195.26 1625 16304 535 4764.16 19 12 16 Highland 
Babahoyo 71684 7964.89 2205 32503 819 1376.39 9 10 10 Coastal 
Daule 69750 5812.5 1169.5 23606 511 7706.03 12 10 11 Coastal 
Tulcan 55855 5585.5 4081.5 25846 599 7258.40 10 10 9 Highland 
Nueva Loja 53787 2241.13 1778 5147 14 1536.48 24 13 21 Amazon 
Huaquillas 49012 4455.64 3353 15801 1143 4119.98 11 10 9 Coastal 
Chone 46159 3077.27 2250 7564 712 2498.53 15 11 13 Coastal 
Pto.Orellana 45711 1987.43 1202 11981 3 2568.07 23 6 2 Amazon 
Tena 39696 3308 1514.5 13105 223 3954.61 12 10 11 Amazon 
Pasaje 39235 5605 3385 15888 892 5164.67 7 9 6 Coastal 
Puyo 38318 3831.8 2035.5 11683 591 3962.50 10 10 9 Amazon 
La Troncal 36678 4584.75 2986 19000 769 5959.36 8 9 7 Coastal 
Santa Elena 35830 3981.11 2891 8839 81 3589.01 9 9 8 Coastal 
Santa Rosa 32693 2335.21 1753.5 5987 256 1772.24 14 5 1 Coastal 
Azogues 31361 2613.42 677 13855 398 4428.09 12 10 10 Highland 
Cutuglahua 27797 1737.31 1241 6319 159 1508.30 16 11 14 Highland 
Guaranda 27649 5529.8 5974 10648 1365 3626.97 5 8 5 Highland 
S.J. de Buena Fe 25820 2347.27 1574 7580 732 1953.85 11 10 10 Coastal 
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Figure A5.1. Urban cores and road network system 

 

For the Insular region (Galapagos Islands), in order to find an urban settlement we set the minimum density 
threshold at 200 inhabitants per km2 and a minimum population size for the urban core at 10,000 inhabitants. 
As there is no road connection between cities in different islands, we applied a minimum distance between them 
is around 80 km from the largest urban core. 

Figure A5.2. Galapagos’ Islands 
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Appendix 6. Fitting Google maps road distance with survey 
time distance. 
Here we fit Google maps road distance with survey time distance. We compare informed time of commuting at 
SHLS, from which we know origin and destination, against travel time by car computed using Google maps. The 
information at SHLS allows for considering the mode of transportation. We exclude marginal transportation 
modes, such as rides on animals, boats, airplanes, planes and those usual for short distances, such as walking and 
biking. Table A6.1 and figure A6.1 display some descriptive statistics. 
 

Table A6.1. Travel time Survey vs Travel time google maps 

 Google time Survey time 
Mean 2161.907 3847.814 

Std. Dev. (1490.121) (2065.578) 
   

Figure A6.1. Google_time vs Survey_time 
(a) Histogram 

 
(b) Scatter plot 
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Appendix 7. Ecuadorean FUAs  
HEAD NAME CODE NAME POP 

Total Area Total 
Pop (km2) Area 

10150 CUENCA 10167 SININCAY 17507 544619 2.477.326 8.549.378 
10150 CUENCA 30151 COJITAMBO 4070 544619 1.742.162 8.549.378 
10150 CUENCA 30150 AZOGUES 41924 544619 5.909.766 8.549.378 
10150 CUENCA 30153 GUAPAN 9768 544619 5.934.959 8.549.378 
10150 CUENCA 10170 VALLE 26840 544619 4.320.871 8.549.378 
10150 CUENCA 10151 BAÑOS 18602 544619 3.268.521 8.549.378 
10150 CUENCA 30250 BIBLIAN 14812 544619 6.624.175 8.549.378 
10150 CUENCA 30252 SAN FRANCISCO DE SAGEO 1870 544619 3.947.172 8.549.378 
10150 CUENCA 10162 RICAURTE 21373 544619 1.380.344 8.549.378 
10150 CUENCA 10168 TARQUI 11580 544619 1.373.907 8.549.378 
10150 CUENCA 10150 CUENCA 366378 544619 7.617.434 8.549.378 
10150 CUENCA 10169 TURI 9895 544619 2.667.744 8.549.378 
20150 GUARANDA 20157 SAN SIMON (YACOTO) 4569 66680 9.666.064 6.426.204 
20150 GUARANDA 20158 SANTAFE (SANTA FE) 1904 66680 2.647.649 6.426.204 
20150 GUARANDA 20150 GUARANDA 60207 66680 5.194.833 6.426.204 
30450 LA TRONCAL 30450 LA TRONCAL 48798 48798 120.773 120.773 
40150 TULCAN 40150 TULCAN 65608 65608 1.364.669 1.364.669 
50150 LATACUNGA 50550 SAN MIGUEL 33693 158706 1.803.323 5.348.432 
50150 LATACUNGA 50158 POALO 6218 158706 58.052 5.348.432 
50150 LATACUNGA 50150 LATACUNGA 107129 158706 2.644.992 5.348.432 
50150 LATACUNGA 50153 GUAITACAMA (GUAYTACAMA) 10530 158706 2.833.077 5.348.432 
50150 LATACUNGA 50652 CHANTILIN 1136 158706 3.628.956 5.348.432 
60150 RIOBAMBA 60155 LICAN 8598 242563 2.279.192 5.832.877 
60150 RIOBAMBA 60754 SAN ANDRES 14419 242563 1.602.319 5.832.877 
60150 RIOBAMBA 60150 RIOBAMBA 169232 242563 6.237.932 5.832.877 
60150 RIOBAMBA 60450 CHAMBO 12702 242563 164.182 5.832.877 
60150 RIOBAMBA 60152 CALPI 6985 242563 5.392.896 5.832.877 
60150 RIOBAMBA 60750 GUANO 17667 242563 9.049.141 5.832.877 
60150 RIOBAMBA 60161 SAN LUIS 12960 242563 2.928.216 5.832.877 
70150 MACHALA 70950 PASAJE 58366 324200 1.317.941 3.509.497 
70150 MACHALA 70953 LA PEAÑA 3929 324200 1.681.887 3.509.497 
70150 MACHALA 70150 MACHALA 261905 324200 2.023.368 3.509.497 
70750 HUAQUILLAS 70750 HUAQUILLAS 53237 53237 6.352.836 6.352.836 
71250 SANTA ROSA 71250 SANTA ROSA 57497 57497 1.823.571 1.823.571 
80150 ESMERALDAS 80166 TACHINA 4285 181657 7.004.777 211.222 
80150 ESMERALDAS 80168 VUELTA LARGA 3224 181657 7.367.439 211.222 
80150 ESMERALDAS 80150 ESMERALDAS 174148 181657 6.749.983 211.222 
90150 GUAYAQUIL 92550 NARCISA DE JESUS 21989 2812609 1.367.417 3.088.488 
90150 GUAYAQUIL 90750 ELOY ALFARO (DURAN) 263970 2812609 3.004.528 3.088.488 
90150 GUAYAQUIL 90150 GUAYAQUIL 2466882 2812609 2.428.395 3.088.488 
90150 GUAYAQUIL 91650 SAMBORONDON 59768 2812609 2.228.984 3.088.488 
90650 DAULE 90656 LOS LOJAS 9894 109872 1.184.553 3.318.351 
90650 DAULE 90650 DAULE 99978 109872 2.133.797 3.318.351 
91050 MILAGRO 91050 MILAGRO 157608 163499 2.205.837 262.863 
91050 MILAGRO 91051 CHOBO 5891 163499 4.227.928 262.863 

100450 OTAVALO 100455 SAN JOSE DE QUICHINCHE 9215 370244 8.548.788 9.418.413 
100450 OTAVALO 100250 ATUNTAQUI 25603 370244 2.632.024 9.418.413 
100450 OTAVALO 100650 URCUQUI 5554 370244 6.185.766 9.418.413 
100450 OTAVALO 100453 GONZALEZ SUAREZ 6120 370244 4.912.401 9.418.413 
100450 OTAVALO 100350 COTACACHI 18221 370244 7.101.264 9.418.413 
100450 OTAVALO 100356 QUIROGA 6861 370244 6.833.472 9.418.413 
100450 OTAVALO 100458 SAN RAFAEL 5893 370244 1.785.818 9.418.413 
100450 OTAVALO 100157 SAN ANTONIO 19140 370244 2.726.367 9.418.413 
100450 OTAVALO 100154 LA ESPERANZA 8042 370244 3.422.664 9.418.413 
100450 OTAVALO 100457 SAN PABLO 10764 370244 6.521.755 9.418.413 
100450 OTAVALO 100254 SAN ROQUE 11145 370244 1.662.668 9.418.413 
100450 OTAVALO 100450 OTAVALO 57352 370244 8.503.825 9.418.413 
100450 OTAVALO 100150 IBARRA 152624 370244 2.416.631 9.418.413 
100450 OTAVALO 100251 IMBAYA 1405 370244 1.197.713 9.418.413 
100450 OTAVALO 100456 SAN JUAN DE ILUMAN 9332 370244 2.091.834 9.418.413 
100450 OTAVALO 100451 DR. MIGUEL EGAS CABEZAS 5308 370244 8.415.863 9.418.413 
100450 OTAVALO 100452 EUGENIO ESPEJO (CALPAQUI) 7998 370244 2.336.258 9.418.413 
100450 OTAVALO 100252 SAN FRANCISCO DE NATABUE 6209 370244 1.338.881 9.418.413 
100450 OTAVALO 100253 SAN JOSE DE CHALTURA 3458 370244 1.374.736 9.418.413 
110150 LOJA 110150 LOJA 200217 200217 2.858.597 2.858.597 
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120150 BABAHOYO 120150 BABAHOYO 103837 126355 1.736.947 4.423.187 
120150 BABAHOYO 120154 PIMOCHA 22518 126355 268.624 4.423.187 
120550 QUEVEDO 120550 QUEVEDO 173559 230294 1.908.779 6.059.271 
120550 QUEVEDO 121050 SAN JACINTO DE BUENA FE 56735 230294 4.150.492 6.059.271 
130150 PORTOVIEJO 130150 PORTOVIEJO 239695 239695 4.182.158 4.182.158 
130350 CHONE 130350 CHONE 78255 78255 8.289.122 8.289.122 
130850 MANTA 132150 JARAMIJO 21489 338852 9.722.836 942.956 
130850 MANTA 130950 MONTECRISTI 78793 338852 6.532.543 942.956 
130850 MANTA 130850 MANTA 238570 338852 1.924.733 942.956 
150150 TENA 150150 TENA 37663 37663 2.624.857 2.624.857 
160150 PUYO 160150 PUYO 41228 41228 8.776.846 8.776.846 
170150 QUITO 170176 PINTAG 19689 2499616 489.603 2431.5 
170150 QUITO 170163 GUAYLLABAMBA 17803 2499616 5.568.621 2431.5 
170150 QUITO 170357 UYUMBICHO 5152 2499616 2.094.473 2431.5 
170150 QUITO 170151 ALANGASI 26630 2499616 2.917.464 2431.5 
170150 QUITO 170152 AMAGUAÑA 34158 2499616 5.649.767 2431.5 
170150 QUITO 170180 SAN ANTONIO 35531 2499616 1.116.152 2431.5 
170150 QUITO 170551 COTOGCHOA 4416 2499616 3.639.438 2431.5 
170150 QUITO 170353 CUTUGLAHUA 18730 2499616 2.843.727 2431.5 
170150 QUITO 170155 CALDERON (CARAPUNGO) 167179 2499616 7.869.295 2431.5 
170150 QUITO 170177 POMASQUI 31746 2499616 2.360.987 2431.5 
170150 QUITO 170356 TAMBILLO 9304 2499616 4.647.712 2431.5 
170150 QUITO 170164 LA MERCED 9217 2499616 3.197.443 2431.5 
170150 QUITO 170186 ZAMBIZA 4411 2499616 7.535.862 2431.5 
170150 QUITO 170179 PUEMBO 14926 2499616 3.172.738 2431.5 
170150 QUITO 170170 NAYON 17169 2499616 1.598.328 2431.5 
170150 QUITO 170157 CUMBAYA 34550 2499616 2.100.438 2431.5 
170150 QUITO 170162 GUANGOPOLO 3359 2499616 1.028.442 2431.5 
170150 QUITO 170150 QUITO 1778016 2499616 3.720.005 2431.5 
170150 QUITO 170166 LLOA 1640 2499616 5.402.823 2431.5 
170150 QUITO 170156 CONOCOTO 90124 2499616 388.751 2431.5 
170150 QUITO 170550 SANGOLQUI 91024 2499616 5.710.419 2431.5 
170150 QUITO 170184 TUMBACO 54844 2499616 6.548.754 2431.5 
170150 QUITO 170175 PIFO 18278 2499616 2.543.441 2431.5 
170150 QUITO 170165 LLANO CHICO 11720 2499616 7.763.803 2431.5 
180150 AMBATO 180758 SALASACA 6363 333601 1.275.586 4.326.403 
180150 AMBATO 180156 IZAMBA 15717 333601 2.904.289 4.326.403 
180150 AMBATO 180166 TOTORAS 7444 333601 802.138 4.326.403 
180150 AMBATO 180160 PICAIGUA 8939 333601 1.592.994 4.326.403 
180150 AMBATO 180157 JUAN BENIGNO VELA 8047 333601 3.956.536 4.326.403 
180150 AMBATO 180158 MONTALVO 4222 333601 9.923.595 4.326.403 
180150 AMBATO 180950 TISALEO 11704 333601 2.991.772 4.326.403 
180150 AMBATO 180162 QUISAPINCHA (QUIZAPINCHA) 14031 333601 1.209.317 4.326.403 
180150 AMBATO 180151 AMBATILLO 5658 333601 1.242.292 4.326.403 
180150 AMBATO 180150 AMBATO 192693 333601 4.684.655 4.326.403 
180150 AMBATO 180155 HUACHI GRANDE 11455 333601 1.439.753 4.326.403 
180150 AMBATO 180751 BENITEZ (PACHANLICA) 2360 333601 4.975.559 4.326.403 
180150 AMBATO 180951 QUINCHICOTO 1411 333601 2.921.289 4.326.403 
180150 AMBATO 180165 SANTA ROSA 22668 333601 3.707.983 4.326.403 
180150 AMBATO 180152 ATAHUALPA (CHISALATA) 11074 333601 9.512.729 4.326.403 
180150 AMBATO 180163 SAN BARTOLOME DE PINLLOG 9815 333601 121.039 4.326.403 
210150 NUEVA LOJA 210150 NUEVA LOJA 64041 67098 3.789.613 6.315.534 
210150 NUEVA LOJA 210152 DURENO 3057 67098 2.525.921 6.315.534 

220150 PUERTO FRANCISCO  
DE ORELLANA 220150 PUERTO FRANCISCO DE ORELLANA 49558 49558 1.460.697 1.460.697 

230150 SANTO DOMINGO DE  
LOS COLORADOS 230150 SANTO DOMINGO DE LOS COLORADOS 334740 334740 1088.75 1088.75 

240250 LA LIBERTAD 240150 SANTA ELENA 59125 228006 5.373.146 6.237.903 
240250 LA LIBERTAD 240352 JOSE LUIS TAMAYO 24864 228006 3.395.671 6.237.903 
240250 LA LIBERTAD 240350 SALINAS 39205 228006 2.736.405 6.237.903 
240250 LA LIBERTAD 240250 LA LIBERTAD 104812 228006 2.515.493 6.237.903 
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Appendix 8. Robustness checks  
 

Table A8.1. Descriptive statistics of commuters 

 Obs. Min Max Mean Median St. Dev. 
Rescaled SHLC  558,902 0 91,403 2.99 0 161.88 
Gravity equation 1,024,140 0 4,537 1.54 0 28.71 
Radiation model 1,024,140 0 7,563 0.94 0 29.91 
Migration flows 1,024,140 1 13,453 12.03 2 98.55 

 

 
Commuting patterns 
Table A8.2 shows the results of applying the algorithm between urban cores using the SHLC 2014. Urban cores 
connected in commuting terms are exactly those that were relatively close in travel time terms. Therefore, it 
gives validation to our proposed based on proximity. A minimum threshold of at least 10% of commuting flow 
(the same as the preferred threshold for the Colombia case reported by Duranton, 2016) gives the closest 
approximation to our approach using travel time.  
 

Table A8.2: Sensitivity test of urban cores based on rescaled commuting patterns from SHLC  

  Initial 
Results / FUAs 

(% min. commuting flow) 
 Size Cores 8% 10% 15% 20% 

500 
inh./km2 

25,000 34 30 31 32 32 
50,000 21 20 20 20 20 

100,000 16 16 16 16 16 

1000 
inh./km2 

25,000 29 26 27 28 28 
50,000 20 19 19 19 19 

100,000 16 16 16 16 16 

1500 
inh./km2 

25,000 33 27 28 29 29 
50,000 21 19 19 19 19 

100,000 16 16 16 16 16 
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Figure A8.1: Functional Urban Areas based on commuting patterns derived from the SHLC (A) 10% 
threshold of commuting (B) 15% threshold of commuting  

   
Figure A8.1 plots the FUAs with hinterlands computed using thresholds of commuting flow at 10% and 15%. In 
this case the hinterlands were very sensitive to the minimum threshold applied, what can be expected given the 
poor quality of the commuting data. Similar results of hinterlands, are obtained when we use a minimum 
threshold at 15% and 30 min of travel time using private car.  
 

Gravitational approach 
We use the gravity approach under the idea of extending the commuting flow to the whole population matrix of 
pairs of origin and destination. Using the SHLC 2014, we forecast the total expected number of commuting flows 
with respect to the total population in each area. In order to do that, we rescaled commuting flows resulting from 
the survey, multiplying the share of commuters by population size. We use a gravitational exponential decay 
function devoted to inter-urban mobility; where our dependent variable is the total rescaled commuting flow 
between origin and destination. This specification is preferred because it has a faster decay function with respect 
to distance, similar to commuting patterns. An alternative specification can be used to forecast migration 
patterns. The masses in origin and destination are total economically active population (pea) or whole population 
(pop). Distance is measured as straight geographical distance in meters (dist)12. The specification is the 
following: 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝑤𝑤𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  = 𝑓𝑓(𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜;𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑;𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝑇𝑇𝑠𝑠𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)          (A8.1) 

 
Flow is the rescaled commuting data from the survey. Mass represent the masses of origin and destination, D is 

the distance. We estimate a linear regression using a zero inflated negative binomial (ZINB) model as OLS 

overestimates commuters because we have a large amount of zeros in the matrix (Westerlund & Wilhelmsson, 

2011). In the final estimation we include polynomial extension of origin and destination masses (see results at 

table A8.3). The flow of commuters was obtained from the ratio between the commuters from origin i to 

destination j, divided by population of origin i, ∑Fij/POPi.   

                                                 
12 We preferred using travel time distance because parishes were too large compared with urban settlements, and 
consequently Google maps or Open Street Maps were reporting incorrect estimates in too many occasions.  
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Table A8.4 introduces the results of sensitivity test of urban cores. These results are similar to those presented 
using our travel time proposal and also close to the flows using rescaled commuting resulting from SHLC. 
Differences arise at lower thresholds, as the gravitational computed flows cannot connect very close urban cores, 
as other approaches do. Figure A8.2 displays the results considering hinterlands based thresholds 10% and 15% 
from commuting flows derived from the gravitational model. Again, hinterlands were very sensitive to those 
minimum thresholds.  
 

Table A8.3. Gravity regression. Zero inflated binomial model estimation. 
Variable (1) (2) (3) 

Count Basic  squared population 
cubic  

population 
lpop_o .4126328***     1.0552242*** 1.0539545***   
lpop_d .26828608***    0.09047807 -1.5988409***   
distance -4.211e-06***   -.00001009*** -.00001607***   
lpop2_o  -.0298708*** -.02942369***   
lpop2_d  .00840842** .16950979***   
dist2  1.712e-11***  5.810e-11***   
lpop3_d   -.00496326***   
dist3   -6.471e-17***   
Constant -.53870537***  -2.7892201*** 3.0278859 
Inflate    
lpop_o -.58417243***  .50902062***  .51579967***   
lpop_d -.81539292***     .17687747 6.313216***   
distance .00002385***   .00004249*** .00007095***   
lpop2_o  -.05486598*** -.05582299***   
lpop2_d  -.04945204*** -.64388137***   
dist2  -6.179e-11*** -2.464e-10***   
lpop3_d   .01862565***   
dist3   2.746e-16***   
Constant 15.248468***     4.2874004*** -16.970588***           
lnalpha -.42555607***  -.50448303*** -.52735042***   
Statistics                     
N 558,902 558,902 558,902 
Lok Lik. -31246.868 -30396.782 -30049.737 
AIC 62511.736 60819.563 60129.474 
BIC 62612.84 60965.602 60297.979 
Note: Asteriscs account for significance * p<.05; **p<.01; *** p<.001 

 
 

 Table A8.4. Sensitivity test of urban cores based on gravitational approach 
  Initial Results / FUAs 

(% min. commuting flow) 
 Size urban cores 5% 8% 10% 15% 

500 25,000 34 33 33 33 34 
inh./km2 50,000 21 21 21 21 21 

 100,000 16 16 16 16 16 
1000 25,000 29 29 29 29 29 

inh./km2 50,000 20 20 20 20 20 
 100,000 16 16 16 16 16 

1500 25,000 33 33 33 33 33 
inh./km2 50,000 21 21 21 21 21 

 100,000 16 16 16 16 16 
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Figure A8.2 Functional Urban Areas based on commuting patterns derived of the gravitational model 
(A) 10% threshold for commuting (B) 15% threshold for commuting 

  
 

Radiation model 
The radiation model for commuting is expressed in equation (A8.2).  

 

𝐹𝐹𝑖𝑖𝑖𝑖 = 𝐹𝐹𝑖𝑖 ∗  𝑃𝑃𝑜𝑜𝑃𝑃𝑖𝑖 ∗ 𝑃𝑃𝑜𝑜𝑃𝑃𝑗𝑗 

(𝑃𝑃𝑜𝑜𝑃𝑃𝑖𝑖 +𝑤𝑤𝑖𝑖,𝑗𝑗) (𝑃𝑃𝑜𝑜𝑃𝑃𝑖𝑖 +𝑃𝑃𝑜𝑜𝑃𝑃𝑗𝑗 +𝑤𝑤𝑖𝑖,𝑗𝑗)
     (A8.2) 

Where 𝐹𝐹𝑖𝑖𝑖𝑖  is the forecasted commuters from origin i to destination j; 𝐹𝐹𝑖𝑖 is the total outflow of commuters from 
origin i; 𝑃𝑃𝐹𝐹𝑠𝑠𝑖𝑖  and 𝑃𝑃𝐹𝐹𝑠𝑠𝑖𝑖 are the total population in origin i and j destination respectively; and 𝑤𝑤𝑖𝑖,𝑖𝑖 represents the 
population contained in a radius given by the distance between origin i and destination j, excluding both the 
population contained in origin i and destination j. One advantage of this approach is that is parameter free. We 
use the information at the National Census of Ecuador 2010; this census has a specific question that allows 
accounting for the proportion of workers commuting out of the parish. Next, we programmed an algorithm in 
Stata to build the matrix Wij.  
 
We use the forecasted commuters as the source flow for OECD’s algorithms. Table A8.5 reports the results and a 
sensitivity analysis for different thresholds. These outputs are pretty close to the ones derived from the travel 
time procedure, again at the 10% threshold of commuting. Figure A8.3 displays the FUAs including the 
hinterlands computed using 10% and 15% of commuting flows derived from radiation model. As before, the 
hinterland is the most sensitive part of the analysis.  
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Table A8.5. Sensitivity test of urban cores based on radiation model 

   Initial Results/FUAs 
(% min. commuting flow) 

  Size urban cores 5% 8% 10% 15% 
500 25,000 34 29 31 32 34 

inh./km2 50,000 21 20 21 21 21 
  100,000 16 15 16 16 16 

1000 25,000 29 24 26 27 29 
inh./km2 50,000 20 19 20 20 20 

  100,000 16 15 16 16 16 
1500 25,000 33 27 31 32 33 

inh./km2 50,000 21 20 21 21 21 
  100,000 16 15 16 16 16 

 
 

Figure A8.3: Functional Urban Areas based on commuting patterns derived of the radiation model (A) 
10% threshold for commuting (B) 15% threshold for commuting 
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Internal migration  
In this case we use internal migration patterns, gathered from the national census of population 2010 of Ecuador. 
There is information of internal migration between the years 2005 and 2010. The actual matrix is 1,149 parishes 
by 1,211parishes, as there were several changes in the boundaries of some parishes. We have identified large 
migration flows between the largest urban poles of the country. Consequently, we have opted for imposing a 
geographical distance restriction. This allows generating a correct identification of flows that can enter in the 
algorithm. We opt to use a hierarchical pattern and keep away those urban cores that are relatively far from each 
other. The restriction of distance was 34,765 meters, which according with Google maps is the distance by car 
with a half hour of travel time. 
 
Table A8.6 shows the results of the algorithm for different thresholds. The algorithm was successful at connecting 
cities using a minimum threshold of internal migration, although the patterns are different to the results obtained 
from travel time and derived commuting flows. In this case, the closest approximation is obtained when using a 
threshold set at 15% of internal migration. As before, high minimum thresholds make the results more stable. 
Even if this is a good approach, the results seem very sensible and they were not very similar to commuting 
patterns. We also present in Figure A8.4, the hinterlands of each FUA at least 15% and at least 20% of internal 
migration. The results are relatively similar. However, the hinterlands are also too sensitive as the others 
approaches introduced previously. In this case, our best approximation of the hinterland was using the minimum 
threshold of at least 20% of internal migration. 
 
 

Table A8.6. Sensitivity test of urban cores based on internal migration 

   Initial Results / FUAs 
(% min. commuting flow) 

  Size urban cores 10% 15% 20% 25% 
500 

inh./km2 
  

25,000 34 27 29 33 33 
50,000 21 20 21 21 21 

100,000 16 15 16 16 16 
1000 

inh./km2 
  

25,000 29 26 27 29 29 
50,000 20 19 20 20 20 

100,000 16 15 16 16 16 
1500 

inh./km2 
  

25,000 33 27 29 32 32 
50,000 21 21 21 21 21 

100,000 16 15 16 16 16 
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Figure A8.4. Functional Urban Areas based on migration patterns (A) 10% threshold for migration (B) 
15% threshold for migration 
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