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ABSTRACT 

In this paper, synthesis and magnetic properties of mononuclear FeIII-containing polyoxometalates 

(POMs) TBA7H10[(A--XW9O34)2Fe] (IIX, X = Ge, Si; TBA = tetra-n-butylammonium) with 

heteroatoms are reported. In these POMs, FeIII ion coordinates to two trivacant lacunary units [A--

XW9O34]10– (X = Ge, Si) and shows a highly distorted six-coordinate octahedral geometry. These 

POMs exhibit field-induced single-molecule magnet properties based on the single high-spin FeIII 

magnetic center (S = 5/2). Combining experiment and ab initio calculations, we investigated the 

effect of heteroatoms of the lacunary units on the single-molecule magnet properties of these POMs. 

By changing the heteroatoms from Si (IISi) to Ge (IIGe), the coordination geometry around the FeIII 

ion is mildly changed. Concretely, the axial Fe–O bond length of IIGe is shortened compared with that 

of IISi, and consequently the distortion from the ideal octahedral coordination geometry of IIGe is 

larger than that of IISi. The effective demagnetization barrier of IIGe (11.4 K) is slightly larger than 

that of IISi (9.2 K). Multireference ab initio calculations predict zero-field splitting parameters in good 

agreement with experiment. Although the differences in the coordination geometries and magnetic 

properties of IIGe and IISi are quite small, ab initio calculations indicate subtle changes in the 

magnetic anisotropy which are in line with the observed magnetic relaxation properties.  

 

 

INTRODUCTION 

Polyoxometalates (POMs) are a class of anionic metal oxide clusters that exhibit large structural 

diversity, and their properties can be controlled by selecting structures, constituent elements, and 

charges.1 Various types of metal cations can be introduced into the structurally well-defined vacant 

sites of lacunary POMs, where precise structural design of metal oxo clusters is possible; i.e., 

numbers, arrangements, and coordination geometries of metal cations can be designed within the 

vacant sites. Therefore, lacunary POMs are useful ligands for the rational investigation of catalytic, 

redox, and magnetic properties of metal oxo clusters.2 In particular, since the coordination geometries 

of metal cations directly affect their electron configurations, rigid multidentate lacunary POM ligands 

are useful to design and control their magnetic properties.3 We have recently reported that various 

mononuclear and multinuclear metal oxo clusters can be selectively synthesized using lacunary POMs 

in organic solvents.4,5 In particular, a mononuclear FeIII ion possessing an unusually distorted six-

coordinate octahedral geometry within a trivacant lacunary POM exhibited a unique field-induced 

single-molecule magnet (SMM) property for a high spin FeIII ion.4 Ab initio calculations showed that 

the axial ligand elongations of the octahedrally coordinated [FeO6]9– unit destabilized the dx2–y2 orbital, 

which lowered the sextet–quartet gap, resulting in a large magnetic anisotropy of the FeIII ion required 
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for SMMs.6 It is noteworthy that although a number of reports of mononuclear SMMs consisted of 3d 

transition metals have been reported,7 there have been only two reports on mononuclear FeIII 

complexes exhibiting SMM properties8 other than our mononuclear FeIII-POM, to the best of our 

knowledge: i.e., Mossin, Mindiola, and coworkers reported [(PNP)FeCl2] (PNP = N[2-P(CHMe2)2-4-

methylphenyl]2–)8a and Nocera and coworkers reported (PR3)2FeCl3 (R = Me or Me2Ph).8b Both 

examples are associated with intermediate spin FeIII (S = 3/2), in contrast with our compound that is 

based on high spin FeIII (S = 5/2). 

 To date, several experimental and theoretical studies have revealed that heteroatoms of POMs 

play important roles in controlling the catalytic and redox properties because the anion charges and/or 

the coordination geometries of POMs depend on the heteroatoms.9 In magnetic molecules, a few 

comparative studies on POM-based SMMs with different heteroatoms have been reported;10 e.g., 

{Mn6} clusters in [B--XW9O34]10– (X = Si, Ge) and {Co16} clusters in [A--XW9O34]n– (X = P, Si, 

Ge). However, theoretical studies about the effect of heteroatoms on the magnetic properties are 

lacking. Herein, we synthesized octahedrally coordinated mononuclear FeIII-containing POMs with 

different heteroatoms, TBA7H10[(A--XW9O34)2Fe] (IIX, X = Ge, Si; TBA = tetra-n-

butylammonium). These POMs showed field-induced slow magnetic relaxation characteristic for 

SMMs. Experimental and theoretical investigations revealed that by changing the heteroatom from Si 

to Ge, the coordination geometries of FeIII ions in IIX and their electronic structures were slightly 

changed, engendering a small enhancement of the SMM properties.  

 

EXPERIMENTAL SECTION 

Materials. Acetone (Kanto Chemical), 1,2-dichloroethane (Kanto Chemical), diethyl ether (Kanto 

Chemical), and Fe(acac)3 (Aldrich) were used as received. TBA4[A--GeW9O28(OCH3)6] (IGe)11 and 

TBA7H10[(A--SiW9O34)Fe] (IISi)4 were synthesized according to reported procedures. 

Instruments. IR spectra were measured on JASCO FT/IR-4100 using KBr disks. UV/vis spectra were 

measured on JASCO V-570. Cold-spray ionization (CSI) mass spectra were recorded on JEOL JMS-

T100CS. Thermogravimetric and differential thermal analyses (TG-DTA) were performed on Rigaku 

Thermo plus TG 8120. ICP-AES analyses for Fe, Ge, and W were performed on Shimadzu ICPS-

8100. Elemental analyses were performed on Elemental vario MICRO cube (for C, H, and N) at the 

Elemental Analysis Center of School of Science of the University of Tokyo. 

X-ray Crystallography. Diffraction measurements were made on a Rigaku MicroMax-007 Saturn 

724 CCD detector with graphic monochromated Mo K radiation ( = 0.71069 Å, 50 kV, 24 mA) at 

123 K. The data were collected and processed using CrystalClear12 and HKL2000.13 Neutral scattering 

factors were obtained from the standard source. In the reduction of data, Lorentz and polarization 
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corrections were made. The structural analyses were performed using CrystalStructure14 and 

WinGX.15 All structures were solved by SHELXS-97 (direct methods) and refined by SHELXL-

2014.16 The metal atoms (Fe, Ge, and W) and oxygen atoms in the POM frameworks were refined 

anisotropically. CCDC-1824491 (IIGe) and CCDC-1035329 (IISi) contains the supplementary 

crystallographic data for this paper. The data can be obtained free of charge via 

www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, 

Union Road, Cambridge CB2 1EZ, UK; Fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk). 

Bond Valence Sum (BVS) Calculations. The BVS values were calculated by the expression for the 

variation of the length rij of a bond between two atoms i and j in observed crystal with valence Vi. 

𝑉𝑖 =  ∑ exp (
𝑟0
′ − 𝑟𝑖𝑗

𝐵
)

𝑗

 

where B is constant equal to 0.37 Å, r'0 is bond valence parameter for a given atom pair.17 

Magnetic Susceptibilities. Magnetic susceptibilities of polycrystalline samples were measured on 

Quantum Design MPMS-XL7. Direct current (dc) magnetic susceptibility measurements were carried 

out between 1.9 and 300 K under 0.1 T magnetic field. Diamagnetic corrections were applied by the 

diamagnetisms of the sample holder and IGe. Alternating current (ac) magnetic susceptibility 

measurements were carried out under 0.1 T dc field and 3.96 × 10–4 T ac oscillating field. Variable-

field (1–7 T) magnetization measurements were carried out in the temperature range of 1.9–10 K. 

Synthesis of TBA7H10[(A--GeW9O34)2Fe]∙3H2O (IIGe). To Fe(acac)3 (5.2 mg, 14.8 µmol) in 

mixture of acetone and water (24:1, v/v, 3 mL, IGe (100 mg, 29.5 µmol, 2.0 equiv. with respect to 

Fe(acac)3) was added, and the resulting solution was stirred for 5 h at room temperature (ca. 20°C). 

Then, diethyl ether (50 mL) was added. Pale yellow precipitates formed were filtered off, followed by 

recrystallization from a mixture of 1,2-dichloroethane and diethyl ether. Pale yellow crystals of IIGe 

suitable for X-ray crystallographic analysis were obtained (33.8 mg, 36% yield based on IGe). 

Positive-ion MS (CSI, 1,2-dichloroethane): m/z 3350 (calcd. 3350.2) [TBA9Ge2W18O63Fe]2+, 6458 

(calcd. 6457.9) [TBA8Ge2W18O63Fe]+. IR (KBr pellet): 1635, 1380, 1152, 1107, 1061, 1014, 992, 954, 

889, 814, 772, 737, 683, 561, 524, 360, 338, 321 cm–1. Elemental analysis, calcd (%) for 

C114H270Cl2FeGe2N7O70W18 (TBA7H10[(GeW9O34)2Fe]∙3H2O): C, 21.15; H, 4.25; N, 1.54; Ge, 2.28; 

Fe, 0.88; W, 52.03. Found: C, 21.24; H, 4.23; N, 1.52; Ge, 2.29; Fe, 0.89; W, 53.05. 

Computational Details.  Electronic structure calculations were performed by means of the ORCA 

4.0.1.2 program.18 Complete active space self-consistent field (CASSCF)19 calculations were 

converged for two different active spaces: (i) a (5,5) model including all 3d orbitals of the FeIII center 

and (ii) a (9,7) model that also includes the five 3d orbitals but also considers the bonding 

combinations between the eg d orbitals and the adequate linear combinations of ligand orbitals 

mailto:deposit@ccdc.cam.ac.uk
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yielding an essentially -type metal-ligand interaction. N-electron valence state perturbation theory 

(NEVPT2)20 correction to CASSCF energies was included to account for dynamic correlation. Scalar 

relativistic effects were described by the second order Douglas-Kroll-Hess Hamiltonian (DKH2).21 

Spin-orbit-coupling (SOC) mixing was considered by state interaction between converged CASSCF 

states (Quasi degenerate perturbation theory method). CASSCF(5,5) calculations included 1 sextet, 24 

quartets and 75 doublets. CASSCF(9,7) calculations included 11 sextets and 24 quartets. To construct 

the model, atoms connected the FeIII center by three bonds or less were kept their position determined 

by X-ray diffraction. Dangling bonds were completed with hydrogen atoms, which were optimized 

using the BP86 density functional.22 Multireference calculations were carried out using the 

recontracted versions of the def2-TZVP all electron basis set available in ORCA. DFT optimizations 

were performed using the def2-TZVP basis set.23 To speed up calculations, resolution of the identity 

(RI) approximation24 was considered in conjunction with their corresponding auxiliary basis sets.25 

The splitting of d-orbitals for CASSCF(5,5) calculations was derived from ab initio ligand filed 

theory (AILFT).26 This method employs the configuration interaction matrix to map each matrix 

element to the corresponding ligand field matrix. In this way, interelectronic repulsion and ligand 

field parameters can be obtained by least-squares minimization. 

 

RESULTS AND DISCUSSION 

Synthesis of FeIII-Containing POMs. We have recently synthesized an organic-solvent soluble Ge-

centered trivacant lacunary POM and isolated it as a methoxide form (TBA4[A--GeW9O28(OCH3)6], 

IGe).11 As mentioned in our previous report, the methoxy groups of TBA4[A--SiW9O28(OCH3)6] (ISi) 

were easily hydrolyzed in organic media even by the presence of trace amounts of water, showing that 

ISi could be used as a precursor of metal substituted POMs. Based on these results, a mononuclear 

FeIII-containing germanotungstate (IIGe) was synthesized by reacting IGe with 0.5 equivalents of 

Fe(acac)3 in a mixture of acetone and water (96:4, v/v) (Figure 1). Single crystals of IIGe suitable for 

X-ray crystallographic analysis were obtained from a mixture of 1,2-dichloroethane and diethyl ether. 

The crystallographic analysis revealed that the anion structure of IIGe was a mononuclear Fe-

containing S-shaped dimer possessing vacant sites and essentially isostructural with that of 

TBA7H10[(A--SiW9O34)2Fe] (IISi)4 except for the heteroatom (IIGe, Ge; IISi, Si) (Figures 1, S1, Table 

1). Seven TBA cations were observed in the crystallographic analysis in agreement with the results of 

the elemental analyses. The bond valence sum values of IIGe for W (5.93–6.61), Ge (4.12), and Fe 

(2.83) indicate that the respective valences are +6, +4, and +3 (Table S1). These values are similar to 

those of IISi for W (6.02–6.19), Si (3.97), and Fe (2.90).4 
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Table 1. Crystallographic data for IIGe and IISi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a R1 = ||Fo|–|Fc||/|Fo|, wR2 = { [w(Fo2–Fc2)]/  [w(Fo2)2]}1/2.  

  

Compound IIGe IISi 

formula C116Cl4FeGe2N7O72W18 C116Cl4FeN7O72Si2W18 

Fw (g mol–1) 6295.36 6206.36 

crystal system monoclinic monoclinic 

space group C2/c (#15) C2/c (#15) 

a (Å) 35.7121(3) 35.5945(2) 

b (Å) 14.5597(2) 14.48620(10) 

c (Å) 38.5030(3) 38.2599(2) 

α (deg) 90 90 

β (deg) 114.0479(2) 113.9049(3) 

γ (deg) 90 90 

V (Å3) 18282.3(3) 18035.63(19) 

Z 4 4 

temp (K) 123(2) 123(2) 

ρcalcd (g cm–3) 2.287 2.286 

GOF 1.121 1.115 

R1 [I>2σ(I)]a 0.0768 0.0424 

wR2 a 0.2221 0.0994 
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Figure 1. Schematic of the synthesis of IIGe by reacting IGe with Fe(acac)3. Light green, gray, and 

orange polyhedra represent [WO6]6–, [GeO4]4–, and [FeO6]3–, respectively. Red, purple, blue, black, 

and orange spheres represent O, OH, OH2, C, and Fe, respectively. 

 

 The coordination geometry of the introduced FeIII ion was six-coordinate distorted octahedral: 

i.e., the FeIII ion was coordinated by four equatorial oxygen atoms (O1, O1*, O2, O2*) and two axial 

oxygen atoms (O19, O19*). Notably, the coordination geometries of IIGe were slightly different from 

those of IISi: By changing the heteroatom (X) from Si to Ge, the X–O bond lengths (IIGe, 1.720–1.749 

Å; IISi, 1.610–1.645 Å) were elongated owing to the larger ionic radius of GeIV (Table 2), which was 

the same trend as those of IX.11 The axial Fe–O bond lengths (Fe1–O19; IIGe, 2.058 Å; IISi, 2.099 Å) 

were shortened while the equatorial Fe–O bond lengths (Fe1–O1, Fe1–O2; IIGe, 2.020, 2.033 Å; IISi, 

1.991, 2.003 Å) were moderately elongated (Table 2). The distortion angles of the axial ligands 

against the equatorial planes (; IIGe, 74.5°; IISi, 75.8°) decreased slightly (Table 2), thus showing that 

the distortion of the FeIII ion from the ideal six-coordinate octahedral geometry in IIGe was larger than 

that in IISi. In the case of IIGe, The intermolecular shortest Fe···Fe distance of IIGe was 14.560 Å 

(Figure S2a), and this value was similar to that of IISi (14.486 Å, Figure S2b), showing that each 

paramagnetic FeIII ion was separated. The CSI mass spectrum of IIGe in acetonitrile showed signal sets 

centered at m/z 3350 and 6458 assignable to [TBA9Ge2W18O63Fe]2+ and [TBA8Ge2W18O63Fe]+, 

respectively (Figure S3), supporting that IIGe was selectively synthesized and stable in this solvent. 

The UV/vis absorption spectrum of IIGe in acetonitrile showed a broad band at 350 nm assignable to 

LMCT transition of the [FeO6]9– unit. The LMCT absorption band was observed at slightly shorter 
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wavelength in the case of IISi (345 nm) (Figure S4). All the above mentioned results, the elemental 

analyses, and TG-DTA data showed that the formula of IIGe is TBA7H10[(A--GeW9O34)2Fe]·3H2O. 

Table 2. Selected bond lengths (Å) and distortion angles (°) for IIGe and IISi 

 IIGe IISi 

Fe1–O1 2.033 2.003  

Fe1–O2 2.020 1.991 

Fe1–O19 2.058 2.099 

X1–O19 1.745 1.638 

X1–O20 1.737 1.617 

X1–O21 1.720 1.610 

X1–O22 1.749 1.645 

distortion angle () 74.5 75.8 

 

 

Magnetic Properties of Mononuclear FeIII-Containing POMs. DC magnetic susceptibility of the 

polycrystalline samples under 0.1 T showed that T values of IIGe and IISi at 300 K were 4.15 and 

4.35 cm3 K mol–1, respectively (Figure S5).4 These values are close to the spin-only value for a high-

spin FeIII ion (4.37 cm3 K mol–1; S = 5/2, g = 2.00), supporting the valence of FeIII. The M vs. HT–1 

data showed the presence of magnetic anisotropy in IIGe and IISi (Figure 3). The M vs. HT–1 data was 

fitted by using the PHI program27 adopting the anisotropic Hamiltonian (H) given by the following 

equation with the parameters of the axial (D) and transverse (E) magnetic anisotropies and Landé g-

factor: 

H = D{Sz2 – S(S + 1)/3} + E(Sx2 – Sy2) + BgSH 

The best fitting parameters for IIGe and IISi were obtained as follows: D = –1.26 cm–1, E = –4.76 × 

10−1 cm−1, gx = gy = 1.58, gz = 2.53 for IIGe (Figure 3a) and D = –1.22 cm−1, E = –2.48 × 10−1 cm−1, gx 

= gy = 1.80, gz = 2.05 for IISi (Figure 3b). The axial magnetic anisotropy parameter |D| of IIGe was 

slightly larger than that of IISi, indicating that the change of coordination geometries of FeIII ions 

affects the magnetic properties. From a phenomenological point of view, these parameters accurately 

reproduce magnetization data. However, the large anisotropy of the g-values appears unlikely for an 

FeIII ion. We attempted to fit the magnetization curves using an isotropic g-values and found a 

reasonable match with experiment, although not as accurate as the former fit due to the lower number 

of fitting variables. 
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 The ac magnetic susceptibility of IIGe under the external dc magnetic field of 0.1 T showed 

temperature- and frequency-dependence of ' and '', indicating the field-induced slow relaxation of 

magnetization characteristic for SMMs (Figures 2a and S6). The Cole−Cole plots for IIGe in the form 

of '' versus ' were fitted by means of the generalized Debye model,28 which showed the small  

values in the range of 0.06−0.09, thus indicating a single relaxation process (Figure S7). According to 

the Arrhenius plot, the energy barrier for the magnetization reversal of IIGe was 11.4 K (0 = 1.3 × 10–

6 s). This value was slightly higher than that of IISi (9.2 K, 0 = 3.3 × 10–6 s) presumably owing to the 

larger D value of IIGe (Figure 2b).4 

 

 

Figure 2. (a) Frequency dependences of '' for IIGe under 0.1 T external dc field. (b) Plots of 

relaxation time () versus T–1 for IIGe. The solid lines represent the best fit with the Arrhenius law (ln 

( = 0exp(Ueff/kBT)) vs. T–1) at the thermally activated regime. 
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Figure 3. Low temperature magnetization data for (a) IIGe and (b) IISi. Solid lines represent the best 

fits obtained by PHI program. 

 

Ab initio calculations. Next, to investigate the electronic structures of IIGe and IISi, multireference ab 

initio calculations were carried out. Since the size of the lacunary POM ligands prevented the 

calculation of the full complexes, model structures were constructed for both molecules (Figure 4a), 

where atomic positions were obtained from the corresponding crystallographic structures (Figure 

S1).4 The FeIII ions and all atoms at a distance equal or under three covalent bonds from the FeIII ions 

were retained in the model structure. Dangling bonds for atoms at the frontier of the model were 

completed with hydrogens, which positions were optimized. CASSCF(5,5) and CASSCF(9,7) 

calculations were performed for IIGe and IISi, where the smaller active space corresponds to the five 

3d orbitals of the FeIII ions and the extended model incorporates the bonding counterparts of the dx2–y2 

and dz2 orbitals. Dynamical correlation was taken into account by the NEVPT2 method and spin-orbit 

effects were considered by a quasi-degenerate perturbation theory (QDPT) step for state interaction 

due to the electronic spin-orbit coupling operator (see Computational Details section for further 
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information). Ab initio ligand field theory analysis pictures a qualitatively similar d-orbital splitting 

for IIGe and IISi (Figure 4b). From the CASSCF(5,5) energies and wave functions, AILFT yields d-

orbital energies which are more consistent with a square planar coordination than with an octahedral 

geometry. This is in line with the axially elongated Fe–O distance associated to the more exposed 

position of equatorial oxygen donor atoms in comparison to the axial oxygen atoms (Table 2).29 Given 

the more pronounced axial elongation of IISi, the total orbital energy splitting for this complex is 

larger than IIGe. In both cases, dxy and dyz orbitals are lower in energy and almost degenerate, with an 

energy separation of 397.7 cm–1 (IIGe) and 239.3 cm–1 (IISi). The third orbital is mainly dxy, with an 

energy of 4316.9 cm–1 (IIGe) and 4382.8 cm–1 (IISi). The dz2 orbitals are the most differing, as they 

appear at 9211.9 cm–1 (IIGe) and 7962.3 cm–1 (IISi). Finally, the antibonding dx2–y2 orbitals are at 

17733.9 cm–1 (IIGe) and 18771.3 cm–1 (IISi) (Figure 4b). As noted in our previous theoretical 

investigations,6 zero-field splitting parameters of high spin d5 complexes tend to be underestimated by 

CASSCF calculations as they chiefly depend on the sextet-quartet energy gap, which is overestimated 

under this methodology. As expected, NEVPT2 calculations tend to improve results, although their 

correction is only partial.  

 

 

Figure 4. (a) Calculated model structure of IIGe, the model for IISi is analogous. Color code: W: dark 

blue, Fe: orange, Ge: blue, O: red, H: pink. (b) AILFT d-orbital splitting obtained from NEVPT2 

energies on top of a CASSCF(5,5) calculation.  

 

To account for these limitations, CASSCF(9,7) calculations were performed including the bonding 

complement of the antibonding dx2–y2 and dz2 orbitals. 11 sextet and 24 quartet roots where included in 

the state average orbital optimization. In this way, 10 of the sextet roots are LMCT states, which will 

give a higher weight of charge transfer configurations and lower the sextet-quartet gap. Of course, the 

inclusion of more LMCT roots will increasingly bias the result in this direction, potentially leading to 

calculation artifacts. To prevent from this possibility, LMCT transitions were calculated, which are in 
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reasonable agreement with experimental UV/vis spectra (Figure S4, Table S2). Considering NEVPT2 

energies, the sextet-quartet gaps are 8784 cm–1 and 8478 cm–1, while the zero-field splitting 

parameters (D) are –1.07 cm–1 and –1.01 cm–1 for IIGe and IISi, respectively (Table S3). These values 

are in close agreement with the experimental fit for IIGe (–1.26 cm–1) and IISi (–1.22 cm–1). Then, 

axial magnetic anisotropy is slightly smaller for IISi in comparison to IIGe. In addition, calculations 

indicate that E/D is lower for IIGe (0.056) in comparison to IISi (0.083), in line with the observed 

enhancement of SMM properties for IIGe (Figure 2b). Although the differences in spin Hamiltonian 

parameters are small for both complexes, the trend of a higher axiality for IIGe shows up 

independently of the active space (5,5 or 9,7) for both CASSCF and NEVPT2 energies.  

The orientation of the anisotropy axis matches the vector connecting the axial donor atoms (Figure 

5). The alignment with the z-axis can be rationalized if we consider the sextet-quartet excitations 

which are responsible for magnetic anisotropy in a high spin d5 ion. In the free ion limit, the ground 6S 

term mixes with the 4P excited term by the SOC operator. Under a square planar ligand field, the 4P 

term will split in 4A2 and 4E states and mix with levels stemming from the other quartet terms. Spin-

orbit coupling mixing to the 4A2 level will be related with lz and 4E state interaction will be related to 

lx,y (see Figure 6). Thus, the difference in the x and y directions due to the structural distortion will be 

related with the presence of a nonzero component for the rhombic zero-field splitting parameter (E). 

This rhombic contribution favors the quantum tunneling contribution resulting in a faster magnetic 

relaxation worsening SMM properties. In the case of IISi and IIGe, several excitations contribute to D 

and E, given their departure from square planar geometry. As expected, sextet-quartet excitations 

contribute more than sextet-sextet transitions to zero-field splitting parameters, especially for E 

(Tables S3). Table S4 shows the contribution of all quartet and sextet states to D and E for IISi and 

IIGe. Although the final D and E parameters results for the sum (or cancellation) of many 

contributions, it is possible to appreciate how cancellation of contributions to E is less effective in IISi 

when comparing with IIGe. Finally, we stress that the relatively good agreement between the 

calculated magnetic anisotropy properties with the experimental data does not guarantee a quantitative 

prediction due to the small energy differences involves for these systems. 

 



 13 

 

Figure 5. Orientation of the z-axis of the zero-field splitting tensor of IIGe and IISi. Color code: W: 

dark blue, Fe: orange, Ge: blue, Si: light blue, O: red, H: pink. Values are based on NEVPT2 energies 

on top of a CASSCF(9,7) calculation. D tensor was obtained by the second order perturbation theory 

approach. 

 

 

Figure 6. Free ion terms and their splitting under D4h symmetry for a high-spin d5 configuration. The 

excited states involved in SOC contribution are highlighted in color, blue for the Eg states (through the 

lx and ly operators) and red for the A2g states (lz operator). 
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CONCLUSION 

We synthesized FeIII-containing POMs TBA7H10[(A--XW9O34)Fe] (IIX, X = Ge, Si) and investigated 

the effect of heteroatoms on their magnetic properties. These POMs possessed mononuclear FeIII ions 

with distorted six-coordinate octahedral coordination geometries and showed field-induced SMM 

properties. By changing the heteroatoms from Si to Ge in IIX, the coordination geometries of FeIII ions 

were mildly changed; the axial Fe–O bond length of IIGe was shortened compared with that of IISi and 

the distortion from the ideal octahedral coordination geometry of IIGe was larger than that of IISi. 

Changes in the coordination geometries engendered the slightly larger magnetic anisotropy for IIGe, 

likely resulting in the increase in the energy barrier of the magnetization reversal. Although the 

difference in coordination geometries and the magnetic properties of IIGe and IISi were small, the 

small changes of magnetic properties were consistent with that of the theoretical results. 

Multireference calculations provide similar values of the zero-field splitting parameters for both 

compounds, with IIGe presenting moderately larger and more axial parameters. E/D ratio shows to be 

sensitive to the deviation of the coordination environment from the ideal elongated octahedral 

geometry. 
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anisotropy, likely resulting in a small enhancement of the single-molecule magnet properties. 

 

 


