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Abstract 

A systematic study of the performance of several density functional methodologies to study 

spin-crossover (SCO) on first row transition metal complexes is reported.  All functionals 

have been tested against several mononuclear systems containing first row transition metal 

complexes and exhibiting spin-crossover. Among the tested functionals, the hybrid meta-

GGA functional TPSSh with a triple-z basis set including polarization functions on all atoms 

provides with the best results across different metals and oxidation states, and its 

performance in both predicting the correct ground state and the right energy window for 

SCO to occur is quite satisfactory. The effect of some additional contributions, such as zero-

point energies, relativistic effects and intramolecular dispersion interactions, has been 

analyzed. The reported strategy thus expands the use of the TPSSh functional to other metals 

and oxidation states other than FeII, making it the method of choice to study SCO in first 

row transition metal complexes. Additionally, the presented results validate the potential use 

of the TPSSh functional for virtual screening of new molecules with SCO, or its use in the 

study of the electronic structure of such systems. 

 

Keywords: Spin-Crossover, Density Functional Theory, Transition Metal Complexes, 

Transition Temperature 
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1. Introduction 

One of the major outcomes of ligand-field and molecular orbital theories is the fact that a 

transition metal ion surrounded by a given set of ligands in a certain coordination motif must 

split their d-based molecular orbitals into different subsets.1,2 In this context, spin-crossover 

(SCO) molecules represent a family of transition metal complexes in which the metal has 

electronic states with different spins but similar electronic energies, therefore allowing the 

molecule to access two alternative spin-configurations.3  Since they were first reported, 

nearly 85 years ago by Cambi and coworkers,4 spin-crossover molecules have been the focus 

of intense research in chemistry and physics, mostly due to their intrinsic technological 

applications.3,5-12 In fact, SCO molecules are molecular level switches in which is possible 

to manipulate the electronic structure of the metal center by means of an external stimuli. It 

is precisely this behavior what makes SCO systems perfect candidates for molecular memory 

storage systems, nanoscale and spintronic devices.13-20 In fact, over the last years SCO 

molecules have been used in the field of metal-organic frameworks (MOFs) to generate spin-

crossover frameworks (SCOFs), in which the physical properties of the material can be 

selectively controlled by different guest molecules, thus making these materials perfect 

candidates for sensing applications.21-29 More recently it has been shown that SCO molecules 

can be used as junctions in molecular transport devices, and that the conductivity through 

the molecule is strongly affected by the spin state of the metal center, turning the SCO 

molecule into a spin-filter.30-32 

 

Regardless of its obvious technological appeal, the rational design of SCO molecules with 

tailored properties remains an elusive task. Empirical approaches have been proposed 

through the years, from early models based on ligand field parameters,33 to the statistical 

treatment of the available data for FeII bidentate systems,34 which allows to predict the 
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possibility of SCO to occur for such type of molecules. Nevertheless, these models are often 

constrained to specific systems, and lack transferability, and therefore, a first principles 

approach to the design of new SCO systems will be highly desirable. However, theoretical 

modeling of SCO systems can be quite challenging.32 On one hand, the electronic energy 

difference between both spin-states can be accurately computed using post-CASSCF 

methods, such as CASPT2,35-37 or post Hartree-Fock methods such as mutirreferent Coupled 

Cluster type calculations (CC).38 Such calculations have been successfully used in the study 

of selected systems, but they tend to be computationally expensive and system dependent.39-

42 The alternative to this will be the use Density Functional Theory (DFT) methods. 

However, DFT is known to struggle when it comes to describe energy differences arising 

from different spin-state multiplicities with an additional geometry change.43 Processes that 

involve major rearrangement of the occupied orbitals (such as spin-crossover) are very 

sensitive to the description of the exchange correlation energy,44-46 and hybrid functionals 

usually have a bias towards the high-spin state, while pure functionals tend to overestimate 

the energy of the low-spin state.47-49 

 

Major attempts to develop a systematic methodology to study spin-state energies in 

transition metal complexes using DFT methods have been made through the last years. The 

B3LYP* method,48,49 derived from the original B3LYP functional but adjusting the amount 

of Hartree-Fock exchange to 15%, provides with an accurate description of the magnetic 

properties in the [Fe(NHS4)]L family (NHS4 = 2,2’-bis(2-mercaptophenylthio)diethylamino, 

L = CO, NO+, PR3, NH3 and N2H4) and has also been successfully used to study the spin-

transition in the [Fe(phen)2(NCS)2] complex.48,49 The OPTX50 exchange functional with the  

LYP51 and PBE52 correlation functionals has also proved to be a useful tool to study spin-

state energetics in FeII systems. Double hybrid functionals also have been used,53 but their 

computational cost and strong convergence problems in systems with transition metal atoms 
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makes them less appealing as a potential choice to screen for new SCO systems. Finally, 

since 2009, several studies have shown that the hybrid meta-GGA functional TPSSh,54,55 

containing 10% of exact exchange Hartree-Fock, provides with quite accurate energy gaps 

between spin-states for many FeII transition metal complexes, including dinuclear systems, 

allowing also for the calculation of the corresponding transition temperature, in very good 

agreement with the experimental data.56-60 Very recently, it has also been shown that many 

DFT methods can improve their performance towards spin-state energetics in iron systems 

(FeII and FeIII) by mixing between 10 and 17% of Hartree-Fock exchange into the functional, 

but the optimal amount for each individual functional still requires specific 

parameterizations.61 

 

From all of the above, major efforts have been made in modeling spin-crossover processes 

in FeII metal containing systems (see reference 32 and references within), which is of course 

the most common situation for spin-crossover to occur, but not the only one. In fact, SCO 

can also occur for other electron configurations, typically from d4 to d7, and for a given 

number of d electrons, several metals with different oxidation states may be considered. 

Although the hybrid meta-GGA functional TPSSh seems the correct choice when modeling 

spin-crossover processes on FeII systems, no systematic study of the performance of this 

functional towards molecules with other metals and oxidation states with SCO behavior has 

been done. In this study, the TPSSh functional is used to calculate the spin-state energy gap 

in a benchmark set of 20 molecules including CrII, MnIII, MnII, FeIII, FeII, and CoII, with 

electronic configurations ranging from d4 to d7, and its performance is compared with other 

available functionals (B3LYP,62 B3LYP*,48,49 OPBE,50,52 B2PLYP,63 M06,64 M06L,65 

CAM-B3LYP66 and wB97x67) in order to study its applicability in the modeling of spin-

crossover processes for first-row transition metal complexes. 
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2. Methodology 

As indicated above, the spin-crossover phenomenon appears in systems for which states with 

different spin have similar electronic energies. In such cases, entropy favors the high-spin 

state and spin-crossover can appear, with the low-spin state being observed at low 

temperature, and the high-spin state at high temperature.3 From this point of view, SCO can 

be described as a thermodynamic equilibrium between the low-spin (LS) and the high-spin 

(HS) state. 

LS D HS      [1] 

Assuming an ideal system, in which the spin-crossover system is isolated, and due to the fact 

that the pressure-dependent term to the free enthalpy change is usually small, we can write 

the Gibbs energy change (ΔG) for the equilibrium expression of [1] as,68,69 

     [2] 

 
where 

                   [3] 

 is the Gibbs free energy associated with spin state i at a given temperature. In Equation 3, 

the enthalpy term (Hi) includes both electronic ( ) and vibrational ( ) contributions. 

For molecular complexes,  can be properly estimated by using the harmonic 

approximation, while the term , describing the electronic energy of spin state i, can be 

obtained directly from ab initio calculations. The entropy contribution to the free energy (Si) 

can also be estimated using the harmonic approximation. Since at equilibrium DG vanishes, 

the transition temperature (T1/2) can be determined from the changes in enthalpy and entropy 

using Equation 4. 

     [4] 
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The equilibrium condition defined in Equation 2 can also be expressed in terms of the 

equilibrium constant, Keq, which in turn can be written in terms of the molar fraction of each 

spin state, 

  [5] 

 

Equation 5 can be recast so the molar fraction of high-spin state depends on the change in 

the free energy at each temperature as, 

    [6] 

where R is the gas constant and T the temperature. It is worth mentioning that both DH and 

DS have some temperature dependence that can be, in principle, neglected without losing 

accuracy.70,71 

 

From the above expressions, one must observe that the key term in Equation 3 is the 

electronic energy change ( ) contribution to the enthalpy change. This term 

represents the difference on electronic energies between the high-spin and low-spin 

geometries at its equilibrium points, and the choice of ab initio method to calculate this term 

will be the critical point in the correct prediction of the spin-crossover phenomena with DFT 

methods.  

   

Computational details 

All Density Functional Theory calculations have been carried out with Gaussian 09 (revision 

D) using a 10−8 convergence criterion for the density matrix elements.72 The fully optimized 

contracted triple-ζ (TZV) all electron Gaussian basis set developed by Ahlrichs and co-

workers was employed for all the elements, and a quadruple-ζ basis set with polarization 

ΔG(T ) = −RT lnKeq = −RT ln
γHS
γLS

= −RT ln γHS
1−γHS

γHS (T ) = 1+ e
ΔG(T )
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functions (QZVP) was used on the metal center (Basis Set 1, abbreviated BS1).73 For the 

TPSSh and OPBE functionals results, additional calculations with a larger basis set, a triple-

ζ basis set including polarization functions (TZVP) for all atoms, were also done (Basis Set 

2, abbreviated BS2). A systematic study on the effect of increasing the size of the basis set 

on the metal center was done for selected systems (S7, S8 and S12, corresponding to MnII, 

FeII and CoII systems), which shown that there is very little effect of the basis set size on the 

metal center with the energy differences (see Table S1 in SI). Scalar relativistic effects were 

included using the Douglas-Kroll-Hess Hamiltonian (DKH)74-77 on the optimized geometries 

at the TPSSh/BS2 level.  

 

 

Figure 1.  Schematic representation of the 20 studied spin-crossover molecules. (see 

description of the compound in the caption of Table 1). 

 

 

[Co(terpy)2]-!

[Fe(phen)2(NCS)2]-! [Fe{H2B(pz)2}2(bipy)]-! [Fe(tzpy)2(NCS)2]-!

[Cr(I)2(depe)2]-! [Mn(L1tren)]-!

[Mn(Cp1?tBu)2]-!

[Co(terpyrindone)2]2+-!

[Fe(acac)2(trien)]+-! [Fe(acen)(-NC5H3Me2)2]--

[Mn(L2)2]+-!

[Mn(Cp1?3tBu)2]-! [Fe(3?OMe?salen)2]+-!

[Co(papl)2]-! [Co(MeO?terpy)2]2+-!

[Mn(3,5?Br2?sal2323)]+-! -[Mn(Cp1?Me)2]-

[Fe(bpp)3]2+-![Fe(stpy)2(NCS)2]-!

[Co(H2(fsa)2en)(Py)2]-!
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Table 1. Spin-Crossover systems studied in this work. All temperatures are in K.  

 

System Molecule Mn+ dn T1/2 reference 

S1 [Cr(I2)(depe)2] CrII d4 171.0 78 

S2 [Mn(L1tren)] MnIII d4 40.0-50.0 79 

S3 [Mn(3,5-diBr-sal2323)][BF4] MnIII d4 ~175 80 

S4 [Mn(L2)][PF6] MnIII d4 ~131 81 

S5 [Mn(Cp1-Me)2] MnII d5 303 82 

S6 [Mn(Cp1- tBu)2] MnII d5 215.0 83 

S7 [Mn(Cp1,3- tBu)2] MnII d5 300 83 

S8 [Fe(acac)2(trien)][PF6] FeIII d5 200[a] 84 

S9 [Fe(acen)(NC5H3Me2-3,4)2] FeIII d5 190.0-210.0 85 

S10 [Fe(3-OMe-salen)2][PF6] FeIII d5 ~164 86 

S11 [Fe(phen)2(NCS)2] FeII d6 176.5 87 

S12 [Fe(stpy)4(NCS)2] FeII d6 109 88 

S13 [Fe(bpp)3][BF4]2 FeII d6 256[a] 89 

S14 [Fe{H2B(pz)2}2(bipy)] FeII d6 160.0 90 

S15 [Fe(tzpy)2(NCS)2] FeII d6 118.0 91 

S16 [Co(terpy)2] CoII d7 200.0 92 

S17 [Co(H2(fsa)2en)(Py)2] CoII d7 121.0 93 

S18 [Co(terpyrindone)2][ClO4]2 CoII d7 172.4 94 

S19 [Co(papl)2] CoII d7 ~150 95 

S20 [Co(MeO-terpy)2][BF4]2 CoII d7 ~250 96 

 [a] T1/2 as an average value of the reported transition temperatures. 
phen = phenanthroline, amp = bis(2-picolylamine), bpp = (2,6-di(pyrazol-1-yl)pyridine), H2B(pz)2 = 
Dihydrogen bis(pyrazol-1-yl)borate, bipy = bipyridine, tzpy = (3-(2-Pyridyl)(1,2,3)triazolo(1,5-a)pyridine), 
depe = 1,2-bis(diethylphosphino)ethane, L1tren=tris(2-((Pyrrol-2yl)methyleneamino)ethyl)amine, 3,5-diBr-
sal2323 = 2,2'-(2,6,9,13-Tetraazatetradeca-1,13-diene-1,14-diyl)bis(4,6-dibromophenolato), Cp = 
ciclopentadiene, tBuCp = h5-t-Butyl-cyclopentadienyl, terpy = terpyridine, acac = acetylacetonate, trien = 
triethylenetetramine, acen = ethylenebis(acetylacetoneiminato), L2 = (2,2'-(2,6,9,13-Tetraazatetradeca-1,13-
diene-1,14-diyl)diphenol), 3-OMe-salen = (2-(((2-(Ethylamino)ethyl)imino)methyl)-6-methoxyphenolato-
N,N',O), papl = 1-(2-pyridylazo)-2-phenanthrol, MeO-terpy =  4'-methoxy-2,2':6',2''-terpyridine, H2(fsa)2en = 
3-formylsalicylic acid-ethylendiamine, stpy = 4-styrylpyridine. 
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3. Results 

To evaluate the general performance of DFT methods towards accurate calculation of spin-

state energetics in spin-crossover systems, we retrieved a benchmark group of 20 

mononuclear complexes (see Figure 1 and Table 1) that exhibit spin-crossover behavior with 

electron configurations d4 to d7. Such systems were selected using as criteria the fact that 

both, crystallographic and magnetic data (i.e, transition temperature T1/2) was accurately 

determined. The chemical formula, together with the transition temperature and 

experimental information for the data set can be found in Table 1, and a schematic drawing 

of all studied systems is shown in Figure 1.  

 

For all the selected systems, geometry optimizations where performed in both accessible 

spin-states using the B3LYP, B3LYP*, CAM-B3LYP (CB3LYP), OPBE, TPSSh, M06, 

M06L, and wB97xD functionals using BS1 (see Computational details section). The double 

hybrid B2PLYP functional, which already has been used to study SCO systems,53,60,61,97 was 

also initially considered, but its computational cost and initial performance for some selected 

systems made us withdraw it from the test set (see Table S2 on SI).  

 

Among all the tested functionals (see Table 2), TPSSh clearly outperforms the other methods 

given that is the only one that correctly predicts the ground state (low-spin) for all selected 

systems, regardless of the metal, number of d electrons and oxidation state. It is also worth 

mentioning that the OPBE functional seems to perform really well for challenging sandwich 

type systems of general formula [M(CpR)2] (see Tables 1 and S2 on SI). However, it fails 

among the selected d4 and d5 molecules, and also with some of the FeII d6 systems, thus 

making it less universal in terms of studying spin-crossover in transition metal complexes. 

B3LYP* also works fine, particularly when combined with BS1, but similarly, in this case 

also the problem seems to be the MnII d5 complexes and the CrII d4 tested molecules, which 
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again constrains a little bit its use to certain systems. All the other functionals seem to clearly 

over stabilize the high-spin state, thus leading to a situation in which the high-spin state is 

more stable than the low-spin state, and therefore the transition can never occur. 

 

Table 2. Electronic energy differences (high-spin – low-spin) for the 20 systems studied in 

this work using BS1 basis set. A positive value (highlighted in bold) means a correct 

prediction of the ground state. All energies are in kcal/mol. CB3LYP stands for CAM-

B3LYP. 

 

System B3LYP B3LYP* CB3LYP OPBE TPSSh M06 M06L wB97xD 

S1 -9.18 -5.18 -9.00 -5.51 0.61 -12.66 -2.59 -4.31 

S2 -0.24 3.62 -0.08 0.83 7.05 -11.62 -1.91 1.82 

S3 -0.13 3.53 0.14 -0.30 7.51 -12.63 -2.26 1.82 

S4 -1.90 2.04 -1.20 -2.01 6.08 -14.00 -3.77 0.48 

S5 0.72 -9.01 -22.70 10.89 4.75 -7.27 9.89 -1.79 

S6 -7.07 -9.55 -23.14 5.21 9.55 -20.56 -1.97 1.47 

S7 -21.84 -10.99 -24.42 3.90 8.84 -19.12 -1.43 -12.62 

S8 -2.24 4.02 -2.47 -2.16 9.63 -22.84 -10.78 -2.05 

S9 1.46 8.34 1.80 1.82 14.56 -17.80 -5.83 3.50 

S10 -1.39 4.92 -1.12 -1.55 10.80 -19.40 -7.32 0.70 

S11 -3.72 3.29 -4.14 3.41 9.57 -14.62 -2.45 -7.14 

S12 -5.24 1.54 -4.46 -2.42 8.97 -13.25 0.09 -2.37 

S13 3.45 7.03 -2.14 12.67 13.07 -4.04 11.42 6.45 

S14 -0.78 5.69 -1.48 2.07 11.91 -9.69 3.69 1.46 

S15 -3.03 3.67 0.31 1.72 9.49 -17.17 -3.15 -7.22 

S16 1.45 3.28 0.29 12.35 4.64 -0.92 6.20 -1.84 

S17 -1.30 3.17 -2.16 8.39 3.42 1.08 2.35 -1.48 

S18 -2.06 2.64 -3.54 9.61 3.82 -1.59 6.76 -4.62 

S19 -2.41 2.83 -4.55 13.21 4.94 -2.89 5.10 -3.30 

S20 0.70 5.06 -0.65 9.68 7.79 -1.49 4.94 -1.13 
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Figure 2. Energy difference (high-spin – low-spin) for the 20 studied systems using BS1 

against the amount of exact Hartree-Fock mixed into the corresponding exchange-

correlation functional. OPBE and M06L both have 0% of HF exchange. CB3LYP stands for 

CAM-B3LYP. 

 

In Figure 2, the energy differences between both spin states (high-spin – low-spin) have been 

plotted against the amount of exact exchange Hartree-Fock mixed into the corresponding 

functional. From the graphic and the data presented in Table 1, we can see that pure 

functionals such as OPBE and M06L don’t do a bad job when it comes to compute spin-

state energy differences in SCO systems, but their performance is not satisfactory for such 

property (see Table S5 on SI). By mixing some amount of HF into the functionals, the 

performance towards the description of electronic energy differences in spin-crossover 

systems improves. Following this idea, the proposed B3LYP* functional,48,49 that lowers the 

amount of exact exchange Hartree-Fock mixed into the functional to 15% was also tested. 

The functional does a reasonable job, particularly for FeII and CoII systems, and its overall 

performance is similar to OPBE, but seems to be less general than the TPSSh functional 

(10% of HF) in terms of the first transition metal row. However, mixing too much HF into 

the functional can lead to the opposite effect. Above 20% of HF mixing, the stabilization of 

the high-spin state is such that it becomes the ground state for almost all the studied systems, 
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that being the case of the B3LYP and M06 functionals, including 20% and 27% of exact 

exchange Hartree-Fock respectively.  

 

Given the fact that TPSSh seems to be the functional that performs the best among the first 

row of transition metals, we decided to compute the corresponding transition temperatures 

for each system. To do that, vibrational frequencies for all optimized systems using the 

TPSSh functional were calculated. Vibrational frequencies can be accurately calculated, and 

allows us to apply harmonic approximation to thermally correct the thermochemical 

quantities. In particular, DG(T) can be approximated using equation [7], 

 [7] 

where Gi can be computed using the harmonic frequencies (nj) for the spin state i and the 

following expression, 

 [8] 

In [8], kB is the Boltzman constant, Ei the electronic energy of the spin-state i, h the Planck 

constant and T the temperature. By plotting DG(T) vs. T and fitting the data, a good 

approximation of the transition temperature (T1/2) can be obtained. 

 

At this point, we used two different basis sets (see Computational details), trying to balance 

accuracy and computational cost. As can be seen from the data presented in Table 3, the 

combination of the TPSSh functional with the BS2 triple-z basis set with polarization from 

Ahlrichs and co-workers provides a good description of the ground state for the whole set of 

systems. The mean absolute error (MAE) between computed and observed transition 

temperatures using this methodology (TPSSh/BS2) is 3.70 kcal/mol on the overall data set, 

which is an excellent result for such type of calculations. Obviously, this error translates into 

324 K, which makes the TPSSh functional less useful to quantitatively predict transition 

€ 

ΔG(T) =GHS (T,ν j
HS ) −GLS (T,ν j

LS )

€ 

Gi(T,ν j
i ) = E i + kBT ln(1− e−(hν j / kBT ))

j
∑
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temperatures, even though for some systems the accuracy is remarkable (see Table 3). Also, 

although the TPSSh functional has been previously used to study trends in a given family of 

SCO compounds,56-58 we couldn’t find any correlation between the different families 

grouped by number of d electrons and the experimental and computed T1/2. 

 

Table 3. Computed transition temperatures (T1/2) and electronic energy differences (DE 

high-spin – low-spin) with and without zero-point energy correction for the 20 studied 

systems, using the TPSSh functional and both BS1 and BS2 basis sets, together with the 

experimental transition temperature. All energies are in kcal/mol and all temperatures in K. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   BS1  BS2 

System Mn+(dn) T1/2(exp) DE T1/2  DE T1/2 

S1 CrII(d4) 171 0.61 -  6.86 421 

S2 MnIII(d4) ~45 7.05 795  4.22 477 

S3 MnIII(d4) ~175 7.51 619  5.47 436 

S4 MnIII(d4) ~131 6.08 485  4.03 295 

S5 MnII(d5) 303 4.75 121  11.04 579 

S6 MnII(d5) 215 9.55 451  10.54 498 

S7 MnII(d5) 300 8.84 404  9.45 413 

S8 FeIII(d5) 200 9.63 802  9.63 755 

S9 FeIII(d5) ~200 14.56 767  11.43 496 

S10 FeIII(d6) ~164 10.80 638  10.64 579 

S11 FeII(d6) 176.5 9.57 454  6.05 237 

S12 FeII(d6) ~109 8.97 326  5.34 170 

S13 FeII(d6) 256 13.07 610  9.14 419 

S14 FeII(d6) 160 11.91 559  9.34 377 

S15 FeII(d6) 118 9.49 1031  9.68 658 

S16 CoII(d7) 200 4.64 470  2.93 263 

S17 CoII(d7) ~121 3.42 352  2.33 324 

S18 CoII(d7) 172.4 3.82 414  2.10 234 

S19 CoII(d7) ~150 4.94 896  3.75 440 

S20 CoII(d7) ~250 7.79 1175  6.56 896 
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Recently, it has been reported that the inclusion of zero-point energy correction, dispersion, 

and relativistic effects can play a role in the accurate calculation of thermochemical 

quantities in FeII spin-crossover systems.60 Motivated by such results, we have 

systematically studied such effects on the energy differences between spin-states calculated 

with the TPSSh functional (using BS2) employing the vibrational information (already 

employed in Table 3 to compute transition temperatures) to introduce the zero-point energy 

correction, the D3 scheme98,99 for dispersion contributions and finally, the DKH method74-77 

to include relativistic scalar effects. 

As can be seen from the Table 4, zero-point energy corrections systematically reduce the 

energy gap, while relativistic corrections have the opposite effect. Furthermore, electronic 

energy differences after zero-point energy correction for our study set are reported for the 

three funcionals that provides with the better results, this is, TPSSh, OPBE and B3LYP* 

using both basis sets (see Tables S8 and S9). Hence, minimal differences (none for the 

TPSSh functional) in terms of predicting the correct ground state are observed, but in general, 

there is a decrease on the energy difference between both spin-states of around 1.7 kcal/mol. 

Although DH (electronic energy difference + zero-point correction, see Eq. 3) can eventually 

be overcome by the entropic term, the TPSSh functional with BS2 gives us values in the 

range of 2.00 to 8.00 kcal/mol (neglecting the vibrational contribution to DH), an energy 

window that encloses the usual experimental values for DH, and that should be indicative of 

having a spin-crossover system. 

Dispersion corrections have a much broader behavior (see Table 4), and its larger impact is 

reflected in two systems (S7 and S15). The inclusion of D3 correction leads to an 

overestimation of the van der Waals interaction resulting in unrealistic geometries for the 

more compact low-spin states. In general, for MnIII and FeII/FeIII systems, inclusion of all 

such effects together has very little effect in the overall energy difference, leading to similar 

values for the electronic energy differences. However, the CoII systems seems to be more 
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affected, leading to larger energy gaps when all corrections are accounted for, which 

eventually will translate in even larger errors when attempting to compute T1/2. In many 

cases (see Table 4), due to the opposite sign of the correction, the inclusion of the three terms 

leads to similar results than the non-corrected value. 

 

Table 4. Electronic energy differences (DE high-spin – low-spin), zero-point energy 

correction (ZPE), Dispersion correction (D3) and relativistic correction (DKH) as well as 

the overall corrected energy gap (DEC) for the 20 studied systems, using the TPSSh 

functional and BS2 basis set. All energies are in kcal/mol. 

 

System Mn+(dn) DE ZPE D3 DKH DEC 

S1 CrII(d4) 6.86 -0.97 1.48 2.75 10.12 

S2 MnIII(d4) 4.22 -1.11 0.13 0.92 4.16 

S3 MnIII(d4) 5.47 -1.91 -0.17 0.95 4.34 

S4 MnIII(d4) 4.03 -1.92 0.24 0.98 3.33 

S5 MnII(d5) 11.04 -2.12 0.28 2.42 11.62 

S6 MnII(d5) 10.54 -2.10 -0.29 2.43 10.56 

S7 MnII(d5) 9.45 -2.37 -13.09* 2.34 -3.67 

S8 FeIII(d5) 9.63 -2.36 -0.11 0.92 8.08 

S9 FeIII(d5) 11.43 -2.64 2.00 1.13 11.92 

S10 FeIII(d6) 10.64 -2.56 1.69 1.17 10.94 

S11 FeII(d6) 6.05 -2.65 0.40 2.43 6.23 

S12 FeII(d6) 5.34 -3.34 3.16 2.55 7.71 

S13 FeII(d6) 9.14 -2.11 2.26 2.72 12.01 

S14 FeII(d6) 9.34 -2.80 1.99 2.13 10.66 

S15 FeII(d6) 9.68 -1.63 -6.83* 2.29 3.51 

S16 CoII(d7) 2.93 -0.64 1.67 1.42 5.38 

S17 CoII(d7) 2.33 -0.86 1.46 1.36 4.29 

S18 CoII(d7) 2.10 -0.45 1.71 1.38 4.74 

S19 CoII(d7) 3.75 -1.16 0.84 1.43 4.86 

S20 CoII(d7) 6.56 -0.62 1.64 1.29 8.87 
*D3 Dispersion term leads to unrealistic structures 
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4. Discussion 

The use of Density Functional methods to compute any property involving more than one 

electronic state is, by definition, a complicated problem. By combining Equations 2 and 3, 

we can express the free energy change as, 

DG = DEelec + DHvib –T·DS  [9] 

in which the energy difference between the two electronic states is explicitly written. Getting 

a good approximation for this quantity is key in the proper modeling of the thermochemical 

quantities associated with the spin-transition. The accurate calculation of this energy 

difference remains a challenge for DFT methods. While DFT has widely succeeded in the 

calculation of other physical properties, such as exchange coupling constants,100 the 

calculation of energy gaps between electronic states remains a difficult task. The TPSSh 

functional has been widely used in the field of SCO systems, but basically focused on FeII 

systems,29,56-59 while its application to other SCO systems of the first transition metal 

remained undisclosed. In the presented work, we benchmarked eight different functionals 

against spin-crossover molecules containing first row transition metals. The results clearly 

show that the combination of the TPSSh functional with a triple-z basis set with polarization 

functions is, in general, a correct strategy to describe such systems, given that it correctly 

predicts the ground state for the whole dataset, and the predicted energy gap is in the correct 

range for spin-crossover to occur for most of cases (see Table 3). The accuracy of the method 

is quite good in terms of electronic energy differences, but even with a tiny error, this 

translates, sometimes, in large differences when attempting to compute transition 

temperatures (see Table 3).  

 

In any case, the vibrational correction of the electronic energies allows for a reasonable 

modeling of the T1/2, allowing for the study of chemical modifications on the molecule over 
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this physical property. Moreover, this method based on TPSSh functional allows for a 

rational design of new spin-crossover systems, and given that the functional seems usually 

to provide with the right range of energies for SCO to occur, the presented strategy can be 

used in the virtual screening of new targets exhibiting spin crossover. These results are in 

agreement with previously analysis of similar type, but expand the range of energies for SCO 

to occur to a higher value.53 Remarkably, the functional seems to perform properly for 

mononuclear transition metal complexes with electron configurations d4 to d7, including 

different oxidation states for the metal center, making it a proper choice when studying first 

row SCO systems with density functional methods. The inclusion of zero-point energy, 

dispersion and scalar relativistic correction has very little impact in most of the studied 

systems. Only two exceptions were found due to the problems in the geometry optimization 

including D3 dispersion corrections: (i) in the challenging manganocene family, only 

OPBE101 and TPSSh functionals provide reasonable results, but for the more substituted 

system (S7, [Mn(Cp1,3-tBu)2]) an unrealistic low-spin structure is obtained with the metal 

shifted due to the ligand interaction of the two Cp rings; (ii) for the [Fe(tpzy)2(SCN)2] 

complex, the high-spin state shows a strong distortion of the SCN ligands towards the 

equatorial aromatic rings. In terms of exact exchange mixing, our results seem to indicate 

that 10% mixing Hartree-Fock is an optimal amount for the hybrid meta-GGA functional to 

describe SCO systems, although a specific parameterization of this value cannot be ruled 

out. For B3LYP, it is clear than lowering the amount of exact exchange to 15% (B3LYP*) 

greatly improves its performance towards SCO systems, although an increase in the quality 

of the basis set leads to really small energy differences between both spin-states (see Table 

S1 in SI). 

We want to emphasize at this point that computing transition temperatures is a challenging 

problem, and although the TPSSh functional can be used to model such quantity and its 

dependence with the chemical environment around the metal center with great accuracy, 
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such methodology is an approximation that neglects cooperativity effects that can occur in 

the condensed phase, and it has been shown that inclusion of such effects due to crystal 

packing can have a significant effect when computing physical properties in SCO systems. 

It has been shown, for instance, that different counterions (or solvents) in the unit cell may 

convert a pure low-spin complex into a spin-crossover molecule, or even a high-spin 

system.102-104 Much in the same way, if measurements are done in solution, a proper 

solvation model should be used in order to model such effects in the computed electronic 

energy differences. However, modeling such effects requires of different computational 

approaches, which falls out of the scope of this work. 

 

5. Conclusions 

In this work, a systematic use of different Density Functional Theory methods was tested 

against a benchmark set of first row transition metal complexes exhibiting spin-crossover. 

From our calculations, it is clearly shown that the hybrid meta-GGA functional TPSSh 

combined with triple-z quality basis set with polarization functions is able to correctly model 

the energy difference between both spin-states for a wide range of metals and oxidation 

states, ranging from electron configurations d4 to d7 (CrII, MnIII, MnII, FeIII, FeII, and CoII). 

Therefore, we propose this density functional method based on TPSSh functional as the 

current optimal approach to study spin-crossover systems. Moreover, this functional can be 

used for virtual screening of new first-row transition metal complexes with potential spin-

crossover behavior. The inclusion of the zero-point energy correction results in a 

stabilization of the high-spin state of 1-3 kcal/mol. The computed energy range of electronic 

energy differences between both spin-states, in the range below 10 kcal/mol, should be 

indicative of SCO behavior. Therefore, systems with energy gaps in that range will be good 

candidates to exhibit such behavior. Of course, dispersion, zero-point energy and relativistic 

corrections can have an important contribution in some particular systems, but in general do 
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not play a major role due to their opposite effects, at least in our dataset. Because of its 

precision in computing electronic energy differences in transition metal complexes, the 

electronic energies at DFT level obtained with the TPSSh functional can be corrected using 

the harmonic frequencies to get the thermal dependency of the thermochemical parameters, 

and therefore, provide with an estimation of the corresponding transition temperature for 

such systems. In general, the studied methodology provides with transition temperatures that 

can be qualitatively compared with the experimental values. Therefore, this theoretical tool 

can be employed to study the effect of chemical modifications in a family of SCO 

compounds, but its quantitative performance is not accurate enough. 

 

Supporting Information 

The energies for all optimized systems with all tested functionals are provided in the SI. For 

the TPSSh functional, energies, energies with dispersion correction and Cartesian 

coordinates are provided in SI. Computed transition temperatures with the OPBE functional 

and comparison with the ones computed with the TPSSh functional can be found in the SI. 

Basis set effect on the energy differences and results for the B3LYP functional are also 

reported in the SI.  
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Energy difference between high- and low-spin states is a challenging magnitude for 

computational methods. Different DFT flavors have been used to characterize a test set of 

spin crossover complexes with CrII, MnIII, MnII, FeIII, FeII, and CoII centers and electronic 

configurations ranging from d4 to d7. The best results are obtained by using the hybrid meta-

GGA functional TPSSh. 


