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Abstract

Nowadays the composition and formation of effective teams is highly important for both

companies to assure their competitiveness and for a wide range of emerging applications exploiting

multiagent collaboration (e.g. crowdsourcing, human-agent collaborations). The aim of this

article is to provide an integrative perspective on team composition, team formation and their

relationship with team performance. Thus, we review the contributions in both the computer

science literature and the organisational psychology literature dealing with these topics. Our

purpose is twofold. First, we aim at identifying the strengths and weaknesses of the contributions

made by these two diverse bodies of research. Second, we aim at identifying cross-fertilisation

opportunities that help both disciplines benefit from one another. Given the volume of existing

literature, our review is not intended to be exhaustive. Instead, we have preferred to focus on the

most significant contributions in both fields together with recent contributions that break new

ground to spur innovative research.

1 Introduction

The latter part of the 20th and the beginning of the 21st centuries have witnessed a significant

transformation from work organized around individual jobs to team-based work structures

together with a focus on organisational efficiency (Kozlowski and Bell, 2013). This is due to the

increasing complexity of tasks, which in many cases cannot be performed by single individuals

(Ramezan, 2011). Additionally, changes in technology facilitate workers in distinct locations to

communicate and collaborate at low or no cost. On that account, team composition and formation

research is of interest to many fields of science, primarily to organisational psychology. Moreover, it

has also substantially pervaded the field of computer science, mainly within the area of multiagent

systems (MAS). In this paper, our understanding of team composition and formation differentiates

from the definitions provided by the multiagent field. ‘Team Formation” is a term that has been

used by other authors in multiagent to describe the process which in this article is referred to as

“Team Composition.” We define team composition as the process of deciding which agents will

be part of a team. We understand team formation as the process undertaken by agents to learn

to work together in a team, and through this learning decide the roles and internal organisation

of the team.

Team research in MAS has considered a variety of application domains (e.g. Unmanned Aerial

Vehicle (UAV) operations (Haque et al., 2013), teamwork in social networks (Lappas et al.,
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2009) or RoboCup rescue teams (Ramchurn et al., 2010)) wherein agents face the challenge of

performing tasks that are either too complex for one single agent or limited in time, thus requiring

several agents to collaborate.

Nevertheless, research on team composition and team formation in computer science (CS) and

organisational psychology (OP) has evolved separately. On the one hand, MAS literature has

typically disregarded significant OP findings, with the exception of several recent, preliminary

attempts (such as Farhangian et al. (2015b); Hanna and Richards (2015); Andrejczuk et al.

(2016, 2017)). Thus, this body of research has focused on algorithms that help automate

team formation and composition. On the other hand, the OP literature has mainly focused on

empirically investigating the factors that influence team performance to develop heuristics that

help organisations handcraft their teams. OP has disregarded the algorithmic results developed by

computer scientists to automate team composition and formation. Despite the common research

interests shared by MAS and OP, to the best of our knowledge there has been no effort in the

literature to bridge the knowledge produced by both research disciplines.

Against this background, the aim of this article is to survey both disciplines, to analyse and

compare the strengths and weaknesses of their contributions, and to identify research gaps and

opportunities by bringing together the knowledge of the two research strands on team composition

and formation. Our analysis also pursues to identify cross-fertilisation opportunities that help

both disciplines benefit from one another.

In order to structure our analysis, we have identified several dimensions that help us dissect

the contributions from both research fields:

1. WHO is concerned? The properties of the agents involved.

2. WHAT is the problem? The features of the task to complete by a team.

3. WHY do we do it? The objective function to optimise when composing/forming a team.

4. HOW do we do it? The organisation and/or coordination structure adopted by the team in

charge of performing a particular task.

5. WHEN do we do it? The dynamics of the stream of tasks to be completed by agent teams.

6. WHERE do we do it? The context wherein team composition/formation occurs.

Our analysis of the literature indicates that Computer Science (CS) and Organisational

Psychology (OP) exhibit some similarities. Indeed, one of the crucial findings in both OP and

CS is that team members have to be heterogeneous to maximize team performance. When

modeling agents, CS and OP agree on considering two main approaches: either there is complete

information about the properties of each agent; or agents are capable of learning about their

teammates through repeated interactions. Regarding tasks, both OP and CS research largely

focus on finding team members whose properties make them capable of performing a given task

based on its requirements. In other words, they are both concerned with matching agents (or

whole teams) with tasks.

However, there are important differences between the contributions made by OP and CS that

stem from the fact that OP does consider the whole complexity of: humans as team members,

tasks, the context where teams perform tasks (understood as the internal and external factors

influencing teamwork), and the dynamics of the actual-world scenarios where tasks appear to be

serviced. Thus, OP assumes that human capabilities are necessarily dynamic (evolve along time)

so that teams can successfully perform tasks in dynamic real-world scenarios and in a variety

of contexts. Furthermore, OP observes that the quality of human resources (e.g. motivation,

satisfaction, commitment), the ability of individuals to learn new capabilities, and the context

constraining team performance significantly influence team performance. Finally, OP research

also focused on identifying correlations between task types and team types to compose the best

team depending on the type of each particular task. All these findings contributed by OP research

offer interesting opportunities for cross-fertilisation.
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The rest of the paper is organised as follows. Section 2 introduces some fundamental

terminology to make clear what we mean by team composition, team formation and teamwork.

Thereafter, the paper is organized around two main sections. Section 3 reviews the MAS

contributions to team composition and team formation. Next, section 4 surveys the contributions

in the organisational psychology literature. Finally, section 5 identifies the main similarities and

differences between the two bodies of research. Furthermore, it also discusses cross-fertilisation

opportunities between both fields that may spur future research.

2 Background

We introduce the fundamental terminology used in this survey. We refer to:

1. Team Composition as the process of deciding which agents will be part of a team,

2. Team Formation as the process of learning by agents to work together in a team and through

this learning decide the roles and internal organisation of a team,

3. Teamwork as the process of performing a task by a composed and formed team.

While there is a common understanding of teamwork within both OP and CS, the scientists

do not agree on the notion of team formation. In computer science it is mostly understood as the

process of deciding which agents will be a part of a team (here called team composition). Our

definition of team formation is in line with the organisational psychology literature (Kozlowski

and Bell, 2013, p.16).

Another discrepancy between the computer science and the organisational psychology liter-

ature is the notion of skill and competence. Typically in computer science all kinds of agents’

competences are called skills, while in OP the definition is more complex. In OP a prominent

conceptualization of competence was given by Roe (Roe, 2002, p.195). He defines competence as

“a learned ability to adequately perform a task, duty or role”. Following his definition competences

“integrate knowledge, skills, personal values, and attitudes and are build on knowledge and skills

and are acquired through work experience and learning by doing” (Bartram and Roe, 2005).

Hence, competences include abilities and behaviours, as well as knowledge that is fundamental

to the use of a skill. An example may consist of a programming task. In order to effectively write

a script one needs good logical and analytical competences as well as the skill to write a program

in a specific language. Hence, Java is a skill. Although, underlying the ability to use that skill

effectively is a competence.

3 Team composition and formation from a computer science perspective

Team composition and formation are critical issues for co-operative multiagent systems. In this

section we survey the most recent and representative approaches in the MAS literature to the

team composition and formation problems along the dimensions identified in the introduction

above.

3.1 WHO is concerned?

The question behind team composition and formation is how to create a multiagent system as a

group of heterogeneous agents (such as humans, robots, software agents or even animals) and how

to organize their activities. Team members must observe the environment and interact with one

another in order to perform tasks or solve problems that are beyond their individual capabilities.

The algorithms to create these teams take inspiration from human teamwork. We observe people

working together on daily activities as well as on research and business projects. For instance,

there are sport teams (e.g. football, basketball), police squads, search and rescue teams formed

by dogs and humans, and we start to witness human-robot cooperation in houses, hospitals, or

even in space missions (Hoffman and Breazeal, 2004).
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In general, MAS research focuses on the interaction among intelligent agents. In the team

formation literature, the focus is on the interaction of cooperative and heterogeneous agents.

That is, agents who share a common goal, and have different individual properties. Therefore,

in this section, we would like to account for the different ways previous research has dealt with

these questions. We will classify individual properties according to two dimensions:

1. Capacity: individual and social capabilities of agents; and

2. Personality: individual behaviour models.

3.1.1 Capacity: individual and social capabilities of agents
In many domains, a capability is defined as a particular skill required to perform an action. The

capacity dimension has been exploited by numerous previous works, like Robust Team Formation

(Crawford et al., 2016; Okimoto et al., 2015) or Online Team Formation (Anagnostopoulos et al.,

2012). In these works, agents are assumed to have multiple binary skills (i.e., the agent either

has a required skill or not). This is a simplistic way to model an agent’s capabilities since it

ignores any skill degree. In real life, capabilities are not binary since every individual (e.g. human

or robot) shows different action performance. This is why some works propose a more realistic

approach by defining graded agent capabilities, for instance by defining skill levels (Chalkiadakis

and Boutilier, 2012).

On a different vein, Rangapuram et al. (2015) builds a weighted, undirected graph where the

weight between each pair of agents reflects their degree of compatibility to jointly solve tasks.

These weights are updated along multiple encounters between agents. On a somehow related

vein, Peleteiro et al. (2015) try to capture the quality of the solutions of team tasks via a model

that besides using skills and compatibility between agents (called the strength of collaboration

synergies within coalitions), calculates the reputation of teams (coalitions) as a whole and of

single agents. These reputation values are used by the team composition process.

Typically, the capabilities of agents are assumed to be known, though there exist models that

consider that an agent can learn the capability levels of other agents. For instance, Liemhetcharat

and Veloso (2014) had the insight that repeated interactions allow to discover the capabilities

of other agents. Agents learn a model of synergy via repeated interactions. Such synergy values

are then used by individual agents to learn the capabilities of others, and hence to subsequently

compose teams with improved performance. However, in open environments (that is, when new

agents and tasks are dynamically introduced), agents need more sophisticated procedures to

decide which team to join. For instance, Chen et al. (2015) propose an ad-hoc team formation

framework that considers learning other agents’ capabilities in the context of unknown tasks.

In order to solve a new task, agents would prefer to team up with unknown agents instead of

with agents whose known capabilities do not adjust to the task. They observe that learning the

capabilities of others in the context of agent and task openness improves team composition and

task resolution.

3.1.2 Personality: Individual behaviour models
Personality is key to understand people’s behaviour, cognition and emotion. The use of personality

models in agents helps to create more realistic complex scenarios. Indeed, autonomy is related to

how individuals behave and what makes them behave differently, even when facing the very same

situation. Personality provides a mechanism for behaviour selection that is independent of social

background (such as beliefs or morality). Very few MAS contributions considered the notion

of personality, i.e. individual behaviour model, to compose heterogeneous teams. For instance,

Hanna and Richards (2015) study the influence of two agent personality traits: extraversion and

agreeableness, both expressed as verbal and non-verbal communication skills. They construct

pairs of human users and Intelligent Virtual Agents (IVAs) and analyse how the personality

traits influence the development and maintenance of a Shared Mental Model (SMM). The results

confirm the importance of providing IVAs with these personality traits to succeed in jointly solving
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tasks. On a different vein, Andrejczuk et al. (2016) use personality traits to partition a group of

humans into psychologically-balanced and gender-balanced heterogeneous teams with the purpose

of increasing the overall performance of the resulting teams. In the other paper, Andrejczuk et al.

(2017) use personality as well as competences to partition agents into competent, personality

and gender balanced teams. The personality traits are measured by the Post-Jungian Personality

Theory, which is a modified version of the Myers-Briggs Type Indicator (MBTI) (Myers et al.,

1998; Wilde, 2013).

Marcolino et al. (Marcolino et al., 2013; Nagarajan et al., 2015; Marcolino et al., 2016) propose

a new approach for action selection. A task is a sequence of actions to be decided at execution

time. To choose which action to execute next, every heterogeneous agent within a team votes for

its preferred candidate action. Agents vote according to a probability distribution over actions

that varies for each agent. This can be understood as a way of modeling an agent’s personality,

motivations and beliefs (causing him to behave in a certain way).

In a series of papers, Farhangian et al. (2015b,a) use the MBTI scheme to model different

agent personality types. Farhangian et al. (2015a) use both individuals’ skills and personality

types (measured by MBTI and Belbin (Belbin, 1993) personality tests) to compose teams. These

two dimensions are used to simulate human team composition in a business environment.

Another aspect covered by the existing literature is the individual agent knowledge about

the other team members’ personalities, that is, about their behaviour models. These works go

beyond many “ad-hoc” team composition systems where information details about the behaviour

of individual agents is absent. Barrett et al. (2013) focus on how a new member in a team behaves

in order to cooperate well with the other team members whose behaviors are unknown. Each agent

is endowed with a learning mechanism for building models of the behaviours of many distinct types

of other agents via repeated interactions. A similar setting is presented by Agmon et al. (2014),

though they consider that there are only two types of agents: a best response agent (choosing

his action based on the current state of the world), and an ad-hoc agent (has a better awareness

of the teams possible actions and the resulting joint utility). There is no a-priori model, hence,

similarly to Barrett et al. (2013), an ad-hoc agent needs to decide his behaviour by observing his

peers.

Analysis. In summary, team composition and formation research has focused so far on

cooperative, heterogeneous agents that have a set of properties. These properties can be

categorized into two groups: capacity and personality. To our knowledge, besides Farhangian

et al. (2015a), there has been no further attempts to combine capabilities and personality for team

composition and formation in the area of MAS. Besides that, we observe that the capabilities of

agents are always static, but the behaviour model may change with agents’ interactions. While

the capabilities of humans change over time, the MAS literature typically does not consider

dynamic capabilities for software agents. Finally, when modeling agents’ properties, many existing

approaches typically assume extensive a-priori information about teammates. This is a strong

limitation for real-life settings. Notice that in many companies there is no central and extensive

knowledge about all employees’ capabilities.

3.2 WHAT is the problem? The notion of task

In its most general sense, a task is a course of action to achieve a goal. The execution of a

task is then usually equated to the execution of an action plan. Action plans can be rather

complex as they may take into account concurrency of actions, time constraints, action order,

or environment uncertainty. However, in the team formation literature it is often the case that

simplifying assumptions are made and tasks are assumed to be solved by simple action plans. For

instance, an action plan can be seen as a set of actions, or even as a set of competences. In this

latter case the idea behind is that the task can be successfully solved by a team of individuals
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with expertise in a number of different fields. In this section, we review which concepts of task

have been proposed in team formation and team composition. We identify two main approaches:

• Individual-based, i.e. capacity or personality (see section 3.1);

• Plan-based, e.g. the set of actions or subtasks.

Next we discuss each approach in detail.

3.2.1 Individual-based approaches
Sometimes teams work less effectively than initially expected due to several reasons: a bad balance

of their capacities, bad personal relations, or difficult social situations. Hence, in order to make

sure a task is performed the most effectively, the large body of literature defines the action plan

of the task as a set of requirements for agent individual characteristics. It is assumed that the

task can be fulfilled if the task requirements are a subset of the capabilities of team members. We

categorise existing work on team composition with the purpose to solve a task into two categories

of individual properties: capacity and personality.

Capacity. The capabilities of team members are crucial while performing a task. For instance,

it is obvious that in order to develop an online Java application, the collective team knowledge

has to include Java, Java EE, front-end tools, and database and server knowledge. In the MAS

literature (as discussed in Subsection 3.1.1), the majority of research work expresses capabilities

as binary (they are present or they are not) (Anagnostopoulos et al., 2012; Chen et al., 2015;

Crawford et al., 2016; Okimoto et al., 2015). The main shortcoming of the binary approach is the

restrictive assumption that if an agent has a capability, his expertise level is sufficient to perform

a given task, which implies that the quality of the task performed is not relevant.

In many cases, the definition of a task is indirectly connected to the agents’ capabilities.

Peleteiro et al. (2015) propose a model where a task is defined as a tuple that contains the

specification of the task (i.e. its subtasks) and the deadline by which the task has to be completed.

Each subtask is then matched with one capability. A contract net algorithm is used to compose

a team of agents that covers all the required capabilities while maximizing the reputation of

the team, thus leading to the best expected performance. In Chalkiadakis and Boutilier (2012),

a project is defined as a set of tasks, where each task has a complexity level (e.g. moderate

or ambitious). Agents’ capabilities are graded (e.g. a good carpenter). Tasks are matched with

agents’ capabilities. The probability of an agent succeeding at performing a task depends on the

capability degree of the agent performing the task and the complexity level of the task. These

probabilities are learned through repeated interactions between agents, and then used by them

to self-organise as teams. Finally, in Roles and Teams Hedonic Games (RTHG) (Spradling et al.,

2013) each agent expresses his preferences over both his own roles within a team and on the set of

roles needed in the team. This way, agents themselves jointly select a set of required capabilities

to perform a given task.

Personality Similarly, personalities of team members are crucial for performing tasks. Accord-

ing to Wilde (2009), different types of tasks require different personalities in a team. In detail,

people with different personalities approach tasks in a diverse way, resulting in better and faster

solutions. Along this line, Andrejczuk et al. (2016) propose a team composition algorithm that

groups agents into different teams so that the personalities in each team are as disparate as

possible and gender is balanced.

In (Farhangian et al., 2015b), the nature (structure) of a task is quantitatively characterized:

from extremely structured to extremely open-ended. While structured tasks are straightforward

and do not require planning, open-ended tasks require creativity and imagination from team

members. In another article, Farhangian et al. (2015a) try to capture the dynamics of tasks by

matching the required levels of creativity, urgency, social interaction and complexity of a task to
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personalities of agents. For instance, teams composed of differing attitude tendencies (associated

with different personalities) are believed to outperform teams composed of like-minded people

when tackling tasks requiring a high level of creativity.

Finally, Hanna and Richards (2015) show that when performing a task, the personality of

team members influences their success. They analyse the influence of an Intelligent Virtual Agent

(IVA) communication style (expressing its personality) on human-IVA cooperation. The task is

a collaborative game that involves dodging a sequence of obstacles to reach a target.

3.2.2 Plan-based approaches
The notion of task in plan-based approaches is normally understood either as a set of actions or

as a sequence of actions. Well organized teamwork can shorten the time required for completing

a particular task by distributing a set of actions across team members. Both Barrett et al. (2013)

and Agmon et al. (2014) employ an indirect planning method driven by the most informed

agents to solve a set of actions. Barrett et al. (2013) introduce an ad-hoc team agent that learns

its teammates’ models (i.e. their predictable action selection) and chooses its own actions so that

they collectively maximize the likelihood of success. In detail, they use Monte Carlo sampling

to simulate the long term effects of collective actions. As an extension to the previous work, in

Agmon et al. (2014) the actions selected by ad-hoc agents influence the actions that the other

team members will choose. Each agent has a set of possible actions that it may choose in order to

solve each subtask. The ad-hoc agents need to predict the actions of its teammates (conditioned in

this case to its own actions) and behave based on these predictions with the purpose of influencing

the collective selection of actions in the team to reach a joint optimal solution.

Among the approaches considering a task as a sequence of actions, in Marcolino et al. (2013) a

team of agents jointly playing the computer game Go plan which action to take next by voting on

the possible alternatives from a discrete set of possible actions. Authors prove that under certain

conditions of opinion diversity, aggregating the decisions of a team of heterogeneous agents is a

better planning strategy than the decision of a team built with copies of the most competent

agent (called the strongest agent). This shows that diversity improves the planning capacity of

a team solving a complex task like Go. In Marcolino et al. (2016), the authors use the same

technique to suggest a user a number of optimal solutions for their next action decision. The

application domain of their algorithm is house design. Various design alternatives are proposed

to the user in order to select one for further study.

Similarly, in Moon et al. (2005) the plan is created by team members during a game. The

domain used for this study is an on-line multi-player computer game called America’s Army,

which is a first-person shooting (FPS) game. The game is the duel of two teams, usually an

assault team and a defense team. A team consists of one to fourteen players. Every game starts

with a new set of players that need to coordinate their activities during the game in order to win.

Players are allowed to communicate in a team chat. A team wins the game either by killing all

of its opposing players, or by accomplishing the goal for that mission (for instance, securing an

oil pipeline or crossing a bridge).

Finally, Rochlin et al. (2016) deal with self-interested agents in a team that select one agent

to accomplish the task of purchasing a jointly desired item with the lowest possible cost. By

doing so, the team assigns the execution of the plan to a single member of the team, becoming

the buyer. The buyer’s strategy decides whether to maintain the search looking for better deals

(search for a further action), or stop looking and buy at the lowest price found so far, bearing

the incurred buyer’s overhead. This strategy balances the expectation of finding a better price

(considering the price distribution built during the search) and the team policy to reimburse the

cost of the task solution finding to the buyer.

Analysis. In conclusion, tasks are solved by the execution of action plans. How complex these

action plans are depends on the focus of the reviewed contributions. Individual-based approaches
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understand action plans as sets of requirements on a team members’ capacity and personality.

These approaches assume that the joint capabilities of agents in a team must be enough to solve

a given task. Contrarily, plan-based approaches regard tasks as sets of actions or sequences

of actions that are assigned to the individual members of a team. All these works propose

algorithms that determine which action will be executed and by whom. However, plan-based

approaches have a very simplistic notion of plan. The majority of models do not consider time

constraints, action dependencies, action failure, plan robustness, or dynamic changes in a task

requirements. Therefore, the vast literature on planning has not yet been integrated into team

formation methods.

3.3 WHY do we do it? The objective(s)

The motivation of individual efforts or actions is to attain or accomplish a certain state of affairs:

its goal. A necessary condition for a team to exist is that all team members are committed to

a joint goal. Therefore, in Computer Science an agent team is typically built of at least two

cooperative agents that share a common goal; by teaming up, these goals can be achieved in a

more effective way. This is the main motivation of team composition and formation. A large body

of literature proposes team composition algorithms to attain at least one of the following team

objectives:

1. minimizing overall cost (e.g. cooperation cost, team cost);

2. maximizing social utility; or

3. maximizing the quality of an outcome.

In this section we describe the literature on team composition per objective.

3.3.1 Minimizing overall cost
Team cost efficiency has received some attention in the literature. There are various costs

associated with team composition and formation problems (e.g. communication costs or agent

service costs). For instance, some results balancing cost and quality were obtained by Kargar

et al. (2012). They propose algorithms for composing a competent team in a social network.

When composing a team, those algorithms minimize team members’ costs and communication

costs within the team. Kargar et al. (2012) require that agents have the necessary competences

to perform a task, but do not require any specific motivation from them.

A similar approach is presented in Crawford et al. (2016) and Okimoto et al. (2015). These

works propose a model for robust team composition and go a step further with respect to Kargar

et al. (2012) since they minimize the overall cost among k-robust teams (see Section 3.4.1 for a

definition of a k-robust team). That is, this model assumes that up to k agents within a team

may eventually fail without affecting the achievement of the task. Thus, it assumes more realistic

conditions than Kargar et al. (2012). However, likewise Kargar et al. (2012), agents’ motivations

to work together in a team are not considered. Finally, Anagnostopoulos et al. (2012) propose

approximation algorithms to compose teams minimizing simultaneously low coordination costs

and agent workload.

3.3.2 Maximizing social welfare
A second objective considered in the team composition and formation literature is maximizing

social welfare. That is, maximizing the utility function of a team, as a whole, while performing a

task. The utility obtained is then allocated to the individual members of the team. For instance,

Chalkiadakis and Boutilier (2012) propose a Bayesian Reinforcement Learning framework where

agents learn from iterated coalition compositions. Agents can choose between exploration (select

coalitions to learn more about new agent types) and exploitation (rely on known agents).

Exploitation enables agents to maximize their utility function by performing tasks with reliable

agents (discovered during the exploration phase).
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Paradoxically, the agent motivation to maximize its individual welfare may reduce the overall

team cost and additionally increase the overall quality of the performed task. For instance, in

Rokicki et al. (2015) a human team competition mechanism improves cost efficiency and the

quality of a solution in a team-based crowdsourcing scenario. In conventional crowdsourcing

reward schemes, the payment of online workers is proportional to the number of accomplished

tasks (pay-per-task). Rokicki et al. examine the possibility of getting much higher rewards by

introducing strategies (e.g. random or self-organised) for team composition. Their mechanism

triggers the competition among human teams as the reward is only given to the top-5 performing

teams or individuals. Their evaluation shows substantial performance boosts (30% in the best

scenario) for team-based settings without decreasing the quality of the outcome.

The objective of maximizing social welfare is also considered in many ad-hoc settings, like

the one proposed by Agmon et al. (2014). Agmon et al. consider a framework with two types of

agents: best-response and ad-hoc agents forming teams. On the one hand, best-response agents

have limited knowledge and assume that the environment and their teammates will behave as

observed in the past. On the other hand, ad-hoc agents have a more complete view of a team

actions, agents’ joint utilities and their action costs. Using such information, ad-hoc agents try

to influence joint decisions. In Agmon et al. (2014) the authors consider that ad-hoc agents know

with uncertainty their teammates’ behaviour. The paper analyses the impact on optimal solutions

of ad-hoc agents misidentifying their teammates’ types.

The study of self-interested agents that co-operate in a team has also attracted the interest

of researchers in MAS. An interesting example of this approach is presented in Farhangian et al.

(2015b), where self-interested agents need to maximize the welfare of all team members in order

to maximize their own benefit. Hence, they indirectly aim at maximizing the utility of the team.

Similarly, in Chen et al. (2015) agents repetitively decide which team to join by balancing both

rewards from completing tasks and learning opportunities from more qualified agents. That

is, each agent consider whether to sacrifice short-term rewards to acquire new knowledge that

benefits himself and the whole community in the long run.

3.3.3 Maximizing quality

The last range of models propose a number of methods where agents try to maximize the quality

of solutions whilst minimising the time to achieve them, namely to maximize team performance.

Recent organisational psychology studies show that team members’ diversity is a key factor

to increase team performance Wilde (2009). As mentioned in Section 3.1 Marcolino et al. (2013)

present a setting where agents in a team vote together to decide on the next joint action to execute

that maximises the team’s solution quality. The authors prove that a diverse team can overcome

a stronger team (i.e. a team built of copies of the strongest agent) if at least one agent has a

higher probability of taking the best action in at least one world state than the probability that

the best agent has of taking that action in that state. The attempt of capturing heterogeneity is

also used by Andrejczuk et al. (2017). There, instead of looking for a single heterogeneous team,

Andrejczuk et al. partition a group of agents into psychologically-balanced, gender-balanced and

competent heterogeneous teams with the purpose of increasing the overall performance of the

resulting teams.

Hanna and Richards (2015) also use personality to investigate the influence of Intelligent

Virtual Agents (IVA) on team collaboration. Their findings reveal that team performance boosts

when the human and the IVA in a team have a shared mental model. Building a shared mental

model is directly related to the psychological traits of IVA.

Carley et al. (2005) found that the most favorable size of a team is ten because of the

relatively higher survival ratio. Also, frequent usage of the weapon, precision of the weapon

used, and frequency of communication, can be the distinctions between winning teams and losing

teams. Moreover, frequent communication increases a team’s situation awareness, that is, gives

information about where other team members are and how they can be supported.
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Peleteiro et al. (2015) introduce a decision making mechanism that on top of improving the

quality, aims at increasing the quantity of completed tasks. It uses reputation and adaptation

mechanisms to allow agents in a competitive environment to autonomously join and preserve

coalitions (teams). In terms of team performance, they show that coalitions keep a high percentage

of tasks serviced on time despite a high percentage of unreliable workers. Moreover, coalitions

and agents demonstrate that they successfully adapt to a varying distribution of incoming tasks.

Liemhetcharat and Veloso (2012) developed a model to learn and analyze capabilities of

agents and synergies among them to solve the team composition problem using previous joint

experiences. They define a synergy model as a graph where the distance between agents is an

indicator of how well they work together. Their main contribution is that their algorithm learns

from only a partial set of agent interactions in order to learn the complete synergy model. In a

subsequent article (Liemhetcharat and Veloso, 2014), the authors study the learning agent team

formation problem with the goal of maximizing the mean performance of a team after K learning

instances. There, learning agent pairs have heterogeneous rates of coordination improvement,

and hence the allocation of training instances has a larger impact on the performance of the final

team.

The notion of fairness is also considered in the context of team performance. An example of

this approach is given in Rochlin et al. (2016). Rochlin et al. analyze the correlation between

efficiency and fairness in teams consisting of self-interested agents. They prove that the more fair

the team the more efficient its members are.

3.3.4 Validation Methods
Finally, it is worth discussing how researchers in computer science evaluate and monitor the

achievement of the objectives mentioned above. Omitting this information can create a false

equivalence between the findings of research studies conducted in very different conditions. We

distinguish among three main data sources, that is:

• Existing databases available online containing real data,

• Data simulation,

• Empirical data.

Existing data Finding ready datasets for validation of team composition and formation

problems is challenging. Systems supporting team composition or/and formation are not yet

in broad use and most data from them is not publicly available. For this reason, some

authors use bibliography (such as Citeseer, DBLP, Bibsonomy), movie datasets (IMDb) or a

software engineering environment (such as the Python Enhancement Proposals (PEP)) that can

demonstrate the effectiveness of their approach (Anagnostopoulos et al., 2012; Farhangian et al.,

2015b; Kargar et al., 2012; Rangapuram et al., 2015). For instance, Rangapuram et al. (2015) use

an academic scenario (Citeseer database) to perform a qualitative and quantitative assessment

of teams.

Data simulation The most common approach to test team composition and formation

algorithms is to perform a set of simulations showing the effectiveness of team methods. The

majority of researchers simulating data use an abstract set of simulated tasks. Depending on the

model, tasks can be static (Crawford et al., 2016; Okimoto et al., 2015; Liemhetcharat and Veloso,

2012; Peleteiro et al., 2015) or dynamic, that is, they can change over time (Farhangian et al.,

2015a; Chalkiadakis and Boutilier, 2012). Chen et al. (2015) use both static and dynamic tasks

to study various effects of considering agent openness (AO) and task openness (TO) in ad-hoc

team formation.

Empirical data Collecting empirical data is time consuming, however it is the most reliable

way to validate team hypotheses and models. The data can be collected in real world (mostly
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robotics) or in virtual environments (such as on-line games). For many years, RoboCup has

served as an excellent domain for testing teamwork, coordination, and cooperation. In 2013, a new

competition began that serves as a testing environment for cooperation without pre-coordination:

The Drop-in Player Competition. In this competition, instead of homogeneous teams of robots

such as all robots are programmed to follow the same strategy, all robots are heterogeneous

(originating from different RoboCup teams and as such running different software). Genter et al.

(2016) present their findings from a three year experiment in the domain above that consisted of

38 games for a total playing time of 510 minutes that resulted in approximately 85 robot hours.

The authors suggest improvements to the competition, and provide advice for organizing new

competitive ad-hoc teamwork evaluations.

An example of teamwork conducted in a virtual environment is Hanna and Richards (2015),

that use human-agent teams to assess the performance of teams. The results show the importance

of designing agents capable of using multiple methods of communication with humans, as this

tends to build shared mental models with human users and improve team performance. Rokicki

et al. (2015) use a crowdsourcing scenario for a face recognition task where human agents

(workers) are asked to identify a person on a given reference photo among a set of 10 test photos.

The performance is evaluated by the quality of the final outcome of each team. Next, Andrejczuk

et al. (2017) use an education scenario to pitch their automated team composition model with

the team composition performed by experts. Authors compare both team composition models in

terms of how well they predict team performance.

Many researchers use on-line games to do team performance studies. For instance, Marcolino

et al. (2013) validate their hypothesis by using virtual agents playing 691 instances of the GO

computer game, and Moon et al. (2005) analyse the behaviour of approximately 150.000 teams in

America’s Army game. Finally, Wax et al. (2017) use a free-to-play web-based MMORPG game,

called Dragon Nest, as a testbed to explore the attraction mechanisms that guide teaming in the

virtual world and their implications for team performance. Their sample included 1568 players

of the Chinese version of Dragon Nest who played on 1744 teams. Their results indicate that

self-assembled teams form via three assembly mechanisms: homophily, familiarity, and proximity.

They report mixed results when it comes to the relationship between team characteristics and

team performance, although they establish that having a heterogeneity in skill levels on a team

is good for team performance.

Analysis. In summary, the computer science literature has focused on team co-operation with

various objectives that can be categorized as at least one of the following: minimizing overall cost,

maximizing social utility, or maximizing team(s) performance. The models minimizing overall cost

compose teams based on individual competences, though do not take into account individual

motivations to complete the assigned task. This is a rather strong assumption, especially when

it comes to mixed teams or human teams, making the existing approaches rather unrealistic.

The literature focusing on maximizing social welfare considers both agent competences and

motivation. The motivation increases by using competence mechanisms (like in crowdsourcing

teams), or by giving agents the freedom to select their collaborators (like in learning agent team

formation or in ad-hoc teams). To maximise team performance, one of the crucial findings in both

Organisational Psychology and Computer Science is that team members must be heterogeneous.

Further variables that have been used by computer scientists in the area of MAS to compose

teams are: agent reputation, personality of humans and agents, synergy between team members,

and feeling of fairness among team members. The proposed methods are validated using existing

databases available online, data simulation or empirical data.

3.4 HOW do we do it? The organisation

In the existing literature, the societal structure of teams is considered crucial for effective

teamwork. There are two aspects to be considered, one is which agents will be members of a
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team and second, how teams will be organized to solve tasks. Thus, the different approaches in

the literature can be classified depending on the functionality that they tackle:

• Team Composition: the process of deciding which agents will be part of a team. It can be an

external decision or an autonomous decision by the agents themselves; and

• Team Formation: the process of learning to decide the roles and internal organisation of a

team. This organisation can be imposed or be the result of self organisation. In any case, the

resulting organisations can be categorized as hierarchical or egalitarian.

Next, we look into these two dimensions in detail.

3.4.1 Team Composition.
Although team composition in MAS has mainly focused on building teams of software agents,

that is agent teams, there is a growing number of works considering either mixed teams (Hanna

and Richards, 2015), where agents and humans cooperate to achieve common goals (Ramchurn

et al., 2016), or human environments, where people are supported by software (Jennings et al.,

2014). In MAS, we distinguish between two groups of methods (or processes) to compose team(s),

namely:

1. Exogenous Team Composition: there is an algorithm external to the agents that determines

the composition of teams.

2. Endogenous Team Composition: agents themselves decide in a distributed manner the

composition of a team.

Exogenous Team Composition. The team composition process uses the task requirements

(i.e. constraints on teams that can be formed, such as team size (Rahwan et al., 2011);

competences and personality as discussed in section 3.1) in order to build teams that are capable of

solving the task with particular properties. For instance, Crawford et al. (2016) and Okimoto et al.

(2015) consider a degree of fault-tolerance to build k-robust teams. A team is k-robust if removing

any k members from the team, does not affect the completion of the task. As mentioned before,

Liemhetcharat and Veloso (2012) propose a learning algorithm that constructs a synergy graph

from observations of the performance of pairs and triples of agent. A synergy value represents

how well a pair of agents work together. The authors use this learned synergy graph as well as

agent capabilities to solve the team composition problem. Their method selects teams that are

capable and that maximize their internal synergy.

Similarly, Rangapuram et al. (2015) consider the competences of agents and their compatibility

in order to identify a team that is both competent and compatible. Agent compatibility, expressed

as a social network, can be understood as a set of preferences on team composition, such as: the

inclusion of a certain team leader, or restrictions on team size, problem solving cost or agent

locality (in a social or geographical sense).

In many systems, capabilities of agents are not widely known. Chen et al. (2015) study an

ad-hoc setting where agents need to co-operate to recognize their capabilities. Agents bid for

subtasks (parts of tasks) that they want to perform, though the final decision belongs to the

exogenous algorithm that assigns each subtask to the best qualified agent bidding on the task.

Some approaches deal with the composition of multiple teams. For instance, Anagnostopoulos

et al. (2012) use competences and communication cost in a context where tasks sequentially arrive

and teams have to be composed to perform them. Each task requires a specific set of competences

and the team composition algorithm is such that the workload per agent is fair across teams.

Furthermore, Andrejczuk et al. (2016) compose multiple teams according to a balance of agents’

personalities and genders. Their goal is to partition a set of agents into multiple teams such that

each team is internally balanced and the problem solving capabilities of the teams in the partition

are similar. Besides the use of personality traits, Farhangian et al. (2015a) use competences and

a task specification with the purpose of composing a single team.
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Aside from competences and personality, team composition can also take into account

agents’ preferences on teams. Indeed, hedonic coalition formation employs each agent’s hedonic

preferences on its coalitions to yield a coalition structure, namely multiple teams. The defining

feature of a hedonic preference is that every agent only cares about which agents are in its own

team (coalition). Spradling et al. (2013) introduce a new model of hedonic coalition formation

game, the so called Roles and Teams Hedonic Games (RTHG). In this model, agents view

coalitions as a number of available roles and have two levels of preferences: on the set of roles

that are available in a coalition, and on their own role within each coalition.

Finally, there is relevant work on mixed teams by Hanna and Richards (2015), which composes

a team as a pair consisting of a human and an Intelligent Virtual Agent (IVA). The pair plays a

collaborative game that involves passing a sequence of obstacles to reach a target.

Endogenous Team Composition. The second group of methods for organizing teams has an

endogenous nature. They incorporate algorithms enabling agents to decide on team composition

by themselves. In detail, agents are equipped with negotiation and decision-making mechanisms

that they employ to agree among themselves on a team structure. Therefore, team composition

occurs without explicit external command.

Farhangian et al. (2015b) propose a model in which there are two types of agents: requesters

in charge of tasks that seek for contributors to compose teams, and contributors that vote

for the tasks they want to perform. Each requester runs an auction-based (first-price sealed-

bid) algorithm with the purpose of composing teams with the highest chance to increase social

wealth. Contributors issue bids pursuing to join the most useful requesters, namely the ones

that are most likely to reward them. Peleteiro et al. (2015) follow the similar approach but also

employ reputation and adaptation mechanisms to allow agents in a competitive environment to

autonomously join and preserve teams (as coalitions). Agents bid for tasks and each team is

constructed and led by a mediator agent.

Similarly, in Chalkiadakis and Boutilier (2012) each agent builds its beliefs about its peers

based on prior outcomes of interactions between them, and decides on coalitional actions (which

coalition to join and what task to perform). Then, agents negotiate between them to form teams

taking into account their own beliefs on the probability of success when being in a team.

Another interesting scenario for endogenous team composition is gaming. For instance, Moon

et al. (2005) analyse factors affecting team success in the America’s Army game. There, teams can

have up to fourteen players and human agents are allowed to join teams freely at the beginning

of each game. However, the authors discover that the most successful team configuration has ten

soldiers, moving in two sub teams (five players in each), and a long chain of communication (rather

than star-shaped communication). Note that these findings actually indicate that two teams of

five are more effective than one team of ten. This aligns with the team size recommendations

from organizational psychology that we discuss further ahead in subsection 4.4.1.

There exist also mixed approches, where researchers explore both, exogenous and endogenous

methods to compose teams. For instance, Rokicki et al. (2015) propose strategies for groupsourc-

ing (team-based crowdsourcing), ranging from team formation processes where individuals are

randomly assigned to teams, to strategies requiring self-organisation where individuals participate

in team building. Their results show that balanced teams (that is teams with the balanced number

or agents in each team) combined with individual rewards for most effective team members

outperforms the other strategies.

Analysis. The majority of researchers focuses on exogenous methods to compose teams.

However, there are many actual-world application domains (e.g. co-working, or crowdsourcing)

where endogenous team composition and formation are more appropriate for deployment.

Most of the literature on exogenous team composition assumes that there exists a centralized,

detailed knowledge about all agents. This knowledge is required in order to compose teams
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based on agents’ capabilities, personality, or even preferences. Endogenous methods are best

for dynamic environments, where team composition and formation processes are continuously

performed. Furthermore, it is a good setup for agents that learn other agents’ capabilities through

repeated interactions.

3.4.2 Team Formation
We identify two main team organisation structures to build effective teams:

1. Hierarchical; and

2. Egalitarian.

We describe each team organisation structure in the following sub-sections.

Hierarchical. A hierarchical structure considers a team leader who is responsible for and makes

the decisions affecting the team. This structure is the traditional setting when it comes to business

units.

As mentioned in subsection 3.4.1, Farhangian et al. (2015b) consider two types of people within

teams: requesters and contributors. Requesters adopt a leading function, they start a project and

recruit the required people. Contributors perform the tasks assigned by requesters. The overall

team behaviour is determined by the personality of agents in teams.

In Peleteiro et al. (2015), each coalition is led by a mediator. This agent is responsible for

leading a coalition by selecting suitable agents to be part of a coalition (called worker agents)

and by evaluating the performance of workers while the coalition operates.

Agmon et al. (2014) consider ad-hoc settings with two types of agents: best-response agents

and ad-hoc agents. In such settings a task consists of a set of actions, and each team becomes

responsible for performing a task. Each best-response agent selects its next action based on its

own local world view. Each ad-hoc agent acts to bring out the best in its teammates by “leading”

them to the optimal joint action. This is an arresting example of a hierarchical structure, where

agents are not aware of each other’s roles, and hence of a team’s structure. Nonetheless, an ad-hoc

agent has more knowledge than a best-response agent, and thus it exploits such information to

lead its team. This may happen in a business setting, where both senior and junior staff form a

team. Even though there is no clear division of roles, the senior employee uses his experience to

make decisions that are best for the team in a long–term period (and may not look best from a

short–time perspective).

Egalitarian. An egalitarian structure assumes that all workers in a team are equally informed

and have the same rights. The leadership within a team is shared and existing team roles result

from the team’s task requirements. An example of this structure in real-life scenario might be a

team of doctors that need to join their specialized knowledge to perform a complicated surgery

on a patient.

A large part of the MAS literature focuses on the egalitarian setting, trying to benefit from

leaderless teams that cooperate to complete tasks. We find this team structure in Groupsourcing

(Rokicki et al., 2015), Robust Teams (Okimoto et al., 2015; Crawford et al., 2016), Ad-hoc teams

(Chalkiadakis and Boutilier, 2012; Chen et al., 2015; Barrett et al., 2013), Mixed Teams (Hanna

and Richards, 2015), Learning Teams (Liemhetcharat and Veloso, 2012, 2014) or Online Teams

(Moon et al., 2005).

A particular case of egalitarian structure involves members that decide collectively, usually

by voting, on the appropriate course of action while performing an assigned task. The real life

example for this organisation structure might be a start-up with few people that make all decisions

by discussion. Marcolino et al. (2013); Nagarajan et al. (2015) and Marcolino et al. (2016) study

egalitarian structures whose agents vote to decide at every step of a task in order to choose the

best course of action. They prove that teams consisting of heterogeneous agents that vote their
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actions are more efficient than homogeneous teams built out of the copies of the strongest agent

in a team. This is because the spectrum of possible actions is wider for heterogeneous teams.

There exist also some team composition models that can produce both types of team structures.

For instance, in Roles and Teams Hedonic Games model (Spradling et al., 2013), the resulting

structure of the teams can be either hierarchical or egalitarian depending on the relationships

between roles. Typically teams in (Rangapuram et al., 2015) are egalitarian, though the presented

model includes many natural requirements that can lead to a hierarchical structure (such as

inclusion of a designated team leader and/or a group of given experts).

Finally, one important question regarding team organization requires our attention, that

is, what is the effect of team network and communication structure on team performance?

We already discussed the article of Hanna and Richards (2015), where authors show that

the more informative the communication between two agents, the better the performance of

the team. This result is consistent with results reported by Sukthankar et al. (2009). There,

the authors analyse the communication patterns of teams performing a collaborative search

game that simulates search and rescue scenarios. Sukthankar et al. (2009) robustly find that

the less performing teams are those that communicate less. Furthermore, Moon et al. (2005)

also highlight the importance of communication, as well as team movement structure on team

performance. Regarding communication networks, two dominant communication network types

are: star-shaped and long-chain shaped. Between these two, the long-chain shaped communication

network performed better because it reduces team members’ burden to communicate. However,

the reduced communication frequency of the long-chain shaped communication network teams

with respect to star-shaped communication network teams is still higher than that of losing

teams. Regarding team movement, the authors found that the most effective communication

network type is a dense network (team members stay close together), and that a network with

two dense subgroups has fewer casualties and less communications than others but a satisfying

number of opponents being killed. Maghami and Sukthankar (2011) introduce an agent-based

simulation for exploring the effects of stereotypes on task-oriented team composition and network

evolution. The authors demonstrate that stereotype value judgments can have a negative impact

on task performance, even if the agents are motivated and competent enough to perform a

task. Stereotype-driven agents modify the social network from which teams are formed in a

systematically suboptimal way and eliminate the skill diversity required for successful task

performance. Osipov and Sukthankar (2012) explore the relationship between network adaptation

for candidate team participants and performance of problem-solving teams. Their analysis shows

that the use of a more detailed description of the agent skills (i.e. a higher number of skills per

agent) is desirable as it has a net positive effect on the number of candidate teams (where an

agent can contribute its skills) and the total number of teams that can be composed by a system.

However, the authors do not provide a detailed, analytical treatment of the relationship between

the network adaptation policies and the teams’ performance.

Analysis. The team organisation structures in the MAS literature can be grouped into

hierarchical and egalitarian. The majority of MAS research focuses on egalitarian structures

because of simplicity reasons. In particular, there is no need for defining a role structure together

with its relationship and agent-role assignments. Although structuring teams and organisations

largely helps reduce complexity of interactions, by separating responsibilities, most research in

team formation does not consider a clear role division. Moreover, notice that in most business

settings teams work following a hierarchical structure. Finally, research suggests that teams

communicating more have higher levels of performance up to a point. However, too excessive

communication leads to lower levels of performance.
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3.5 WHEN do we do it? The dynamics

The literature on team composition and formation mostly considers that tasks are static in the

sense that their requirements do not change during their execution. However, the dynamics of

task arrival is considered by many. That is, there could be multiple tasks to be solved concurrently

and new tasks may arrive in an asynchronous, localized manner. The different works consider

different issues in this dynamic process. For instance, the number of tasks to be serviced, task

and team members localization, team size per task or time limitations. Normally, if there is only

one task is to be completed, the focus will be on composing the best team for the task. On a

repeated task arrival setting, the use of a history of team work experiences is key to compose

new teams. Hence, the literature can be classified depending on two main aspects:

1. The succession of tasks,

2. The simultaneity of tasks.

The simplest case is a one-shot task. There is neither succession nor simultaneity, and hence

the problem of team composition is normally reduced to finding the best team for the only task.

When tasks come in sequence without simultaneity, then the problem can be reduced to finding

the best team for each task while using the learned experiences in the composition of each new

team. If tasks come in succession and can be simultaneous, the need to deal with multiple teams

acting at the same time becomes a key issue. The succession of possibly simultaneous tasks is the

most complex framework in which memory becomes again a key element.

We discuss each aspect in detail.

3.5.1 Non Successive and non simultaneous tasks
In this case we face a one-shot task resolution. This is the simplest case for the team composition

and formation problems. There is no long-term strategy used to compose and form teams. Thus,

agents do not learn from past experiences and we cannot talk about the notion of community in

this setup.

Team Composition. As mentioned above, in the team composition problem, we are looking for

only one team, the best possible one to perform the task. The majority of models that consider

non successive and non simultaneous tasks are simplistic. They assume that once the team is

composed it has the needed properties and will perform the task well. For instance, Kargar et al.

(2012) use agents’ capabilities and team coordination cost to compose the most effective team.

Similarly, Crawford et al. (2016) and Okimoto et al. (2015) use agents’ capabilities to compose

k-robust teams (see Section 3.4.1 for a definition of a k-robust team). In Rangapuram et al.

(2015), besides agents’ capabilities, the team composition model also introduces various types of

constraints (the inclusion of a specific group of agents in a team, team size, budget limitations,

and maximum geographical distance between agents and between agents and tasks). This last

model is more realistic, though it disregards past experiences.

Teamwork. In the teamwork phase, agents solve the task once and for all. Hence, one-shot

tasks may cause self-interested behaviours, such as in Rochlin et al. (2016). There, as mentioned

in Section 3.2.2, one agent (called buyer) from the team is delegated to accomplish the task of

purchasing a jointly desired item with the lowest possible cost. This agent operates on a one-

time setting, that is, there is a single agent deciding on behalf of the team, and hence, there is

no need for that agent to behave in an altruistic manner. Authors study the notion of fairness

and its influence on effectiveness. They show that the selected buyer is less motivated to do the

task if the cost of the goods is to be divided equally among the team members. In this case,

the purchasing costs are fully assumed by the purchasing agent. Therefore, they study different

methods to reimburse the purchasing costs incurred by the buyer to improve its effectiveness.
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Hanna and Richards (2015) study the co-operation between a human and an IVA (Intelligent

Virtual Agent) in a one-shot task setting. Given that past experiences cannot be used, they

experimentally show, by comparing many one-shot task instances, that the more informative

the communication between the two agents, the better the performance of the team. The

communication behavior of an IVA is directly related to its psychological traits.

On a different vein, many models assume that given a one-shot task, agents will behave

according to their knowledge and capabilities in order to benefit the whole team. In Barrett

et al. (2013) and in Agmon et al. (2014), team agents are pre-designed to co-operate when

solving a collective task. Then, one of the agents is replaced by an ad-hoc agent that shares the

teams goals, though does not know its teammates behaviours. The ad-hoc agent cannot control

its teammates, and yet it tries to improve the teams performance by learning to predict other

agents actions and thus selecting its own actions to achieve an overall optimal team behaviour.

Marcolino et al. (2013) and Nagarajan et al. (2015) perform a one-shot task study, where team

agents vote for a team action leading to the task resolution. The action voted for is sampled from

a fixed probability distribution over those actions appropriate in a particular world state (no

learning involved). The higher the probability of an action the more preferred it is by the agent.

A plurality voting mechanism is used to select the team action. Authors show that a diverse team

(with different probability distributions) can outperform a uniform team (made out of copies of

the best agent) and that breaking ties in favour of the best agent’s opinion in a diverse team is

the optimal voting rule 1.

3.5.2 Non Successive and simultaneous tasks

In non successive and simultaneous tasks, the composition and formation problem becomes more

complex as it now considers a set of one-shot tasks. There is still no use of the past experiences

as the tasks are non successive.

Team Composition. Researchers in the area of MAS propose algorithms to compose the

best set of teams, one per simultaneous task, instead of looking for the best team for a task.

For instance, Andrejczuk et al. (2016) partition a set of agents into competent, gender- and

psychologically-balanced problem-solving teams of a given size that have to solve a given task.

The authors use a greedy technique to balance the psychological traits of the members of teams

so that each team gets the full range of problem-solving capabilities.

In Roles and Teams Hedonic Games (RTHG) (Spradling et al., 2013) authors propose a

heuristic optimization method to partition a set of agents, again to solve different instances

of the same task. The method treats as votes agents’ role preferences on team role structures.

Firstly, the role structures of the teams will be those receiving the highest social welfare (as the

summation of the agent individual utilities to play any of the roles in the structure). Secondly,

the algorithm selects the agent with the highest utility for a remaining role in the most voted

team role structure, recomputes the role structure preferences without that agent’s preferences,

and keeps staffing teams until the partition is complete. For instance, an agent may prefer to be

a programmer in a two-agent team including a designer, but would not like to play any role in

a team without a designer. Hence, an agents role preference is not taken in isolation, but in the

context of the teams’ composition. Authors define Nash stable and individually stable solutions

for RTHG in terms of possible local moves that agents could make within a given coalition

partition and prove that every instance of RTHG has an individually stable partition that can

be obtained with the use of local search movements (change of role within a coalition or coalition

swaps). In our literature search, we could not find approaches dealing with different simultaneous

non successive tasks.

1Notice though that the authors make the strong assumption that there is a known rank of the best
actions to take at any time.
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Teamwork. Similarly to team composition, Rokicki et al. (2015) deal with the Teamwork

problem over different and simultaneous instances of the same task. Agents may change their

strategy during team formation in order to reach a better solution. They classify human behaviour

during team self-organisation in crowdsourcing tasks in two types. First, a number of users choose

to join one of the leading teams, instead of selecting a weaker one and compete for a lower award.

Second, small teams merge to form stronger teams and thus have a higher chance of achieving

an award.

3.5.3 Successive and non simultaneous tasks

When tasks are successive and non simultaneous, the algorithms for team composition and

formation deal with a task that has to be assigned to a team, and in many cases solved, before

new tasks arrive. A successive setting can discover phenomena which we believe are important,

but which are not captured when the attention is limited to static, non successive tasks. If in

the system of the same set of agents, teams are created and dismantled depending on the task,

the agents may behave very differently than in a non successive settings. For instance, a person

will behave in a different manner if she repeatedly borrows a car from her friends, than when she

simply rents a car. The successive setting has its advantages: it lets agents learn from the past

experiences and build their beliefs based on this knowledge.

Team Composition. In Anagnostopoulos et al. (2012), the first task arrives at the first time

step and is assigned to a newly composed team of experts before the arrival of the second task.

This procedure repeats until all tasks are assigned. Authors propose an algorithm to compose

a set of teams to handle a set of these incoming tasks. The goal is to form a new competent

team upon arrival of each task, so that the workload in the whole system is balanced. There is

no learning involved in this process. Contrarily, in Liemhetcharat and Veloso (2012) a learning

algorithm is proposed that constructs a synergy graph from observations of the performance of

pairs and triples of agent in solving previous tasks. The synergy tells how well a pair of agents

work together and they use this learned synergy graph as well as agents’ capabilities to solve the

team composition problem for the next task. Their method selects teams that are capable and

maximize their internal synergy.

Teamwork. To the best of our knowledge, there are no contributions on teamwork that consider

successive and non simultaneous tasks.

3.5.4 Successive and simultaneous tasks

When tasks are successive and simultaneous, the algorithms for team composition and formation

deal with a set of tasks arriving, possibly overlapping in time that have to be assigned to newly

composed teams.

Team Composition. In Farhangian et al. (2015b), tasks arrive in any order, possibly

overlapping in time. A team is composed for each incoming task and after execution agents

assign performance values to each one of the other team members. These values are public and

used by the community to compose teams for future tasks. Chalkiadakis and Boutilier (2012)

present several learning algorithms to approximate the optimal Bayesian solution to the repeated

team composition. Similarly, Peleteiro et al. (2015) compute, after teamwork, both individual

agent and coalition (team) reputation values to be used in the composition of future teams.

Finally, in Chen et al. (2015), for each new task arriving agents decide which team to join

balancing exploitation (rewards from completing tasks learned from previous task solving) and

exploration (learning opportunities from more qualified agents leading to future rewards).
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Teamwork. To our knowledge, there are no contributions considering successive and simulta-

neous teamwork.

Analysis. One time settings (i.e. non successive tasks) are usually simplified models that do not

take into consideration the history of agent interactions. One-shot tasks may cause self-interested

behaviours, where agents look for at least a fair split of costs associated with teamwork. However,

the majority of the literature on team composition and teamwork considering this setting assume

that the agents will always behave accordingly to their capabilities and knowledge. The successive

tasks provide us with more realistic and complex scenarios. The tasks arrive either in order, one

after another, or overlapping in time. The majority of the literature uses this setting to let

agents build their beliefs based on the past experiences and compose new teams according to

these beliefs. Regarding teamwork, there are no contributions that explore successive settings. In

other words, the state of the art does not acknowledge the memory of agents as important while

executing tasks.

3.6 WHERE do we do it? The context

The context is understood as the circumstances that form the setting for the team composition

and formation processes. We observe that the concept of context in the reviewed computer science

literature has not played a major role so far. Contrarily, according to the organisational psychology

literature (Guzzo and Dickson, 1996), it is one of the most important variables while composing

and forming teams (see Section 4.6). There are different categorizations of context. One of them

is proposed by Kozlowski and Bell (2013), which classifies contexts as follows:

• Organisational Context: technology used, organisation structure, leadership, culture, and

climate.

• Team Context: normative expectations, shared perceptions, and compatible knowledge

(generated by and emerge from individual interactions).

• Individual Context: attributes, interactions, and responses.

In the MAS literature there are very few works that consider the social context while composing

teams. Terveen and McDonald (2005) set a framework for social matching systems, which aims

to bring people together on both physical and online spaces. They explain the importance of

context in recommending a member of social network for collaboration. In Rangapuram et al.

(2015), while composing teams, the context is exemplified as a social network that encodes the

previous collaborations among experts. The idea behind it is that the teams that have worked

together previously are expected to have less communication overhead and work more effectively

as a team. Similarly, Peleteiro et al. (2015) propose to express social context by the reputation

measure. There, upon task completion, the contractor rates the quality of the service provided by

a team and, also teams rate their own workers. Finally, this rating information is maintained and

aggregated by a reputation module. Liemhetcharat and Veloso (2012) propose to model a social

context by using the learned synergy graph (that measures how well agents work with one another)

and hence, solve the team composition problem. Anagnostopoulos et al. (2012) include the

coordination costs by means of a social network over the set of agents and assume a metric distance

function on the edges of the network. On top of modeling preferences based on social context

(such as past interactions, compatibility in collaborating, distance in a companys hierarchy), the

function may include any other kind of context, (for instance geographical proximity between

agents or between task and agents within a team).

Analysis To the best of our knowledge, there are only few works in MAS literature that

recognize the context as an important variable. Besides Anagnostopoulos et al. (2012), which

considers both social and geographical contexts, the methods in the literature only consider the

social context (if analyzed at all).
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4 Team composition and formation from an organisational psychology
perspective.

In this section we discuss all above aspects in detail answering the questions asked in the

introduction of this paper.

4.1 WHO is concerned?

In this section we are going to survey the literature on Organisational Psychology that deals with

the characteristics of humans composing teams.

We will use the structure as in section 3.1.

4.1.1 Capacity.
In OP, the most important capacity of team members that is related to team performance is

their cognitive ability. Hence, the main goal is to study how cognitive abilities influence team

performance. Cognitive ability refers to the ‘capacity to understand complex ideas, learn from

experience, reason, solve problems, and adapt’ (Devine and Philips, 2001, p.507). Hence, cognitive

ability in OP is a much wider concept than capacity in multiagent systems as on top of skills

widely used in MAS systems, it contains many other properties such as experience, competences,

age or even gender.

Moreover, in contrast to computer science, where capabilities are static, psychologists deal with

the dynamism of human capacity. Humans learn new capabilities and increase their level every

day for whole live (see more in (Laal and Salamati, 2012, p.399-403) for the concept of the lifelong

learning). There are diverse tests and methods to examine humans capacity, such as: intelligence

or cognitive competences tests, assessment centers or social and behavioural competence tests.

Regarding team composition, on the one hand Bell and Devine and Philips (2001) found

that mean team values of cognitive ability are correlated with team performance. Moreover,

she also found that the lowest and the highest team members’ cognitive abilities are correlated

with team performance in lab and field settings. In addition, Devine and Philips (2001) found

that the variance of team members’ cognitive ability did not help predict team performance.

These authors also found that the mean value is twice more informative in predicting than the

lowest and the highest members scores. On the other hand, Devine and Philips (2001) found that

cognitive ability influences team performance differently depending on contextual variables (such

as working normative procedures or human resources policies). These findings suggest that, when

composing a team, organisations and managers should not only take into account the members’

cognitive ability, but also the context in which the team will operate. This will be further discussed

in Section 4.6.

Woolley et al. (2015) discuss the existence of a measurable collective intelligence in teams

that is analogous to individual intelligence. Authors suggest the existence of a general collective

intelligence factor that explains a team performance on a wide variety of tasks. Woolley et al.

(2010) show that collective intelligence is correlated with the average social sensitivity of group

members, the equality in distribution of conversational turn-taking, and the proportion of females

in the group. In STEM (Science, Technology, Engineering and Math) teams, gender diversity can

enhance group processes, which are increasingly important as collaboration becomes a centre

piece in the production of science. The enhancement of group processes and higher levels of

collective intelligence can, in turn, lead to greater innovation and scientific discovery (Bear and

Woolley, 2011). Finally, similarly to findings in the computer science literature, the concept of

team properties is normally understood as a sum of humans’ individual properties.

4.1.2 Personality
In addition to the before-mentioned individual properties, the literature has examined the role of

personality. The most prominent approaches have been the “Big Five” personality traits theory
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(Mount et al., 1998), Schutz’s theory of fundamental interpersonal relations orientation (FIRO)

(Schutz, 1958) and the Myers Briggs Type Indicator method (White, 1984). They have been used

to find the personality traits and types associated with team performance. Regarding the “Big

Five” theory, meta-analytic research has found that certain levels of conscientiousness, openness

to experience and agreeableness are good performance predictors (Mount et al., 1998).

Another approach is that of the theory of fundamental interpersonal relations orientations

(FIRO) (Schutz, 1958). The idea is that humans have several needs (i.e. need for inclusion, control

and affection) and that groups with team members that have compatible needs will perform better

than those with incompatible ones. Nevertheless, research has found mixed support for this theory

(West, 2012b).

Some companies have also tried to base their team formation on cognitive styles of the

members, by using the Myers-Briggs Type Indicator (MBTI) assessment instrument —(Myers

et al., 1998), which is a questionnaire that measures cognitive styles along four dimensions:

Extraversion — Introversion, Sensing — Intuition, Thinking — Feeling, and Judging —

Perceiving. Nevertheless, there is not enough rigorous research evidence showing its relationship

with team performance (West, 2012b).

There are also novel approaches created with the purpose of team composition and formation.

For instance, the Post-Jungian Personality Theory, which is a modified version of (MBTI) (Wilde,

2013). It operates on the same dimensions as MBTI. The main novelty of this approach is its

use of the numerical data generated by the instrument (Wilde, 2011). The results of this method

seem promising as within a decade this novel approach tripled the fraction of Stanford teams

awarded national prizes by the Lincoln Foundation (Wilde, 2009). However, the method is not

properly validated and tested, which makes it disregarded by psychologists.

4.1.3 Analysis.
Several correlations have been found between cognitive ability and team performance. The

personality is also present while composing teams, although the correlation between personality

and team performance is not clearly explained. The most widely used test to measure personality

is the “Big Five”. Organisational Psychology studies show that besides cognitive ability and

personality, experience and gender are further properties to consider for team composition (West,

2012a). Indeed, research findings on this topic suggest that diversity in those characteristics can

have an effect on team performance and innovation (West, 2012a). Additionally, some further

research has also paid attention to values and has found collectivism and teamwork preferences
2 to be additional good team performance predictors (Bell).

4.2 WHAT is the problem?

When it comes to team composition, the organisational psychology literature has focused on

defining task classifications. These classifications have been employed to study the relation

between task types and team performance. Hence, in this section we will review the most known

task classifications and its influence on team performance.

Two of the most widely discussed task classifications are those of McGrath (1984), Hackman

(1990); Hackman and Lawler (1971) and Hackman and Oldham (1975). While the classification

of McGrath (1984) is based on the cognitive requirements of tasks, the classification in Hackman

(1990); Hackman and Lawler (1971); Hackman and Oldham (1975) is based on the motivation

characteristics of tasks (i.e. autonomy, task variety, task significance, task identity and task

feedback). The research on team composition show that the classification based on the motivation

characteristics predicts more accurately the team performance (Podsakoff et al., 1997).

Hackman (1990) defines a task classification based on motivational requirements composed by

seven work task types:

2Teamwork preferences refer to team members preferences on other team members to work with.
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1. top management;

2. task force;

3. professional support task;

4. performing task;

5. human service task;

6. customer service task;

7. production task.

The classification of McGrath (1984) based on cognitive requirement proposes three dimensions

that characterize each task type:

1. Choose-Execute;

2. Conceptual-Behavioral;

3. Conflict-Cooperation.

Technically speaking each task type becomes a 3-tuple with qualitative values for each dimension.

For instance, a routine task would be very executive, medium behavioral and low conflicting.

After analyzing seventeen classifications in the literature Wildman et al. (2012) came out with

a different classification as follows:

1. Managing others;

2. Advising others;

3. Human service;

4. Negotiation;

5. Psychomotor action;

6. Defined problem solving;

7. Ill-defined problem solving.

As an alternative perspective, Navarro et al. (2011) propose a task classification based on the task

context (namely task complexity, interdependencies between subtasks in a task, and uncertainty

about the dynamics of the environment where the task is executed and the lack of information).

Their results show that in order to achieve acceptable performance, the greater the complexity,

interdependence and uncertainty, the stronger the requirements on the maturity of teams (e.g.

joint experience, cohesion) and on the diversity of team members’ capabilities. For instance,

to carry out highly interdependent tasks, all team members should possess coordination skills

(maturity) and some of them the capacity to take decisions (diversity). Taking into account

other task context characteristic (i.e. uncertainty and interdependence) their study results show,

the greater the uncertainty and interdependence of task types, the more diverse the competences

for team members to cope with complexity. On the other hand, if the team is overqualified for

the task to perform, the motivation of team members decreases and the quality of the outcome

is lower or the task is not completed at all.

4.2.1 Analysis.
The OP literature provides many different classifications of task types, where the most important

are the classifications based on the motivation of individuals, the cognitive abilities and the task

context. Provided the amount of classifications and the apparent lack of consensus among them,

we believe that choosing among the several classifications previously presented in order to apply

them to the study of team composition is a hard decision. Nevertheless, such decision must

be made in order to move forward with the understanding of how a task type can influence

team composition. In an attempt to advice researchers, notice that the research show that the

classification based on the motivation characteristics predicts more accurately team performance.

From OP perspective team performance cannot be assessed by simply measuring how long

it takes for the group to finish a certain task or by counting the number of right answers to

predefined and clear questions, which is a common approach in computer science. OP rather
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analyzes joint team objectives and the team composition and formation setting (such as not

realistic deadlines, a number of individuals in a team, the level of stress in a team or the quality

of the outcome).

The current research on organisational psychology focus has moved from task analysis so not

many results are present. Although task types are defined, different task instances constantly

appear because of technological development. That makes it very difficult to keep the pace. That

is why the focus on OP moved to competences (understood as cognitive ability, see Section

skills2). This is why not much work has appeared after defining task taxonomy. At the same time

task complexity increased and hence, teams are getting more and more important. Moreover,

a clear mapping between cognitive ability of individuals and task types is needed. As a major

benefit such mapping would ease team composition.

4.3 WHY do we do it?

In OP the main objective for team composition and formation is to maximize team performance.

When measuring it, the research on OP suggests that we should go beyond mere economic criteria,

the quality of decision-making processes or other traditional performance indicators (Komaki;

Hackman).

An important difference with respect to the computer science literature is that team

performance is considered from two perspectives: objective and subjective. On the one hand,

objective team performance refers to the features of the outcome of a team (e.g. quality, delivery

time, cost, sustainability). On the other hand, subjective team performance refers to the quality

of human resources in a team (e.g. motivation, satisfaction, commitment, illness rate, stress)

(Quijano et al., 2008). Therefore, while the first one refers to the delivered output of a team

(what customers obtain), the latest one focuses on the inner development of team members.

Objective and subjective team performance are significantly correlated (e.g. Quijano et al. (2008)).

Therefore, and not surprisingly, the organisational psychology literature considers both types of

performances when tackling team composition and team formation (e.g. Meneses and Navarro

(2015)). The subjective and objective performance of a team are determined by the several aspects

of the context (discussed in Section 4.6), together with individual characteristics, the task and

the team processes. Following Navarro et al. (2011) the subjective and objective performance of

a team are determined by the adjustment between the maturity level of the team (e.g. in terms

of group development, potential, etc.) and the groups tasks characteristics.

Analysis. An important difference with respect to the computer science literature is that

team performance is considered from two perspectives: objective and subjective. Objective

and subjective team performance are significantly and directly correlated. Therefore, and not

surprisingly, the organisational psychology literature considers both types of performances when

tackling team composition and team formation. The computer science literature can benefit from

the concept of subjective team performance that currently disregarded. Therefore, current team

composition models, which mainly focus on the objective team performance, need to be extended.

4.4 HOW do we do it? The organisation

Similarly to Section 3.4 on computer science, we divide the organisation into two aspects: team

composition and team formation.

4.4.1 Team Composition.
The organisational psychology research on team composition has been very influenced by task

classification. For several authors, there is a relationship between task type and team type

(structure). For example, according to Hackman (1990), there are seven team types based on

the task type to perform:
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1. top management;

2. task force;

3. professional support;

4. performing groups;

5. human service;

6. customer service;

7. production teams.

Devine (2002) and Delgado Piña et al. (2008) highlighted that team performance depends on

a good matching between team type and task type.

On the other hand, there are multiple team type classifications in the literature based on

other criteria (Devine, 2002; Marks et al., 2001; Gibson and Kirkman, 1999): motivation-based,

cognitive-based or context-based (see section 4.2), though none of them has been widely used or

accepted. Also, there is agreement that team diversity must be exploited while composing teams.

Diversity refers to the degree or level to which the members of a group differ or contrast in one

or more properties. Diversity has been shown to have an impact on team performance (Mathieu

et al., 2008). In their review, Mathieu et al. (2008) point out the vastness of the literature featuring

team diversity and draw attention to four main diversity dimensions: demographic, personality,

functional background, and attitudes and values.

Horwitz and Horwitz (2007) conducted a meta-analysis to understand the relationships

between team diversity and team performance. For this, they differentiated between two classes of

diversity: bio-demographic and task-related. The former refers to diversity in individual properties

that are observable and not learned (e.g. personality, gender, age, ethnicity), whereas the latter

regards diversity in acquired capabilities, such as education or expertise. Using meta-analytic

techniques, they found task-related diversity to be positively correlated to both qualitative and

quantitative measures of team performance. However, they did not find a clear relationship

between bio-demographic diversity and team performance. Although pointing out the small

number of studies supporting these latest findings, their preliminary results seem to give more

importance to the diversity of acquired team member properties, such as the type of education

or knowledge expertise.

Finally, another factor influencing team performance is team size. The relationship between

team size and productivity is a question of broad relevance across economics, psychology, and

management science. Hence, the size of a team is one of the most frequently studied parameter

when analyzing team performance. There is a disparity in the literature due to the fact that

appropriate team size is dependent on the task and the social context in which the team operates.

When it comes to athletics, sport teams have a defined number of team players: A football team

needs 11, the Standard Platform League in RoboCup five players per team, and baseball teams

require nine players. But when it comes to organizations, it is hard to find a golden rule to

determine the optimal number of team members. For complex tasks, however, where both the

potential profits and risks of teamwork increase with the number of team members, neither

theoretical studies nor empirical evaluations consistently favor larger vs. smaller teams (Mao

et al., 2016). Regarding established theories, psychology (Steiner, 2007), economics (Holmstrom,

1982), and management (Malone and Crowston, 1994) studies suggest that increasing team size

can be harmful to team performance. This happens because: individuals find it tempting to

free ride on the efforts of teammates (Steiner, 2007; Holmstrom, 1982); the overhead associated

with communication increases with team size (Steiner, 2007); and communication among team

members causes partitioning into sub-teams (Lorenz et al., 2011) and chitchat (Tetlock et al.,

1992). Therefore, in complex tasks, where all these reasons may exist simultaneously, the

relationship between team size and performance is not well described by existing theories. Mao

et al. (2016) performed a study of the dynamics of team performance and its relationship with

team size in the digital volunteer setting of crisis mapping. Their findings show that although
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social loafing and coordination costs result in reduced contribution from individuals in larger

teams, the potential benefits of coordination can outweigh this loss in performance.

However, other studies show that there is an inverse relationship between the size of the

team and its performance (Oyster, 1999; Bartol, 1977). Oyster (1999) and Bartol (1977) show

that team size is important when analyzing team performance. Yet, they have offered different

recommendations concerning the best size for various types of tasks to achieve acceptable

performance. Oyster (1999) states that the right number of people in a team depends on the

kind of tasks team members need to perform. They believe that for teams ranging from four to

six, all the team members’ competences can be fully used, but for larger teams some members’

competences are under-used and this provokes that teams split up. According to the studies of

Bartol (1977), the optimal number of members for problem-solving tasks is five. He states that

there is a limit to the team size, which, if exceeded, causes a drop in the performance of the

team. Bartol (1977) says that in the case of a team containing more than six people there is a

tendency to split the team into two, which brings about negative effects. The cause is twofold:

high coordination cost and loss of motivation by team members Oyster (1999).

Finally, some studies have found team size to be unrelated to performance Martz et al. (1992)

or that increasing team size actually improves performance without limit Campion et al. (1993).

4.4.2 Team Formation.
Once a team has been composed, there are different processes that the team carries out to

execute the task and achieve the collective goal. Several classifications of team processes have

been proposed in the literature, from which, the most recent and overarching one is the one

proposed by Marks et al. (2001) and Salas et al. (2005); Goodwin et al. (2009). Typically

the research investigated the ways of implementing team processes and of measuring how well

teams perform. To begin with, Marks et al. (2001) distinguish between three broad types

of processes: action-orientated, transition-orientated and interpersonal. The first ones refer to

actions that team members undertake to accomplish goals, namely team monitoring, systems

monitoring, monitoring progress towards goals and coordinating activities. Regarding transition-

orientated processes, these are actions related to planning and/or evaluating in order to guide in

attaining team goals, that is goal specification, mission analysis, formulation and planning, and

strategy formulation. Finally, interpersonal processes are those intended to manage interpersonal

relationships. They comprise motivating/confidence building, conflict management and affect

management (Marks et al., 2001). On the other hand, Salas et al. (2005) built upon previous

research and narrowed down the main processes into “Big Five” team processes: team orientation,

backup behaviour, team leadership, adaptability and mutual performance monitoring.

Another important aspect is that team climate influences the effectiveness of processes. A

team climate is defined by the degree to which a team of people possesses certain core properties

that are needed for the team to work effectively. These properties include the interrelationship

among team members, the identification of each person with the team and its social values, the

coordination of team resources, behaviours and technologies, as well as the desire of each team

member to achieve the objectives of the team (Meneses and Navarro, 2015). A good climate

assures the sharing of resources, mutual rewards and information exchange. It promotes a high

level of openness, safety, and a mix of upward, downward and horizontal communication processes

that help to increase team performance (Kozlowski and Ilgen; Mathieu et al., 2007; Rico et al.,

2010; Knapp, 2010).

A team climate that is conductive to learning requires shared perceptions of work settings

(James et al., 2008; Brodbeck, 2003; Ramirez-Heller et al., 2014). According to Brodbeck (2003)

and Ramirez-Heller et al. (2014), a team climate conductive to learning is characterized as one

in which:

1. There is empathy, support, as well as a common understanding among its members, conveying

an atmosphere of mutual trust,



26 ewa andrejczuk et al.

2. There is a regular contact as well as informal and formal communication processes among its

members,

3. There exists a common agreement with the goals and objectives to be achieved, and these

shared goals are clear, realistic and feasible,

4. There is a prevailing notion of democracy and equality among its members, with no one

having particular control over the others,

5. Members perceive a personal development as the team enhances their creativity and provides

general support in fulfilling their individual plans.

Finally, there are various studies in Organizational Psychology analyzing the effect of

communication and network structure on team performance. Typically, teams in organizations

are strategically composed by heterogeneous individuals (Osatuyi, 2012). This is based on the

assumption that once team members share their information, the team as a whole can access a

larger pool of information, knowledge and expertise. However, studies have shown that teams,

unlike individuals, sometimes do not effectively share and use the unique information available

to them. This leads to poorer decision making. Informational influence theory holds that the

subjective importance of information may affect if information is shared or not. Henceforth, an

important factor for performance improvement is the proactive communication of information

about team members’ goals (Butchibabu et al., 2016). It is also found that task complexity

is negatively correlated with information exchange. Surprisingly, teams tend to share less

information when working on complex tasks, compared to when working on simple tasks (Osatuyi,

2012). Also in an on-line game domain communication plays an important role on the performance

of virtual team members (Leavitt et al., 2016). For instance, League of Legends enables non-verbal

communication through “pings,” alerts that are easy to activate and provide auditory and visual

hints for teammates. Leavitt et al. (2016) analyse 10.293 matches in this popular game and

test the impact of ping actions on team performance. They show that pings by players have a

positive but concave relationship with player performance. That is, teams sending more pings

have higher levels of performance up to a point after which sending more pings leads to lower

levels of performance.

Another important factor influencing team performance is team shared belief in their collective

power to produce desired results (Yildir, 2005). In Yildir (2005), the team shared beliefs of

computer game players were measured as 126 teams competed in a highly interdependent, online

role-playing team game. Structural equation modeling results indicated that for all interdependent

teams, as team shared belief increased, both team persistence and performance also increased

positively and linearly.

Analysis. Regarding team composition, there is a strong relationship between task type and

team type (structure). The type of the team depends on the features of the task to perform and

so very often team types are derived from task types. Besides task type, team diversity plays

an important role when composing teams. Regarding the “optimal” team size, it is a complex

question and future research is needed to determine the impact of team size on team performance,

such as the nature of the task, the internal motivations, and the context. Some preliminary results

show that the more complex the task, the larger the size of the team needs to be, but limited

to an optimal size of six members. Regarding team formation, several different team processes

classifications have been proposed, though no agreement has been reached. Finally, having a good

team climate seems key to achieve good performance.

4.5 WHEN do we do it? The dynamics

Humans learn with every interaction. Our memory recollection and capability improvement

cannot be removed or stopped. Hence, the organisational psychology research usually deals with

complex scenarios, those of simultaneous and successive tasks, see Section 4.5. In organisational
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psychology, the dynamic properties of a team are referred to as emergent states. Emergent states

develop during teamwork and have an effect on the outcomes. Several examples of emergent

states (Mathieu et al., 2008) are team confidence, team empowerment, cohesion, team climate,

collective cognition or trust between team members.

The development of emergent states is closely connected to the process of team learning

behaviours. As members of a team interact with one another and perform tasks, they learn

from their experiences. That is, they learn by asking questions, seeking feedback, experimenting,

reflecting on results, and discussing errors or unexpected outcomes of previous actions (Edmond-

son, 1999). These complex tasks allow team members to acquire, share, combine and apply

knowledge (Olivera and Argote, 1999; Kozlowski and Ilgen). They also lead to the development

of shared understanding and meaning as well as to the acquisition of mutual knowledge, skills,

and performance capabilities (Garavan and McCarthy, 2008). All these developments enhance

team performance (Edmondson, 1999; Zellmer-Bruhn, 2006).

Analysis. Unlike computer science, the reviewed organisational psychology literature does

not study simple scenarios such as non successive and non simultaneous tasks. Typically,

organisational psychology analyzes complex and realistic scenarios as human learning capabilities

need to be considered. Moreover, on top of including the social network and memory about the

outcomes of past experiences, the researchers in organisational psychology deal with the dynamics

of individuals’ capabilities (as humans learn new capabilities and forget not used ones).

4.6 WHERE do we do it? The context

From a systemic perspective teams are part of the structure of an organisation and therefore they

operate within this organisation. In the same way, an organisation is part of the environment.

The environment creates demands and requirements for an organisation and influences the

organisation’s system. In turn, the organisation tries to address these requirements by influencing

the operations of its teams and their performance in diverse ways.

Research results suggest that context plays an important role in the performance of teams

(Guzzo and Dickson, 1996; Hackman, 1990). Hackman (1990) between others propose and analyse

many contextual factors that have to be considered when composing a team:

• The uncertainty on the level of complexity of the tasks and the degree of dynamics of the

environment. Both aspects influence the uncertainty within the organisation and therefore

its teams need to operate with incomplete knowledge. The uncertainty about external

factors is determined by the available information about the customers, the suppliers, or

other competing organisations. The uncertainty about internal factors is determined by

the dynamics of tasks, organisational rules and objectives. In such an uncertain context,

teamwork is more challenging and paradoxically teams may perform better than in a stable

and predictable context.

• The vision and mission of an organisation that determine the main rules and norms to be

followed and what is to be considered as good performance.

• The set of values, policies and strategies of the organisation. For instance, organisations

supporting individual values will hinder teamwork and team performance will thus be

poor. This is because teamwork is based on shared values, mutual support, constructive

collaboration, mutual trust, coordination mechanisms and synergies, which are collective

values. On top of it, an organisation promoting internal competition will lead to individual

strategies of withholding information and self-interested behaviours.

• The organisational benefits such as the reward or the training systems. Diverse motivational

theories are available to explain the relevance of the reward systems for increased perfor-

mance. For example, teams will perform better with an appropriate reward system.
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• The resources and assistance made available to the team. It is obviously easier for the team

to achieve good performance when operating in a context of resource abundance.

• The organisational climate. A context with a perceived climate of control and low level

of autonomy for the team will hinder successful teamwork and performance. As teamwork

requires an individual engagement with the team, a climate is needed that facilitates

information sharing or team skills development.

• The cultural context. The definition of a team changes across cultures: in cultures valuing

individualism teams are seen more as a set of people each contributing to a different subtask,

whereas in cultures valuing collectivism teams are seen as having shared goals, values and

responsibility for the whole task. Research results show that teams perform better in a

collective cultural context.

Analysis. In contrast with computer science approaches, the context where teams solve tasks

plays an important role in the organisational psychology literature. The context is understood

as internal and external factors influencing teamwork. The internal context can be characterised

as dimensions of the organisation, such as vision and mission, values, policies and strategies, or

organisational benefit system. The external context can be characterized as dimensions of the

environment in which the organisation operates, that is the culture, the available resources, and

the uncertainty about other players behaviour.

5 Discussion

Computer Science (CS) and Organisational Psychology (OP) have followed rather disparate

approaches when it comes to team composition and team formation. However, some similarities

and differences can be drawn and several new research questions can be formulated from a cross

reading of the two literature corpus. In Table 1 a comparison of the main papers in CS can be

found.

5.1 Similarities in both approaches

When modeling agents’ properties in CS, there are two main approaches. There is either extensive

a-priori information about teammates given as input or ad-hoc scenarios where agents learn their

teammates’ capabilities. In OP a number of tests are proposed to acquire a-priori information

about teammates, such as intelligence or cognitive competences tests, assessment centres or

social and behavioural competence tests. Also, similar to CS, OP studies allow to learn human

capabilities from their repeated interactions.

To maximize team performance, one of the crucial findings in both OP and CS is that team

members have to be heterogeneous.

Regarding the tasks that are executed by agent teams, both OP and CS focus rather on team

members’ properties required to perform a task than on a detailed planning of the task execution.

5.2 Differences in both approaches

The first difference we find between CS and OP is with respect to the complexity of individual

team members. Organisational psychology focuses on humans with all their intrinsic complexity

while CS focuses on a limited set of human-like properties to build software agents. In CS the

agent properties have been categorized as personality and capacity. In OP, although human

properties can also be categorized as personality and capacity, capacity is a much wider concept.

It contains not only skills, but also other properties, such as competences, experience, gender

or age. Moreover, while in OP the human capabilities are assumed to be dynamic (i.e. lifelong

learning), software agents capabilities are assumed to be static and only the behaviour model

may change with agents’ interactions.



In CS the majority of approaches assume that the joint capabilities of agents in a team are

enough to solve a given task. However, the researchers in OP recognize also other factors as

important when composing and forming a team, such as the motivation of individuals and the

task context. They also show that the motivation characteristics predict more accurately the

performance of a team than the other factors. Regarding OP research gaps, it lacks a mapping

between cognitive ability of individuals and task types (which is an input in CS models) which

complicates team composition.



Reference Team Process Individual

Properties

The task The Objec-

tive

Team Com-

position

Team Organ-

isation

The dynamics The context

Agmon et al. (2014) Formation Personality Plan-based Maximizing

social welfare

Exogenous Hierarchy Non Successive and

Non Simultaneous

N/A

Anagnostopoulos et al.

(2012)

Composition Capacity Individual-

based

Maximizing

the quality

Exogenous Egalitarian Successive and Non

Simultaneous

Social and

Geographical

Andrejczuk et al. (2016) Composition Personality Individual-

based

Maximizing

the quality

Exogenous Egalitarian Non Successive and

Simultaneous

N/A

Barrett et al. (2013) Formation Personality Plan-based Maximizing

the quality

Exogenous Egalitarian Non Successive and

Non Simultaneous

N/A

Chalkiadakis and

Boutilier (2012)

Composition Capacity Individual-

based

Maximizing

social welfare

Endogenous Egalitarian Successive and

Simultaneous

N/A

Chen et al. (2015) Composition Capacity Individual-

based

Maximizing

social welfare

Exogenous Egalitarian Successive and

Simultaneous

N/A

Crawford et al. (2016) Composition Capacity Individual-

based

Minimizing

cost

Exogenous Egalitarian Non Successive and

Non Simultaneous

N/A

Farhangian et al. (2015b) Composition Personality Individual-

based

Maximizing

social welfare

Endogenous Hierarchy Successive and

Simultaneous

N/A

Farhangian et al. (2015a) Composition Capacity and

Personality

Individual-

based

Minimizing

cost

Exogenous Egalitarian Non Successive and

Non Simultaneous

N/A

Hanna and Richards

(2015)

Formation Personality Individual-

based

Maximizing

the quality

Exogenous Egalitarian Non Successive and

Non Simultaneous

N/A

Kargar et al. (2012) Composition Capacity Individual-

based

Minimizing

cost

Exogenous Egalitarian Non Successive and

Non Simultaneous

N/A



Reference Team Process Individual

Properties

The task The Objec-

tive

Team Com-

position

Team Organ-

isation

The dynamics The context

Liemhetcharat and

Veloso (2012)

Composition Capacity Individual-

based

Maximizing

the quality

Exogenous Egalitarian Successive and Non

Simultaneous

Social

Marcolino et al. (2013) Formation Personality Plan-based Maximizing

the quality

Exogenous Egalitarian Non Successive and

Non Simultaneous

N/A

Nagarajan et al. (2015) Formation Personality Plan-based Maximizing

the quality

Exogenous Egalitarian Non Successive and

Non Simultaneous

N/A

Marcolino et al. (2016) Formation Personality Plan-based Maximizing

the quality

Exogenous Egalitarian Successive and Non

Simultaneous

N/A

Okimoto et al. (2015) Composition Capacity Individual-

based

Minimizing

cost

Exogenous Egalitarian Non Successive and

Non Simultaneous

N/A

Peleteiro et al. (2015) Composition Capacity Individual-

based

Maximizing

the quality

Endogenous Hierarchy Successive and

Simultaneous

Social

Rangapuram et al. (2015) Composition Capacity Individual-

based

Maximizing

the quality

Exogenous Egalitarian /

Hierarchy

Non Successive and

Non Simultaneous

Social

Rochlin et al. (2016) Formation N/A Plan-based Maximizing

the quality

N/A Hierarchy Non Successive and

Non Simultaneous

N/A

Rokicki et al. (2015) Composition

and Formation

N/A N/A Maximizing

social welfare

Exogenous,

Endogenous

Egalitarian Non Successive and

Simultaneous

N/A

Spradling et al. (2013) Composition

and Formation

Capacity Individual-

based

N/A Exogenous Egalitarian Non Successive and

Simultaneous

N/A

Table 1 Comparison of the computer science contributions reviewed in this paper.



The CS literature has focused on team co-operation with various objectives that can be

categorized as at least one of the following: minimizing overall cost, maximizing social utility,

or maximizing the quality of the outcome (understood as maximizing team performance). In OP,

the main objective for team composition and formation is just to maximize team performance.

Moreover, from an OP perspective team performance cannot be assessed by the time spent to

perform a task, by comparing costs or by counting the number of right answers as it would ignore

some important subjective reasons. Instead, OP analyzes possible causes of failure, such as an

excessive amount of work needed to execute the task given the size of the team or the lack of

motivation of team members. This is why the performance is assessed from two perspectives:

objective and subjective, while, CS only considers objective measures. In CS there are only early

attempts to include a subjective perspective while analyzing team performance. It is shown that

the motivation increases by introducing competition mechanisms (like in crowdsourcing teams)

or by giving agents freedom while selecting their collaborators (like in ad-hoc teams).

Since in CS agents can be modeled depending on the needs, researchers can study different

settings depending on the dynamics of task arrival (one task or many, one time or many). Many

MAS models are simplistic since they consider only one task arriving at a time. Unlike CS,

the reviewed OP literature does not study simple scenarios, since humans have memory and

improve their capabilities with every task. Hence, typically OP analyzes only complex and realistic

scenarios. The CS literature uses these complex scenarios to let agents build their beliefs based

on past experiences and compose new teams according to these learned beliefs. OP, on top of

including the social network and memory about the outcomes of past experiences, deals with

the dynamism of individuals’ capabilities (as humans learn new capabilities and forget not used

ones).

5.3 Cross fertilization opportunities

Prior sections explored a range of concepts and issues concerning team composition and formation.

In this final subsection, we focus on posing research questions for the field, organized around a

set of research opportunities:

• Establish a connection with the OP literature. We pose the following research

questions:

1. What criteria to use when composing effective teams? A goal of OP is to improve

organizational performance by placing the right people in the right jobs, thus enhancing

the fit between the individual and the organization. This includes manual methods for

building effective teams. Nevertheless, research on team composition and team formation

in CS and OP have evolved separately. The MAS literature has typically disregarded

significant OP findings, with the exception of several recent, preliminary attempts (like

Andrejczuk et al. (2016), Farhangian et al. (2015b) or Hanna and Richards (2015)).

This body of research has focused on algorithms that help automate team formation

and composition. Research findings from the OP literature have much potential for MAS

heuristics (such as team diversity (Mathieu et al., 2008), team size (Mao et al., 2016) or

context (Guzzo and Dickson, 1996)).

2. Are current CS methods enough to measure team performance? From an OP

perspective, team performance cannot be assessed by simply measuring how long it

takes for a group to finish a certain task or by counting the number of right answers

to predefined and clear questions, which is a common approach in CS. OP rather

analyzes joint team objectives and the team composition and formation setting (such

as unrealistic deadlines, the number of individuals in a team, the level of stress in a

team or the quality of the outcome). Also, OP focuses on the inner development of team

members and analyses the quality of human resources in a team, that is, motivation,

satisfaction, commitment, illness or stress rate (Quijano et al., 2008). When evaluating
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team performance, Computer Science research should take into account team objectives,

task dependencies, the feasibility of the task, etc.

3. How to exploit the factors that influence team performance? According to OP

research, in order to carry out highly interdependent tasks, all team members should

possess coordination skills (maturity) and some of them the capacity to take decisions

(diversity). Also, the greater the uncertainty and interdependence of task types, the more

diverse the competences for team members to cope with complexity. However, if the team

is overqualified for the task to perform, the motivation of team members decreases and the

quality of the outcome is lower or the task is not completed at all. All these dependencies

have been studied extensively by OP research, but they are ignored by CS. We should

work to understand what is the correlation between task type and team type and what

is the exact influence on team performance.

• Enhancing agent models. The CS literature is in need of analysing more complex examples

where agents are modeled as humans. Based on our findings we form several research questions

for MAS research:

1. How to develop richer information (or cognitive) agent models to enhance

team composition? In OP, the most important capacity of team members that is

related to team performance is their cognitive ability. It is a much wider concept than

the notion of capacity in multiagent systems, since beyond skills, widely used by MAS

research, it contains many other properties such as experience, competences, age, or even

gender. While some of the human properties may not make sense in an agent context

(like age or gender), some do (such as cognitive abilities, lifelong learning or behavioral

model). Also, there is a need to include more sophisticated models for agent capabilities,

such as graded capabilities instead of binary ones. Richer agent models would allow the

CS field to further benefit from OP findings for team composition and formation.

2. How to model and exploit competence dynamics? The majority of CS models

assume that competences are a fixed property of each agent. OP indicates that human

capabilities are necessarily dynamic (evolve along time) so that teams can successfully

perform tasks in dynamic real-world scenarios and in a variety of contexts. The dynamics

of competences through learning and experience and the cultural values could be used

by MAS research to program adaptive agents, specially when interacting in mixed teams

involving humans.

3. How can we include agents’ motivation in team composition and formation

models? OP research highlights motivation as an important factor for team performance

Hackman (1990). The majority of the MAS literature on team composition and teamwork

assumes that agents always behave according to their capabilities and knowledge. While

in MAS research it is shown that motivation increases by introducing competition

mechanisms (like in crowdsourcing teams, Rokicki et al. (2015)), or by giving agents

freedom when selecting their collaborators (like in ad-hoc teams, Agmon et al. (2014)),

these are only early attempts to include agents’ motivation as an important factor for

team performance.

• Enhancing task execution.We are interested in the following research questions for

multiagent research:

1. Are agents’ joint capabilities enough for successful task execution? Regarding

the tasks that are executed by agent teams, CS focuses on those team members’ properties

required to perform a task rather than on a detailed planning of task execution. The

majority of approaches assume that the joint capabilities of agents in a team are enough

to solve a given task. There are some preliminary attempts to include planning, though

they are very simplistic. The majority of methods do not consider time constraints, action
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dependencies, action failure, plan robustness, task dynamic changes and hence, the vast

literature on planning has not yet been integrated into team formation methods.

2. How to endow agents with competence learning capabilities? Since in CS agents

can be engineered depending on the needs (i.e. agents can be designed with different

properties, such as personality or memory, depending on the whole system design),

researchers can study different settings depending on the dynamics of task arrival. The CS

literature uses complex scenarios to let agents build their beliefs based on past experiences

and compose new teams according to these learned beliefs. However, while executing

tasks, there are no contributions that explore successive or simultaneous settings. Agent

learning when executing tasks could be used to further improve the task execution.

• Enhancing team performance through context inclusion. Particularly, we are inter-

ested in the following question:

1. How to computationally exploit the context within team formation and

composition? OP research results suggest that context plays an important role in

the performance of teams, Guzzo and Dickson (1996); Hackman (1990); Terveen and

McDonald (2005). Although, to the best of our knowledge, there are only a few works

in CS that would recognize context as an important factor, besides the social and

geographical context considered in some papers. There is a need to perform further

research on how to computationally model the context within team composition and

team formation to build better performing agent teams.

• Enhancing team modeling We form the following research question for multiagent

research, that is:

1. Is the sum of the agents’ individual capabilities enough to predict team

performance? Although individuals’ properties have been extensively studied and

considered, there is still a need for modeling the global properties of agent teams. Such

modeling should go beyond considering simple properties such as the sum of the agents’

individual capabilities or the Boolean representation of whether the team can perform

a task or not. One of the findings from OP that could be used is a general collective

intelligence factor that explains team performance on a wide variety of tasks, Woolley

et al. (2010).
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Il C. Moon, K. M. Carley, M. Schneider, and O. Shigiltchoff. Detailed analysis of team movement

and communication affecting team performance in the america’s army game. 2005.

M.K. Mount, M.R. Barrick, and G.L. Stewart. Five-factor model of personality and performance

in jobs involving interpersonal interactions. (11):145–65, 1998.

I. Briggs Myers, M. H McCaulley, N. L. Quenk, and L. Hammer, A. MBTI manual: A guide to the

development and use of the Myers-Briggs Type Indicator, volume 3. Consulting Psychologists

Press Palo Alto, CA, 1998.

V. Nagarajan, L. S. Marcolino, and M. Tambe. Every team deserves a second chance: Identifying

when things go wrong (student abstract version). In Proceedings of the Twenty-Ninth AAAI

Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA., pages 4184–

4185, 2015.

J. Navarro, S. Quijano, R. Berger, and R. Meneses. Work-groups in organizations: A basic tool

to manage increasing complexity and ambiguity. Papeles del Psicologo, 32:17–28, 2011.

T. Okimoto, N. Schwind, M. Clement, T. Ribeiro, K. Inoue, and P. Marquis. How to form a task-

oriented robust team. In Proceedings of the 2015 International Conference on Autonomous

Agents and Multiagent Systems, AAMAS ’15, pages 395–403. International Foundation for

Autonomous Agents and Multiagent Systems, 2015.

F. Olivera and L. Argote. Organizational learning and new product development: Core processes.

Shared cognition in organizations: The management of knowledge, pages 297–326, 1999.

B. J. Osatuyi. Effects of information importance and distribution on information exchange in

team decision making. New Jersey Institute of Technology, 2012.

Kirill Osipov and Gita Sukthankar. Amalgacloud: Social network adaptation for human and

computational agent team formation. HUMAN JOURNAL, 1(2):61–73, 2012.

C.K. Oyster. Groups: A Users Guide. McGraw-Hill, Boston, 1999.

38



A. Peleteiro, J.C. Burguillo-Rial, M. Luck, J.L. Arcos, and J.A. Rodŕıguez-Aguilar. Using
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