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ID copper(II) complex,  [Cu2(L)2(fum)]∙H2O}n (1) has been synthesized using  fumarate (fum2-) 

and a Schiff base (HL), derived from the condensation reaction of 2-amino-1-butanol and 

salicyldehyde. Complex 1 has been characterized by X-ray crystal structure, FT-IR, electronic 

absorption and fluorescence spectroscopic methods. The structural determination reveals that 

complex 1 crystallizes in the monoclinic system with space group P21/n and form 1D polymeric 

chain, built by bridging fum. Weak π…π and C–H…π interactions in 1, lead to a 3D 

supramolecular architecture. Complex 1 exhibits fluorescence at room temperature with a quantum 

yield (Φs) of 0.257. The interactions of complex 1 with bovine serum albumin (BSA) and human 

serum albumin (HSA) were studied using electronic absorption and fluorescence spectroscopic 

techniques and the analysis shows that complex 1 interaction with BSA / HSA occurs mainly with 

ground state association process. Calculated values of apparent association constants are 1.34 × 

104 M-1 and 1.81 × 104 M-1 for BSA and HAS, respectively,  at 300 K.  The number of binding 

sites and binding constants were calculated using double logarithm regression equation. The 
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interaction of complex 1 with the calf thymus DNA (CT-DNA) was also investigated using 

electronic absorption and fluorescence spectroscopic methods. The results show that complex 1 

has binding affinity to CT-DNA in the order of 2.96×105 M-1. Low temperature magnetic 

measurements reveal existence of antiferromagnetic interaction in complex 1. The magnetic data 

have been fitted considering complex 1 as a pseudo-dinuclear system, with the two copper(II) 

atoms bridged by two carboxylate oxygen atoms, since the coupling through long fum bridge is 

almost nil. The best-fit parameters obtained with this model are J = – 60 cm-1, gCu = 2.20. 

 

Introduction  

The design and synthesis of polynuclear metal complexes have become and active area of research 

for the last few decades due to their interesting molecular structure, crystal packing motifs and 

potential application in the field of magnetism,1 fluorescence,2 catalysis3  and bio-inorganic 

chemistry.4 The choice of ligands is one of the important factors for designing such polynuclear 

metal complexes. Chelating organic ligands block some coordination sites of the metals ions, 

whereas the organic spacers serve to link the metal ions and form polynuclear metal complexes.5 

Multidentate flexible Schiff bases are often used to build polynuclear complexes, since they can 

efficiently block some coordination sites of metal ions.6 The use of Schiff base in combination 

with the linear dicarboxylate is an important strategy for synthesis of polynuclear complexes and 

in this combination the Schiff bases function as chelating ligand and linear dicarboxylate behaves 

as spacer.7 Among the 3d metal ions the polynuclear chemistry of Cu(II) is very important since it 

exhibits a rich variety of coordination geometries e.g., tetragonal, tetrahedral, square planar, 

trigonal bipyramidal etc. and hence the prediction of final structure and molecular topology of 
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polynuclear copper (II) compounds is difficult.8 On the other hand  copper compounds show 

interesting magnetic properties,9 anticancer activity10 and bio-inorganic modeling.11  

Fumaric acid (H2fum), as a member of multidentate aliphatic dicarboxylic acids, possesses 

versatile coordination mode and have special conformation with a 180° angle between the 

carboxylic acid groups. It can function as mediator for transmitting the exchange interaction 

between the paramagnetic metal centers.12 It has been scarcely used to construct the Cu(II) 

polynuclear complexes and to our knowledge only a few compounds of Cu(II) with fum2- have 

been reported in the literature.13 Since the metal-metal distance through the  fum2- ligand is above 

9.2 Å, the bridging spacer does not effectively transmit magnetic exchange, however fum2- 

sometimes function as monoatomic bridging mode and exhibit ferromagnetic exchange 

interaction.13a 

Literature survey reveals that many copper(II) based coordination compounds  are used as metallo-

pharmaceuticals14 and these compounds  play an important role in biology due to their 

antimicrobial,15 antifungal,16 antibacterial,17 antitumoral,18 antiviral,19 antipyretic16a and 

antidiabetic activities.20 The study of the interaction of copper(II) compounds with DNA under 

physiological conditions is important for the design of copper(II) based new pharmaceuticals. On 

the other hand, serum albumin is the most abundant soluble protein in the circulatory system and 

function as transporter and disposer of pharmaceuticals.21 For this reason the analysis of kinetics 

of the interaction of DNA / serum albumins and copper complex is important to determine the 

affinity of copper complex to DNA / protein, and this information will promote the development 

of copper metal based efficient metallopharmceuticals. In the present contribution we report 

synthesis, crystal structure and magnetic properties of a 1D polynuclear copper(II) compound, 

{[Cu2(L)2(fum)]∙H2O}n (1) (fum = fumarate ; HL = (E)-2-((1-hydroxybutan-2-
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ylimino)methyl)phenol). Kinetics of interactions of complex 1 with calf thymus DNA (CT-DNA) 

and bovine / human serum albumins have been studied. 

 

Experimental   

Materials. High purity 2-amino-1-butanol was purchased from the Aldrich Chemical Co. Inc. and 

used as received. All other chemicals used were of analytical grade. Solvents used for 

spectroscopic studies were purifies and dried by standard procedures before use.22 

Physical measurements. Elemental analyses (carbon, hydrogen and nitrogen) were performed 

using a Perkin-Elmer 240C elemental analyzer. IR spectra were recorded as KBr pellets on a 

Bruker Vector 22FT IR spectrophotometer operating from 400 to 4000 cm–1. Electronic absorption 

spectra were obtained with Shimadzu UV-1601 UV-vis spectrophotometer at room temperature. 

Quartz cuvettes with a 1 cm path length and a 3 cm3 volume were used for all measurements. 

Emission spectra were recorded on a Hitachi F-7000 spectrofluorimeter. Room temperature (300 

K) spectra were obtained in methanolic solution using a quartz cell of 1 cm path length. The slit 

width was 2.5 nm for both excitation and emission.  

The fluorescence quantum yield was determined using phenol as a reference and methanol 

medium for both complexes and reference. Emission spectra were recorded by exciting the 

complex and the reference phenol at the same wavelength, maintaining nearly equal absorbance 

(~ 0.1). The area of the emission spectrum was integrated using the software available in the 

instrument and the quantum yield calculated23 according to the following equation: 
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where Φs and Φr are the fluorescence quantum yield of the sample and reference, respectively. As 

and Ar are the respective optical densities at the wavelength of excitation, Is and Ir correspond to 

the areas under the fluorescence curve; and ηs and ηr are the refractive index values for the sample 

and reference, respectively.  

Temperature-dependent molar susceptibility measurements of polycrystalline sample was carried 

out at the Servei de Magnetoquímica of the Centres Científics i Tecnològics at the Universitat de 

Barcelona in a Quantum Design SQUID MPMSXL susceptometer with an applied field of 3000 

and 198 G in the temperature ranges 2–300 and 2–30 K, respectively. 

Synthesis of the ligands : 

A methanolic solution (20 mL) of mixture of 2-amino-1-butanol (1 mmol, 0.089 g) and 

salicyldehyde (1 mmol, 0.122 g) was refluxed for 3h. The resulting yellow colour solution cooled 

to room temperature and solid yellow compound was obtained after evaporation of solvent under 

reduced pressure. The compound obtained was redissolved in MeOH and filtered. The solution 

was left for slow evaporation at room temperature. After one week, yellow crystals of HL were 

obtained. Yield: 85%. Anal.Calc. for C11H15NO2 (193.24): C, 68.36; H, 7.82; N, 7.24 %. Found: 

C, 68.34; H, 7.79; N, 7.26 %. HR-MS: [M + H]+, m/z, 194.25 (100%) calcd: m/z, 193.24. 1H NMR 

(400 MHz, CDCl3, δ ppm): 0.709-0.886 (3H, m), 1.474-1.655 (2H, m), 2.576 (1H, s), 3.466-3.690 

(1H, m; 2H, m), 4.957 (1H, s), 6.823-6.921 (1H, d; 2H, m), 7.226-7.298 (1H, d; 2H, m), 8.306 

(1H, s). 13C NMR (CDCl3, 400 MHz, δ ppm): 165.41 (Ar−C−OH), 161.71 (−CH=N−), 132.45-

113.71 (Ar−C), 73.03 (-CH2-OH), 66.23 (=N-CH-), 25.05 (-CH2-), 10.51 (-CH3).  

 

 

Synthesis of complexes 
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Caution! Metal perchlorates in the presence of organic ligands are potentially explosive. Only a 

small amount of the material should be prepared and handled with care. 

The complex has been synthesized by adopting the procedure schematically given in 

Scheme 1. 

Scheme 1. Synthesis of complex 1 

 

Synthesis of {[Cu2(L)2(fum)]∙H2O}n (1). A methanolic solution (10 mL) of mixture of HL (1 

mmol, 0.193 g) and triethylamine (TEA) (1 mmol) was added to a methanolic solution (10 mL) of 

Cu(ClO4)2∙6H2O (1.0 mmol, 0.371 g), and  stirred for 2h. To the resulting green mixture an aqueous 

solution (1 mL) of disodium fumarate (1mmol, 0.16 g) was added dropwise and resulting deep 

green reaction mixture was stirred for an additional 1 h at 27 °C and filtered. The filtrate was kept 

in air for slow evaporation at room temperature. Deep green needle shaped single crystals suitable 

for X-ray diffraction were obtained by slow evaporation of methanolic solution after a few days. 

Yield 78 %.  Anal. Calc. for C26H32Cu2N2O9 (643.62): C, 48.47; H, 4.97; N, 4.35 %. Found: C, 

48.50; H, 4.99; N, 4.37 %. IR (cm-1): 3200-3600 (br, vs), 2982 (w), 1642 (s), 1552 (vs), 1468 (s), 

https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CB0QFjAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FTriethylamine&ei=k0SaVZnDEMqNuATf0YPIBQ&usg=AFQjCNHmEYHFuIBRg0tRgI10jiWASgStAw&bvm=bv.96952980,d.c2E
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1416 (vs), 1374 (s), 1302 (vs), 1244 (vw), 1196 (vw), 1082 (vw), 1021 (vw), 888 (vw), 691 (br, 

vw). 

Crystallographic data collection and refinement. 

The crystal data of complex 1 was collected at room temperature using a Nonius Kappa CCD 

diffractometer with graphite monochromated Mo-K radiation. The data set was integrated with 

the Denzo-SMN package24 and corrected for Lorentz, polarization and absorption effects 

(SORTAV).25 The structure was solved by direct methods using SIR9726 system of programs. The 

structure of 1 was refined using full-matrix least-squares with all non-hydrogen atoms 

anisotropically and hydrogens included on calculated positions, riding on their carrier atoms, 

except the hydrogen atoms forming H-bonds which were refined isotropically. The methyl group 

C26-H3 was found disordered and refined isotropically over two positions with occupancies of 0.6 

and 0.4, respectively. The structure displays large voids occupied by disordered solvent molecules 

which cannot be localized. These solvent molecules have been treated as a diffuse contribution to 

the overall scattering without specific atom positions using the routine SQUEEZE included in the 

PLATON systems of programs.27 All calculations were performed using SHELXL-9728 and 

PARST29 implemented in WINGX30 system of programs. Crystallographic data has been deposited 

at the Cambridge Crystallographic Data Centre and allocated the deposition numbers CCDC 

1476311. The crystal data are given in Table 1 and a selection of bond distance and angles are 

given in Table 2. 

Albumin Binding studies       

Stock solutions of human serum albumin (HAS, 3.109 µM) and bovine serum albumin (BSA, 

8.214 µM) were prepared in HEPES buffer (pH 7.2) solution. Aqueous solution of the copper(II) 

compound was prepared by dissolving the compound  in water : HEPES buffer (1:99). The 
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interactions of compound with serum albumins were studied by recording room temperature 

tryptophan fluorescence of HSA / BSA at 340 nm. Fluorescence spectra were recorded in the range 

290-450 nm at an excitation wavelength of 280 nm.  To the solutions of serum albumins, copper(II) 

compound was added and the quenching of emission intensities at 340 nm (λex, 280 nm) were 

recorded after gradual addition (20 µL, 0.199 µM) aqueous solution compound. The Stern-Volmer 

constant (Ksv) and quenching rate constant (kq) were calculated using the equations F0/F = 1 + 

Ksv[complex] and Ksv =  kqτ0, where F0 and F are the fluorescence intensity in the absence and in 

the presence of the complex, and τ0 is the lifetime of serum albumin (~ 5 × 10-9 s).31  To calculate 

the binding constant of the compound with SA, the following Scatchard equation have been used  

            log[(Fo–F)/F] = log Kb + n log[complex], where Kb is the binding constant of the compound with 

serum albumin and n is the number of binding sites per albumin. 

DNA binding studies 

Absorbance spectral studies 

UV spectroscopic technique has been used to investigate the possible binding mode and to 

calculate the intrinsic binding constant (Kib) for the interaction of the complex with CT-DNA. 

Electronic absorption spectral titration was carried out at a fixed concentration of copper(II) 

compound (11.26 µM) in water and varying the concentration of CT-DNA from 0 to 23.21 µM. 

Intrinsic binding constant (Kib) of the complex with CT-DNA was determined using the equation32 

[DNA]

(εa − εf)
=

[DNA]

(εb − εf)
+  

1

Kib(εb − εf)
 

where, [DNA] is the concentration of  CT-DNA, εa is the extinction co-efficient of the complex at 

a given CT-DNA concentration, εf  and εb are the extinction co-efficient of the complex, in free 

solution and when fully bound to CT-DNA, respectively. The plot of [DNA]/(εa-εf) vs [DNA] give 
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a straight line with 1/(εb-εf) and 1/[Kib(εb-εf)] as slope and intercept, respectively. From the ratio 

of the slope to the intercept the value of Kib was calculated. 

Competitive binding fluorescence measurement 

The competitive binding nature of ethidium bromide (EB) and copper(II) compound with CT-

DNA was investigated adopting fluorometric method using aqueous solution of EB bound CT-

DNA in HEPES buffer (pH 7.2) at room temperature. In presence of DNA, ethidium bromide (EB) 

exhibits fluorescence enhancement due to its intercalative binding to DNA. Competitive binding 

of copper(II) compound with CT-DNA results fluorescence quenching due to displacement of EB 

from CT-DNA. The fluorescence intensities at 612 nm (λex, 500 nm) of EB bounded CT-DNA 

with increasing concentration of copper(II) compound was recorded. The Stern-Volmer constant 

(Ksv) was calculated using Stern-Volmer equation33 F0/F = 1 + Ksv[complex] ,where F0 and F are 

the emission intensity in absence and in presence of copper(II) compound, Ksv is the Stern-Volmer 

constant, and [complex] is the concentration of copper (II) compound. 

Results and discussion   

Crystal structure description 

Complex 1 crystallizes in the monoclinic system with space group P21/n. Crystallographic data 

and selected bend lengths and bond angles are depicted in Table 1 and Table 2. The ORTEP34 view 

of the asymmetric unit is shown in Fig.2 and the polymeric structure is shown in Fig.3. The crystal 

structure analysis complex 1 shows that the Cu2(L
1)2 units are connected by fumarate spacer, 

beside the presence of lattice water molecules. The crystallographic independent unit contains two 

copper(II) cation, two deprotonated Schiff base (L1)− , one fumarate and one lattice water molecule. 

Copper atoms of asymmetric unit are again connected with fumarate and form ID coordination 

polymeric structure (Fig.3). The coordination polyhedron for each metal is best described as 
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slightly distorted square pyramidal geometry [trigonality τ5 parameters35 are 0.128 and 0.013 for 

Cu(1) and Cu(2), respectively]. The basal plane is occupied by the chelating tridentate Schiff base 

donors [O(1), N(1), O(2) for Cu(1) and O(7), O(8), N(2), for Cu(2)] and by the fumarate oxygen 

donors [O(3) and O(5) for Cu(1) and Cu(2), respectively]. The apex of the square pyramid 

occupied by another fumarate oxygen at relatively longer distance [Cu(1)-O(5)' 2.384(5) Å; Cu(2)-

O(3)'' 2.476(4) Å (Table 2)]. The copper atoms are displaced by 0.0363 and 0.013 Å for Cu(1) and 

Cu(2), respectively, from the respective basal planes. The coordination Cu-O bond distances are 

varying in the range 1.908 - 2.384 Å and 1.909 - 2.476 Å for Cu(1) and Cu(2), respectively.  The 

cisoid bond angle ranges are 78.46 - 94.95° for Cu(1) and 76.25 - 94.48° Cu(2) center. On the 

other hand the transoid bond angles are 166.88°,  174.56° (for Cu(1)), and 175.30°, 176.13 ° (for 

Cu(2)). The packing diagram of complex 1 indicates that it exists as 1D polymeric chain through 

fumarate linkage where Cu…Cu separation is 8.99Å. A weak coordinative interaction between 

Cu(1) and O(4) atoms [Cu(1)-O(4) 2.768 Å] also exists in the 1D chain. The 1D polymeric chains 

are involve in strong π…π interactions (Fig.1S) (centroid to centroid distance 3.66 Å, Table 1S) 

and results 2D supramolecular sheets. Two such different 2D sheets   are further connected with 

C–H…π interactions36 (C–H…π (ring), 3.004 Å) and form a 3D supramolecular network (Fig.4).  

IR, electronic absorption and fluorescence spectra of 1 

IR spectrum of complex 1 is shown in Fig. 2S, and the most important absorption bands are 

summarized in the experimental section. The spectrum of complex 1 shows broad band in the 

region 3100 - 3600 cm-1 corresponding to the ν(O-H) stretching vibrations37. The band at 2982 cm-

1 is due to the ν(C-H) stretching vibration. The asymmetric and symmetric stretching vibrations of 

carboxylate group appear at 1642 and 1416 cm-1, respectively. The strong and sharp band at 1552 

cm-1 is due to the aliphatic C=N) stretching vibration.  
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The electronic spectrum of complex 1 shows (Fig. 5) significant transitions at 222 (ε ~ 4.98 × 104 

M-1 cm-1), 238 (ε ~ 4.40 × 104 M-1 cm-1), 268 (ε ~ 2.72 × 104 M-1 cm-1) and 366 (ε ~ 1.03 × 104 M-1 cm-

1) nm. Study of the luminescence property (Fig.5) of complex 1 shows red shifted emission (Table 

3) with large Stokes shifts (44 - 96 nm). On excitation at 366 nm complex 1 exhibits emission at 

410, 433 and 462 nm in methanol with a fluorescence quantum yield φ = 0.257, at room 

temperature. This band positions remain unchanged when λex varied between 356 and 376 nm.  

Protein binding studies  

Serum albumin binding study using absorption spectroscopy  

The change of electronic absorption spectra of bovine serum albumin (BSA) (3 ml, 8.214 µM 

aqueous solution) and human serum albumin (HSA) (3 ml, 3.109 µM aqueous solution) in presence 

of different concentration (0 - 14.748 µM)  of complex 1 (using HEPES buffer, pH 7.2) at 300 K 

temperature is shown in Fig. 6. Spectral band at 280 nm of both serum albumins blue shifted in 

presence of complex 1 (6 nm for BSA, 7 nm for HAS at 27 °C; 7 nm for BSA, 8 nm for HAS at 

37 °C). Bathochromic shift at 280 nm confirms the ground state association of complex 1 with 

serum albumins. The apparent association constants (Kapp) were calculated adopting the following 

equation 

1

(𝐴𝑜𝑏𝑠 − 𝐴0)
=  

1

(𝐴𝑐 − 𝐴0)
+ 

1

𝐾𝑎𝑝𝑝(𝐴𝑐 − 𝐴0)[𝑐𝑜𝑚𝑝𝑙𝑒𝑥]
 

           where Aobs is the observed absorbance at 280 nm of the solution containing different concentrations 

of the complex, A0 is the absorbance of serum albumin only and Ac is the absorbance of serum 

albumin with complex 1. From the plot (Fig.7) of 1/(Aobs-A0) vs 1/[complex] the  values of 

apparent association constants were calculated and the calculated values are 1.34 × 104 L mol-1 

and 1.81 × 104 L mol-1 for BSA and HAS, respectively,  at 300 K (Table 4). 
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Fluorescence quenching of serum albumins by complex 1 

The binding interactions of serum albumins with the complex were studied by fluorescence 

spectroscopy. On excitation at 280 nm, aqueous solution (pH 7.2, HEPES buffer) of serum 

albumins (BSA/HAS) exhibit luminescence at 340 nm.  The change of fluorescence spectra of 

BSA and HAS upon addition of increasing concentration (0 - 11.269 µM) of complex 1 are shown 

in Fig.8. Significant decrease in fluorescence intensity (up to 68.67 % with 3 nm blue shift  for 

BSA and  up to 63.19 % with 2 nm blue shift for HAS) observed at 340 nm upon gradual addition 

of 20 µL, 0.199 µM aqueous solution of complex 1 to the solution of serum albumins. This 

hypochromicity in the spectra reveals that complex binds with serum albumins. From the Stern-

Volmer equation33 a linear relationship were obtained (R = 0.988 for BSA curve; R = 0.994 for 

HSA curve) for the titration of serum albumins using complex 1 as quencher (Fig. 8, inset). The 

calculated values of Stern-Volmer quenching constants (Ksv) are 2.09 × 105 L mol-1 (for BSA) and 

1.39 × 105 L mol-1 (for HSA). Calculated values of the quenching constants (kq) are 4.18 × 1013 L 

mol-1 s-1 and 2.79 × 1013 L mol-1 s-1for BSA and HAS, respectively (Table 4). The values of Ksv 

and kq indicate that complex 1 has good fluorescence quenching ability.  The UV-vis absorption 

spectra of BSA/HAS show significant change on addition of complex 1, this phenomenon indicate 

the existence of static interaction between BSA/HSA and complex 1. The presence of static 

interaction is again supported by the very high values of kq  ( ~ 1013 L mol-1 s-1),  these are much 

greater than the maximum values (2×1010  L mol-1 s-1) of diffusion collision  quenching rate 

constant  of various kind of fluorescence quenchers for biopolymer.38 The binding constants (Kb) 

for the interaction of serum albumins with complex 1 and the number of binding sites (n) per 

albumin were also calculated using Scatchard equation. The plot of  log
(Fo−F)

F
 vs log[complex] 
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gives a straight line (Fig.9) with n and logKb as slope and the intercept, respectively. Calculated 

values of kb and n are given in Table 4. 

DNA binding studies of complex 

Electronic absorption spectral titration 

           The intercalation between a compound and DNA39 is evident by the hypochromism in the electronic 

spectra of compound with or without red / blue shift upon gradual increasing concentration of 

DNA. On the contrary non-intercalative interaction between the compound and DNA supported 

by the hyperchromism in the absorption spectra of a compound with increasing concentration of 

DNA.40  Fig.10 displays the change in the electronic absorption spectra of complex 1 (0.199 µM 

aqueous solution) with increasing concentration of  CT-DNA (0 - 20.94 µM). The hypochromism 

of about 48.14, 25.14, and 25.18 % were observed for the spectral bands at 238, 268, and 366 nm, 

respectively. The bands at 238 and 268 nm showed  hypochromism with 2 nm red shift and 1 nm 

blue shift, respectively, where no shifting observed for  366 nm  band. These spectral changes 

indicate that complex 1 bind to the CT-DNA helix via intercalation. [DNA]/(𝜀𝑎 − 𝜀𝑓) vs [DNA] 

(Fig. 10, inset) is a straight line with 
1

(𝜀𝑏−𝜀𝑓)
 and 

1

𝐾𝑖𝑏(𝜀𝑏−𝜀𝑓)
 as slope and intercept, respectively. The 

values of intrinsic binding constant (Kib) was calculated from the ratio of slope to the intercept and 

calculated value of Kib is 2.96×105 L mol-1. 

Ethidium Bromide (EtBr) displacement studies 

Ethidium bromide (EtBr = 3,8-diamino-5-ethyl-6-phenyl phenanthridinium bromide) shows 

fluorescence with an orange colour, when it exposed to ultra violet radiation. The intensity of EtBr 

fluorescence increases around 20 fold in presence of CT-DNA due to strong intercalation of the 
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planar ethidium bromide phenanthridium ring between adjacent base pair of the double helix.41 

CT-DNA bounded EtBr shows emission at 612 nm on excitation at 500 nm. Addition of a 

compound, which is capable to interact with CT-DNA, to the solution of a mixture of EtBr-CT-

DNA results in the quenching of EtBr-CT-DNA fluorescence intensity. The quenching of 

fluorescence occurs due to decrease in the number of binding sites on the CT-DNA available for 

EtBr. The fluorescence quenching observed in presence of compound may be used to study 

intercalation between CT-DNA and this compound. Fig.11 shows the change of fluorescence 

spectra of CT-DNA bounded EtBr upon gradual addition of 20 µL 0.199 µM solution of complex 

1.  Hypochromism (up to 65.58 % of the initial fluorescence intensity of 612 nm band) in presence 

of complex 1 suggests that it displaced EtBr molecule from the DNA binding sites.[41, 42] From the 

Stern-Volmer plot33  (insets of Fig. 11) the binding constant (Ksv) was calculated and it  is 1.701 × 

105 L mol-1. 

Magnetic properties of complex 1 

Temperature-dependent magnetic susceptibility measurements on a polycrystalline sample of 

complex 1 were carried out in the temperature range 1.9-300 K. The plot of χMT versus T is shown 

in Fig. 12, where χM is the molar magnetic susceptibility and T is the absolute temperature. The 

χMT value measured at room temperature of 0.84 cm3 K mol-1 is slightly higher than the expected 

value for two uncoupled S = ½  spins assuming g = 2 (0.75 cm3 K mol-1). Upon cooling, χMT varies 

smoothly and finally drops to zero, reaching a plateau at temperatures below 10 K. The behavior 

displayed by complex 1 confirms the presence of an overall antiferromagnetic interaction in the 

complex. The experimental magnetic data were simulated with the MAGPACK program.43 The 

model assumed the crystallographic equivalence of the two Cu(II) ions within the dinuclear unit 

by assigning one single g value for both ions. Additionally, the interaction between Cu2 units 
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through the fumarate bridge was considered negligible, since it is expected to be between one and 

two orders of magnitude weaker than the interaction with in the Cu2 dinuclear unit.44 For the spin 

Hamiltonian H = –JS1S2, S1 = S2 = SCu, a good agreement between the experimental and simulated 

curves for 1 was found by using the following parameters: gCu = 2.20 and JCu-Cu= –60 cm-1. 

Temperature-independent paramagnetism (TIP) was considered equal to 150 × 10-6 cm3mol-1. The 

simulated curve is represented together with the experimental values in Fig.12. 

The antiferromagnetic coupling in complex 1 can be understood in the light of orbital symmetry 

considerations. The two copper(II) ions in the asymmetric unit are penta-coordinated and the two 

square pyramids formed are sharing one base-to-apex edge with parallel basal planes.45 The 

unpaired electron in each Cu(II) ion  resides mainly in the basal dx2-y2 orbital. Thus, the two parallel 

magnetic orbitals are orthogonally connected through an axial position occupied by the 

monodentate fumarate bridge. If a perfect square-pyramid environment ( = 0) is assumed for both 

Cu(II) ions, there would be no overlap between their magnetic orbitals, and consequently the 

magnetic interaction would be negligible or weakly ferromagnetic. However, in complex 1 only 

Cu2 shows a local geometry close to that of a perfect square-pyramid ( = 0.013), while Cu1 

exhibits a larger distortion ( = 0.128). Such distortion is responsible for an increase of the overlap 

between dx2-y2 magnetic orbitals in the asymmetric unit, and as a result a moderate 

antiferromagnetic exchange operates between the two Cu(II) ions.46  

 

Conclusion   

In summary, we have presented here the synthesis, crystal structure, low-temperature magnetic 

behavior and study of the interactions with BSA/HAS and CT-DNA of a novel fumerate (fum) 

bridged complex of copper(II) using O,N,O donor chelating ligand. Copper(II)-Schiff base  in 
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combination with  linear rigid carboxylate fum generates a 1D polymeric chain. 3D supramolecular 

architecture of compound realized through π…π and C–H…π interactions. The CT-DNA and 

protein binding of the copper(II) complex was investigated using electronic absorption and 

fluorescence spectroscopic techniques. The compound binds effectively to CT-DNA through 

intercalation and the calculated value of intrinsic binding constant was 2.96×105 L mol-1. 

Fluorescence spectroscopic study shows that interaction of complex with serum albumins occurs 

through ground state association process and the calculated value of the quenching constants are 

in the order of 1013 L mol-1 s-1.  Low temperature magnetic measurement reveals existence of 

antiferromagnetic interaction in this compound. Experimental magnetic data of the compound 

were fitted with a pseudo-dinuclear copper (II) model where the two paramagnetic ions are bridged 

by two carboxylate groups and assuming that the coupling through long bridging fum is almost 

nil. 
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(15) (a) M. S. Islas, J. J. M. Medina, L. L. L. Tévez, T. Rojo, L. Lezama, M. G. Merino, L. Calleros, 

M. A. Cortes, M. R. Puyol, G. A. Echeverría, O. E. Piro, E. G. Ferrer and P. A. M. Williams, Inorg. 

Chem., 2014, 53, 5724-5437; (b) A. Valent, M. Melnik, D. Hudecova, B. Dudova, R. Kivekas and 

M. R. Sundberg, Inorg. Chim. Acta, 2002, 340, 15-20; (c) A. Wojciechowska,   A. Gągor,   W. 

Zierkiewicz,  A. Jarząb,   A. Dylong and   M. Duczmal , RSC Adv., 2015, 5, 36295-36306. 

(16) (a) A. M. Abu-Dief and I. M. A. Mohamed, Beni-Suef university journal of basic and applied 

sciences, 2015, 4, 119-133; (b) F. Rahaman and B. H. M. Mruthyunjayaswamy, Complex Met., 

2014, 1, 88-95.  

(17) (a) S. Muche, I. Levacheva, O. Samsonova, L. Pham, G. Christou, U. Bakowsky and M. 

Hołyńska, Inorg. Chem., 2014, 53, 7642-7649. 

(18) (a) D. -D. Yin, Y. -L. Jiang and L. Shan, Chinese J. Chem., 2001, 19, 1136-1140. 

(19) (a) J. Vanˇco, O. ˇSvajlenova, E. Raˇcanska, J. Muselik and J. Valentova, J. Trace Elem. Med. 

Biol., 2004, 18, 155-161.  

(20) J. Vančo, J. Marek, Z. Trávníček, E. Račanská, J. Muselík and O. Švajlenová, J. Inorg. 

Biochem., 2008, 102, 595-605.  

(21) B. X. Huang, H. Y. Kim and C. Dass, J. Am. Soc. Mass Spectrom., 2004, 15, 1237-1247. 

(22) D. D. Perrin, W. L. F. Armarego, D. R. Perrin, Purification of Laboratory Chemicals; 

Pergamon Press: Oxford, U.K., 1980. 

http://pubs.rsc.org/en/results?searchtext=Author%3AAgnieszka%20Wojciechowska
http://pubs.rsc.org/en/results?searchtext=Author%3AAnna%20G%C4%85gor
http://pubs.rsc.org/en/results?searchtext=Author%3AWiktor%20Zierkiewicz
http://pubs.rsc.org/en/results?searchtext=Author%3AWiktor%20Zierkiewicz
http://pubs.rsc.org/en/results?searchtext=Author%3AAnna%20Jarz%C4%85b
http://pubs.rsc.org/en/results?searchtext=Author%3AAgnieszka%20Dylong
http://pubs.rsc.org/en/results?searchtext=Author%3AMarek%20Duczmal
http://www.sciencedirect.com/science/article/pii/S0162013407002802
http://www.sciencedirect.com/science/article/pii/S0162013407002802
http://www.sciencedirect.com/science/article/pii/S0162013407002802
http://www.sciencedirect.com/science/article/pii/S0162013407002802
http://www.sciencedirect.com/science/article/pii/S0162013407002802
http://www.sciencedirect.com/science/article/pii/S0162013407002802


21 

 

(23) J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Third Edition, Springer, New York, 

USA, 2006. 

(24) Z. Otwinowski, W. Minor, Methods in Enzymology, C.W. Carter, R.M. Sweet Editors, Part 

A, Academic Press, London, 1997, 276, 307-326.  

(25) R. H. Blessing, Acta Crystallogr. Sect A, 1995, 51, 33-38. 

(26) A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. 

Moliterni, G. Polidori and R. Spagna, J. Appl. Crystallogr. 1999, 32, 115-119. 

(27) A. L. Spek, Acta Crystallogr. 2009, D65, 148-155. 

(28) G. M. Sheldrick, SHELX-97, Program for Crystal Structure Refinement, University of 

Gottingen, Germany, 1997. 

(29) M. Nardelli,  J. Appl. Crystallogr. 1995, 28, 659-659. 

(30) L. J. Farrugia, J. Appl. Crystallogr. 1999, 32, 837-838. 

(31) P. Smoleński, C. Pettinari, F. Marchetti, M. Fátima C. Guedes da Silva, G. Lupidi, G. V. B. 

Patzmay, D. Petrelli, L. A. Vitali, and A. J. L. Pombeiro, Inorg. Chem., 2015, 54, 434-440.  

(32) A. Wolfe, G. H. Shimer and T. Mechan, Biochemistry, 1987, 26, 6392-6396. 

(33) J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Third Edition, Springer, New York, 

USA, 2006. 

(34) M. N. Burnett, C. K. Johnson, ORTEP III, Report ORNL-6895, Oak Ridge National 

Laboratory, Oak Ridge, TN, 1996. 

(35) A. W. Addison, T. N. Rao, J.  Reedijk, J. V.  Rijn and G. C. Verschoor, J. Chem. Soc. Dalton 

Trans. 1984, 1349-1356. 

(36) (a) M. Nishio, M. Hirota, Y. Umezawa, The C–H… Interaction: Evidence, Nature and 

Consequences, Wiley-VCH, New York, 1998; (b) M. Nishio, CrystEngComm, 2004, 6, 130-156; 

http://pubs.acs.org/author/Smole%C5%84ski%2C+Piotr
http://pubs.acs.org/author/Pettinari%2C+Claudio
http://pubs.acs.org/author/Marchetti%2C+Fabio
http://pubs.acs.org/author/Guedes+Da+Silva%2C+M+F%C3%A1tima+C
http://pubs.acs.org/author/Lupidi%2C+Giulio
http://pubs.acs.org/author/Badillo+Patzmay%2C+Gretta+Veronica
http://pubs.acs.org/author/Badillo+Patzmay%2C+Gretta+Veronica
http://pubs.acs.org/author/Petrelli%2C+Dezemona
http://pubs.acs.org/author/Vitali%2C+Luca+A
http://pubs.acs.org/author/Pombeiro%2C+Armando+J+L


22 

 

(c) M. d. C. Fernandez- Alonso, F. J. Canada, J. Jimenez-Barbero and G. Cuevas, J. Am. Chem. 

Soc. 2005, 127, 7379-7386; (d) D. Braga, S. L. Giaffreda, F. Grepioni, L. Maini and M. Polito, 

Coord. Chem. Rev. 2006, 250, 1267-1285; (e) H. J. Schneider, Angew. Chem., Int. Ed. 2009, 48, 

3924-3977. 

(37) K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds; John Wiley & 

Sons: New York, 1997. 

(38) (a) P. Smoleński, C. Pettinari, F. Marchetti, M. Fátima C. Guedes da Silva, G. Lupidi, G. V. 

B. Patzmay, D. Petrelli, L. A. Vitali, and A. J. L. Pombeiro, Inorg. Chem., 2015, 54, 434-440; (b) 

N. Shahabadi, M. M. Maghsudi and Z. Ahmadipour, Spectrochim. Acta, Part A 2012, 92, 184-

188; (c) J. Jing, M. Jiang, Y.- T. Li, Z.- Y. Wu and C.- W. Yan, J. Biochem. Mol. Toxic. 2014, 28, 

47-59; (d) L. Li, G. Q. Qiong, J. Dong, T. Xu and J. Li, J. Photochem. Photobiol., B 2013, 125, 

56-62; (e) S. Bi, B. Pang, T. Zhao, T. Wang, Y. Wang and L. Yan, Spectrochim. Acta, Part A, 

2013, 111, 182-187; (f) Y. Sun, H. Zhang, S. Bi, X. Zhou, L. Wang and Y. Yan, J. Lumin., 2011, 

131, 2299-2306; (g) D. J. Li, J. F. Zhu and J. Jin, J. Photochem. Photobiol., A, 2007, 189, 114-

120; (h) W. R. Ware, J. Phys. Chem., 1962, 66, 455-458. 

(39) (a) Q. -L. Zhang, J. -G. Liu, H. Chao, G. -Q. Xue and L. -N. Ji, J. Inorg. Biochem. 2001, 83, 

49-55; (b) Z. -C. Liu, B. -D. Wang, B. Li, Q. Wang, Z. -Y. Yang, T. -R. Li and Y. Li, Eur. J. Med. 

Chem. 2010, 45, 5353-5361; (c) R. K. Gupta, G. Sharma, R. Pandey, A. Kumar, B. Koch, P.-Z. 

Li, Q. Xu, and D. S. Pandey, Inorg. Chem. 2013, 52, 13984-13996. 

(40) (a) F. Mancin, P. Scrimin, P. Tecilla and U. Tonellato, Chem. Commun. 2005, 2540-2548;(b) 

L. Tjioe, A. Meininger, T. Joshi, L. Spiccia and B. Graham, Inorg. Chem. 2011, 50, 4327-4339. 

http://pubs.acs.org/author/Smole%C5%84ski%2C+Piotr
http://pubs.acs.org/author/Pettinari%2C+Claudio
http://pubs.acs.org/author/Marchetti%2C+Fabio
http://pubs.acs.org/author/Guedes+Da+Silva%2C+M+F%C3%A1tima+C
http://pubs.acs.org/author/Lupidi%2C+Giulio
http://pubs.acs.org/author/Badillo+Patzmay%2C+Gretta+Veronica
http://pubs.acs.org/author/Badillo+Patzmay%2C+Gretta+Veronica
http://pubs.acs.org/author/Petrelli%2C+Dezemona
http://pubs.acs.org/author/Vitali%2C+Luca+A
http://pubs.acs.org/author/Pombeiro%2C+Armando+J+L


23 

 

(41) (a) P. Kumar, S. Gorai, M. Kumar, B. Mondal and D. Manna, Dalton Trans. 2012, 41, 7573-

7581; (b) K. Jeyalakshmi, Y. Arun, N. S. P. Bhuvanesh, P. T. Perumal, A. Sreekantha and R. 

Karvembu, Inorg. Chem. Front. 2015, 2, 780-798. 

(42) (a) J. -B. Lepecq and C. Paoletti, J. Mol. Biol. 1967, 27, 87-93; (b) R. Palchaudhuri and P. J 

Hergenrother, Current Opinion in Biotechnology, 2007, 18, 497-503; (c) A. J. Geall and I. S. 

Blagbrough, J. Pharma. Biomed. Analysis, 2000, 22, 849-859; (d) M. A. Kostiainen, J. G. Hardy 

and D. K. Smith, Angew. Chem. Int. ed. 2005, 44, 2556-2559. 

(43) (a) J.J.Borràs-Almenar, J. M. Clemente-Juan, E. Coronado and B.S.Tsukerblat, J. Comput. 

Chem., 2001, 22, 985-991; (b) J.J.Borràs-Almenar, J. M. Clement-Juan, E. Coronado and B. S. 

Tsukerblat, Inorg. Chem., 1999, 38, 6081-6088. 

(44) a) P. S. Mukherjee, S. Dalai, G. Mostafa, E. Zangrando, T.-H. Lu, G. Rogez, T. Mallah and 

N. R. Chaudhuri, Chem. Comm., 2001, 1346-1347; b) P. S. Mukherjee, D. Ghoshal, E. Zangrando, 

T. Mallah and N. R. Chaudhuri, Eur. J. Inorg. Chem., 2004, 4675-4680. 

(45) M. Rodríguez, A. Llobet, M. Corbella, A. E. Martell and J. Reibenspies, Inorg. Chem. 1999, 

38, 2328-2334. 

(46) V. K. Bhardwaj, N. Aliaga-Alcalde, M. Corbella and G. Hundal, Inorg. Chim. Acta, 2010, 

363, 97-106. 

 

Table 1 Crystal Data and Structure Refinement for complex 1 

Empirical formula C26H32Cu2N2O9 

Formula mass, g mol–1 643.62 

Crystal system Monoclinic 

Space group P 21/n 

a/Å 8.4944(3) 

b/Å 13.2905(4) 
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c/Å 26.3919(9) 

α/° 90 

β/° 96.916(1) 

γ/° 90 

U/Å3 2957.8(2) 

Z 4 

T/K  295 

Dc/g cm-3 1.445 

(Mo-Kα)/ cm–1 14.89 

F(000) 1328.0 

θmin- θmax/° 3.07-25.50 

Measured Reflections 15779 

Unique Reflections 5472 

Rint 0.0733 

Obs. Refl.ns [I2σ(I)] 3525   

hkl ranges -10,10;-16,16;-25,31 

Goodness of fit (F2) 1.041 

No. Variables/Restraints 379/5 

R(F2) (Obs.Refl.ns) 0.0709 

wR(F2) (All Refl.ns) 0.1754 

Δρmax; Δρmin /e Å-3 0.615; -0.557 

 

Table 2 Selected bond distances (Å) and angles (°) of complex 1 

Bond distances 

Cu(1)-O(1)        1.908(4) Cu(2)-O(5) 1.944(4) 

Cu(1)-O(2) 2.050(5) Cu(2)-O(7) 1.909(4) 

Cu(1)-O(3) 1.947(4) Cu(2)-O(8) 1.995(4) 

Cu(1)-N(1) 1.930(5) Cu(2)-N(2) 1.938(5) 

Cu(1)-O(5)' 2.384(5)  Cu(2)-O(3)'' 2.476(4) 

Bond angles 

O(1)-Cu(1)-O(2) 174.6(2) O(7)-Cu(2)-O(8) 176.1(2) 

O(1)-Cu(1)-O(3) 94.2(2) O(7)-Cu(2)-O(5) 90.2(2) 

O(1)-Cu(1)-N(1) 95.0(2) O(7)-Cu(2)-N(2) 94.5(2) 

O(1)-Cu(1)-O(5)' 94.5(2) O(7)-Cu(2)-O(3)'' 92.5(2) 

O(2)-Cu(1)-O(3) 89.4(2) O(8)-Cu(2)-O(5) 93.1(2) 

O(2)-Cu(1)-N(1) 82.2(2) O(8)-Cu(2)-N(2) 82.3(2) 

O(2)-Cu(1)-O(5)' 82.1(2) O(8)-Cu(2)-O(3)'' 90.3(2) 

O(3)-Cu(1)-N(1) 166.9(2) O(5)-Cu(2)-N(2) 175.3(2) 

O(3)-Cu(1)-O(5)' 78.5(2) O(5)-Cu(1)-O(3)'' 76.2(2) 

N(1)-Cu(1)-O(5)' 110.1(2) N(2)-Cu(1)-O(3)'' 102.9(2) 
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Symmetry operations: (') at x+1,y,z and ('') atx-1,y,z 

 

 

Table 3 Photophysical parameters of complex 1. 

 Absorption λ(nm), εexp ( M
-1cm-1) Emission 

λem (nm) 

Δν[a](nm) φ 

Complex 1 222 (0.498 × 105), 238 (0.440 × 105), 

268 (0.272 × 105), 366 (0.103 × 105) 

410, 433, 

462 

44, 67, 96 0.257 

Bold number indicates the excitation wavelengths. [a]Stoke shift 

 

 

 

Table 4 Apparent binding constant (Ka), Stern-Volmer constant (Ksv), quenching constant (Kq), 

binding constant (Kb) and number of binding site (n) of BSA and HSA. 

 Ka (L mol-1) Ksv (L mol-1) Kq (L mol-1s-1) Kb (L mol-1) n 

BSA 1.3468 × 104 2.0933 × 105 4.1866 × 1013 7.8324 × 105 1.34 

HSA 1.8153 × 104 1.397 × 105 2.794 × 1013 7.5557 × 105 1.14 

 

 

Table 5 DNA binding constant (Kb), quenching constant (Kq) and apparent binding constant (Kapp) 

of complex 1. 

Kib (M
-1) Ksv(M

-1) Kapp(M
-1) 

2.961×105 1.7017×105 4.5437×106 
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Fig. 1. 1H (a) and 13C NMR (b) spectra of HL. 

 

 

Fig.2. ORTEP view of the asymmetric unit of complex 1 showing the thermal ellipsoids at 30% 

probability level. 
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Fig.3. The polymeric structure of complex 1 determined by the Cu1…O5 and Cu2…O3 

interactions.  

 

Fig.4. 3D supramolecular structure of complex 1 formed with π…π and C−H…π interactions. 
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Fig. 5. Electronic absorption and emission spectra of complex 1. 

 

 

 

 

 

 

 

 

 
 

 

Fig.6. Change of electronic absorption spectra of BSA (a) and HAS (b) upon gradual addition of 

complex 1 at temperature 300 K.   
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Fig.7. Plot of 1/(Aobs - A0) vs reciprocal of complex 1 concentration for titration with BSA (a) 

and HAS (b) at 300K. 

 

 

 

Fig.8. Titration of BSA (a) and HAS (b) with complex 1. (Inset: Stern–Volmer plot for the 

titration).  
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Fig.9. Double-logarithm curves of BSA and HSA fluorescence quenching by complex 1 

 

 

Fig.10. Electronic absorption spectra of complex 1 in the absence and presence of increasing 

amount of CT-DNA. Arrows show the changes in absorbance with respect to an increase in the 

DNA concentration. Inset: plot of [DNA]/ (εa-εf)  versus  [DNA].  
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Fig.11. Emission spectra of EB-DNA in the presence of complex 1.  Arrow indicates the change 

in the emission intensity as a function of complex concentration. Inset: Stern-Volmer plot of the 

fluorescence titration data corresponding to the complex 1. 

 

 

Fig.12.  χMT vs. T plot for complex 1 (solid line represents the best fit). 
 

 


