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  Cyclophilin D as a potential target for antioxidants 
in neurodegeneration: the X-ALD case   
  Abstract:   X-linked adrenoleukodystrophy (X-ALD) is a 

severe inherited neurodegenerative disorder character-

ized by adrenal insufficiency and graded damage in 

the nervous system. Loss of function of the peroxisomal 

ABCD1 fatty-acid transporter, resulting in the accumula-

tion of very long-chain fatty acids in organs and plasma, 

is the genetic cause. Treatment with a combination of 

antioxidants halts the axonal degeneration and locomo-

tor impairment displayed by the animal model of X-ALD, 

and is a proof of concept that oxidative stress contributes 

to axonal damage. New evidence demonstrates that meta-

bolic failure and the opening of the mitochondrial per-

meability transition pore orchestrated by cyclophilin D 

underlies oxidative stress-induced axonal degeneration. 

Thus, cyclophilin D could serve as a therapeutic target for 

the treatment of X-ALD and cyclophilin D-dependent neu-

rodegenerative and non-neurodegenerative diseases.  
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     Introduction: general features of 
X-linked adrenoleukodystrophy and 
animal models of the disease 
 X-linked adrenoleukodystrophy (X-ALD: McKusick no. 

300100) is a rare neurometabolic disease character-

ized by progressive demyelination within the central 

nervous system (CNS), axonopathy in the spinal cord, and 

adrenal insufficiency. This inheritable disorder is caused 

by mutations in the ABCD1 (ALD) gene located in Xq28. 

This encodes for the peroxisomal ABCD (ALD protein) 

 transporter (Mosser et al. , 1993 ), which is involved in 

importing very long-chain fatty acids (VLCFAs) and 

very long-chain fatty acid – Coenzyme A (VLCFA – CoA) 

esters into the peroxisome, where they are degraded by 

 β -oxidation (Singh et al. , 1984 ; Wanders et al. , 1987 ; van 

Roermund et al. , 2008 ; Fourcade et al. , 2009 ). Defective 

function of the ABCD1 transporter leads to VLCFA accu-

mulation in most organs and plasma, and elevated levels 

of VLCFAs are used as a biomarker for the biochemical 

diagnosis of the disease (Berger and Gartner , 2006 ; Moser 

et al. , 2007 ). X-ALD is the most common monogenic leu-

kodystrophy and peroxisomal disorder, occurring in at 

least 1 out of 16 800 people (Bezman et al. , 2001 ). 

 Four major disease variants have been described:

 –    Adrenomyeloneuropathy (AMN), a late-onset form 

presenting a slow progression and characterized by a 

peripheral neuropathy and distal axonopathy in the 

spinal cord. This phenotype is often, but not always, 

associated with axonal or demyelinating peripheral 

neuropathy and can affect both adult men and 

women.  
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 –   AMN with cerebral demyelination or cAMN. This 

form mainly affects adult males and can turn into an 

inflammatory phenotype in many cases.  

 –   The cerebral inflammatory demyelination form that 

affects boys, adolescents and adult males or cALD.  

 –   An adrenal insufficiency (Addison ’ s disease) that 

affects boys, adolescents and adult males, and 

presents a partial penetrance.    

 Patients suffering this last variant of X-ALD have a high 

risk of developing later cerebral demyelination or AMN 

(Laureti et al. , 1996 ; Engelen et al. , 2012 ). The cerebral 

inflammatory demyelinating forms of X-ALD are fatal if 

not treated by bone marrow transplant in the early stages 

of the disease (Shapiro et al. , 2000 ; Peters et al. , 2004 ). 

 Irrespective of its location or variant, a cardinal event 

of X-ALD is axonal damage. In variants affecting the brain, 

demyelination appears to be the main cause of severe 

axonal damage and neuronal death, whereas in AMN 

axonal damage in the spinal cord and peripheral nerves is 

the predominant feature, with demyelination as a second-

ary process (Powers et al. , 2000 ; Ferrer et al. , 2010 ). 

 It is well known that a murine model offers great 

advantages over postmortem patient materials, such as 

the possibility of carrying out a longitudinal characteri-

zation of the disease process, thus allowing the discrimi-

nation of causative events from epiphenomena. Three 

mouse models for X-ALD were independently generated 

following a classical strategy of knocking out the  Abcd1  

gene, which is located in the X chromosome of the mouse 

genome (Forss -Petter et al., 1997 ; Kobayashi et al. , 1997 ; 

Lu et al. , 1997 ). All three mouse models showed high 

levels of VLFCAs in the nervous tissue, adrenal glands 

and other organs as a representative signature, but in 

contrast, none of them displayed cerebral demyelina-

tion or inflammatory signs up to 6 months of age (Forss -

Petter et al., 1997 ; Kobayashi et al. , 1997 ; Lu et al. , 1997 ). 

However, an analysis of animals at 16 months of age with 

a pure C57BL/6J genetic background showed histological 

signs of axonopathy in the sciatic nerves, and interest-

ingly, at 20 – 22 months of age mice displayed microglia 

activation, astrocytosis, and axonal swelling and damage 

(Pujol et al. , 2002, 2004 ). All these effects were con-

comitant with locomotor alterations and delays of motor 

nerve conduction velocities (Pujol et al. , 2002;  Ferrer 

et al. ,   2005). Thus, this mouse model resembles the char-

acteristic axonopathy in the spinal cord of patients with 

pure AMN (Pujol et al. , 2002 ), and it constitutes a good 

model for dissecting physiopathogenetic mechanisms. A 

second peroxisomal transporter and the closest homolog, 

the ABCD2 protein, shares functions in the import of 

C26:0, the main VLCFA accumulated in X-ALD (Pujol 

et al. , 2004 ; Ferrer et al. , 2005 ; Fourcade et al. , 2009 ). The 

double knockout  Abcd1/Abcd2  displays a more severe 

and earlier onset axonopathy that facilitates preclinical 

testing (Pujol et al. , 2004 ). 

 Although considerable efforts have been made in 

the development of efficient therapies against this fatal 

disease, pharmacological treatment options for X-ALD 

are scarce (reviewed in Berger et al. , 2010 ). We and others 

have demonstrated that oxidative stress is a common 

feature in X-ALD patients (Vargas et al. , 2004 ; Powers et 

al. , 2005 ; Fourcade et al. , 2010 ) as well as in the animal 

model, appearing very early on in the latter (Fourcade 

et al. , 2008 ). These results have prompted us to explore 

antioxidant treatment as a therapeutic option, and to this 

end we recently performed preclinical trials with a cock-

tail of antioxidants containing  α -tocopherol, N-acetyl-

cysteine and  α -lipoic acid in  Abcd1   -  mice. The results were:

 –    correction of oxidative damage to proteins and DNA;  

 –   correction of metabolic deficits including levels of 

ATP, NADH and pyruvate kinase activity;  

 –   reversal of axonal damage; and  

 –   reversal of the locomotor disability provoked by the 

accumulation of VLCFA in the  Abcd1/Abcd2  null 

mutants (Galino et al. , 2011 ; Lopez -Erauskin et al., 

2011 ).    

 A Phase II clinical trial with these antioxidants is cur-

rently in progress (NCT01495260). However, the molecular 

mechanisms mediating the beneficial effect of the antioxi-

dants remain unclear. 

 The purpose of this review is to highlight recent evi-

dence about the molecular events occurring during the 

cellular damage triggered by oxidative stress and the role 

played by cyclophilin D (CypD). Moreover, using data 

obtained with antioxidant treatment we will discuss the 

potential of using CypD as a mechanistic action model of 

how antioxidants are able to prevent axonal neurodegen-

eration. CypD comes to center stage as an essential step 

in mitochondrial collapse in neurodegenerative diseases 

including X-ALD.  

  Very long-chain fatty acids and 
oxidative stress 
 Although patients with X-ALD, characterized by abnormal 

VLCFA accumulation, were first described at the beginning 

of the last century, the demonstration that VLCFA accumu-

lation led to toxicity was only recently made. In 2008, our 
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group and others reported that VLCFA accumulation was 

not an epiphenomenon but, rather, that VLCFA in excess 

was toxic (Fourcade et al. , 2008 ; Hein et al. , 2008 ). Using 

human fibroblasts we showed that VLCFA accumulation 

generates important levels of radical oxygen species (ROS), 

decreases reduced glutathione (GSH) levels, and induces 

inner mitochondrial membrane depolarization (Fourcade 

et al. , 2008 ). In agreement with these data, parallel studies 

performed in rat primary neural cell cultures showed that 

VLCFAs are able to dissipate inner mitochondrial mem-

brane potential and increase intracellular calcium levels 

in oligodendrocytes (Hein et al. , 2008 ). Similarly, the 

treatment of VLCFAs increases ROS levels in the murine 

oligodendrocyte cell line 158N (Baarine et al. , 2012a , b ) and 

human neuronal cell line SK-NB-E (Zarrouk et al. , 2012 ), 

besides inducing a decrease in GSH levels and the dis-

sipation of the inner mitochondrial membrane potential 

(Baarine et al. , 2012a ,b; Zarrouk et al. , 2012 ). Moreover, 

incubation of fibroblasts with C26:0 only provoked oxi-

dative damage to proteins and lipids in X-ALD fibroblasts 

and not in control fibroblasts (Fourcade et al. , 2008 ). In 

addition, the X-ALD fibroblasts present increased vulner-

ability to oxidative stress under depleted GSH conditions 

(Fourcade et al. , 2008 ). 

 Oxidative damage is indeed the main etiopathogenic 

factor in X-ALD disease; it is observed very early on in the 

spinal cord of the mouse model and in fibroblasts from 

patients with X-ALD (Fourcade et al. , 2008 ; Singh and 

Pujol , 2010 ; Lopez -Erauskin et al., 2011 ). This damage is 

characterized by an increase in the quantitative markers 

of protein lipoxidation (malondialdehyde-lysine), glycoxi-

dation and lipoxidation (carboxyethyl-lysine), together 

with markers of the direct carbonylation of proteins (glu-

tamic semialdehyde and aminoadipic semialdehyde) in 

the pre-symptomatic stages of the X-ALD mouse model 

(Fourcade et al. , 2008 ). In accordance with these data, 

signs of oxidative modifications have also been described 

in postmortem X-ALD brains, as well as in plasma and 

blood cells (Vargas et al. , 2004 ; Powers et al. , 2005 ; 

Fourcade et al. , 2010 ). 

 These  in vivo  observations support the surrogate use 

of skin-derived fibroblasts from patients as a successful  

in vitro  model for the study of the molecular mechanisms 

of this disease instead of human CNS tissues, which are 

only accessible postmortem. 

 It is not clear how VLCFAs trigger oxidative stress, but 

it is worth noting that VLCFAs (C   ≥  22:0) are usually con-

stituents of complex lipids, such as gangliosides, phos-

phatidylcholine, and cholesterol ester fractions of brain 

myelin and of proteolipid protein. While the gangliosides 

of normal individuals lack VLCFAs (Garashi et al. , 1976 ), 

the gangliosides in the brain of X-ALD patients contain 

28 – 50% VLCFAs. Their incorporation in lipid membranes 

may cause cell and organelle dysfunction (Powers and 

Moser , 1998 ). In fact, lysophosphatidylcholine fractions 

have been found to be particularly enriched with C26:0 

(Hubbard et al. , 2006 ). Moreover, an excess of lisophos-

phatidylcholine-C24:0 species produces inflammatory 

demyelination when injected in normal mice (Eichler 

et al. , 2008 ).  

  Oxidative stress and metabolic 
failure are intertwined in X-linked 
adrenoleukodystrophy 
 Oxidative stress is a condition resulting from a redox 

imbalance that leads to an excess of ROS. Due to high 

instability, ROS react with and induce chemical changes in 

surrounding molecules. These changes are detrimental if 

the modified residues happen to be essential for the activ-

ity or turnover of the molecule (Wang et al. , 2012 ). Mac-

romolecules such as DNA, lipids and proteins, are highly 

vulnerable to ROS attack. Moreover, oxidative lesions can 

also transform lipid properties and induce mutations in 

mitochondrial and nuclear DNA, causing mitochondrial 

dysfunction and pathology (Pamplona and Barja , 2007 ). 

 In X-ALD, we have identified a common signature 

present in the spinal cord of mice and brains of cAMN and 

cALD patients. This reflects a metabolic – inflammatory 

interplay through IkB kinase and oxidative stress induced 

by excess VLCFAs (Schluter et al. , 2012 ). Indeed, using 

a combination of proteomic approaches and mass spec-

trometry, we discovered that the absence of ABCD1 causes 

oxidative lesions in five key enzymes of glycolysis and 

the tricarboxylic acid cycle: aldolase A, phosphoglycer-

ate kinase, pyruvate kinase, dihydrolipoamide dehydro-

genase and aconitase (Galino et al. , 2011 ). Metabolomic 

measurements of different substrates and products con-

firmed that the oxidation of these enzymes inhibits their 

catalytic activity, thus decreasing NADH and ATP levels. 

This, in turn, results in a syndrome of energetic deficiency 

(Galino et al. , 2011 ). However, antioxidants halted the oxi-

dative stress-induced metabolic alterations in an X-ALD 

mouse model, normalizing NADH, ATP, NADPH and GSH 

levels (Galino et al. , 2011 ). These data lend support to the 

idea that there is metabolic derangement in the spinal 

cords of  Abcd1  -  mice prior to the development of neurolog-

ical symptoms. Based on the animal data, it is reasonable 

to propose that the energy failure produced by oxidative 
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stress may be a physiopathogenic factor, at least in adult 

forms of X-ALD. 

 Nonetheless, oxidative stress is not an exclusive event 

of X-ALD; common neurodegenerative diseases such as 

Alzheimer ’ s, Huntington ’ s and Parkinson ’ s also show 

redox imbalance, protein oxidation and energetic failure 

(Lin and Beal , 2006 ; Pratico , 2008 ; Stack et al. , 2008 ; 

Zhou et al. , 2008 ; Martinez et al. , 2010 ). 

 Many of the aforementioned alterations reveal the 

high susceptibility of the CNS to oxidative damage, prob-

ably related to the large amount of highly peroxidizable 

polyunsaturated fatty acids in membranes, the presence 

of catecholamines prone to oxidation, elevated oxygen 

consumption, and the relatively poor expression of enzy-

matic antioxidant defenses (Lin and Beal , 2006 ; Naudi 

et al. , 2011 ). Moreover, neurons are more dependent on 

mitochondria than on glycolysis for ATP production, 

which renders them particularly vulnerable to mitochon-

drial dysfunction (Thannickal and Fanburg , 2000 ).  

  Oxidative stress and mitochondrial 
dysfunction 
 Mitochondria orchestrate essential functions, including 

ROS, calcium homeostasis, and energy generation, as well 

as cell survival and death. For this reason, optimal func-

tioning of mitochondria is required to preserve cell and 

organism viability. Mitochondria are highly susceptible 

to oxidative damage because they are the main producers 

of ROS as a byproduct of the electron transport chain. In 

the majority of neurometabolic disorders, mitochondrial 

dysfunction is a central marker of disease progression. 

Indeed, the accumulation of damaged mitochondria cor-

relates with the development of the disease (Lin and Beal , 

2006 ; Du and Yan , 2010 ; Fernandez -Checa et al., 2010 ; 

Blackstone and Chang , 2011 ). 

 The mitochondrial permeability transition pore (mPTP) is 

a protein pore formed in the inner membrane of the mitochon-

dria under certain pathological conditions, allowing the flux 

of solutes of up to 1500 Da (Bernardi et al. , 2006 ; Halestrap , 

2009 ). This results in the dissipation of mitochondrial mem-

brane potential and damage to the mitochondrial respiratory 

chain, thereby reducing ATP production and exacerbating 

mitochondrial dysfunction. Moreover, there is osmotic swell-

ing that ruptures the outer mitochondrial membrane (Baines 

et al. , 2005 ; Bernardi et al. , 2006 ; Du and Yan , 2010 ). Overall, 

these phenomena irreversibly trigger cell death (Petronilli 

et al. , 1994 ; Baines et al. , 2005 ; Halestrap , 2005 ; Nakagawa 

et al. , 2005 ). 

 Although the role of mPTP in pathological conditions 

has been widely established, the nature and identity of the 

molecular components of the pore are still under discus-

sion, with CypD being the only component that appears 

to be essential (Baines et al. , 2005 ; Nakagawa et al. , 2005 ; 

Schinzel et al. , 2005 ). CypD is an 18 kDa peptidyl-prolyl-

 cis - trans -isomerase located in the mitochondrial matrix. 

In physiological conditions it plays an important role in 

protein folding due to its ability to catalyze the  cis - trans  

isomerization of peptidylprolyl bonds (Schonbrunner 

et al. , 1991 ). However, once certain pathological condi-

tions are established, CypD is translocated to the inner 

mitochondrial membrane to induce the opening of the 

mPTP (Connern and Halestrap , 1994 ). The genetic abro-

gation of CypD prevents mPTP formation under oxidative 

stress and/or calcium overload (Baines et al. , 2005 ), sup-

porting the essential role of CypD in mPTP formation.  

  The mitochondrial permeability 
transition pore in the physio-
pathogenesis of X-linked 
adrenoleukodystrophy 
 Many reports indicate that the formation of mPTP is a 

key factor in mitochondrial dysfunction and mitochon-

dria-driven cell death (Halestrap , 2005 ; Du and Yan , 

2010 ). These abnormalities are thus rescued by the addi-

tion of the CypD inhibitor CsA, or by the genetic blockade 

of CypD (Crompton et al. , 1988 ; Halestrap and Davidson , 

1990 ; Baines et al. , 2005 ). Indeed, the genetic abrogation 

of CypD prevents mitochondrial dysfunction in many 

age-related neurodegenerative disease models, such 

as Alzheimer ’ s disease (Du et al. , 2008 ), Parkinson ’ s 

disease (Gandhi et al. , 2009 ; Thomas et al. , 2011 ), amyo-

trophic lateral sclerosis (Karlsson et al. , 2004 ; Martin 

et al. , 2009 ; Martin , 2010 ) and multiple sclerosis (Forte 

et al. , 2007 ). 

 ROS and calcium are potent inducers of mPTP opening 

(Baines et al. , 2005 ; Bernardi et al. , 2006 ; Du and Yan , 

2010 ). ROS and calcium signaling are altered in X-ALD 

(Fourcade et al. , 2008 ; Hein et al. , 2008 ), therefore we 

sought to determine whether both factors were relevant to 

X-ALD pathology. We recently reported that CypD is signif-

icantly increased in X-ALD mouse model spinal cords, in 

fibroblasts from X-ALD patients, and in the affected zones 

of brains from AMN patients (Lopez -Erauskin et al., 2012 ). 

This is reminiscent of the increased CypD expression 

reported in brains from patients with Alzheimer ’ s disease 
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(Du et al. , 2008 ) and Huntington ’ s disease (Shirendeb 

et al. , 2011 ). 

 Interestingly, antioxidant treatment was able to reduce 

the high levels of CypD observed in fibroblasts from X-ALD 

patients and in spinal cords from X-ALD mice (Lopez -

Erauskin et al., 2012 ). Also, the induction of oxidative stress 

in control human fibroblasts in a glucose-free medium 

containing galactose, or with an excess of C26:0, causes an 

increase in CypD protein expression (Lopez -Erauskin et al., 

2012 ). All in all, the evidence indicates that CypD expression 

depends on the redox state. Moreover, not only the expres-

sion but also the activity of CypD may be regulated by oxi-

dative stress, since we detected oxidative modifications in 

CypD in X-ALD fibroblasts, which can be reversed by clas-

sical antioxidants both  in vivo  and  in vitro  (Lopez -Erauskin 

et al., 2012 ). In accordance with this, it has been suggested 

that CypD is a redox sensor (Linard et al. , 2009 ; Nguyen 

et al. , 2011 ). Linard and coworkers identified cysteine 203 

in CypD as being a redox-sensitive residue, and reported 

a reduction in oxidative stress-induced CypD peptidyl-

prolyl- cis-trans -isomerase activity, together with oxida-

tive stress-induced CypD protein conformational changes 

(Linard et al. , 2009 ). It was proposed that, once oxidative 

stress is triggered, the oxidation state of CypD induces con-

formational changes in its structure, promoting its translo-

cation to the inner mitochondrial membrane via the mPTP 

opening, which eventually contributes to the necrotic 

death process. 

 Along these lines, the finding that CsA, the CypD 

inhibitor, prevented the galactose-induced cell death of 

X-ALD fibroblasts (Lopez -Erauskin et al., 2012 ) confirms 

that CypD mediates the damage brought about by oxida-

tive stress in X-ALD. 

 Although the relevance of CypD in X-ALD will only be 

unequivocally confirmed by the genetic ablation of CypD, 

with all the evidence obtained thus far we may suggest that 

the oxidative stress-induced and CypD-dependent opening 

of mPTP is a central feature of X-ALD. We therefore propose 

that CypD is a key molecule in X-ALD physio pathology and 

is an important new target for therapeutic intervention.  

  Concluding remarks 

  X-linked adrenoleukodystrophy is caused 
by the oxidative stress-initiated interplay of 
mitochondrial collapse and energetic failure 

 Our working model is as follows (Figure  1  A). ROS, gener-

ated by C26:0 accumulation, induce energetic failure by 

oxidizing glycolytic and tricarboxylic acid cycle enzymes, 

which leads to a decrease in NADH and ATP content. The 

parallel decrease of GSH, the most important antioxidant 

defense of the cell, will contribute to the oxidative stress. 

The increased ROS content further worsens mitochondrial 

dysfunction by opening the mPTP, which in turn is exacer-

bated by the translocation of oxidized and overexpressed 

CypD to the inner mitochondrial membrane. That is, oxi-

dative stress causes cell death in X-ALD in association 

with severe mitochondrial dysfunction, leading to meta-

bolic failure. As a word of caution, it should be stressed 

that the above conclusions refer to skin fibroblasts. A 

precise dissection of the role played by mitochondria dys-

function compared to other sources of free radicals needs 

to be undertaken in the different neural cell types of the 

nervous system.  

  Cyclophilin D is a novel therapeutic target 

 The inhibition of CypD overexpression and activation pre-

vents mPTP opening, thereby preventing mitochondria 

swelling and changes in the membrane potential, and ini-

tiating the mitochondria-dependent cell death cascade.  

  X-linked adrenoleukodystrophy as a model 
of neurodegenerative and non-neurodegen-
erative diseases distinguished by alterations 
in redox homeostasis 

 Oxidative stress, mitochondrial dysfunction and energetic 

failure are common to a number of ailments irrespective of 

the initial cause (Galea et al. , 2012 ). It has been described 

how abnormally aggregated proteins act as molecular 

signals to induce CypD translocation to the inner mito-

chondrial membrane, resulting in mitochondrial dys-

function. Du and coworkers reported the existence of 

amyloid- β  (A β )-CypD complexes in the mitochondria of 

cortical neurons in amyloid precursor protein-overex-

pressing mice, a model of Alzheimer ’ s disease. These 

complexes promote ROS generation and CypD recruit-

ment to the inner mitochondrial membrane, triggering the 

opening of the mPTP and subsequent cell death (Du et al. , 

2008 ). Considering the absence of protein aggregates in 

X-ALD, we propose that molecular signals involved in the 

CypD translocation to the inner mitochondrial membrane 

are triggered by oxidative stress-induced CypD expres-

sion and the direct oxidation of CypD protein, instead 

of amyloid beta, the molecular signal involved in CypD 
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 Figure 1      Working model for the molecular events underlying axonal degeneration and the action of antioxidants in the prevention of 

X-linked adrenoleukodystrophy. 

 (A) Mutations in the ABCD1 gene produce C26:0 accumulation and reactive oxygen species (ROS) generation as a consequence. This affects 

glycolysis and the tricarboxylic acid cycle through the oxidation of the enzymes involved, thereby decreasing their activity. Hence, reduced 

levels of NADH and ATP lead to energetic deficiency. High levels of ROS consume glutathione levels, which become depleted. Further, 

ROS oxidize mitochondrial cyclophilin D inducing its translocation to the inner mitochondrial membrane and triggering the mitochondrial 

permeability transition pore opening. This results in inner mitochondrial membrane depolarization, mitochondrial swelling and subsequent 

cell death. (B) Antioxidant treatment decreases ROS levels, thus abrogating protein oxidation and preventing the impairment of glycolysis 

and the tricarboxylic acid cycle as well as the mitochondrial permeability transition pore opening. Likewise, lowered ROS content allows for 

the recovery of reduced glutathione levels and contributes to the maintenance of redox homeostasis.  Δ  Ψ m: Inner mitochondrial membrane 

potential; C: cytosol; I: intermembrane space; M: matrix.    
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translocation to the inner mitochondrial membrane in 

Alzheimer ’ s disease.  

  Antioxidants as a potential treatment 
against cyclophilin D-dependent diseases 

 As shown in Figure 1B, antioxidants acting against C26:0-

induced ROS prevent enzyme oxidation, thus normalizing 

ATP and NADH content. Moreover, normalized GSH levels 

help to maintain redox homeostasis, preventing CypD 

oxidation and the subsequent mPTP opening. In addition 

to reversing oxidative lesions in CypD, antioxidants may 

contribute to the repair of already initiated CypD-depend-

ent mitochondrial dysfunction. That is antioxidants could 

serve as mPTP opening inhibitors, which implies the 

rational use of these molecules for the treatment of CypD-

dependent diseases.    

  Received November 13, 2012; accepted March 2, 2013; previously 

published online March 14, 2013 
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