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Two novel tetranuclear Cu(II) complexes [Cu4(L
1)4]·3(H2O) (1) and [Cu4(H2L

2)4(H2O)4] (2) ( H2L
1 

= (E)-2-((1-hydroxybutan-2-ylimino)methyl)phenol; H4L
2 = 2-((2-hydroxy-3-

methoxybenzylidene)amino)-2-hydroxymethylpropane-1,3-diol) were synthesized from the self-

assembly of copper(II) perchlorate and the tridentate Schiff base ligands. Both complexes 

crystallize in the tetragonal system with space group I 41/a and form tetranuclear species with 

closed-cubane like core framework. Both the complexes possess a S4 axis but of different 

stereochemistry due to the different arrangement of the ligands about the copper ions. Variable 

temperature magnetic susceptibility measurements indicate an overall weak antiferromagnetic 

exchange coupling in 1, while ferromagnetic exchange coupling in 2. In agreement with their 

closed-cubane structure, the magnetic behavior of the two complexes have been studied by 



employing the isotropic spin Hamiltonian of type H = J1 (S1S3 + S1S4 + S2S3 + S2S4) – J2 (S1S2 + 

S3S4) (J1 describes the magnetic exchange coupling between the four Cu(II) pairs with short 

Cu···Cu distances, while J2 characterizes the magnetic exchange coupling between the remaining 

two intermetallic pairs with long distances). The PHI program was used to study their magnetic 

behavior. A good agreement between the experimental and fitted curves was found with the 

following parameters: g = 2.14, J1 = -20.3 cm-1 and J2 = 0 cm-1 for 1 and g = 2.10, J1 = 101.1 cm-

1 and J2 = -51.5 cm-1 for 2. 

 

 

Introduction  

Polynuclear 3d-metal coordination compounds have attracted continuous attention in the recent 

decades due to their interesting structure and molecular properties.[1] Among the high nuclear 

complexes, M4X4 (where M = Cu, Ni, Co, Fe, Mn; X= O, S) have been broadly investigated for 

their relevance in the field of magnetism,[2] catalysis [3] and bio-inorganic chemistry [4]. In 

particular Cu4O4 alkoxo, hydroxo and phenoxo bridged cubane like complexes have been widely 

studied adopting experimental and theoretical approach for exploring their magneto-structural 

correlation.[5] Based on the arrangement and connectivity of the copper and oxygen atom in the 

tetranuclear Cu4O4 core, the cubane geometries may be of various types e.g; regular cubane,[6] 

single-open cubane,[7] double-open cubane[8] and face sharing dicubane.[9] Depending on the 

distribution of Cu-O bond distances in the cube, Mergehenn and Haase classified cubane of type I 

and type II.[10] Cu4O4 cubane complexes having four long Cu-O distances between two dinuclear 

subunits are designated as type I, whereas if the long Cu-O distances are within each dinuclear 



subunit, cubanes are classified as type II. [11, 16] On the other hand, taking into account the Cu···Cu 

distances within the Cu4O4 cubane unit, Alvarez et al. described [12] three types the compounds: (i) 

(2+4) having two short and four long Cu···Cu distances, which is equivalent to type I (defined 

above); (ii) (4+2) with four short and two long Cu···Cu distances, an equivalent description to type 

II and (iii) (6+0), where all six Cu···Cu bonds have comparable distances  (Scheme 1S). 

Polydentate Schiff base ligands possessing alkoxo, hydroxo and phenoxo donor centers are 

potential ligand for the synthesis of multinuclear copper complexes. As an extension in the 

synthesis of cubane copper compounds we have used two Schiff bases namely (E)-2-((1-

hydroxybutan-2-ylimino)methyl)phenol (H2L
1) and 2-((2-hydroxy-3-

methoxybenzylidene)amino)-2-hydroxymethylpropane-1,3-diol (H4L
2), which have potentiality to 

coordinate metal ions with alkoxo, hydroxo and phenoxo donor centres. In the present contribution 

we report the synthesis, the crystal structure and magnetic properties of two copper complexes 

[Cu4(L
1)4]·3(H2O) (1) and [Cu4(H2L

2)4(H2O)4] (2), both comprising a closed cubane like core 

structure. 

 

 

Results and discussion 

Synthesis of the Complexes 

The complexes have been synthesized adopting procedures which are schematically given in 

Scheme 1. 



 

Scheme 1. Synthesis of complexes 1-2. 

 

Molecular structure of complexes [Cu4(L
1)4]·3(H2O) (1) and [Cu4(H2L

2)4(H2O)4] (2).  

A perspective view of the molecular structure of complexes [Cu4(L
1)4] and [Cu4(H2L

2)4(H2O)4] is 

depicted in Figures 1 and 2, respectively, and relevant bond distances and angles are summarized 

in Table 1. Both the complexes consist of neutral tetrameric moiety comprising four Cu(II) ions 

and four symmetry related di-anionic Schiff base ligands to form a cubane-like core of alternating 

copper and oxygen atoms that occupy the corners of the cube. 

In fact each copper center is chelated by the tridentate Schiff base ligand through the imine 

nitrogen, the phenoxo and the deprotonated alkoxo oxygen atoms, and in addition is bound to two 

deprotonated alkoxo O atoms from symmetry related ligands. With these donor atoms copper ions 

in complex 1 exhibit a square pyramidal geometry, while a highly distorted hexagonal environment 

is detected in 2 for the presence of an additional aqua ligand located at longer distance. The 

Addison  index (τ) [13] to define the distortion of the coordination environment from trigonal 

bipyramidal (TBP) to square pyramidal (SP) is calculated to be 0.358 in 1. In both complexes the 

doubly deprotonated ligands are found in η3:η1:η1:μ3 coordination mode. In complex 1 the basal 



distances Cu-O and Cu-N range from 1.894(3) to 1.994(3) Å, while the fifth site at apical position 

filled by a deprotonated alkoxo O atom shows a longer contact of 2.349(3) Å. Correspondently the 

equatorial distances in 2 fall in a narrower range (1.915(4)-1.970(4) Å), while the axial oxygen 

donors, of an alkoxo oxygen and water molecule, are at 2.569(4) and 2.797(6) Å, respectively, the 

latter indicating a very weak interaction. In the ligand H2L
2 the methoxy group on the ring does 

not participate in coordination as well as the two CH2-OH fragments that are far apart from the 

Cu4O4 core. An interesting feature of complex 1 compared to 2 is the shorter Cu-O distance at 

apical position (2.349(3) vs 2.569(4) Å) and the different stereochemistry of ligand disposition 

about the metals as discussed below. 

Alvarez et al. [14] in order to study the magneto structural correlations, used the Cu···Cu distances 

within the Cu4O4 cubane unit to classify these complexes: (i) 2+4, comprising two short and four 

long Cu···Cu distances, (ii) 4+2, with four short and two long Cu···Cu distances, and (iii) 6+0, 

which contains six similar Cu···Cu distances. The present complexes having a S4 symmetry are of 

type (ii) with Cu···Cu short and long distances of 3.097 and 3.372 Å in 1 and of 3.190, 3.479 Å in 

2, respectively. 

Since the lattice water molecules are disordered in the crystal of complex 1 (occupancy of 0.25 

and 0.5) we interpret the complexes as isolated species in the crystal. On the contrary the water 

molecule in 2 forms H-bond connections with phenolato O1 and hydroxyl oxygen O4 (Table 1S) 

of symmetry related complexes giving rise to a 3D network. The long Cu-O6 (water) bond distance 

of 2.797(6) Å observed in 2 is likely modulated with the aim for the water molecule to realize the 

cited H-bonds. 

However, it is worth of note that the two complexes here reported have a different stereochemistry 

as shown in the schematic illustrations of Figures 3 and 4, where the ligands have been simplified, 



thus removing ethyl substituents in 1 and methoxy and CH2OH groups in 2. The difference is 

clearly evident, especially by comparison of Figures 3b and 4b, showing the arrangement of 

ligands about the tetranuclear Cu4 core.   

The Cambridge structural database [15] was searched for similar complexes comprising a tetra 

nuclear Cu4O4 core built by variously substituted salicilidene-ethanolato ligands of Scheme 1. The 

structures retrieved (beside the recently published structures of Colacio et al.) [16] are summarized 

in Table 2S, where the Cu-O distances and space groups are also reported. Some of the complexes, 

built with the same ligands,[13-15, 17-18, 19-20, 24-25, 29-30] crystallize in different space groups tuned in 

some cases by the presence of lattice solvent molecules, which affect the packing. Although in the 

majority of cases the complexes do not reside about an improper fourfold axis, the symmetry is 

close to a pseudo-S4, being the differences in solid state imposed by the packing or the different 

conformation of substituents on the ligands. Some observations are worth of note from Table 2S: 

the coordination bond lengths fall in the range 1.882-2.001 Å, that is within 2-3 e.s.d’s. in most 

cases. On the other hand a large range is detected for the long Cu…O distances. In particular values 

up to 3.0 Å were measured associated with a boat conformation of the Cu4O4 central moiety, [21-22, 

29] dictated by the existence of π-π interactions between the naphthyl rings. Actually it is worth of 

note that all the cubane like structures reported so far present the same arrangement of ligands, 

namely as that schematically depicted for complex 2 (Figure 4). Thus at our knowledge complex 

1 represents the first example where the tridentate Schiff bases assume a different configuration 

about the tetranuclear Cu4O4 core, as described above. An inspection of Table 1 indicates that in 

complex 1 the four symmetry related Cu…O distances of 2.349(3) Å are the shortest among those 

reported, likely indicating that this configuration lead to a more compacted Cu4O4 moiety. 

Magnetic properties of complexes  



The χMT versus T curve for complex 1 starts from a value of 1.47 cm3 K mol-1 at room temperature, 

in agreement with the value of 1.48 cm3 K mol-1 expected for four uncoupled S = ½ spins assuming 

g = 2, and decreases continuously until  0.04 cm3 K mol-1 is reached at 10 K. Below this 

temperature the χMT value decreases smoothly, showing the tendency to form a plateau at a value 

different than 0. This behavior evidences the presence of an overall antiferromagnetic interaction 

and an S = 0 ground state in the complex, suggesting the presence of small amounts of 

paramagnetic mononuclear impurities. On the other hand the χMT versus T curve for complex 2 

shows a value of 2.06 cm3 K mol-1 at room temperature, which is significantly higher than the 

value expected for four uncoupled S = ½ spins assuming g = 2. The curve increases exponentially 

up to reach  value of 2.67 cm3 K mol-1  at 34 K. Below this temperature the χMT versus T curve 

decreases sharply down to a χMT value of 0.85 cm3 K mol-1 at 2 K. As opposed to complex 1, 

relatively strong ferromagnetic exchange interactions are operating in complex 2, despite the 

similar skeleton of the two compounds. 

Both complexes present a cubane-like structure characterized by a [Cu4O4] core that possesses 

four short and two long Cu···Cu distances as a result of the particular relative arrangement of the 

axial axes and equatorial planes of the Cu(II) ions, leading to a [4+2] geometric type of cubane 

compounds proposed by Ruiz et al. [12c] The corresponding equatorial or axial character of the 

bridging atoms with respect to the two connected Cu(II) ions in each pair is shown in Scheme 2A. 

Taking this structural arrangement in consideration, the magnetic behavior of the two complexes 

can be studied by employing the isotropic spin Hamiltonian of equation 1, based on the model 

showed in Scheme 2B.  

H = J1 (S1S3 + S1S4 + S2S3 + S2S4) – J2 (S1S2 + S3S4)    eq. 1 



J1 describes the magnetic exchange coupling between the four Cu(II) pairs with short Cu···Cu 

distances, while J2 characterizes the magnetic exchange coupling between the remaining two 

Cu(II) pairs with long intermetallic distance. Those pairs with short Cu···Cu distances are bridged 

by two different O atoms, of which one belongs to the equatorial plane of both the Cu(II) ions in 

the pair. On the contrary, Cu(II) pairs characterized by a long Cu···Cu distance always involve an 

axial coordination of the O bridging atom to one Cu(II) ion in any of their bridging pathways. 

Therefore, in the second case there is always a non-magnetic orbital involved in the exchange, and 

consequently the interaction is expected to be very weak. Thus, while J1 can be either ferro or 

antiferromagnetic in nature, it will be definitely stronger than J2 in these [4+2] type of cubane 

systems.  

The χMT versus T curves of complexes 1 and 2 were fitted with the PHI program.[35] One single g 

value was assigned for the four Cu(II) ions in each complex due to their equivalence in the crystal, 

i.e. g1 = g2 = g3 = g4. For the spin Hamiltonian described in equation 1, a good agreement between 

the experimental and fitted curves was found with the following parameters: g = 2.14, J1 = -20.3 

cm-1 and J2 = 0 cm-1 for complex 1 and g = 2.10, J1 = 101.1 cm-1 and J2 = -51.5 cm-1 for complex 

2. Temperature-independent paramagnetism (TIP) was considered equal to 120 × 10-6 cm3 mol-1 

for both complexes. Additionally the fit was improved when considering the presence of a 7% 

Cu(II) mononuclear impurity in complex 1. The fitted curves are represented together with the 

experimental ones in Figure 5. 

The nature and magnitude of Ji exchange constants in [4+2] cubane structures were theoretically 

studied by Tercero et al. [14] As deduced from Scheme 2, J1 is the result of the combined exchange 

through two different pathways, of which that involving two short Cu-O bonds is the most 

efficient, since only magnetic orbitals participate to it. According to the previously mentioned 



work of Tercero et al., the sign and magnitude of the J1 magnetic exchange constant should 

correlate with the Cu-O-Cu angle characteristic of this short exchange pathway, since this will 

determine the degree of overlapping between the two magnetic orbitals of the Cu(II) ions in the 

pair. In fact, calculations suggest that antiferromagnetic interactions can be expected in [Cu4O4] 

compounds with angles larger than ca. 103°, in which case the overlapping of magnetic orbitals 

becomes effective.  

In agreement with this prediction, Papadakis et al. recently reported an analogous compound 

exhibiting a weak antiferromagnetic J1 interaction associated to a Cu-O-Cu angle of 103.5°, similar 

to that detected for complex 1 in this work, which shows a Cu-O-Cu angle of 102.6°.[36] 

However, many previously reported [Cu4O4] compounds with a [4+2] cubane-like structure (see 

Table 2S) show ferromagnetic J1 interactions, even though their Cu-O-Cu angle is larger than 

103°.[25, 26, 37] This is also the case of complex 2 reported in this work, which shows a moderate 

ferromagnetic exchange constant with a Cu-O-Cu angle of 109°. Several structural parameters, 

often correlated with the nature and magnitude of the magnetic exchange coupling have been 

compared between complexes 1 and 2, but none of them seems to justify such different behavior 

by itself: Complex 2 shows a larger Cu-O-Cu angle, shorter Cu-O distances, a less perpendicular 

arrangement of the {Cu2O2} planes containing the magnetic metal orbitals and a smaller out-of-

plane shift of the carbon atom connected to the bridging oxygen, and consequently all these factors 

would suggest a larger overlap of the magnetic orbitals and a more antiferromagnetic coupling.[14, 

38] Indeed, Tercero et al. already highlighted the disagreement between experimental results and 

theoretical predictions, being the former generally ferromagnetic while the latter predicted 

antiferromagnetic interactions. The authors suggested, by means of a theoretical experiment, that 

the chelating nature of the terminal ligands attached to the alkoxo bridge of the cubane structures 



might be the reason for the observed disagreement, since calculations were performed with a 

simpler non-chelating terminal ligand, while most of the examples found in literature included a 

chelating one. New calculations were carried out on two analogous structures, where the chelating 

terminal ligand attached to the alkoxo bridge was preserved in one, and theoretically broken in the 

other: the calculated magnetic exchange constant was substantially more ferromagnetic for the one 

with chelating nature. Considering that this terminal chelate introduces an additional exchange 

pathway between the two copper atoms, it seems reasonable that it can substantially affect the 

magnetic superexchange. In our case, both complexes 1 and 2 show a terminal ligand attached to 

the alkoxo bridge with a chelating nature. However the chelates are significantly different from a 

geometrical as well as from an electronic point of view. While the chelate shows a substituent of 

aliphatic nature in complex 1, the substituent includes two alcohol groups in complex 2. 

Additionally, the dihedral angle between the two planes formed by the atoms at the chelate ring 

(Cu-N-C-C-O) are quite different, being 45.64° and 32.60° for complex 1 and 2, respectively. As 

for structural issues, it should be emphasized that complex 1 represents the first example where 

the tridentate Schiff bases assume a different configuration about the tetranuclear Cu4O4 core (see 

Figure 4), being the configuration of complex 2 (see Figure 3) the one always found for cubane 

systems previously reported in the literature. The different stereochemistry of complex 1 might 

also be behind the reasons for the antiferromagnetic behavior observed, compared to the 

ferromagnetic coupling usually encountered.  

On the other hand, either negligible or antiferromagnetic values of J2 have been obtained, in 

agreement with similar [4+2] cubane compounds previously reported.[39, 5e] Nevertheless, this 

parameter has been often observed to strongly correlate with the J1 value in the fitting procedure, 

and thus the J2 values obtained should be considered with caution. 



 

 

Scheme 2. A) Structural arrangement of a [4+2] cubane structure like the one of complexes 1 and 

2, where short (equatorial) and long (axial) Cu-O bonds have been illustrated with thick and thin 

lines, respectively. B) Magnetic model used for the description of the structure represented in A, 

where J1 and J2 describe the magnetic exchange pathways through Cu(II) pairs showing short and 

long Cu-Cu distances, respectively 

Conclusions 

We have presented here the syntheses, single-crystal structures and magnetic behaviors of two new 

tetranuclear [Cu4] copper(II) complexes (1 and 2) using polydentate Schiff base ligands, H2L
1 and 

H4L
2, respectively. Variable temperature magnetic susceptibility measurements in the range 2–300 

K indicate overall antiferromagnetic exchange coupling in complex 1, while ferromagnetic 

exchange coupling in complex 2. The difference in magnetic behavior can be hardly ascribed to a 

specific or single structural parameter, but to a resulting different geometry derived from the 

combination of all of them: although both complexes show comparable closed-cubane like core 

structures, the arrangement of the ligands around the Cu4O4 core differs significantly, and this 

might be at the origin of such a different magnetic behavior.  

 



Supplementary information. Experimental details, Tables for crystallographic and magnetic 

data, figures of NMR, IR and electronic absorption and fluorescence spectra are provided as 

supporting information. 
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Table 1. Bond lengths (Å) and angles (°) for complexes 1 and 2. 

 1 2 

Cu-O(1) 1.894(3) 1.915(4) 

Cu-O(2) 1.975(3) 1.947(4) 

Cu-N(1) 1.926(4) 1.956(5) 

Cu-O(2)' 1.994(3) 1.970(4) 

Cu-O(2)'' 2.349(3) 2.569(4) 

Cu-O(6) – 2.797(6) 

   

O(1)-Cu-N(1) 92.92(16) 94.0(2) 

O(1)-Cu-O(2) 177.12(12) 172.15(18) 

O(2)-Cu-N(1) 84.22(16) 84.6(2) 



 

 

Symmetry codes: for 1 (') –y+5/4, x–3/4, –z+1/4, ('') y+3/4, –x+5/4, –z+1/4; 

 for 2 (') –y+5/4, x+1/4, –z+1/4, ('') –x+1, –y+3/2, z.  

 

 

Caption of figures: 

Figure 1. Molecular structure of complex 1 (dotted lines indicate long Cu-O bond distances). 

Figure 2. Molecular structure of complex 2 (dotted lines indicate long Cu-O bond distances). The 

water molecule bound at each copper ion (Cu-Ow = 2.797(6) Å) not shown for sake of clarity. 

Figure 3. Complex 1 viewed down the S4 symmetry axis and a perspective side view (H-atoms 

and ethyl groups not shown). 

Figure 4. Complex 2 viewed down the S4 symmetry axis and a perspective side view (H-atoms, 

methoxy and CH2OH groups removed for clarity). The ligands arrangement is similar to that 

detected in all the complexes structurally characterized and reported to date. 

Figure 5. Thermal dependence of the MT for complexes 1 and 2. Points indicate experimental data 

and straight lines represent the best fitting curves obtained.  

 

 

O(1)-Cu-O(2)' 96.10(12) 94.68(17) 

N(1)-Cu-O(2)' 155.62(14) 166.3(2) 

O(2)-Cu-O(2)' 86.41(12) 88.21(18) 

O(1)-Cu-O(2)'' 104.50(12) 94.16(16) 

N(1)-Cu-O(2)'' 121.05(13) 117.4(2) 

O(2)-Cu-O(2)'' 77.35(11) 79.74(16) 

O(2)'-Cu-O(2)'' 78.39(11) 72.49(16) 



 

Figure 1. Molecular structure of complex 1 (dotted lines indicate long Cu-O bond distances). 

 

 

Figure 2.  Molecular structure of complex 2 (dotted lines indicate long Cu-O bond distances). 

The water molecule bound at each copper ion (Cu-Ow = 2.797(6) Å) not shown for sake of 

clarity. 

 

 



 

 

   3a)      3b) 

Figure 3. Complex 1 viewed down the S4 symmetry axis and a perspective side view (H-atoms 

and ethyl groups not shown). 

 

 

 

 

 

   4a)      4b) 



Figure 4. Complex 2 viewed down the S4 symmetry axis and a perspective side view (H-atoms, 

methoxy and CH2OH groups removed for clarity). The ligands arrangement is similar to that 

detected in all the complexes structurally characterized and reported to date. 

 

 

Figure 5. Thermal dependence of the MT for complexes 1 and 2. Points indicate experimental data 

and straight lines represent the best fitting curves obtained.  


