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Smoking cessation prolongs survival and decreases mortality of patients

with non-small-cell lung cancer (NSCLC). In addition, epigenetic alter-

ations of some genes are associated with survival. However, potential inter-

actions between smoking cessation and epigenetics have not been assessed.

Here, we conducted an epigenome-wide interaction analysis between DNA

methylation and smoking cessation on NSCLC survival. We used a two-

stage study design to identify DNA methylation–smoking cessation interac-

tions that affect overall survival for early-stage NSCLC. The discovery

phase contained NSCLC patients from Harvard, Spain, Norway, and Swe-

den. A histology-stratified Cox proportional hazards model adjusted for

age, sex, clinical stage, and study center was used to test DNA methyla-

tion–smoking cessation interaction terms. Interactions with false discovery

rate-q ≤ 0.05 were further confirmed in a validation phase using The Can-

cer Genome Atlas database. Histology-specific interactions were identified

by stratification analysis in lung adenocarcinoma (LUAD) and lung squa-

mous cell carcinoma (LUSC) patients. We identified one CpG probe

(cg02268510SIPA1L3) that significantly and exclusively modified the effect of

smoking cessation on survival in LUAD patients [hazard ratio (HR)interaction =
1.12; 95% confidence interval (CI): 1.07–1.16; P = 4.30 9 10–7]. Further,

the effect of smoking cessation on early-stage LUAD survival varied across

Abbreviations

CI, confidence interval; FDR, false discovery rate; HR, hazard ratio; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma;
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patients with different methylation levels of cg02268510SIPA1L3. Smoking

cessation only benefited LUAD patients with low methylation (HR = 0.53;

95% CI: 0.34–0.82; P = 4.61 9 10–3) rather than medium or high methyla-

tion (HR = 1.21; 95% CI: 0.86–1.70; P = 0.266) of cg02268510SIPA1L3.

Moreover, there was an antagonistic interaction between elevated methyla-

tion of cg02268510SIPA1L3 and smoking cessation (HRinteraction = 2.1835;

95% CI: 1.27–3.74; P = 4.46 9 10�3). In summary, smoking cessation ben-

efited survival of LUAD patients with low methylation at cg02268510SI-

PA1L3. The results have implications for not only smoking cessation after

diagnosis, but also possible methylation-specific drug targeting.

1. Introduction

Lung cancer is a leading cause of cancer mortality

worldwide. In the United States, lung cancer was esti-

mated as likely to account for 154 050 deaths in 2018,

or one-fourth of all cancer deaths (Siegel et al., 2017).

A large proportion of lung cancer cases are attributed

to smoking, a well-known risk factor (Flanders et al.,

2003), and smoking cessation prolongs survival and

decreases mortality of lung cancer patients (Balduyck

et al., 2011; Parsons et al., 2010). However, the under-

lying mechanisms of these benefits remain largely

unclear (Bhatt et al., 2015; Parsons et al., 2010).

DNA methylation, a reversible epigenetic modifica-

tion, regulates gene expression and provides potential

cancer biomarkers and therapeutic targets (Egger

et al., 2004; Feinberg and Tycko, 2004), including for

non-small-cell lung cancer (NSCLC) (Guo et al., 2018;

Shen et al., 2018; Wei et al., 2018). Furthermore, as a

potential mechanistic link between cigarette smoking

and disease, DNA methylation changes can result

from various environmental exposures and may

explain part of the association between smoking and

cancer recurrence or mortality (Lee and Pausova,

2013; Shui et al., 2016).

Progression of complex diseases, such as cancer,

results from interactions between clinical, environmen-

tal, genetic, and epigenetic factors (Lacombe et al.,

2016; Mcnerney et al., 2017). However, most epigen-

ome-wide association studies are designed to identify

main effects using a standard marginal test (Karlsson

et al., 2014) while ignoring epigenetic–environment

interactions. These traditional mining procedures may

reduce the power to identify new epigenomic biomark-

ers (Slade and Kraft, 2016).

In this study, we hypothesized that epigenetic and

smoking cessation interactions may affect NSCLC sur-

vival. Epigenome-wide DNA methylation data com-

posed of four study cohorts containing lung

adenocarcinoma (LUAD) and lung squamous cell car-

cinoma (LUSC) cases were used for discovery, and the

findings were independently validated in The Cancer

Genome Atlas (TCGA) data.

2. Materials and methods

2.1. Study population

Early-stage (stage I–II) LUAD and LUSC patients

who were former or current smokers were included in

the study. Never smokers were defined as those who

smoked ≤ 100 cigarettes over a lifetime. Current smok-

ers were defined as those who were smoking within

1 year of diagnosis. Former smokers were defined as

smokers who quit > 1 year before diagnosis or inter-

view (Suk et al., 2006). We encoded the variable smok-

ing cessation as ‘yes’ for former smokers and ‘no’ for

current smokers. Data were harmonized from five

international study centers, which have been previously

described (Guo et al., 2018; Shen et al., 2018; Wei

et al., 2018; Zhang et al., 2019). All patients provided

written informed consent, and the study methodologies

conformed to the standards set by the Declaration

of Helsinki and received approval by its respective

institutional review board.

2.1.1. Harvard

The Harvard Lung Cancer Study cohort was described

previously (Suk et al., 2006). Briefly, all patients were

recruited at Massachusetts General Hospital (MGH)

from 1992 to present and had newly diagnosed, histo-

logically confirmed primary NSCLC. We included 133

early-stage LUAD and LUSC patients who were for-

mer or current smokers for the current study. DNA

was extracted from tumor specimens that were evalu-

ated by an MGH pathologist for amount (tumor cellu-

larity > 70%) and quality of tumor cells and
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histologically classified using World Health Organiza-

tion criteria. The study protocol was approved by the

Institutional Review Boards at Harvard School of

Public Health and MGH.

2.1.2. Spain

The Spain study population was reported previously

(Sandoval et al., 2013) and included 196 LUAD and

LUSC patients recruited at eight subcenters from 1991 to

2009. In brief, tumor DNA was extracted from fresh-fro-

zen tumor specimens that were collected by surgical

resection, and the median clinical follow-up was

7.2 years. The study was approved by the Bellvitge

Biomedical Research Institute institutional review board.

2.1.3. Norway

The Norway cohort consisted of 116 LUAD patients

with operable lung cancer tumors who were seen at Oslo

University Hospital, Rikshospitalet, Norway, in 2006–
2011 (Bjaanæs et al., 2016). Tumor tissues obtained dur-

ing surgery were snap-frozen in liquid nitrogen and

stored at �80 °C until DNA isolation. The project was

approved by Oslo University institutional review board

and regional ethics committee (S-05307).

2.1.4. Sweden

The Sweden cohort included 85 LUAD and LUSC

patients. Tumor DNA was collected from early-stage

lung cancer patients who underwent an operation at

the Skane University Hospital, Lund, Sweden (Karls-

son et al., 2014). The study was approved by the

Regional Ethical Review Board in Lund, Sweden

(Registration no. 2004/762 and 2008/702).

2.1.5. TCGA

The TCGA database contains 562 early-stage LUAD

and LUSC patients who have full information of sur-

vival time and covariates. Level 1 HumanMethyla-

tion450 DNA methylation data (image data) for each

patient were downloaded on October 1, 2015.

2.2. Quality control procedures

DNA methylation was profiled using Infinium

HumanMethylation450 BeadChips (Illumina Inc., San

Diego, CA, USA) for all patients. Raw image data were

imported into GenomeStudio Methylation Module V1.8

(Illumina Inc.) to calculate methylation signals and to

perform normalization, background subtraction, and

quality control (QC). Beta values, which range from 0%

(unmethylated) to 100% (methylated), were used to mea-

sure methylation level of each probe. Unqualified probes

were excluded if they met any one of the following QC

criteria: (a) failed detection (P > 0.05) in > 5% samples;

(b) coefficient of variance of < 5%; (c) methylated or

unmethylated in all samples; (d) common single nucleo-

tide polymorphisms located in probe sequence or 10-bp

flanking regions; (e) cross-reactive or cross-hybridizing

probes (Chen et al., 2013); or (f) did not pass QC in all

centers. Samples with > 5% undetectable probes were

excluded. Methylation signals were further processed for

quantile normalization, design bias correction for type I

and II probes, and batch effect adjustment using ComBat

correction (Marabita et al., 2013). We performed QC

procedures above in each center separately and then

merged all data together before association analysis.

Details of QC processes are described in Fig. S1.

2.3. Gene expression data

Expression and mRNA sequencing data were available

for 281 LUAD and 277 LUSC patients of the TCGA

dataset (Table S1). TCGA mRNA sequencing data

processing and QC were done by the TCGA work-

group. Raw counts were normalized using RNA

sequencing by expectation maximization. Level 3 gene

quantification data were downloaded from the TCGA

data portal (https://tcga-data.nci.nih.gov; now hosted

at https://portal.gdc.cancer.gov) and were further

checked for quality. Gene expression data were

extracted and log2-transformed before analysis.

2.4. Epigenome-wide DNA methylation–smoking

cessation interaction analysis

Analysis flow is described in Fig. 1. Patients from the

first four study centers (Harvard, Spain, Norway, and

Sweden) were assigned into the discovery phase. A his-

tology-stratified Cox proportional hazards model was

used to test the interaction item, which was the inter-

action effect between DNA methylation of each CpG

probe and smoking cessation (CpG probe 9 smoking

cessation) on overall survival. The model was adjusted

for age, sex, smoking cessation, clinical stage, and

study center. Hazard ratio (HR) and 95% confidence

interval (CI) were described per 1% methylation incre-

ment. Multiple testing corrections were performed

using the false discovery rate method (FDR, measured

by FDR-q value) by the Benjamini–Hochberg proce-

dure. CpG probes with interaction FDR-q ≤ 0.05 were

replicated in the validation phase using the TCGA

dataset. Robustly significant probes were retained if
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they met all criteria: (a) interaction P ≤ 0.05 in the val-

idation phase; and (b) consistent effect direction in

both discovery and validation phases. We performed

stratified analysis for robustly significant CpG probes

in LUAD and LUSC patients. Finally, CpG probes

with a significant interaction with smoking cessation in

both phases were identified as histology-specific

probes.

2.5. Sensitivity analysis for significant CpG

probes

Due to the complex tumor microenvironment—includ-

ing noncancerous components, which might alter anal-

ysis of tumor samples (Aran et al., 2015)—we assessed

tumor purity with InfiniumPurify (Zhang et al., 2015)

using methylation array data from TCGA samples.

Tumor purity was included as an additional covariate

in the Cox regression model for sensitivity analysis.

2.6. Genome-wide methylation transcription

analysis

For robustly significant histology-specific prognostic

CpG probes, we also performed genome-wide methyla-

tion transcription analysis using mRNA sequencing

data from TCGA. The correlation between DNA

methylation and gene expression was tested using a

linear regression model adjusted for the same covari-

ates mentioned above. Association with FDR-q ≤ 0.05

was considered significant. Additionally, we tested the

association between gene expression and overall sur-

vival using a Cox proportional hazards model adjusted

for the same covariates. Genes involved in significant

associations with both methylation and NSCLC sur-

vival were filtered.

2.7. Statistical analysis

Continuous variables were summarized as mean � s-

tandard deviation (SD), and categorized variables were

described by frequency (n) and proportion (%).

Kaplan–Meier survival curves were used to compare

survival difference among subgroups. Statistical analy-

ses were performed using R version 3.4.4 (The R Foun-

dation for Statistical Computing).

3. Results

After QC, epigenome-wide DNA methylation data

including 311 891 CpG sites from 1092 tumor samples

of early-stage (stage I–II) NSCLC patients were

retained. There were 530 patients (NLUAD = 413 and

NLUSC = 117) in the discovery phase and 562 patients

(NLUAD = 285 and NLUSC = 277) in the validation

phase. Table 1 details demographic and clinical

Fig. 1. Flowchart of study design and statistical analyses.
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information for the study population. There were 37%

and 27% current smokers in the discovery and valida-

tion phases, respectively.

In the discovery phase, 15 methylation–smoking ces-

sation interactions were identified with FDR-q ≤ 0.05

(Fig. S2A), and the Manhattan plot also showed the

results for main effect additionally (Fig. S2B). Only 1

interaction remained statistically significant in the vali-

dation phase under the most stringent criteria

(Table S2). This site, cg02268510, is located in signal-

induced proliferation-associated 1-like 3 (SIPA1L3).

Further histology-stratified analysis showed that

cg02268510SIPA1L3 is a LUAD-specific CpG probe that

interacts with smoking cessation to affect patient sur-

vival in the discovery phase (HRinteraction = 1.10; 95%

CI: 1.05–1.16; P = 2.95 9 10–5), the validation phase

(HRinteraction = 1.17; 95% CI: 1.02–1.35; P = 0.0255),

and the combined data (HRinteraction = 1.12; 95% CI:

1.07–1.16; P = 4.30 9 10–7). Moreover, fixed-effect

meta-analysis of five centers also remained signifi-

cant (HRinteraction = 1.09; 95% CI: 1.05–1.13;
P = 6.66 9 10–6; Fig. S3). As presented in Fig. 2A,

with decreased methylation level of cg02268510SIPA1L3,

there was an elevated benefit effect size of smoking

cessation on LUAD survival. Thus, there was a modi-

fication effect of cg02268510SIPA1L3 on the association

between smoking cessation and survival.

After including tumor purity as an additional

covariate in sensitivity analysis, DNA methylation

at cg02268510SIPA1L3 retained a significant interaction

with smoking cessation on LUAD survival

(HRinteraction = 1.18; 95% CI: 1.02–1.36; P = 0.024).

The interaction P-value was still significant but slightly

inflated due to (a) the smaller sample size (51% of

original) of the sensitivity analysis, which was only

performed in TCGA; and (b) low tumor purity

(~ 60%) for NSCLC samples in TCGA due to mixed

cell types (Zheng et al., 2017).

To better illustrate the interaction pattern between

DNA methylation and smoking cessation, patients

were categorized into low, medium, and high groups

based on tertiles of cg02268510SIPA1L3 methylation.

The effect of smoking cessation varied across LUAD

patients with different DNA methylation levels.

Smoking cessation only benefited LUAD patients

with low methylation of cg02268510SIPA1L3
(HRlow = 0.53; 95% CI: 0.34–0.82; P = 4.61 9 10–3).

However, there was no significant association

between smoking cessation and survival in LUAD

patients with medium–high methylation of

cg02268510SIPA1L3 (HRmedium = 1.12; 95% CI: 0.67–
1.87; P = 0.665; HRhigh = 1.29; 95% CI: 0.80–2.07;
P = 0.293; HRmedium–high = 1.21; 95% CI: 0.86–1.70;

P = 0.266). We observed significant heterogeneity of

smoking cessation effect across the three groups

(P = 0.014; Fig. 2B), and Kaplan–Meier curves con-

firmed these results (Fig. 2C).

These results also indicated that LUAD patients who

did not quit smoking (current smokers) had the poorest

prognosis if their methylation of cg02268510SIPA1L3
was in a low level. So we combined the medium and

high methylation groups and performed further

analysis. Current smokers in the low methylation group

had 1.94 times the mortality risk compared with the

medium or high methylation group (Fig. 3A), but

there was no statistically significant difference

between groups for former smokers (Fig. 3B). The

results also indicated that smoking cessation was quite

urgent for LUAD patients with low methylation of

cg02268510SIPA1L3.

In addition, we evaluated the joint effect of CpG

methylation level (medium–high vs low) and smoking

cessation (Yes vs No) on LUAD survival (Table 2).

We used the poorest-prognosis group (current smokers

with low methylation) as the reference to evaluate

effect of elevated methylation level, smoking cessation,

and their interaction. In the combined dataset, the

effect of smoking cessation was HR = 0.5506 (95%

CI: 0.36–0.84; P = 5.62 9 10�3) and the effect of

medium–high methylation of cg02268510SIPA1L3 was

HR = 0.5214 (95% CI: 0.34–0.81; P = 3.48 9 10�3).

However, the joint effect was HR = 0.6268 (95% CI:

0.43–0.92; P = 1.84 9 10�2), which was greater than

the product of the two individual protective effects

(0.5506 9 0.5214 = 0.2871). The joint effect of two

protective factors was less protective than expected,

indicating an antagonistic interaction between elevated

methylation of cg02268510SIPA1L3 and smoking cessa-

tion (HRinteraction = 2.1835; 95% CI: 1.27–3.74;
P = 4.46 9 10�3).

A growing body of research has reported potential

associations of DNA methylation with age and smok-

ing (Fraga and Esteller, 2007; Wan et al., 2012; Zagh-

lool et al., 2015). Therefore, we also tested the

association between methylation of cg02268510SIPA1L3
and age, as well as smoking-related variables: pack-

year of smoking, years of smoking, and years of smok-

ing cessation using a linear regression model adjusted

for age, sex, clinical stage, and study centers. Smok-

ing-related characteristics of former and current smok-

ers in early-stage LUAD are described in Table S3.

There was no significant association between methyla-

tion of cg02268510SIPA1L3 and age (b = �0.01;

P = 0.521) or years of smoking (b = 0.03; P = 0.210),

but pack-year of smoking (b = 0.02; P = 3.42 9 10�3)

as well as years of smoking cessation (b = �0.06;
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P = 5.08 9 10�3) in former smoker LUAD patients

(Fig. S4).

Further, because cg02268510SIPA1L3 maps to

SIPA1L3, the association between cg02268510SIPA1L3
and SIPA1L3 expression was evaluated using the

TCGA dataset. We observed a significant association

between cg02268510SIPA1L3 and SIPA1L3 expression

(b = �0.02; P = 0.015) in LUAD patients (Fig. 4),

indicating that cg02268510SIPA1L3 cis-regulates gene

expression. Moreover, genome-wide methylation

Fig. 2. DNA methylation and smoking cessation interaction on survival of LUAD patients. (A) HR of smoking cessation estimated based on

methylation level of cg02268510. The shallow area represents 95% CI, with red, gray and blue areas indicating low, medium and high

methylation, respectively. Histogram on the top shows the distribution of methylation. (B) Forest plots of the effects of smoking cessation

among combined LUAD populations with low, medium, or high methylation of cg02268510. Pheterogeneity was used to evaluate heterogeneity

of HRs across groups. (C) Kaplan–Meier survival curves of current and former smokers among LUAD patients with varying methylation

levels.

Fig. 3. Kaplan–Meier survival curves of LUAD patients categorized into low and medium–high methylation groups according to tertiles in

different smoking cessation groups: (A) current smokers (No) and (B) former smokers (Yes). HR, 95% CI, and P-value were derived from

the Cox proportional hazards model adjusted for age, sex, clinical stage, and study center.
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transcription analysis revealed that expression of 633

genes was significantly correlated with methylation

level of cg02268510SIPA1L3 (Fig. S5A). Among them,

expression of only seven genes was significantly associ-

ated with overall survival: growth arrest and DNA

damage-inducible gamma (GADD45G), maturin

(MTURN), TMEM200B, RGS20, RELT-like 1

(RELL1), PGM2, and receptor-interacting serine/thre-

onine kinase 2 (RIPK2; Fig. S5B–H).

4. Discussion

In this study, we systematically evaluated all pairwise

DNA methylation–smoking cessation interactions on

an epigenome-wide scale and further confirmed these

interactions in an independent population. To our

knowledge, this is the first study with a large sample

size to investigate interactions between DNA methyla-

tion and smoking behavior on lung cancer survival,

and it provides new evidence to account for the missing

heritability of complex diseases (Trerotola et al., 2015).

Our results show that the effect of smoking cessation

on early-stage LUAD patient survival varies with

methylation level of cg02268510SIPA1L3. Smoking cessa-

tion only benefits LUAD patients with low methyla-

tion, rather than medium or high methylation, of

cg02268510SIPA1L3. Further, there is an antagonistic

interaction between elevated methylation of

cg02268510SIPA1L3 and smoking cessation.

We found that in LUAD patients with low methyla-

tion of cg02268510SIPA1L3, current smokers with more

accumulative exposure had worse survival than former

smokers. However, for a population with medium–
high methylation, the prognosis of current smokers

was similar to that of former smokers. The effect of

smoking cessation is therefore modified by DNA

methylation level, indicating opportunities for epi-drug

intervention due to the inherent reversibility of epige-

netic events (Wright, 2013).

Up to 50% of lung cancer patients are estimated to

keep smoking after diagnosis or to frequently relapse

after smoking cessation (Park et al., 2012; Walker

et al., 2006). Our results indicated that smoking cessa-

tion was urgent especially for LUAD patients with low

methylation of cg02268510SIPA1L3. On the other hand,

reduced methylation of cg02268510SIPA1L3 might

strengthen the protective effect of smoking cessation

on survival.

Many studies have reported significant associations

between smoking cessation and overall survival

(Koshiaris et al., 2017; Nia et al., 2005), while other

studies have reported negative results (Baser et al.,

2006; Parsons et al., 2010). Based on our interaction

analysis, we suspected that epigenetic modifications

might account for this inconsistent phenomenon.

Because the effect of smoking cessation varies across

Table 2. Joint effect and interaction of elevated methylation and smoking cessation on the prognosis of early-stage LUAD.

Effect typea Medium–high methylationb Smoking cessation Number HR (95% CI)a Pa

No No 71 Ref.

Main effect1 No Yes 157 0.5506 (0.3609, 0.8400) 5.62 9 10�3

Main effect2 Yes No 158 0.5214 (0.3369, 0.8070) 3.48 9 10�3

Joint effect Yes Yes 299 0.6268 (0.4251, 0.9243) 1.84 9 10�2

Interactionc 2.1835 (1.2747, 3.7401) 4.46 9 10�3

a Patients were categorized into two groups (medium–high vs low) by tertiles of cg02268510SIPA1L3 methylation level.
bMain effects of elevated methylation and smoking cessation and their joint effect and interaction were derived from the Cox proportional

hazards model adjusted for covariates.
c Interaction = Joint effect � (main effect1 9 main effect2). 2.1835 = 0.6268 � (0.5506 9 0.5214).

Fig. 4. Association between DNA methylation of cg02268510 and

expression of corresponding gene SIPA1L3. The b coefficient and

P-value were based on linear regression analysis adjusted for age,

sex, smoking status, and clinical stage. Gene expression was log2-

transformed before analysis.

1242 Molecular Oncology 13 (2019) 1235–1248 ª 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Epigenomic–smoking interaction analysis of SIPA1L3 R. Zhang et al.



populations with different methylation levels of

cg02268510SIPA1L3, the effect could be neutralized in a

population of patients with mixed cg02268510SIPA1L3
methylation levels. Thus, the traditional marginal test

for association between smoking cessation and cancer

survival inherently loses statistical power to report sig-

nificant findings due to complex association patterns.

SIPA1L3, the gene in which cg02268510 is located,

encodes GTPase-activating proteins (GAPs) specific for

the GTP-binding protein Ras-associated protein-1

(RAP1), which is implicated in regulation of cell adhe-

sion, cell polarity, and cytoskeletal organization

(Kooistra et al., 2007). SIPA1L3 is a member of the

SPA1 family of RapGAPs, which play a crucial role in

spatiotemporal control of Rap1 activation in cells

(Mochizuki et al., 2001). Rap1 plays many roles during

cell invasion and metastasis in different cancers (Zhang

et al., 2017). Additionally, overexpression of RAP1

may desensitize NSCLC cells to cisplatin, a first-line

drug to treat NSCLC (Besse et al., 2014). Our results

suggest that low methylation at cg02268510SIPA1L3
might promote SIPA1L3 expression, further leading to

Rap1 activation and resulting in poor prognosis

(Fig. 5).

Many of the deleterious effects of smoking are due

to induction of inflammatory responses that contribute

to lung cancer progression (Crusz and Balkwill, 2015;

Walser et al., 2008). In vitro experiments in human

umbilical vein endothelial cells demonstrate that nico-

tine stimulates cellular inflammatory responses by acti-

vating the NF-jB transcription factor axis by a second

messenger pathway (Ueno et al., 2006). Activation of

NF-jB, one of the most investigated transcription fac-

tors, controls multiple cellular processes in cancer,

including inflammation, transformation, proliferation,

angiogenesis, invasion, metastasis, chemoresistance,

and radioresistance (Chaturvedi et al., 2010). Nicotine

protects NSCLC cells against chemotherapy-induced

Fig. 5. Diagram for pathway of DNA methylation–smoking cessation interaction effect on survival for LUAD patients.
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apoptosis and serum deprivation-induced apoptosis

through NF-jB, and NF-jB activity is also directly

stimulated by nicotine (Anto et al., 2002; Tsurutani

et al., 2005). Therefore, for current smokers, nicotine

in tobacco stimulates activation of NF-jB, induces

inflammatory responses, and is relevant to poor

patient prognosis (Fig. 5).

Moreover, Rap1 is an essential modulator of NF-

jB-mediated pathways. NF-jB is induced by ectopic

expression of Rap1, whereas its activity is inhibited

by Rap1 depletion (Teo et al., 2010). Furthermore,

levels of Rap1 are positively regulated by NF-jB,
and human breast cancers with NF-jB hyperactivity

show elevated levels of cytoplasmic Rap1 (Teo et al.,

2010). Thus, positive feedback mechanisms might

exist between Rap1 expression and NF-jB activation

(Fig. 5). In terms of cg02268510SIPA1L3 and smoking

cessation interaction, keeping smoking was associated

with poor prognosis only in LUAD patients with low

methylation, rather than medium or high methyla-

tion, possibly because high activation of both Rap1

and NF-jB may only occur in patients with low

methylation.

We also found that methylation level of

cg02268510SIPA1L3 increased along with long pack-year

of smoking, but decreased with long years of smoking

cessation. As presented in Fig. 5, low methylation and

keeping smoking resulted in the worst prognosis, which

might be due to the positive feedback in Rap1 and NF-

jB. However, methylation of cg02268510SIPA1L3
increased with the cumulative amount of smoking. But,

high methylation of cg02268510SIPA1L3 resulted in low

SIPA1L3 expression that was hard to active Rap1 and

NF-jB, and then might weaken the harmful effect of

smoking, which also indicated an antagonistic effect. It

is implied that there might be a self-protective mecha-

nism in the human body that prevents the body from

receiving excessive damage from exposure. As reported,

smoking increases reactive oxygen species (ROS) pro-

duction and is a significant source of oxidative stress

(Athanasios et al., 2013), but in vivo, there is a variety

of antioxidant defense mechanisms existed to counter-

act the detrimental effects of ROS by regulating the

production of free radicals and their metabolites

(Deponte, 2013; He et al., 2017). It may be an adaptive

defense mechanism to counteract the increased ROS

production that superoxide dismutase enzyme levels in

blood and salivary were increased in smokers (Jenifer

et al., 2015). Moreover, a previous study has found

that activation of Rap1 serves to attenuate ROS pro-

duction (Remans et al., 2004) and there is a potential

interrelationship between Rap1, ROS, and NF-jB acti-

vation (Moon et al., 2011). But further functional

studies are warranted to elucidate the mechanism of

cg02268510SIPA1L3 and smoking cessation interaction

on LUAD survival.

Meanwhile, we observed that some genes trans-regu-

lated by cg02268510SIPA1L3 are involved in DNA dam-

age response and cell growth (GADD45G) (Guo et al.,

2013), immune cell functions (MTURN) (Sun et al.,

2014), tumor cell migration [regulator of G protein sig-

naling 20 (RGS20)] (Yang et al., 2016), apoptosis

(RELL1 and RIPK2) (Chin et al., 2002; Cusick et al.,

2010), and innate and adaptive immunity (RIPK2)

(Jaafar et al., 2018).

GADD45G is a member of the GADD45 family,

which plays an essential role in cellular stress

response, survival, senescence, and apoptosis regula-

tion (Liebermann et al., 2011). GADD45G has been

reported to be a tumor suppressor in multiple cancer

types and can inhibit cell growth and induce apopto-

sis (Ying et al., 2005). Patients with high GADD45G

expression had a better prognosis in our study.

MTURN is a neural progenitor differentiation regula-

tor homolog. 12-O-tetradecanoylphorbol-13-acetate

(TPA) is an effective cancer therapeutic reagent for

myelocytic leukemia patients (Han et al., 1998), and

MTURN is TPA-responsive and may promote both

leukemic and normal megakaryocyte differentiation

(Sun et al., 2014). Indeed, differentiation therapy by

forced differentiation of cancer cells has been success-

ful in curing acute promyeloid leukemia (Chen et al.,

2011). Similarly, LUAD patients with high MTURN

expression had favorable survival in our study.

RGS20 is suggested to promote cellular characteristics

that contribute to metastasis, including enhanced cell

aggregation, motility, and invasion. Selective inhibi-

tion of RGS20 expression may represent an alterna-

tive means to suppress metastasis (Yang et al., 2016).

Its high expression is significantly associated with pro-

gression and prognosis of triple-negative breast cancer

(Li et al., 2017). Additionally, our study showed simi-

lar results in LUAD patients. Though there is a lack

of explicit evidence of relevance between these genes

and smoking, what we found may inspire functional

studies of these potential genes and further help to

complete a picture of the mechanism pathway of

cg02268510SIPA1L3 and smoking cessation interaction

on LUAD survival.

Our study has some significant strengths. First, this

is the first study to investigate the interaction between

DNA methylation and smoking cessation on lung can-

cer survival on an epigenome-wide scale, which pro-

vides new evidence to account for the missing

heritability of complex diseases (Trerotola et al.,

2015). Second, the two-stage study design we used to

1244 Molecular Oncology 13 (2019) 1235–1248 ª 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Epigenomic–smoking interaction analysis of SIPA1L3 R. Zhang et al.



exhaustively search for interactions, as well as the sen-

sitivity analysis, is quite conservative in controlling for

false positives. Third, our study included a large sam-

ple size to analyze DNA methylation–smoking cessa-

tion interactions of early-stage NSCLC prognosis,

providing an opportunity to identify complex associa-

tions with small–medium effect size.

Despite the strengths of our study, we acknowledge

some limitations. First, data measured categorical

smoking cessation rather than smoking pack-years,

which may render less power in the study. Second,

smoking cessation was collected at the time of diagno-

sis and was not reassessed during follow-up. Previous

studies have found that ‘former smokers’ might more

accurately represent a mixed exposure status, since

quitters are more likely to relapse (Hughes et al., 2004;

Walker et al., 2006). Thus, we likely underestimated

the benefits of smoking cessation. Third, the associa-

tion between cg02268510SIPA1L3 and expression of sev-

eral genes requires more biological evidence, though

methylation is believed to play a crucial role in regu-

lating gene expression (Bird, 2007) and further influ-

ence disease gene function (Sch€ubeler, 2015), cell

differentiation, or reprogramming (Khavari et al.,

2010). Thus, functional experiments are warranted to

confirm these associations, so our findings should be

biologically interpreted with caution thus far. In addi-

tion, our study consisted mainly of a Caucasian popu-

lation (89.19%), since TCGA data contained only

~ 10% non-Caucasian samples. Our results should

therefore be translated with caution for other popula-

tions. Lastly, the censored rate of survival time for the

TCGA population is relatively high, since early-stage

NSCLC patients need longer follow-up time. Thus, the

validation phase using TCGA population had low sta-

tistical power. However, we still successfully replicated

one significant interaction, indicating a quite conserva-

tive and robust result (Leung et al., 1997; Watt et al.,

1996).

5. Conclusion

This epigenome-wide DNA methylation–smoking

cessation interaction analysis of early-stage

NSCLC identified one LUAD-specific CpG probe,

cg02268510SIPA1L3, which could significantly modify

effects of smoking cessation on lung cancer survival.

Smoking cessation benefited survival of LUAD

patients with low methylation at cg02268510SIPA1L3.

These results have implications for not only smoking

cessation after diagnosis, but also possible methyla-

tion-specific drug targeting.
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Fig. S5. Genome-wide methylation transcription analy-

sis results from the TCGA cohort. (A) Circos plot of

genome-wide gene expression. For plots in B–H, left
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divided into low and high groups by median value.
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