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Abstract  19 

Field-derived anoxic microcosms were used to characterize chloroform (CF) and carbon 20 

tetrachloride (CT) natural attenuation to compare it with biostimulation scenarios in which 21 

vitamin B12 was added (B12/pollutant ratio of 0.01 and 0.1) by means of by-products, carbon and 22 

chlorine compound-specific stable-isotope analysis, and the active microbial community through 23 

16S rRNA MiSeq high-throughput sequencing. Autoclaved slurry controls discarded abiotic 24 

degradation processes. B12 catalysed CF and CT biodegradation without the accumulation of 25 

dichloromethane, carbon disulphide, or CF. The carbon isotopic fractionation value of CF (ƐCCF) 26 

with B12 was -14±4‰, and the value for chlorine (ƐClCF) was -2.4±0.4‰. The carbon isotopic 27 

fractionation values of CT (ƐCCT) were -16±6 with B12, and -13±2‰ without B12; and the chlorine 28 

isotopic fractionation values of CT (ƐClCT) were -6±3 and -4±2‰, respectively. Acidovorax, 29 

Ancylobacter, and Pseudomonas were the most metabolically active genera, whereas 30 

Dehalobacter and Desulfitobacterium were below 0.1% of relative abundance. The dual C-Cl 31 

element isotope slope (Λ=∆δ13C/∆δ37Cl) for CF biodegradation (only detected with B12, 7±1) was 32 

similar to that reported for CF reduction by Fe(0) (8±2). Several reductive pathways might be 33 

competing in the tested CT scenarios, as evidenced by the lack of CF accumulation when B12 was 34 

added, which might be linked to a major activity of Pseudomonas stutzeri; by different chlorine 35 

apparent kinetic isotope effect values and Λ which was statistically different with and without B12 36 

(5±1 vs 6.1±0.5), respectively. Thus, positive B12 effects such as CT and CF degradation catalyst 37 

were quantified for the first time in isotopic terms, and confirmed with the major activity of 38 

species potentially capable of their degradation. Moreover, the indirect benefits of B12 on the 39 

degradation of chlorinated ethenes were proved, creating a basis for remediation strategies in 40 

multi-contaminant polluted sites. 41 

Keywords: carbon tetrachloride, chloroform, CSIA, carbon-chlorine isotope plot, MiSeq high-42 

throughput sequencing, Pseudomonas stutzeri. 43 
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1. Introduction 45 

The chlorinated methanes (CMs) carbon tetrachloride (CT) and chloroform (CF) are volatile 46 

organic compounds (VOCs) commonly found in groundwater. Although natural sources of CT 47 

and CF have been reported (Penny et al., 2010; Cappelletti et al., 2012), anthropogenic sources 48 

are more relevant given their use in many industrial activities (Doherty, 2000, Cappelletti et al., 49 

2012). Both are considered possibly carcinogenic substances (Group 2B) by the International 50 

Agency for Research on Cancer and Disease Registry. 51 

There are no known organisms that metabolically degrade CT under neither oxic nor anoxic 52 

conditions (Penny et al., 2010). Under anoxic conditions, microbial CT degradation appears to be 53 

a non-specific co-metabolic reaction involving electron shuttles produced by facultative or strictly 54 

anaerobic bacteria and methanogenic Archaea (Penny et al., 2010). CT reduction is the 55 

predominant reaction mechanism which is either abiotically mediated by iron minerals and/or 56 

metals or biotically catalyzed (Lewis and Crawford, 1995). As seen in Scheme 1, in the CT 57 

reductive hydrogenolysis (pathway 1, Scheme 1), the first step involves an electron transfer 58 

leading to CF, while in other reduction processes two electrons are initially transferred, followed 59 

by hydrolytic substitution producing CO, formate, and CO2 (hydrolytic reduction, pathway 2), or 60 

by thiolytic substitution leading to CS2 (thiolytic reduction, pathway 3). Finally, CT reduction by 61 

the Pseudomonas stutzeri strain KC leads to CO2 as the main product without CF formation, but 62 

with phosgene and thiophosgene as toxic intermediates (pathway 4). 63 

CF biodegradation has been described under both oxic and anoxic conditions (Cappelletti et al., 64 

2012). Under anoxic conditions, the following pathways are reported in the literature: CF 65 

dehalorespiration and co-metabolic reductive dechlorination to DCM (pathway 1, Scheme 1), CF 66 

reductive elimination to CH4 (pathway 1a), and a first reduction followed by hydrolysis and final 67 

oxidation to CO and CO2 (pathway 2). The mentioned anaerobic CF pathways were also described 68 

abiotically (He et al., 2015).  69 
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 70 

Scheme 1. Hypothetical CT (carbon tetrachloride) and CF (chloroform) reductive pathways according to Lewis and 71 

Crawford (1995), Field and Sierra-Alvarez (2004), Song and Carraway (2006), Penny et al. (2010), Cappelletti et al. 72 

(2012), and Torrentó et al. (2017). 73 

Redox active corrinoids such as vitamin B12, a cofactor for some dehalogenase enzymes (Banerjee 74 

and Ragsdale, 2003), catalyze the reductive biodegradation of CT to CO, CO2, or CS2, which 75 

suggests degradation through pathways 2 and 3 (Scheme 1), whereas toxic CF (though pathway 76 

1, Scheme 1) becomes a minor product, possibly because B12 stimulates further CF degradation 77 

(via pathway 1a or 2) (Cappelletti et al., 2012). However, it is unknown in which proportion these 78 

CMs degradation pathways take place in complex mixed cultures, and if they happen biotic or 79 

abiotically depending on the media composition. It is also unknown how different B12/pollutant 80 

ratios impact this pathway selection, because the available data to date is only in terms of 81 

consumption rates or the characterization of by-products (Becker and Freedman, 1994; Hashsham 82 

et al., 1995; Workman et al., 1997; Zou et al., 2000; Guerrero-Barajas and Field, 2005a, 2005b; 83 

Shan et al., 2010). Hence, isotope and microbiological tools are proposed hereafter to better assess 84 

the natural attenuation and changes of CMs caused by B12 in field-derived anoxic microcosms. 85 

Compound specific isotope analysis (CSIA) allows one to confirm degradation when monitoring 86 

of the concentration of parental or by-products is not conclusive (Elsner, 2010). The calculation 87 

of the extent of isotopic fractionation (Ɛ) in the laboratory follows a Rayleigh approach (Elsner et 88 

al., 2005) through Eq.(1) in which δ0 and δt are the isotope values (in per mil units, ‰, relative to 89 

international standards) of C or Cl at the initial start and after a given time (t) respectively, and f 90 

is the fraction of substrate remaining at time t. This calculation affords knowledge about whether 91 

degradation will be qualitatively detected in the studied field, and provides information about the 92 

1. CT or CF hydrogenolysis 
 

       e-      e-              H+                       e-                                       e-                          H+ 
CCl4        [·CCl3]   [꞉CCl3

-]            CHCl3        [·CHCl2]     [꞉CHCl2
-]          CH2Cl2           CH3Cl           CH4 

          Cl-                                                                2e-      Cl- 
                                       
                                                                                2Cl-                                CH4 

               1a. CF reductive elimination: [:CHCl]            
                                                                                  CO          HCOO-/CO2/CH4                                                    

 
2. CT or CF hydrolytic reduction                             3. CT thiolytic reduction             4. CT reduction by Pseudomonas stutzeri 
                                                                                                                                                                                      HS-                                                 2H2O 
   2e-                 2Cl-                                                     2e-             H2S                              e-                                                           ·SCCl3                      CSCl2             
 CCl4          [꞉CCl2]/   HCOOH/CO/ CO2         CCl4                [꞉CCl2]           CS2          CCl4        [·CCl3]                                Cl-                                 CO2 
 1e- or 2e-          2Cl-                                                      Cl-                      ·OOCCl3           COCl2 
 CHCl3           [꞉CCl2]/ [⋮        CCl] CH2O/CH2O2                                          O2       H2O 

        1Cl- or 2Cl-                                                                                                                                                                                                             
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reaction mechanism which is occurring by comparing the apparent kinetic isotope effects (AKIEs) 93 

to those reported in the literature and to the theoretical kinetic isotope effects (KIEs) (Elsner et 94 

al., 2005).  95 

fln
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1000δ
1000δ

ln 
0

t =
+
+

     (1) 96 

This approach however, has some limitations, since different AKIEs values for reactions 97 

undergoing the same bond cleavage can be obtained due to masking by rate limiting steps, or by 98 

secondary or superimposed isotope effects (Nijenhuis and Richnow, 2016). Thus, dual element 99 

isotope plots (2D-CSIA) allow a better distinction within different reactions, since slopes (e.g. 100 

Λ=Δδ13C/Δδ37Cl) are expected to be reaction-specific (Cretnik et al., 2013) and non-masked 101 

because both elements are affected to the same extent (Elsner et al., 2005). To our knowledge, 102 

only one study has explored Λ values for abiotic CF engineered transformation reactions 103 

(Torrentó et al., 2017), and no Λ values for biotic CF, or for abiotic or biotic CT degradation 104 

reaction models exist yet. Due to the limited Λ values of reference reactions, linking AKIE and 105 

Λ information with the activity of potential CT and CF microbial degraders can be worthwhile to 106 

gain insights into the natural attenuation and changes of CMs on the microbial population 107 

produced during bioremediation. RNA-based analyses provide more insight into active biologic 108 

processes than physiologic or genetic capability alone (Yargicoglu and Reddy, 2015). Next-109 

Generation Sequencing (NGS) technologies, such as Miseq, have prompted a shift towards high-110 

throughput methods for characterizing both total and metabolically active (16S rRNA from active 111 

ribosomes and total RNA, analyzed from synthesized cDNA) microbial communities (Pelissari et 112 

al., 2017). 113 

The main aim of the present study was to characterize the anaerobic CT and CF biodegradation 114 

potential of indigenous microbiota from the monitored contaminated Òdena site (Barcelona, 115 

Spain) (Palau et al., 2014; Torrentó et al., 2014), and also to characterize the effects of vitamin 116 

B12, as a bioremediation strategy, on the microbial community and on degradation pathways, for 117 

further field applications. B12 amended and unamended microcosm batch experiments were used 118 

for (1) monitoring the concentration of parental and by-product compounds and δ13C and δ37Cl to 119 
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evidence degradation; (2) characterizing the active microbial community by RNA-based NGS to 120 

assess the effect of B12 addition on the microbial populations; and (3) determining the ƐC, ƐCl, 121 

the corresponding AKIEs and Λ of each compound and treatment to study the degradation 122 

pathways. 123 

2. Material and methods 124 

2.1. Experimental set-up 125 

Following the Fennell et al. (2001) procedure, preliminary microcosm assays were performed 126 

with homogeneous slurry (groundwater and sediments) collected in June 2012 from the bottom 127 

portion (17 m.b.g.s.) of an iron-reducing well at the Òdena site (Palau et al., 2014). The original 128 

amounts of the pollutants present in the field (chlorinated methanes, ethenes and ethanes, BTEXs, 129 

and traces of pesticides (Torrentó et al. 2014)) remained unchanged in these preliminary 130 

microcosm assays. These preliminary microcosm assays served to prove the natural attenuation 131 

of CMs, which was accelerated with the addition of 10 µM of B12 (data not shown). 132 

For studying the effect of different amounts of B12 on the degradation of CMs in detail, a new 133 

slurry was collected from the same well in February 2014. The slurry was flushed with N2(g) 134 

during two hours inside an anoxic N2(g)-filled glovebox to remove the large original 135 

concentrations of VOCs and to add known amounts of CF and CT. According to Guerrero-Barajas 136 

and Field (2005a,b), three scenarios exist for each target compound: (i) without the addition of 137 

vitamin B12, called “pollutant without B12 treatment” abbreviated as CFw/oB or CTw/oB; (ii) with 138 

a molar ratio of vitamin B12/pollutant of 0.01, called “0.01B/pollutant treatment”; and (iii) with a 139 

molar ratio of 0.1, called “0.1B/pollutant treatment”; the pollutant being CT (99% Panreac) or CF 140 

(99% Merck) depending on the case. Live treatments were run in quintuplicate using 120 mL-141 

serum bottles filled with 100 mL of slurry, which were inoculated with a theoretical pollutant 142 

concentration of 200 µM, referred to as the liquid volume, and with the corresponding B12 volume 143 

(0, 2, or 20 µL). The bottles were filled-up inside an anoxic glove box and sealed with grey PTFE 144 

stoppers. Parallel series with triplicate heat-killed (KI) controls were performed to discard abiotic 145 

processes. KI controls were filled with 100 mL of slurry and sealed inside the glovebox prior to 146 

autoclaving in three cycles of 20 min. at 121°C. The same amounts of pollutant and B12 in 147 



7 
 

comparison to the equivalent live treatment were subsequently added by using N2-purged sterile 148 

syringes. KI controls were started 43 hours after the live samples. Static incubation in darkness at 149 

room temperature was performed for all treatments during the 376 days long experimental period 150 

(t10).  151 

2.2. Sampling 152 

Samples for chemical and isotopic analyses were periodically taken using sterilized syringes and 153 

filtered through 0.2µm-nylon sterilized filters (Millipore) from three of the replicate bottles and 154 

kept refrigerated at 4°C in 2.5 mL crimped vials. A sample from the flushed slurry without 155 

amendments was taken for VOCs concentration analysis and DNA was extracted for studying the 156 

total bacterial population present at the initial time (t0) by DGGE and 16S rRNA MiSeq high-157 

throughput sequencing. In addition, when the degradation of significant target contaminants was 158 

detected (at 85 days, t3, from all B12 amended bottles, and at t10 from all live treatments), samples 159 

were taken from one of the two untouched replicates for total RNA extraction (then 160 

retrotranscripted to cDNA) for further DGGE and 16S rRNA MiSeq high-throughput sequencing. 161 

The concentrations of VOCs, δ13CCT, and δ13CCF were also measured in these replicates just before 162 

the extraction (M_S bottles in the figures).  163 

2.3. Chemical analyses 164 

Due to volume limitations, the concentration of VOCs and C and Cl isotope analyses of CT and 165 

CF were prioritized. The concentration of VOCs was measured in the Centres Científics i 166 

Tecnològics de la Universitat de Barcelona (CCiT-UB) by headspace (HS)-gas chromatography 167 

(GC) - mass spectrometry (MS) as explained in Torrentó et al. (2014). The error based on replicate 168 

measurements was below 10% for all compounds. 169 

To compare the concentration’s decrease kinetics among the treatments and the literature, aqueous 170 

concentration data of CT and/or CF versus time was fitted to a pseudo-first-order rate model 171 

according to Eq.(2), where C is the target chlorinated compound concentration in µM, t is the 172 

time in days, and k’ is the pseudo-first-order rate constant (days-1), assuming that all the removal 173 

of CT and CF was due to a degradation process.  174 

dC/dt=-k’C      (2) 175 
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 The k’ was obtained using the integrated form of Eq. (2), shown in Eq. (3) where C0 is the initial 176 

concentration of the chlorinated compound (µmol/L).  177 

lnf=lnC/C0=k’t      (3) 178 

 Uncertainty was obtained from 95% confidence intervals (CI). 179 

Temperature, pH, and anions and cation concentrations were measured when possible (see SI for 180 

further details). 181 

2.4. Isotope analyses 182 

Due to volume limitations, δ13C and δ37Cl were measured in different replicates of the same 183 

treatment and incubation time. δ13C analyses were performed in CCiT-UB by HS - solid-phase 184 

micro-extraction (SPME)-GC-isotope ratio MS (IRMS), as explained in Martín-González et al. 185 

(2015). According to the standard deviation of the daily standards of each compound (SD≤0.5, 186 

n=24), a total instrumental uncertainty (2σ) of ±0.5‰ was considered (Sherdwood Lollar et al., 187 

2007), given that volume limitation prevented duplication of the measurements. δ37Cl analyses 188 

were performed in the University of Neuchâtel using a HS-GC-quadrupole MS (qMS), as 189 

explained in Heckel et al. (2017). Each δ37Cl value and its analytical uncertainty (2σ, in all cases 190 

below ±0.5%) were determined on the basis of ten injections, and the working standards were 191 

interspersed along the sequence. 192 

Isotopic mass balances were calculated following Eq. (4), where x is the molar fraction of each 193 

compound relative to the total molar mass of CMs from which isotopic values are available at 194 

each time. The equation assumes only the hydrogenolysis pathway with the available isotopic 195 

data from CMs, since potential gas products (CH4, CO, CO2, formate, phosgene, and tiophosgene) 196 

were not measured.  197 

δ13CSUM (‰)=xCTδ13CCT+xCFδ13CCF+xDCMδ13CDCM    (4) 198 

For AKIE calculations, carbon and chloride Ɛ values determined by the Rayleigh approach (Eq. 199 

1) were used according to Eq. (5), where n is the total number of the atoms of the considered 200 

element (E) in the target molecule, x the number of atoms located at the reactive site, and z the 201 

number of atoms in intramolecular isotopic competition. 202 
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AKIEC was calculated using n=x=z=1 for both compounds, while AKIECl was calculated using 204 

n=x=z=4 for CT and n=x=z=3, for CF. 205 

2.5. Microbial community abundance and diversity analyses 206 

2.5.1. DNA-based study at the initial time 207 

To have a sample representative of the initial time (t0), a slurry was sampled after flushing and 208 

before the addition of target compounds and B12. This sample was used for studying the total 209 

bacterial population through DNA extraction by following the same procedure detailed in the 210 

subsequent sections for RNA. 211 

2.5.2. Total genomic DNA and RNA extraction 212 

15 mL of slurry from microcosms at different incubation times were collected in triplicate and 213 

centrifuged at 4000g/30’ and 4°C. The supernatants were removed and the pellets were stored 214 

immediately at -80°C until further analysis. Total RNA and DNA were extracted in triplicate from 215 

known weights of each sample with the PowerMicrobiomeTM RNA Isolation Kit, Catalog #26000-216 

50 (MoBio Laboratories Inc., Carlsbad, CA, USA), according to the manufacturer’s instructions. 217 

Purified total RNA was obtained by the removal of the co-extracted DNA with DNase I (provided 218 

by the kit) at 25ºC for 10 min, and the subsequent inactivation of DNase I with EDTA 50 mM 219 

(Thermo Scientific Fermentas, USA) at 75ºC for 5 min. Reverse transcription polymerase chain 220 

reaction (RT-PCR) for cDNA synthesis from the obtained mRNA was performed using the 221 

PrimeScriptTM RT Reagent Kit (Takara Bio Inc., Japan). The reaction was carried out in a volume 222 

of 30 μL, which contained 15 μL of purified mRNA, 6 μL of PrimeScriptTM buffer, 1.5 μL of the 223 

enzyme mix, 1.5 μL of Random 6 mers, and 6 μL of RNase Free dH2O. 224 

2.5.3. DGGE analyses 225 

Three primer sets selectively amplified bacterial (F341GC/R907) and archaeal 226 

(ArchF0025/ArchR1517; nested ArchF344/ArchR915GC) 16S rRNA gene fragments. The PCR 227 

amplification of the hypervariable V3-V5 region from the 16S rRNA gene of both domains, and 228 
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the DGGE profiles and sequencing were performed as previously reported by Palatsi et al. (2010). 229 

The sequences were chimera-checked by using the Bellerephon on-line tool (DeSantis et al., 230 

2006), and aligned against the GenBank database by using the BLASTn and RDP alignment tool 231 

comparison software. The sequences were submitted to Genbank (NCBI) with the accession 232 

numbers (KY921708-KY921709). 233 

2.5.4.  cfrA gene expression  234 

In order to detect the presence and activity of Dehalobacter sp., cfrA encoding gene of the CF 235 

reductive dehalogenase alpha subunit (Chan et al., 2012; Tang and Edwards, 2013) was assessed 236 

by the qPCR technique as described in Tang and Edwards (2013). For the standard curve, it was 237 

designed a synthetic gene by using gBlocks® Gene Fragments (IDT, Integrated DNA 238 

Technologies). The cfrA sequence belongs to Dehalobacter sp. enrichment culture clone rdhA01 239 

(GenBank sequence database: JX282329.1). Ten-fold serial dilutions from synthetic genes were 240 

subjected to qPCR assays in duplicate showing a linear range between 101 and 108 gene copy 241 

numbers per reaction to generate standard curves. qPCR reactions fitted quality standards: 242 

efficiencies were between 90 and 110% and R2 above 0.985. All results were processed by 243 

MxPro™ QPCR Software (Stratagene, La Jolla, CA) and were treated statistically. 244 

2.5.5.  16S rRNA Illumina-sequencing of the active microbial populations 245 

A deep microbial diversity assessment of the metabolically active populations was performed by 246 

means of 16S rRNA (RNA-based) Illumina (MiSeq) high-throughput sequencing, targeting the 247 

bacterial 16S rRNA V1-V3 region, by utilizing the Illumina MiSeq sequencing platform. The 248 

obtained DNA reads were compiled in FASTq files for further bioinformatic processing. 249 

Trimming of the 16S rRNA barcoded sequences into libraries was carried out using QIIME 250 

software version 1.8.0 (Caporaso et al., 2010a). Quality filtering of the reads was performed at 251 

Q25, prior to the grouping into Operational Taxonomic Units (OTUs) at a 97% sequence 252 

homology cutoff. The following steps were performed using QIIME: Denoising using Denoiser 253 

(Reeder and Knight, 2010); reference sequences for each OTU (OTU picking up) were obtained 254 

via the first method of the UCLUST algorithm (Edgar, 2010); for sequence alignment and chimera 255 

detection the algorithms PyNAST (Caporaso et al., 2010b) and ChimeraSlayer (Haas et al., 2011) 256 
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were used. OTUs were then taxonomically classified using RDP Naïve Bayesian Classifier (2.2) 257 

with a bootstrap cutoff value of 80%, and compiled to each taxonomic level (Wang et al., 2007). 258 

To evaluate the alpha diversity of the samples, the number of OTUs, the inverted Simpson index, 259 

Shannon index, Goods coverage, and Chao1 richness estimators were calculated using the Mothur 260 

software v.1.35.9 (http://www.mothur.org) (Schloss et al., 2009). All the alpha-diversity 261 

estimators were normalized to 70,000 (the lower number of contigs among the different samples). 262 

Data from the MiSeq NGS assessment were submitted to the Sequence Read Archive (SRA) of 263 

the National Center for Biotechnology Information (NCBI) under the study accession number 264 

SRP090228. 265 

  266 
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3. Results and discussion 267 

3.1. Biodegradation evidence 268 

The elimination of VOCs by N2 flushing of the slurry was not complete, as CT was much more 269 

efficiently flushed than CF (Table 1), although the remaining CF only represented a maximum of 270 

6% of the total initial CF concentration in the CF treatments. The measured initial CT 271 

concentrations (Table 1) were four times smaller than the expected, likely due to the sorption of 272 

the slurry, while CF agreed better with the expected values, consistent with its lower tendency to 273 

sorb (Cappelletti et al., 2012). 274 

  275 

Table 1. The average concentrations of VOCs (n measurements specified in parentheses) for the initial slurry after N2 276 

flushing (t0) and live and heat-killed controls for all treatments of each parental compound (including together with and 277 

without B12) in the first sampling (live treatments: 90 min after starting; heat-killed controls: 60 minutes after starting) 278 

expressed as µM at the liquid phase of the experimental bottle.  279 

  CT treatments CF treatments 

 Slurry t0 Live Heat-killed Live Heat-killed 

CT 2 40±17 (12) 26±10 (15) 8±5 (8) 4.5±0.4 (9) 

CF 26 <2 <2 132±10 (9) 189±37 (9) 

DCM 0.4 <4 <4 <4 <4 

CS2 0.7 <0.7 <0.7 <0.7 <0.7 

PCE 0.4 <2 <2 <2 <2 

TCE 5 <2 <2 <2 <2 

cDCE 9 2±2 (8) 1.4±0.1 (9) 10.0±0.8 (3) 3.2±0.2 (3) 

 280 

Fluctuations in CF and CT concentration were observed in all the KI controls (Fig.1), but they 281 

were not accompanied by an increase in the concentration of the expected metabolites neither by 282 

shifts in carbon nor in chlorine isotopic signatures (δ13CCF=-41.7±0.3‰, n=9; δ37ClCF=-2.6±0.1‰, 283 

n=3; δ13CCT=-40.4±0.8‰, n=19; δ37ClCT=-0.8±0.1‰, n=4) (Fig.2). This would suggest that 284 

degradation is not occurring. The observed fluctuations in concentration could be due to sorption-285 

desorption processes (Riley et al., 2010). This lack of CF degradation in the KI controls was 286 

consistent with results obtained in heat-killed controls amended with cobalamins performed by 287 
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Guerrero-Barajas and Field (2005a), but not in the case of CT KI controls conducted by Guerrero-288 

Barajas and Field (2005b). Guerrero-Barajas and Field (2005b) and Egli et al. (1990) pointed to 289 

CT and CF degradation by heat-killed cells, leading to DCM or CO2, but at a markedly reduced 290 

rate compared to live treatments. The absence of CT degradation in our KI controls is also 291 

contrary to other studies (Hashsham et al., 1995; Puigserver et al., 2016). These degradation 292 

differences could be partially attributed to different slurry compositions, which may differ in the 293 

potential presence of reducing agents, such as sulphide or iron minerals, capable of supplying 294 

electrons for the abiotic reduction of CMs, which were not measured in any case. 295 

The CT and CF concentration behaviour in triplicates of the same treatment were quite 296 

reproducible over time (Fig. A1), which permitted δ13C and δ37Cl analyses in different replicates. 297 

CF biodegradation only occurred in the presence of B12. In the CFw/oB treatment, the CF 298 

concentration fluctuated (Fig. 1A), but δ13CCF did not vary significantly (-40.8±0.8‰, n=7) (Fig. 299 

2A). On the other hand, in the presence of B12 in the 0.01B/CF treatment, a CF concentration 300 

decrease (Fig.1B) was accompanied by significant enrichment of the heavy isotopes for both C 301 

and Cl (Δδ, 23 and 3‰, respectively, at t10), indicative of normal isotope effects (Fig.2A, B). In 302 

the 0.1B/CF treatment, CF was completely consumed before 72 days (Fig. 1C) which did not 303 

allow isotope measurements in the samples. No CS2 accumulation (Fig. A2) was detected in any 304 

CF treatment, and significant transient DCM accumulation only occurred for the 0.01B/CF 305 

treatment after around 200 days (Fig. A3B). 306 
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 307 

Fig.1. Evolution of CF (grey) and CT (black) concentration (in C/C0) in replicate 1 (from which C-CSIA measurements 308 

were done) of the CF (upper panels) and CT (lower panels) treatments: CFw/oB (A), 0.01B/CF (B), 0.1B/CF (C), 309 

CTw/oB (D), 0.01B/CT (E), and 0.1B/CT (F). C/C0 were calculated from the total µmol in the bottle taking into account 310 

Henry’s law constant at 24°C according to Staudinger and Roberts (2001). CF evolution, as a potential product in the 311 

CT treatments, is also shown in D, E, and F. The evolution of parental compounds in replicate 1 from the corresponding 312 

heat-killed control (KI) experiments are shown for each treatment (empty symbols). No significant changes in the 313 

background CF were detected in CT-KI along the incubation time (data not shown). Dashed lines show the sampling 314 

times of the microbial analyses (t0, t3, and t10). The error bars show the uncertainty in the concentration measurements. 315 

When not visible, error bars are smaller than the symbols. 316 

 317 
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 318 

Fig.2. The evolution of the CF and CT carbon (left panels), and chlorine (right panels) isotope composition (‰) over 319 

time, measured in replicates 1 and 2, respectively, of each treatment with CF (A,B) and CT (C,D) as target compounds, 320 

and CF (E,F) as a CT by-product. CF concentrations in the 0.1B/CF treatment decreased rapidly, and were therefore 321 

too low for isotopic measurements (no data points). The cross shaped symbol corresponds to carbon isotope data of the 322 

replicates (M_S bottles) used for microbial sampling (indicated in dashed lines). CT in 0.01B/CT and CT and CF, as a 323 

by-product, in the 0.1B/CT treatments were below the detection limit for carbon isotopic measurements (no data points) 324 

in replicates for microbial sampling. When not visible, error bars are smaller than the symbols. 325 

CT degradation occurred both without and with B12, being accelerated in the latter. The decrease 326 

of the CT concentration in the CTw/oB treatment (Fig.1D) was accompanied by significant Δδ13C 327 
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and Δδ37Cl (up to 32‰ and 6‰, at t10, respectively, Fig. 2C), indicating natural biodegradation. 328 

CTw/oB treatments showed a change in the CT isotope enrichment trend after 211 days (Fig. 329 

2C,D), a change that was also observed in the CT degradation rates (Fig. A4). CF was yielded as 330 

a by-product in the CTw/oB treatment, and its concentration increased over time (Fig. 1D). The 331 

δ13CCF depletion pattern during the first 200 days was probably due to the combined effect of both 332 

the produced and background CF isotopic signature (Fig. 2E,F). In addition, the least CF isotopic 333 

fractionation observed (Fig. 2E,F) could be explained by isotopically-sensitive branching (Zwank 334 

et al., 2005): CF might be formed in parallel with other non-analysed products (as evidenced by 335 

non-closed isotopic mass balance, data not shown), and the enrichment effect of further CF 336 

degradation was discarded without B12. 337 

Complete CT consumption was observed in the 0.01B/CT and 0.1B/CT treatments after 110 and 338 

72 days, respectively (Fig. 1E-F). Both treatments showed significant and similar carbon and 339 

chlorine isotopic enrichment trends (Fig. 2C, D). In the 0.01B/CT treatment, the CF concentration 340 

increased over time as a by-product (Fig. 1E), whereas in the 0.1B/CT treatment, a decrease in 341 

the CF concentration was detected (Fig. 1F). CF (hypothetical yield ± background) underwent 342 

isotopic enrichment, which was more significant once parental CT was totally consumed (Fig. 343 

2C-F). This suggested that the 0.1B/CT ratio could be an eligible proportion to degrade both the 344 

parental CT and their degradation by-product (CF), if applied in the field site at the studied well. 345 

There was an absence of significant DCM or CS2 accumulation in all the CT treatments (Fig. A2, 346 

A3).  347 

Pseudo-first rate constant values of concentration removal kinetics (k’, Fig. A4) confirmed the 348 

catalytic effect of B12 (e.g. k’=0.003 ± 0.001 d-1 for 0.01B/CF and k’=0.08 ±0.06 d-1 for 0.1B/CF). 349 

These values cannot be directly compared to those reported in similar microcosm studies 350 

(Guerrero-Barajas and Field, 2005a,b), since they were performed at different temperatures and 351 

with a different sludge composition. However, the ratios obtained for CT (k’0.1B/CT to k’CTw/oB) 352 

were indeed similar (6 to 12) to Guerrero-Barajas and Field (2005b) (see Table A1). The k’ for 353 

the CTw/oB treatment changed from 0.010 ± 0.003 d-1 towards a value of 0.005 ± 0.002 d-1 after 354 

211 days. This half reduction of the kinetics might be due to CT inhibition by CF yield, redox 355 
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mediators, and/or the consumption of other required nutrients (Chan et al., 2012; Lima and Sleep, 356 

2010). 357 

Low DCM amounts prevented the obtainment of its isotopic composition, and isotopic mass 358 

balances calculated with CF and CT did not close in those treatments where degradation was 359 

proved (all except the KI controls and CFw/oB), with a maximum difference, Δ(δsum-δinitial), of 360 

40‰ in the case of the 0.1B/CT treatment. This is evidence of the degradation of further products 361 

or/and the existence of parallel pathways producing non-analysed gas products (CH4, CO, CO2, 362 

formate, phosgene, and tiophosgene). 363 

Δδ13C of the background PCE and cDCE was detected in the 0.1B/pollutant experiments (up to 364 

11.6 and 5.3‰, respectively), when the CT and CF concentrations decreased to levels under the 365 

detection limit, while δ13CPCE remained constant (-26.6±0.1‰), if CF was still in solution in the 366 

0.1B/CF treatment (Fig. 3). These inhibition effects of CMs on the degradation of chlorinated 367 

ethenes were previously reported in the literature (Bagley et al., 2000; Duhamel et al., 2002; 368 

Futagami et al., 2006), but never proved by isotopic data. 369 

 370 

 371 

Fig.3. PCE and cDCE carbon isotope composition variation (‰) over time in the 0.1B/CT and 0.1B/CF treatments. 372 

The vertical line shows the time when the concentrations of target compounds (CT and CF) in both treatments decreased 373 

below the detection limit. 374 

  375 
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3.2. Active microbial populations assessment 376 

Samples for DGGE and NGS analyses taken at t0, t3, and t10 were representative of different 377 

degradation stages in each treatment (detailed in ‘Microbial assessment section’, SI). The results 378 

of NGS revealed a metabolically active microbial diversity greater than that observed for DGGE 379 

(Fig. A5, Table A2), and allowed the identification of active species within the autochthonous 380 

community (Table 2). Well-known organohalide-respiring bacteria (OHRB) according to Adrian 381 

and Löffler, 2016 such as Dehalococcoides, Sulfurospirillum, Geobacter, Desulfosporosinus, 382 

Dehalobacter, and Desulfitobacterium spp. (the last two with known CF reductive dehalogenases, 383 

Tang and Edwards, 2013; Ding et al., 2014), were not metabolically active (<0.1% relative 384 

abundance, RA) at any of the sampled times, and were not present at the initial time using DNA-385 

based analyses (Table 2). In addition, the dehalogenase encoding cfrA gene was below the 386 

detection limit (<102 cfrA copies·mL-1, data not shown) in all t3 samples, confirming the low 387 

metabolic activity of Dehalobacter spp. at this time. The low or non-existent presence and activity 388 

of OHRB could be connected with the well-known antagonistic effects of co-contaminants such 389 

as CMs against these TCE/PCE degrading bacteria (Futagami et al., 2006, Cappelletti et al., 2012, 390 

Tang et al., 2016); with the reported CT inhibition of CF respiration by Dehalobacter (Lee et al., 391 

2015), or with the competition with other active microbial populations from the phylum 392 

Proteobacteria (mentioned below), which would require further investigation.  393 

In all treatments, the greatest represented phylum was Proteobacteria (RA>80%) (Table 2, Fig. 394 

A6), and this phylum is described in better detail hereafter. In the CTw/oB treatment at t10, the 395 

predominantly active genus was the facultatively anaerobic Acidovorax (53%) (Table 2, Fig A7, 396 

Table A3), being more abundant than in the CT treatments with B12 (23 to 27%). Acidovorax sp. 397 

2AN has been described as capable of anoxic Fe(II)-oxidation-enhanced chemotrophic growth 398 

coupled to NO3
- reduction (Chakraborty et al., 2011), and an average NO3

- concentration of 40±12 399 

µM (n=16) (Table A6) in the parental CT treatments would support its growth. Lima and Sleep 400 

(2010) reported inhibition of the microbial activity related to CT degradation by 0.2-0.4 μM of 401 

CF. The authors observed a decrease in the number of bacterial species, including Acidovorax, 402 

under iron-limiting conditions. In the present study, the initial CF concentrations (Table 1) were 403 
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close to those considered inhibitory in the reported study by Lima and Sleep (2010), which 404 

supports that the lowering of δ13CCT enrichment after 211 days in the CTw/oB treatment (Fig. 405 

2C,D) might be due to the toxic effects of CF accumulation (Fig. 1D) on CT dechlorinating 406 

microorganisms. This might proceed through a general inhibition of the metabolic processes 407 

(Cappelletti et al., 2012) rather than by enzyme competition. Since bacterial community diversity 408 

was examined only at time t0 and time t10 (after 376 days), this hypothesis cannot be confirmed in 409 

terms of changes in the bacterial population. 410 

The genus Pseudomonas presented two predominantly active OTUs in all analyzed samples, 411 

belonging to Pseudomonas lingynensis (6-57% RA, similarity of 99.6%) and Pseudomonas 412 

stutzeri (1-10% RA, similarity of 99-100%) (Table A4). P. stutzeri constituted 9-10% RA (Table 413 

2) in the B12-amended CT treatments at t3, whereas it represented only around 1% RA in the 414 

CTw/oB treatment at t10, suggesting a relationship between this species and B12. The P. stutzeri 415 

strain KC is able to denitrificate and to co-metabolically transform CT to CO2 and non-volatile 416 

products (pathway 4, scheme 1) by excreting a siderophore related to Fe chelation, enabling 417 

extracellular CT dehalogenation. Since bioaugmentation with P. stutzeri has been successfully 418 

used in pilot-scale studies for the remediation of CT-contaminated sites (Penny et al., 2010), the 419 

key finding of the natural occurrence of this species and its RA increase by the addition of B12 420 

makes P. stutzeri-mediated remediation strategies promising for the Òdena site. 421 

The Ancylobacter genus (classified as A. dichloromethanicus or A. aquaticus, Table A2) was 422 

detected in greater RA (up to 15%, t3) in the presence of B12 than in the absence of B12 (1%, t10) 423 

(Table 2), suggesting a correlation with B12 addition. A. dichloromethanicus is an aerobic 424 

facultative methylotroph capable of DCM degradation (Firsova et al., 2010). In the CTw/oB 425 

treatment, the CF produced was not further degraded to DCM, preventing the proliferation of this 426 

species. In contrast, in the 0.01B/CF treatment, the only treatment with significant DCM 427 

detection, Ancylobacter exhibited 14% RA at t3 (Table 2), supporting the hypothesis of DCM 428 

production and further DCM consumption (pathway 1, scheme 1). Ancylobacter might also be 429 

linked to the degradation of structurally closed substrates in the absence of dihalomethanes 430 

(Firsova et al., 2010).  431 
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As aerobic or facultative-anaerobic bacteria were present in the microcosm, oxygen availability 432 

as a co-substrate could be explained by: (i) the occurrence of nitrite-driven processes that would 433 

supplement molecular oxygen to monooxygenase activity (Ettwig et al., 2010) as well as to the 434 

cometabolism for the degradation of halomethanes; ii) the availability of O2 from chlorite 435 

dismutase activity in P. stutzeri (Cladera et al., 2006; Schaffner et al., 2015); iii) in the presence 436 

of L-2-haloacid dehalogenases, known to obtain an oxygen atom of the solvent water, in detected 437 

species including A. aquaticus (Kumar et al., 2016), P. stutzeri (Wang et al., 2015), and Rhizobium 438 

sp. RC1 (Adamu et al., 2016) (the last genus with 1-3% RA in all analyzed samples).439 
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Table 2. Biodiversity of bacterial populations expressed as the relative abundance (RA, in %) at the 440 

Phylum/Family/Genus level according to the RDP Bayesian Classifier database (at the genus level with a bootstrap 441 

confidence above 80%), obtained from the M_S bottles. The most abundant phyla (above 1% of the RA in at least one 442 

sample) as well as striking genera and/or species are shown. Detailed abundances for all the detected genera are shown 443 

in the SI (Table A4). The remainder of the phyla up to 100% are included in “Others”. The initial sample (t0_DNA) 444 

was direct 16S rRNA (DNA-based) analysis of the flushed slurry without amendments, while the remaining samples 445 

are 16S rRNA (RNA-based) extracted from the different CF and CT selected treatments and sampling points (t). 446 

Diversity, richness, and coverage indexes are shown in Table A5. 447 

Phylum Family Genus/species DNA 
t0 

CTw/oB 
t10 

0.01B/CT 
t3 

0.1B/CT 
t3 

0.01B/CF 
t3 

Total contigs 478204) 70705 113413 98700 88726 106660 
Total OTUs (1087) 843 476 533 476 482 
Proteobacteria (%) 

  
25.75 83.46 83.10 85.64 94.13  

Comamonadaceae Acidovorax 6.79 53.28 26.67 22.70 7.17   
Hydrogenophaga 0.07 7.73 1.17 2.50 1.01 

  
Variovorax 0.06 1.46 0.37 0.06 0.03 

 
Pseudomonadaceae Pseudomonas 7.63 11.53 26.51 36.63 62.84 

  
Pseudomonas 
stutzeri 

1.07 1.67 10.17 8.64 4.85 
  

Pseudomonas 
lingynensis 

6.35 9.56 15.94 27.62 57.08 
 

Xanthobacteraceae Ancylobacter 0.14 0.75 14.97 13.84 14.41 
 

Rhizobiaceae Rhizobium 0.17 0.80 2.97 1.98 2.94 
 

Desulfovibrionaceae Desulfovibrio 0.03 0.07 0.97 0.51 0.39 
 

Campylobacteraceae Sulfurospirillum 0.05 0.09 <0.01 <0.01 <0.01 
 

Geobacteraceae Geobacter 0.03 <0.01 <0.01 <0.01 <0.01 
 

Methylophilaceae Methylotenera 5.52 0.35 1.25 0.64 0.23 

Chloroflexi (%) 
  

9.18 11.29 2.55 1.64 2.07 
 

Dehalococcoidacea Dehalococcoides <0.01 <0.01 <0.01 <0.01 <0.01 

Deferribacteres (%) 
  

0.09 1.32 1.13 0.82 0.09 
 

Deferribacteraceae Denitrovibrio 0.08 1.31 1.12 0.82 0.09 

Firmicutes (%) 
  

10.87 0.27 0.16 0.60 0.12 
 

Peptococcaceae Dehalobacter <0.01 <0.01 <0.01 <0.01 0.02 
  

Desulfitobacterium <0.01 <0.01 <0.01 <0.01 <0.01 
  

Desulfosporinus 0.06 0.05 0.27 0.01 0.17 

Other (Phyla) (%) 
  

54.10 3.66 13.06 11.30 3.60 
  

Others (Genera) 79.54 24.95 20.82 11.28 22.78 

448 
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3.3. Mechanistic insights  449 

CT and CF reduction involves one or two C-Cl bond cleavages in the first rate-limiting step 450 

(Elsner et al., 2004; Chan et al., 2012; Lee et al., 2015). For AKIE calculations one C-Cl bond 451 

cleavage was assumed and the determined Ɛ values (R2≥0.9) were used (Table 3, Fig. A8). The 452 

AKIEC for the 0.01B/CF (1.014±0.002) and for the CTw/oB and 0.01B/CT treatments 453 

(1.016±0.003 and 1.013±0.001, respectively) were much below the Streitweiser limit of KIEC for 454 

complete C-Cl bond cleavage (1.057) (Table A7), and the realistic value of 50% bond cleavage 455 

(1.029) (Elsner et al., 2005), making C-Cl cleavage feasible as the rate-limiting step, but showing 456 

important masking effects. AKIEC was slightly greater in the CTw/oB treatment. The obtained 457 

AKIEC values are within the range of those obtained for CF microbial reductive dechlorination 458 

(1.004-1.028), and below or within the range of those obtained for abiotic CT and CF reductive 459 

dechlorination (1.01-1.033 and 1.030-1.034, respectively) (Table A7). 460 

Table 3. Carbon and chlorine isotopic fractionation (ƐC and ƐCl, respectively) and the corresponding apparent kinetic 461 

isotope effect (AKIEC and AKIECl), dual C-Cl isotope slope (Λ), the dominant metabolically active genus (in relative 462 

abundance, RA, %), and the hypothesised pathway for each live treatment. Values from both CT treatments with B12 463 

were used together for the Λ calculations. t1, t3, and t10 represent after 26, 85, and 376 days, respectively. n.m.=not 464 

measured since only two data points were available. 465 

Treatment CFw/oB 0.01B/CF 0.1B/CF CTw/oB 0.01B/CT 0.1B/CT 
ƐC (‰) 

±95%CI 

no 

degradation 

detected 

-14±4 

concentration 

b.d.l. after t1 

-16±6 -13±2 

n.m. 
AKIEC 1.014±0.002 1.016±0.001 1.013±0.003 

ƐCl(‰) 

±95%CI 
-2.4±0.4 -6±3 -4±2 

AKIECl 1.0072±0.0004 1.023±0.003 1.015±0.002 

Λ 7±1 6.1±0.5 5±1 

Dominant 
genus 

(RA, %) 

Pseudomonas 
(57), t3 

Acidovorax 

(53), t10 

Acidovorax 

(27), 

Pseudomonas 

(27), t3 

Pseudomonas 

(37), t3 

Hypothesized 
pathway 

Hydrogenolysis± 
reductive 

elimination 

Hydrogenolysis 
among other 

possible 
reductions 

Different simultaneous 
reduction processes 

 466 
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The AKIECl of the 0.01B/CF treatment (1.0072±0.0004) was lower than the Streitwieser limit for 467 

KIECl (1.013) for a C-Cl bond cleavage, and also lower than the theoretical revised value (1.019) 468 

(Paneth, 1992), but it was closer to 50% of the Streitwieser limit (1.0065) (Elsner et al., 2005), in 469 

contrast to the AKIEC. Since both elements should be affected by masking to the same extent, this 470 

discrepancy suggests chlorine secondary isotopic effects that, in turn, are also masked. Moreover, 471 

although there are no AKIECl values of biotic CF degradation in the literature to compare, the 472 

value obtained here was consistent with abiotic CF hydrogenolysis ± the reductive elimination 473 

(pathway 1±1a, Scheme 1) by Fe(0) (1.008±0.001) (Torrentó et al., 2017) (Table A7). 474 

For the CTw/oB treatment, the AKIECl (1.023±0.003) was much above both the theoretical 475 

maximum expected KIECl on a C-Cl bond cleavage (1.013) (Elsner et al., 2005) and the revised 476 

value (1.019) (Paneth, 1992). This could be associated with significant secondary isotopic effects 477 

(Świderek and Paneth, 2012), with the experimental values exceeding these established 478 

theoretical values, as it was also considered for PCE (Badin et al., 2014), or by the cleavage of 479 

two C-Cl bonds (KIE=1.0132=1.026) simultaneously or not to only one C-Cl bond cleavage 480 

(Elsner et al., 2004). In contrast, the AKIECl of CT biodegradation with B12 (1.015±0.002) was 481 

similar to the expected KIECl values for a C-Cl bond cleavage, probably with a small chlorine 482 

secondary isotopic effect or/and only the rare occurrence of two C-Cl bond cleavages, confirming 483 

the small differences observed between the CT treatments by AKIEC. Thus, mechanistic 484 

differences were revealed by the AKIECl among the CT natural attenuation and B12 catalysed 485 

reactions. These differences could be related to the fact that the derived AKIECl of CT is a 486 

weighted average of the kinetic effects of different proportions of competing parallel mechanisms 487 

in each case (i.e. one vs two C-Cl bond cleavages, leading to ·CCl3 vs :CCl2 respectively, Scheme 488 

1), an aspect that is typical from mixed cultures which contain several species capable of pollutant 489 

degradation (Nijenhuis and Richnow, 2016). These detected AKIECl differences between CT 490 

natural attenuation and that mediated by B12 might also be partially uncovering dissimilarities in 491 

rate-determining steps preceding C-Cl bond cleavage related to rate limitations in biological 492 

reactions (Nijenhuis and Richnow, 2016). In fact, an extracellular catalyst of CT transformation 493 

affected by chemical reductants and the presence of transition metals was identified in P. stutzeri 494 
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(Lee et al., 1999; Lewis et al., 2001). Since greater activity of P. stutzeri was observed in the 495 

presence of B12, these extracellular processes might have induced rate-limiting effects, reducing 496 

the AKIEs.  497 

3.4. Biodegradation pathways discussion 498 

The non-existence or low accumulation of chlorinated by-products such as CF and DCM in all 499 

B12 live treatments, where degradation was confirmed, could highlight two non-excluding 500 

hypothesized pathways: 1) the formation of these products and their subsequently rapid 501 

consumption following a hydrogenolysis pathway combined or not with the reductive elimination 502 

(pathway 1 and 1a, Scheme 1); and/or 2) the reduction of CT or CF ultimately to CO2 with minor 503 

or the inexistent accumulation of CMs (pathway 2, 4). CT thiolytic reduction (pathway 3, Scheme 504 

1) was not confirmed due to the absence of CS2 accumulation in the main microcosms, although 505 

this could also be further degraded (Cox et al., 2013). For further pathway conclusions, Δδ13C and 506 

Δδ37Cl of the same treatment and incubation time but measured in different replicates (since 507 

similar CT and CF evolution was detected in replicate bottles, Fig. A1) were plotted to obtain the 508 

CT and CF Λ values (Fig. 4). For both C and Cl, linear trends (R2≥0.95) were observed. An 509 

integrating overview of the different live treatments is shown in Table 3. 510 

 511 

Fig. 4. Dual C-Cl isotope plot for CF (A) and CT (B) biodegradation data observed in the microcosms. Solid grey in A 512 

and black lines in B correspond to linear regressions of the data sets obtained in this study with 95% CI (dashed lines). 513 

Error bars show uncertainty in duplicate isotope measurements. Note that the error bars of the ∆δ13C values are smaller 514 

than the symbols. The CF oxidation by thermally-activated persulphate, CF alkaline hydrolysis, and CF reductive 515 
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dechlorination by Fe(0) slopes in A (black lines) correspond to the CF abiotic degradation reference systems (Torrentó 516 

et al., 2017). 517 

The Λ for the 0.01B/CF treatment (7±1) was statistically similar (ANCOVA, p=0.4) to the abiotic 518 

CF reduction by Fe(0) (8±2) (Torrentó et al., 2017) (Fig.4), which supports CF hydrogenolysis ± 519 

the reductive elimination (pathway 1 and 1a, Scheme 1) as the dominant pathways. CF 520 

hydrogenolysis is substantiated by only punctual DCM accumulation after 200 days, and the 521 

detection of species capable of DCM dechlorination (e.g Ancylobacter dichloromethanicus). In 522 

addition, B12 might have stimulated CF reductive elimination to CO and CO2 as reported 523 

previously (Cappelletti et al., 2012). Moreover, Λ was significantly different (ANCOVA, 524 

p<0.0001) from the CF abiotic hydrolysis or oxidation (13.0±0.8, 17±2) (Torrentó et al., 2017), 525 

discarding CF hydrolytic reduction (pathway 2, Scheme 1), assuming the Λ of the reported CF 526 

abiotic hydrolysis as a reference system with a C-Cl bond cleavage as a rate-limiting step 527 

(Torrentó et al., 2017) and corroborating the absence of oxidation processes. 528 

There was no significant statistical difference between Λ from the 0.01B/CT and 0.1B/CT 529 

treatments (Fig. A9) (n=6) (ANCOVA, p=0.23), thus data points from both treatments were 530 

plotted together (Fig. 4). The slopes of CT biodegradation with and without B12 were similar in 531 

terms of the 95% CI: 5±1 (n=6) and 6.1±0.5 (n=9), respectively, although ANCOVA analysis 532 

showed a significant statistical difference (p=0.02), as evidenced by Λ flattening with the addition 533 

of B12 (Fig. 4). This difference was also suggested by CF accumulation only in the CTw/oB 534 

treatment, non-closed isotopic balances, and mechanistic insights results. Metabolically active P. 535 

stutzeri is capable of readily degrading CT to CO2 without CF accumulation (pathway 4, Scheme 536 

1) together with the presence of metabolically active species capable of DCM dechlorination 537 

(Ancylobacter dichloromethanicus). This supports the coexistence of different reduction 538 

pathways when B12 is present. In order to better understand and quantify the contribution of 539 

different CT reaction mechanisms with and without B12, further research is extremely needed to 540 

obtain Λ representative of CT transformation models.  541 

  542 
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Conclusions 543 

The anaerobic CT natural attenuation potential was confirmed in Òdena site-derived anoxic 544 

microcosms, as well as the B12 catalysing effects on both CT and CF biodegradation. An RNA-545 

based NGS approach showed the metabolically active members (Acidovorax, Pseudomonas, and 546 

Ancylobacter) that could be related to the biodegradation of target compounds, that otherwise 547 

would be difficult to estimate by means of DNA-based strategies. The dual C-Cl element isotope 548 

slope coincidence of CF biodegradation with B12 and CF abiotic chemical models confirmed the 549 

CF hydrogenolysis (± the reductive elimination) pathway, which spurred the use of 550 

complementary tools for CF abiotic/biotic hydrogenolysis distinction in future study sites. In 551 

addition, the detected differences in CT product distribution, AKIECl, and Λ in B12-amended and 552 

unamended treatments were also consistent with the major relative activity of P. stutzeri when 553 

B12 was added, whose natural occurrence is a key finding for effective Òdena remediation. The 554 

discretized tracking of by-products was not always conclusive, because some by-products were 555 

missed due to further degradation (such as CF or DCM). However, the combination of the isotopic 556 

approach and the study of the active indigenous community became of relevant usefulness for 557 

evidencing degradation processes. The outcomes of this study create a basis for application of this 558 

combined approach in further CMs degradation studies. The 2D-CSIA is a tool to rapidly uncover 559 

changes in the field related to the application of CMs remediation strategies, and for pathway 560 

identification, although a further thorough assessment of reference Λ which is representative of 561 

different CMs reaction mechanisms is necessary. This study is a striking example of the benefits 562 

of B12 in the remediation of complex multi-contaminant polluted sites, which requires a sequential 563 

treatment strategy to minimize CF inhibition issues by inducing its transformation. Further 564 

feasibility upscaling studies are needed to estimate the required amount of B12, to find cheaper 565 

B12 sources, and to elucidate the possible inhibition effects of B12-related intermediates (phosgene, 566 

thiophosgene) on the degradation of CMs. Furthermore, since the co-deposition of nitrate and 567 

VOCs is widespread in soils and groundwater worldwide (Squillace et al., 2002), the presence of 568 

metabolically active denitrifying genera (Pseudomonas, Rhizobium, or Acidovorax) which are 569 
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linked to CT and CF biodegradation in the present experiments, raises interest in the study of the 570 

co-metabolism of both pollutants as a potential bioremediation strategy. 571 
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