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IMPORTANCE Before using brain volume loss (BVL) as a marker of therapeutic response in
multiple sclerosis (MS), certain biological and methodological issues must be clarified.

OBJECTIVES To assess the dynamics of BVL as MS progresses and to evaluate the
repeatability and exchangeability of BVL estimates with Jacobian Integration (JI) and
Functional Magnetic Resonance Imaging of the Brain (FMRIB) Software Library (FSL)
(specifically, the Structural Image Evaluation, Using Normalisation, of Atrophy–Cross-
Sectional [SIENA-X] tool or FMRIB’s Integrated Registration and Segmentation Tool [FIRST]).

DESIGN, SETTING, AND PARTICIPANTS A cohort of patients who had either clinically isolated
syndrome or MS was enrolled from February 2011 through October 2015. All underwent a
series of annual magnetic resonance imaging (MRI) scans. Images from 2 cohorts of healthy
volunteers were used to evaluate short-term repeatability of the MRI measurements (n = 34)
and annual BVL (n = 20). Data analysis occurred from January to May 2017.

MAIN OUTCOMES AND MEASURES The goodness of fit of different models to the dynamics of
BVL throughout the MS disease course was assessed. The short-term test-retest error was
used as a measure of JI and FSL repeatability. The correlations (R2) of the changes quantified
in the brain using JI and FSL, together with the accuracy of the annual BVL cutoffs to
discriminate patients with MS from healthy volunteers, were used to measure compatibility
of imaging methods.

RESULTS A total of 140 patients with clinically isolated syndrome or MS were enrolled,
including 95 women (67.9%); the group had a median (interquartile range) age of 40.7
(33.6-48.1) years. Patients underwent 4 MRI scans with a median (interquartile range)
interscan period of 364 (351-379) days. The 34 healthy volunteers (of whom 18 [53%] were
women; median [IQR] age, 33.5 [26.2-42.5] years) and 20 healthy volunteers (of whom 10
[50%] were women; median [IQR] age, 33.0 [28.7-39.2] years) underwent 2 MRI scans within
a median (IQR) of 24.5 (0.0-74.5) days and 384.5 (366.3-407.8) days for the short-term and
long-term MRI follow-up, respectively. The BVL rates were higher in the first 5 years after MS
onset (R2 = 0.65 for whole-brain volume change and R2 = 0.52 for gray matter volume
change) with a direct association with steroids (β = 0.280; P = .02) and an inverse association
with age at MS onset, particularly in the first 5 years (β = 0.015; P = .047). The reproducibility
of FSL (SIENA) and JI was similar for whole-brain volume loss, while JI gave more precise, less
biased estimates for specific brain regions than FSL (SIENA-X and FIRST). The correlation
between whole-brain volume loss using JI and FSL was high (R2 = 0.92), but the same
correlations were poor for specific brain regions. The area under curve of the whole-brain
volume change to discriminate between patients with MS and healthy volunteers was similar,
although the thresholds and accuracy index were distinct for JI and FSL.

CONCLUSIONS AND RELEVANCE The proposed BVL threshold of less than 0.4% per year as a
marker of therapeutic efficiency should be reconsidered because of the different dynamics of
BVL as MS progresses and because of the limited reproducibility and variability of estimates
using different imaging methods.
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M ultiple sclerosis (MS) is an immune-mediated inflam-
matory and neurodegenerative disease of the cen-
tral nervous system (CNS). To reduce the risk of long-

term disability in MS, early optimization of treatment with
disease-modifying therapies (DMTs) is essential.1 Conse-
quently, it has been proposed that a possible aim when treat-
ing MS is to achieve no evident disease activity (NEDA-3),2

which is currently defined by 3 criteria: the absence of re-
lapses, a worsening in disability, and new or enlarging
T2/T2-fluid-attenuated inversion recovery (T2-FLAIR) or gado-
linium-enhanced lesions. NEDA is a useful composite for cap-
turing the inflammatory burden in MS,3,4 although neuroaxo-
nal injury and its prominent contribution to permanent
disability in MS is likely to be underestimated in the NEDA-3
composite. Therefore, extensive research is ongoing to estab-
lish a validated marker of neuroaxonal injury in MS. Together
with retinal thickness,5 brain volume measurements6 have
raised much interest because of their reliable association with
disability and the relative simplicity of image-processing al-
gorithms. Recent randomized clinical trials have shown how
new DMTs can reduce the rate of brain volume loss (BVL) in
cohorts of patients.7 Consequently, it has been suggested that
NEDA-3 should be expanded to NEDA-4 by adding a BVL rate
of less than 0.4% per year as a therapeutic target.8

Although an appealing proposal, certain issues must be
clarified before BVL can be validated as a marker of therapeu-
tic response. First, it is not clear if BVL is similar throughout
the disease course9,10 or if it progresses faster at any particu-
lar stage of MS.11 Using a single cutoff would only be reason-
able if the rate of BVL remained constant throughout the course
of MS; otherwise, it might be necessary to establish different
goals according to the stage of MS. Second, it is important to
assess whether magnetic resonance imaging (MRI) methods
are sufficiently reproducible to accurately track BVL at the in-
dividual-patient level, considering the expected magnitudes
of BVL in MS.12 Finally, we should appraise whether the changes
in brain volume estimated with different methods are
comparable.

As such, our primary aim was to evaluate the dynamic
changes in the whole-brain and regional brain volume through-
out the course of MS using Jacobian Integration (JI)13 and
Functional Magnetic Resonance Imaging of the Brain (FMRIB)
Software Library (FSL).14-16 As secondary aims, we assessed the
repeatability and the compatibility of the JI and FSL methods
to estimate the changes in brain volume.

Methods
Study Population
In this study, the first 147 consecutive patients with MS (with
conditions defined according to the McDonald criteria17,18) who
were enrolled into the prospective MS-VisualPath cohort19 at
the Hospital Clinic–University of Barcelona were evaluated for
eligibility. We excluded 5 patients who had not completed any
MRI follow-up visits, 1 patient who had MRI scans of insuffi-
cient quality, and 1 patient with a disease duration longer than
30 years. As a result, 140 patients with MS were included in

this study. Each patient underwent annual MRI scans (me-
dian number per patient, 4; interquartile range [IQR], 3-4) with
a median interscan period of 364 days (IQR, 351-379 days). In
addition, we included 2 different cohorts of healthy volun-
teers: a cohort of 34 healthy volunteers who underwent 2 MRI
scans within a median interscan period of 24.5 days, and a sec-
ond cohort of 20 healthy volunteers who underwent
2 MRIs within a median interscan period of 384.5 days.

The institutional review board of the Hospital Clinic of
Barcelona approved the study, and all participants provided
their written informed consent. Moreover, the article follows
the Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) guidelines. Further details can be
found in eMethods in the Supplement.

Images Acquisition and Processing
All MRI studies were performed with a 3-T Magnetom Trio scan-
ner (Siemens), using a 32-channel phased-array head coil.19 In
this study, 3-dimensional (3-D) structural T1-weighted isomet-
ric voxel magnetization-prepared rapid gradient echo
(T1-MPRAGE) images with a voxel size of 0.9 × 0.9 × 0.9 mm3

were used to estimate all the volumes, and 3-D T2-FLAIR with
the same voxel size was used to make the lesion masks.

First, T2-FLAIR images were registered to T1-MPRAGE
scans using a rigid transformation, with 6 df (FSL). Second, a
trained neurologist manually created T1 lesion masks using
ITK-SNAP, version 2.4 (Penn Image Computing and Science
Laboratory, University of Pennsylvania, and the Scientific Com-
puting and Imaging Institute, University of Utah).20 Third, le-
sion in-painting was performed on T1-MPRAGE scans using le-
sion mask, a state-of-the-art method for volumetric analysis
that avoids pixel misclassification.21 Finally, we used the JI13

and FSL methods14-16 to quantify the change in volume in the
whole brain, gray and white matter, thalamus, caudate nucleus,
putamen, and hippocampus. Healthy volunteers were evalu-
ated using the same protocol, scanner, and image processing
pipeline, excluding the lesion in-painting.

Structural Image Evaluation, Using Normalisation, of
Atrophy (SIENA) is a registration-based technology used to
quantify changes in whole-brain volume between 2 time points.
By contrast, SIENA-X and FMRIB's Integrated Registration and

Key Points
Question Could brain volume loss of less than 0.4% per year
serve as a marker of therapeutic response in multiple sclerosis?

Findings In this study, the rate of brain volume loss is faster in the
first 5 years after multiple sclerosis onset, which affects the
usability of a 0.4% threshold. Considering an expected loss of
0.5% to 1.35% per year, the poor repeatability of 2 separate
imaging methods prevents their use at the individual level; also,
volumetric estimates and the accuracy of thresholds to
discriminate patients with multiple sclerosis from healthy
volunteers differ in the 2 approaches.

Meaning Further clarification is needed before promoting brain
volume loss as a marker of therapeutic response in multiple
sclerosis.
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Segmentation Tool (FIRST) are segmentation-based tech-
niques that are useful for cross-sectional studies but less re-
liable for longitudinal studies. The SIENA-X and FIRST tools
segment the voxels in the region of interest (ROI) (eg, gray mat-
ter) in a single 3-D T-1 scan, measuring the volume as the num-
ber of segmented voxels in the ROI multiplied by the voxel vol-
ume of the 3-D T-1 scan. The difference between 2 points can
then be calculated by subtracting the volumes.

The JI method computes a nonrigid registration between
the two 3-D T-1 scans, producing a Jacobian matrix for each
voxel, the determinant of which reflects the expansion and con-
traction of that voxel. The integration of all determinants in
the segmented region (eg, gray matter) gives an estimate of the
change in volume.22 We used a custom JI pipeline defined
previously13 that is essentially no different than commercial
JI solutions (such as MSmetrix).23

Statistical Analyses
We used the median and IQRs to describe the quantitative vari-
ables, absolute frequencies, and the proportions of the quali-
tative variables. We used mixed-effects regression to model the
rate of change in brain volume, accounting for intrapartici-
pant correlation.24 We compared third-order and second-
order B-spline and linear models based on Akaike Informa-
tion Criterion.25 With disease duration (time from MS onset)
as a main fixed-effect predictor, these models were used to
fit the rates of brain volume changes between visits using
the JI and FSL methods. We used the pseudoR2 defined by
Nakagawa and Schielzoth26 to estimate the goodness of fit of
the models. To evaluate the potential influence of sex, age, DMT
use, and use of steroids, we included these variables as fixed
effect predictors in mixed-effects models. We included age at
MS onset instead of age at study inclusion to avoid collinear-
ity with disease duration. For variables with a significant as-
sociation, we evaluated whether the effect on the rate of brain
volume change might differ during disease progression
(effect modification) using an interaction term between MS
duration and covariate.

Short-term test-retest measurement errors were esti-
mated using the formula of 100 * (V2 − V1) / mean(V1,V2),
where V1 and V2 were absolute values measured at the 2 time
points for the segmentation technologies (SIENA-X and FIRST),
while the absolute percentage change in volume between 2
points was used for registration-based technologies (SIENA and
JI). We presented the 50th and 75th percentiles with their 95th
CIs estimated using a bias-corrected accelerated bootstrap to
summarize the test-retest measurement errors. We also cal-
culated the same difference after coregistering both MPRAGE
(which is not a standard step for SIENA-X).

To assess if the JI and FSL estimated brain volumes are
comparable, R2 was evaluated as a measure of the goodness
of fit of the simple linear regression models for pairwise
brain regions quantified with JI and FSL. Additionally, we
evaluated the performance of the annual rate of whole and
regional brain volume changes to classify 20 healthy volun-
teers and 100 age and sex-matched patients with MS. We
used a Hosmer-Lemeshow goodness-of-fit test for calibra-
tion and receiver operating characteristics curve analyses

for discrimination. We also obtained the area under the
curve, sensitivity, and specificity of the best cutoffs accord-
ing to the Youden J statistic.27

We performed 2 sensitivity analyses: complete case
analyses to assess the influence of missing data and analy-
ses excluding participants with more than a 10-fold inter-
scan change (which would evaluate the influence of
extreme values on results). Two-tailed P values <.05 were
considered statistically significant, and all statistical analy-
ses were performed using R language (R version 3.3.3;
R Foundation for Statistical Computing). Data analysis was
completed from January 2017 to May 2017.

Results

Study Population Features
The study population included 140 patients with MS (95
women [67.8%]; median [interquartile range] age, 40.7
[33.6-48.1] years) with a median (IQR) of 7.0 (3.3-12.6) years
of disease duration at inclusion (Table 1). Most patients had
relapsing-remitting MS, were mildly disabled (median [IQR]
score on the Expanded Disability Status Scale, 1.5 [1-2]
points), and were receiving DMTs at inclusion.

Patients were allowed to change therapy during the
follow-up period, and 7 patients (5.0%) started a DMT (low
to intermediate potency); 11 patients (7.9%) changed to
another DMT within the same treatment group (low to inter-
mediate potency or high potency); 8 patients (5.7%)
changed from natalizumab to fingolimod because of a posi-
tive John Cunningham virus response; and 1 patient (0.7%)
changed from low-to-intermediate–potency to high-potency
treatment because of a lack of efficacy of the first regimen.
Additionally, 22 of 138 patients (15.9%) received steroids
during the first interscan period, 13 of 118 patients (11.0%)
received them during the second, and 9 of 107 (8.4%)
received them during the third interscan period.

Rate of Brain Volume Loss by MS Stages
Third-order B-spline mixed-effects models best fit the dis-
tribution of the annual changes in whole-brain and gray
matter volume quantified with JI according to the Akaike
Information Criterion25 (eTable 1 in the Supplement). The
annual whole-brain and gray matter volume changed faster
during the first 5 years of disease (Figure 1) than in later
years, with Nakagawa conditional R2 values of 0.65 and
0.52, respectively. The JI method gave a similar dynamic
pattern of annual changes in the thalamus, putamen, and
hippocampus, but not the caudate nucleus (eFigure 1 in the
Supplement). No significant model was found for the
annual rate of changes in white matter volume. Similar
annual rates of change in whole-brain volume were
obtained with SIENA (eFigure 2 in the Supplement), yet no
suitable model was found for the annual rate of gray matter
volume change using SIENA-X (eFigure 2 in the Supple-
ment) or for the deep gray matter volume changes using
FIRST (eFigure 3 in the Supplement).
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Demographic-Associated and MS–Associated Variables
and Brain Volume Change Dynamics
We did not find a significant association with sex (β = −0.091;
P = .21), age at inclusion (β = 0.001; P = .92), DMT (low-to-
intermediate–potency drugs: β = 0.105; P = .12; high-
potency drugs: β = 0.061; P = .63), or steroid use (β = 0.073;
P = .19) in the model assessing whole-brain volume changes.
Similarly, there was no significant coefficient for disease du-
ration in the model of white-matter volume change condition-
ing on sex, age at MS onset, DMT use, and steroid use. In the
model of changes in gray matter volume, no significant effect

of sex (β = 0.051; P = .47) or age at MS onset (β = −0.008;
P = .06) was found.

However, the near significance of the age at MS onset
prompted exploration of the interaction of age at onset with
other factors. The interaction between age at MS onset and MS
duration was marginally significant (modeled as a binary vari-
able with a cutoff in 5 years or >5 years: β = 0.015; P = .047). Con-
trolling for sex, DMT, and steroid use, participants with MS du-
ration of 5 years or less had 0.018% per year lower change in gray
matter volume for each year of later MS onset (age: β = −0.003;
interaction: β = −0.015), whereas the effect for those with an MS

Table 1. Demographic and Clinical Characteristics of the Patients and Controls at Baseline

Characteristic

No. (%)

Patients With MS
(n = 140)

Healthy Volunteer
Reproducibility Cohort
(n = 34)

Healthy Volunteer
Annualized Brain
Volume Loss Cohort
(n = 20)

Female 95 (67.8) 18 (53) 10 (50)

White race/ethnicity 140 (100) 34 (100) 20 (100)

Age at baseline, median
(IQR), y

40.7 (33.6-48.1) 33.5 (26.2-42.5) 33.0 (28.7-39.2)

Disease duration (baseline),
median (IQR), y

7.0 (3.3-12.6) NA NA

Annualized relapse rate
(2 y preinclusion), median
(IQR)

0.5 (0-0.5) NA NA

Annualized relapse rate
(during follow-up),
median (IQR)

0 (0-0.33) NA NA

Disease type

Clinically isolated
syndrome

6 (4.3) NA NA

Relapsing-remitting
multiple sclerosis

121 (86.4) NA NA

Secondary progressive
multiple sclerosis

5 (3.6) NA NA

Primary progressive
multiple sclerosis

8 (5.7) NA NA

Expanded Disability Status
Scale score, median (IQR)

1.5 (1-2) NA NA

Disease modifying therapies

None 35 (25.0) NA NA

Interferon beta 1b,
subcutaneous

25 (17.9) NA NA

Interferon beta 1a,
subcutaneous

29 (20.7) NA NA

Interferon beta 1a,
intramuscular

13 (9.3) NA NA

Glatiramer acetate 24 (17.1) NA NA

Natalizumab 10 (7) NA NA

Other medicationsa 4 (2.9) NA NA

Normal brain volumes at
baseline, median (IQR)

Brain (parenchymal), cm3 1532 (1460-1595) 1613 (1572-1692) 1609 (1563-1637)

Gray matter, cm3 801 (762-836) 833 (798-885) 846 (793-862)

White matter, cm3 733 (691-770) 782 (755-808) 762 (744-794)

Thalamus, mm3 14 490
(13 476-15 605)

16 067
(15 158-16 672)

16 462
(15 351-17 450)

Caudate, mm3 6521 (5965-7103) 7280 (6760-7799) 7111
(6787-8262)

Putamen, mm3 9044 (8276-9560) 10 061
(9463-10 879)

10 094
(8942-11 136)

Hippocampus, mm3 7197 (6681-7745) 7837
(7374-8379)

7776 (7095-8684)

Abbreviation: NA, not applicable.
a Fingolimod (n = 1), diazoxide (n = 1),

dimethyl-fumarate (n = 1), and
teriflunomide (n = 1).
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duration longer than 5 years was a decrease of 0.003% per year
(age: β = −0.003).

We did not find a significant association with DMT (low-to-
intermediate–potency drugs: β = 0.015; P = .83; high-potency
drugs: β = −0.088; P = .52) or steroid use (β = 0.110; P = .09) in
an assessment with no interaction with MS duration (β = 0.164;
P value = .23). Results from patients with MS who had a disease
duration of less than 5 years, stratified by DMT and steroid use,
are in eTable 2 in the Supplement.

For deep gray matter structures, we found a significant as-
sociation with steroids in models assessing changes in tha-
lamic volume (β = 0.280; P = .02), without interaction with dis-
ease duration (β = 0.145; P = .56). Moreover, we found a
significant association with age at MS onset (β = 0.019; P = .01)
in the dynamics of hippocampal volume change, yet no inter-
action with disease duration (β = −0.002; P = .86). We did not
find any other significant associations for the other brain
regions tested.

Figure 1. Dynamics of the Annualized Rate of Brain Volume Loss in Multiple Sclerosis During Disease Progression
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Whole-brain volume loss (A) and gray matter volume loss (B), both assessed with
the Jacobian Integration method. The third-order B-spline mixed-effect model
follows the equation y ≈ BS (disease duration) + (1/participant), where BS (x) is the
B-spline and (1/participant) is a random intercept for each participant. Colored
points joined by a line represent the individual trajectories of brain volume changes,
the thicker curves represent the individual fit of the model, and the dark red line

represents the population model. The dotted black horizontal line indicates no
change in brain volume, and the green dotted vertical line represents the 50th
percentile from the raw disease duration data, where the knot of the B-spline was
placed. The red dotted horizontal line is the reference cutoff of 0.4% per year for
the whole-brain volume change; there was no analogous cutoff for gray matter
volume change.
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Limited Reproducibility of Brain Volume Estimates
and Use in Individuals
Asregistration-basedmethods,FSLandJIproducedsimilarshort-
termtest-retesterrorsforwhole-brainvolumechanges(FSL:75th
percentile, 0.27; JI: 75th percentile, 0.36). The estimates with JI
were more precise (with a smaller IQR) and less biased (with a
median closer to 0) than those with FSL for all the brain regions
except the putamen, for which JI was more precise but FIRST was
less biased. The error in assessing the gray matter volume was
nearly 5-fold higher for SIENA-X (75th percentile, 1.78) than for
JI (75th percentile, 0.38) (Table 2 and Figure 2). Coregistration
of two 3D-T1 scans before running SIENA-X did not improve the
results (eTable 3 in the Supplement).

Comparison of Algorithms
for Brain Volume Change Assessments
An evaluation of the correlations between the changes in brain
volume quantified with JI and FSL yielded a high correlation

for the whole-brain volume changes (R2 = 0.92; P < .001). By
contrast, the correlations for different brain regions were low,
with a maximum R2 = 0.23 for the thalamus (eFigure 4 in the
Supplement).

Brain Volume Cutoffs per Estimation Method
Finally, we evaluated the performance of the annual rates of
brain volume changes estimated with FSL and JI to correctly
classify 20 healthy volunteers (with a median [IQR] age of 33.0
[28.7-39.2] years; 10 female [50%]) and 100 patients with MS
(median [IQR] age = 35.5 [32.6-41.3] years; 69 female [69%])
from the 140 patients with MS who were matched by age
(P = .22) and sex (P = .17). Although the area under curve for
whole-brain volume changes was similar for both methods, the
optimal thresholds differed (Table 3).

Finally, we found different sensitivity and specificity for
the cutoffs described previously for annual whole-brain vol-
ume changes28 using the FSL (SIENA) and JI methods when

Table 2. Short-term Test-Retest Measurement Errors of Jacobian Integration and FSL in Changes in Whole-Brain
and Regional Brain Volume in Healthy Volunteersa

Region

Percentile Value (95% CI)

FSL Jacobian Integration

50th Percentile 75th Percentile 50th Percentile 75th Percentile

Main brain structuresb

Whole brain 0.156 (0.088-0.213) 0.266 (0.196-0.449) 0.230 (0.089-0.298) 0.361 (0.270-0.518)

Gray matter 0.812 (0.605-1.280) 1.776 (1.018-2.129) 0.180 (0.072-0.281) 0.377 (0.226-0.458)

White matter 1.253 (0.684-1.604) 1.955 (1.459-2.724) 0.192 (0.126-0.331) 0.557 (0.237-0.749)

Deep gray matter structuresc

Thalamus 0.918 (0.404-1.590) 2.151 (1.431-3.231) 0.471 (0.301-0.556) 0.711 (0.503-1.039)

Putamen 1.218 (0.746-1.534) 1.777 (1.373-2.567) 0.502 (0.395-0.766) 0.935 (0.531-1.231)

Caudate 1.109 (0.549-1.490) 1.763 (1.166-2.075) 0.289 (0.211-0.488) 0.586 (0.323-0.755)

Hippocampus 1.823 (1.169-2.548) 3.352 (2.24-4.47) 0.441 (0.358-0.643) 0.768 (0.515-0.993)

Abbreviations: FIRST, FMRIB’s Integrated Registration and Segmentation Tool;
FSL, Functional Magnetic Resonance Imaging of the Brain (FMRIB) Software
Library; SIENA, Structural Image Evaluation, Using Normalisation, of Atrophy;
SIENA-X, Structural Image Evaluation, Using Normalisation, of
Atrophy–Cross-Sectional.
a The magnitude of the deviation from 0 (true change) represents the error in

the measurements. The data represents the 50th and 75th percentiles of the

absolute difference between the first and second scans and 95% CIs using the
bias-corrected and accelerated bootstrap. A cohort of 34 healthy volunteers
were assessed.

b For main brain structures, FSL includes SIENA and SIENA-X approaches.
c For deep gray matter structures, FSL is by the FIRST approach.

Figure 2. Box Plots of the Repeatability of the Jacobian Integration and FSL Methods for Brain Volume Change
In Healthy Volunteers
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quantifying brain volume changes in the same study popula-
tion. A Hosmer-Lemeshow goodness-of-fit test produced non-
significant P values (favoring acceptable calibration) for all
models except the gray matter volume change using the JI
method (area under curve, 0.550; P = .04; Table 3).

Sensitivity Analyses
We included 107 participants (76.4%) with 4 MRI scans, 21 par-
ticipants (15%) with 3 MRI scans, and 12 participants (8.6%)
with 2 MRI scans. We found similar results from the complete
case analyses (eFigure 5 in the Supplement) and the results
were similar in the models after excluding participants with
extreme changes (eFigure 6 in the Supplement).

Discussion
There were 3 main findings from this study: (1) the rates of BVL
were highest during the first 5 years of the disease, with a sig-
nificant association with age at MS onset and of steroids on the
gray matter volume change; (2) repeatability was similar for FSL
(SIENA) and JI when estimating whole-brain volume changes,
but JI provided more precise and less biased estimates for gray
matter and deep gray matter structures than FSL (by SIENA-X
and FIRST, respectively); and (3) estimates from different im-
age processing methods may not be directly comparable, as evi-
dent through the low R2 for brain regions quantified by JI and
FSL, together with the distinct performance of JI and FSL to as-
sess the annualized brain volume change to discriminate pa-
tients with MS from healthy volunteer participants.

These findings may have implications for the therapeutic
decision-making process, because when the dynamics of BVL are
considered, a fixed cutoff (eg, < 0.4%28) may underestimate the
therapeutic response in the first 5 years and overestimate the
therapeutic response thereafter. Thus, different targets may be
necessary at different stages of MS. Moreover, our results sug-
gest that the younger the patient is at MS onset, the faster the rate
of gray matter volume loss, consistent with previous reports.29

Indeed, this effect was particularly prominent during the first 5
years of MS. We did not find a significant association with ste-
roids on the rate of brain volume change during follow-up, al-
though a significant effect on volume loss was evident in the
thalamus (but not in other gray matter regions), and there was
only a marginally significant effect on cortical gray matter vol-
ume loss. Both treatments have been associated with accelerated
BVL, a phenomenon called pseudoatrophy that can be explained
by resolution of the ongoing edema and inflammation at the time
treatment is initiated. In this situation, the time elapsed between
treatment initiation and the MRI scan is crucial.

In addition, the use of a DMT significantly decrease brain
volume in the first 6 months of therapy.30 However, steroids
may produce a transient and reversible change in the esti-
mated brain volume for approximately 1 month,31 and particu-
larly when high-dose tapering of oral prednisolone was used
for a couple of weeks after high-dose intravenous steroids.32

In this study, few patients started or shifted DMT use during
the follow-up period, and more importantly, patients were re-
cruited after 2 months of the use of steroids or the presence
of relapses, and yearly routine examinations were performed
under stable conditions. Therefore, although we cannot com-

Table 3. Discrimination and Calibration Estimates for Annualized Rates of the Change in Whole-Brain and Regional Volume
to Predict Multiple Sclerosis or Healthy Status

Cutoff

FSL Jacobian Integration

AUC Threshold Specificity, % Sensitivity, % P Valuea AUC Threshold Specificity, % Sensitivity, % P Value

By regionb

Whole brain 0.632 0.335 75 53 .55 0.604 0.568 90 40 .10

Gray matter 0.518 0.314 85 30 .76 0.550 0.908 95 24 .04

Thalamus 0.558 −3.715 20 99 .57 0.609 0.831 70 53 .79

Putamen 0.615 2.077 95 29 .16 0.655 0.82 80 53 .55

Caudate 0.540 1.716 85 32 .41 0.670 0.508 85 55 .31

Hippocampus 0.535 −1.076 85 36 .30 0.670 −0.818 40 91 >.99

By value

−0.52 NA NA 95/85c 49/38c NA NA NA 80e 41e NA

−0.46 NA NA 90/75c 56/43c NA NA NA 80e 46e NA

−0.40 NA NA 80/75c 65/48c NA NA NA 75e 50e NA

−0.37d NA NA 80/75c 67/51c NA NA NA 70e 53e NA

Abbreviations: AUC, area under curve; BVL, brain volume loss; FIRST, FMRIB’s
Integrated Registration and Segmentation Tool; FSL, Functional Magnetic
Resonance Imaging of the Brain (FMRIB) Software Library; NA, not applicable;
SIENA, Structural Image Evaluation, Using Normalisation, of Atrophy; SIENA-X,
Structural Image Evaluation, Using Normalisation, of Atrophy–Cross-Sectional.
a Hosmer–Lemeshow goodness-of-fit test used 10 quantiles (standard) and 8 df.

When P < .05, the null hypothesis of good calibration was rejected.
b Values presented by region were generated via SIENA, SIENA-X, and FIRST

methods.

c Numbers in these cells are from De Stefano et al28 (first number) and 20
healthy volunteers and 100 age-matched, sex-matched patients with MS in
this analysis (second number); all values were generated via the SIENA
approach.

d Best cutoff from De Stefano et al.28

e Numbers in these cells are from 20 healthy volunteers and 100 age-matched,
sex-matched patients with MS in this analysis; all values were generated via
the SIENA approach.
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pletely rule out a pseudoatrophy effect, it is likely to have had
a limited effect in our study.

Since we consider inflammation to be the main driver for
neuroaxonal injury in MS, we expect to find the highest rates
of BVL in patients with the strongest MS activity. In fact, pa-
tients with either new T2 or gadolinium-enhanced lesions, par-
ticularly those with disease duration less than 5 years, had
higher rates of retinal thinning than stable patients with MS.33

Considering that steroids and DMT are usually prescribed to
patients with active MS, the increased rate of BVL in patients
using these drugs may reflect the association in our study be-
tween inflammation and neuroaxonal injury in MS.

We did not find any model for the rate of change in white
matter volume. In MS, neuroaxonal loss may be associated with
inflammatory lesions, astrogliosis, and myelin loss,34 particu-
larly in the white matter. Myelin loss contributes to BVL, while
new inflammatory lesions and astrogliosis may compensate
for it. The different relative contribution of these pathologi-
cal substrates to changes in brain volume across participants
may explain the failure to generate a suitable model for the
changes in white matter volume.

Given the expected BVL of 0.5% to 1.35% per year12 in MS,
the accuracy of JI and FSL to estimate brain volume would ar-
gue against their use at the individual level. To compare BVL
at the population level, the repeatability of whole-brain vol-
ume changes assessed with JI did not surpass that with FSL
(SIENA). Although the gray matter displays stronger associa-
tion with disability11 and a weaker effect of pseudoatrophy35

than the whole-brain volume, longitudinal studies often fo-
cus on the volume change in the whole brain rather than the
gray matter because the reproducibility of SIENA-X is 4-fold
worse than that of SIENA.36 In this study, the JI method esti-
mated gray matter volume changes more precisely and with
less bias than FSL did, and the estimates for the cortical gray
matter were similar to those for the estimates of whole-brain
changes. Consequently, we recommend using registration-
based technologies like JI to estimate gray matter volume
changes in longitudinal studies, benefiting from the gray mat-
ter measurements without the large penalty error associated
with registration-based technologies.

Finally, estimating BVL using segmentation and registration-
based methods is not equivalent. Indeed, the best threshold of
the annual rate of BVL to discriminate healthy volunteers from
patients with MS differed in the same study population with the
2 registration-based methods (FSL and JI), suggesting that the
variability in the technologies should be considered before es-
tablishing the rate of BVL to use as a therapeutic goal in MS.

Our study has several strengths. First, we evaluated the dy-
namic rate of changes in brain volume without any a priori as-

sumption, testing linear and nonlinear models. Second, the es-
timates of BVL were made blind to any MS-associated
characteristics. Third, we compared the repeatability and per-
formance of 2 volumetric imaging methods in the same study
population and with the same MRI protocol and scanner. Fourth,
our sensitivity analyses suggest our results are robust to miss-
ing and extreme data. Finally, we provided estimates of mea-
surement error, useful when estimating sample size for ran-
domized clinical trials.

Limitations
Our study also has some limitations, not least of all that our
sample size was insufficient to analyze relapsing vs progres-
sive MS separately and model changes after more than 25 to
30 years of disease duration. Moreover, we did not find a model
for the white matter volume change, which may indicate that
the sample size is too small for such a complex model. In this
context, the acquisition of additional time points or of 2 T1s
(with repositioning) at each scan session may have been use-
ful. We also did not assess repeatability in patients with MS,
although similar test-retest error measurements have al-
ready been reported for whole-brain volume changes in pa-
tients with MS assessed with JI (MS metrics) and FSL (SIENA).23

In addition, we did not evaluate other methods such as
Freesurfer,37 Statistical Parametric Mapping,38 or the new
unreleased version of SIENA-XL (a longitudinal version of
SIENA-X),39 sequences other than MPRAGE, or different
scanners and strengths. Similar errors were found with JI
(MSmetrics) and FSL (SIENA) using 1.5-T and 3-T scanners,23

yet the impact of using scanners with different field strength
on the error in BVL estimation was an order of magnitude lower
for JI than for FSL (SIENA). Finally, we used a short-term re-
scan approach to assess the repeatability of the brain volume
estimations, while a long-term rescan method would have been
preferable to account for changes in brain shape or other long-
term changes that were not addressed by our approach.

Conclusions
As a marker of therapeutic response, BVL is an appealing pro-
posal. However, the threshold of 0.4% per year proposed as a
therapeutic goal should be reconsidered based on the nonlin-
ear dynamics of BVL, its limited reproducibility, and the vari-
ability with different methods. Future multicenter collabora-
tions should address these issues with larger samples of
patients with MS, including all phenotypes and disease stages,
and should image them with different MRI scans or proto-
cols, as well as using different MRI software and algorithms.
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