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1. Introduction

The fractional calculus has a wide range of applications in several areas of science

and technology such as chemistry, engineering, mechanics, physics (see, for exam-

ple, [8], [24], [27], [43] and references therein). In particular, we can mention chaotic

dynamics and synchronization ([20], [22], [48], [49]), robotics [23], viscoelasticity

[2], system identification [8], control ([8], [43]), analysis of electrode processes [25],

Lorenz systems [20], systems with retards [10], quantic evolution of complex systems

[28], stability ([37], [40], [47]), electromagnetic waves [23], quantitative finances [30],

and many others. Lakshmikantham and Vatsala [29], and Podlubny [43], have nice
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surveys of basic properties of deterministic fractional differential equations. Jun-

sheng et al. in [26] gave the solution for a linear case in terms of Mittag-Leffler

function by the Adomian decomposition method. Matignon [37] and Radwan et al.

[44] studied the stability for fractional linear equations. The non-linear case was

treated, for example, by Li et al. [34], Mart́ınez-Mart́ınez [38] and Wen et al. [47],

among others.

The book of Samko et al. [45], whose topics are fractional derivatives and inte-

grals, is one of the fundamental tools for studying applications of fractional Brow-

nian motion (fBm) via stochastic differential equations (see, for instance, Mishura

[39], Nualart [41] or Zähle [51]). A fBm BH = {BHt ; t ≥ 0} with Hurst parame-

ter H ∈ (0, 1), defined on a complete probability space (Ω,F , P ), is a zero-mean

Gaussian process with covariance

E
(
BHt B

H
s

)
=

1

2

(
t2H + s2H − |t− s|2H

)
, t, s ≥ 0.

In recent years, several authors have considered fBm because of its numerous prop-

erties such as stationary increments, self-similarity, Hölder’s continuity, long-range

dependence, etc (see, for example, Nualart [41]). It is well-known that B1/2 is a

Brownian motion and BH is not a semimartingale for H 6= 1/2. Therefore, we

cannot establish a calculus for fBm based on an integral introduced by using the

classical Itô calculus, in general. So, it is necessary to apply another approaches

to deal with integration with respect to BH . In the literature, there are different

definitions of integral with respect to fBm such as Stratonovich integral [1], Skoro-

hod type integrals [41], Young integral [50], extensions of Young integral (see, for

example, [7], [15], [21] and [51]), integration with respect to rough signals [36], etc.

Consequently, several methods have been used by many researches to analyze the

properties of stochastic differential equations driven by BH . Among these authors

we can mention Alòs et al. [1], Fiel et al. ([18], [17]), León et al. ([31], [32], [33]),

Lin [35], Lyons [36], Nualart and Raşcanu [42] among others.

For H > 1/2, it is possible to consider Young integration to deal with fBm

because BH has γ-Hölder continuous paths for any γ ∈ (0, H), with probability

1. Even we can study stochastic differential equations driven by fBm with either

discontinuous coefficients (see Garzón et al. [19]), or coefficients with power type

non-linearities (see León et al. [31]), by means of the extension of Young integral

given by Zähle [51].

The purpose of this paper is to state the existence and uniqueness for the solution

to semilinear fractional stochastic differential equations driven by BH , which are

Volterra type equations. These last equations with suitable kernels have been taking

into account by Besalú et al. ([3], [4]), Coutin and Decreusefond [6], Decreusefond

[9], Deya and Tindel ([11], [12]), Fan [16], and Wang and Yan [46]. In particular,

Deya and Tindel [11] deal with the equation

yt = a+

∫ t

0

(t− s)−αΨ(ys)dxs, t ∈ [0, T ], (1.1)
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where a is a constant in Rn, the function Ψ is smooth enough, x is a Hölder con-

tinuous noise with values in Rm and the integral is a limit of Young type integrals.

The existence and uniqueness for the solution is obtained by the fix-point theorem.

Hence, it is necessary to state estimates for the involved integral. The main tool in

this case is a variant of the rough path theory called algebraic integration. Conse-

quently, the solution of (1.1) is Hölder continuous. The techniques established in

[11] and [12] allowed the authors to work with non-linear rough heat equations [13].

The main goal of this article is to study the existence of a unique solution to

the semilinear fractional stochastic differential equation of the form

Xt = ξt +

∫ t

0

(t− s)β−1 g(s,Xs)ds+

∫ t

0

(t− s)α−1f(s)XsdB
H
s , t ∈ [0, T ]. (1.2)

Here, α, β ∈
(

2
3 , 1
)
, f is a Hölder continuous process (see Section 4), g : Ω× [0, T ]×

R → R is a measurable function that is Lipschitz continuous with linear growth

on R, uniformly on Ω × [0, T ], and H > 2/3. The stochastic integral with respect

to BH in (1.2) is the extension of the Young integral introduced by Zälhe [51].

In Propositions 2.1 and 2.2 we show that we can assume f ≡ 1 without loss of

generality. Thus, due to equation (1.2) being interpreted pathwise and BH having

γ-Hölder continuous paths for any γ < H, we only need to analyze the equation

Xt = ξt +

∫ t

0

(t− s)β−1 g(s,Xs)ds+

∫ t

0

(t− s)α−1Xsdθs, t ∈ [0, T ]. (1.3)

Now g is a function on [0, T ]× R and θ is a γ-Hölder continuous function on [0, T ]

with γ > 2/3. Unlike equation (1.1), the initial condition ξ in (1.3) is not a constant

but a function and β could be different than α. Observe that the first component

of x in (1.1) may be the identity function. That is, x
(1)
t = t, t ∈ [0, T ]. Also,

unlike equation (1.1), the solution of (1.3) may not be a Hölder continuous function

and it may be ±∞ at zero. Indeed, we consider equation (1.3) for two different

families of initial condition. Namely, either ξ is Hölder continuous, or ξ could be

not defined at zero (see Hypotheses (H2) and (H3) below). Remember that the

integral with respect to θ in (1.3) is the extension of the Young integral [51], which

is given only by means of fractional derivatives. Therefore, we only apply properties

of fractional derivatives and integrals established in [45] to state priori estimates for

t 7−→
∫ t

0
(t − s)α−1Xsdθs in (1.3) (see Lemmas 3.1 and 3.3 below). In this way, we

can also get our results throughout the fix-point theorem, although we cannot use

algebraic integration as in [11] because the solution of (1.3) is not Hölder continuous

for both cases considered in this paper for ξ (see Proposition 4.1 and 4.2).

We remark that it is natural to have functions as initial condition in (1.1) and

(1.3). Indeed, suppose that we know the solution of (1.1) up to a time T0 < T . In
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this case we need to analyze the equation

yt = a+

∫ T0

0

(t− s)−αΨ(ys)dxs +

∫ t

T0

(t− s)−αΨ(ys)dxs

= ξt +

∫ t

T0

(t− s)−αΨ(ys)dxs, t ∈ [T0, T ],

to know the solution y on [0, T ]. But, in this equation, ξt = a+
∫ T0

0
(t−s)−αΨ(ys)dxs

is a function. We also remark that considering initial conditions that are Hölder

continuous functions is a standard assumption in the study of delayed equations

(see, for instance, Boufoussi et al. [5] and Diop and Garrido-Atienza [14]).

Finally, we would also like to point out that considering (H2) we deal with an

equation in the sense of Riemann-Liouville and considering (H3) we deal with an

equation in the sense of Caputo. For more information about this subject we refer

to Podlubny [43] or Junsheng et al. in [26].

The organization of the paper is as follows. In Section 2 we introduce the frame-

work of this article. In particular, in Section 2.2 we give the definition of the exten-

sion of the Young integral [51] and we state the basic tool to obtain priori estimates

for equation (1.3). In Section 3, we establish the priori estimates, whose proofs are

in Section Appendix A. The existence of the solution to (1.3) is showed in Section

4.

2. Preliminaries

This section is devoted to introduce the framework and the main tools that we use

in this paper.

The space of all the µ-Hölder continuous functions on [a, b] is denoted by

Cµ([a, b]). Then, if f ∈ Cµ([a, b]), the norm of f is defined as follows

|‖f‖|µ,[a,b] := ‖f‖∞,[a,b] + ‖f‖µ,[a,b] ,

with

‖f‖∞,[a,b] := sup
a≤t≤b

|f(t)| and ‖f‖µ,[a,b] := sup
a≤s<t≤b

|f(t)− f(s)|
(t− s)µ

.

Let η, µ > 0. We will need the equality

(t− s)µ+η−1 =
Γ(µ+ η)

Γ(µ)Γ(η)

∫ t

s

(t− r)µ−1(r − s)η−1dr, 0 ≤ s ≤ t,

where Γ is the Gamma function. This equality is an immediate consequence of the

relation between Γ and the Beta function B. That is,

Γ(µ)Γ(η)

Γ(µ+ η)
= B(µ, η) =

∫ 1

0

(1− r)µ−1rη−1dr.

Throughout the paper, C represents a generic constant whose value is not im-

portant and may change from line to line. When we want to indicate that C depends

on some parameters η1, . . . , ηn, we will use the notation Cη1,...,ηn .
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2.1. Fractional derivatives and integrals

Consider 0 ≤ a < b ≤ T and an L1([0, T ])-function f . For µ ∈ (0, 1), the fractional

integrals of f are defined as

Iµa+(f)(t) =
1

Γ(µ)

∫ t

a

(t− r)µ−1fr dr and Iµb−(f)(t) =
1

Γ(µ)

∫ b

t

(r − t)µ−1fr dr,

(2.1)

which are defined for almost all t ∈ [a, b] due to Fubini theorem. For any p ≥ 1,

we denote by Iµa+(Lp) the image of Lp([a, b]) by Iµa+, and similarly for Iµb−(Lp).

Sometimes we write Iµa+(Lp([a, b])) instead of Iµa+(Lp) if it is not clear the involved

interval that we are considering. The inverse of operators Iµa+ and Iµb− are called

fractional derivatives, and are defined as follows. For f ∈ Iµa+(Lp) and almost all

t ∈ [a, b], we set

Dµ
a+ft = Lp − lim

ε↓0

1

Γ(1− µ)

(
ft

(t− a)µ
+ µ

∫ t−ε

a

ft − fr
(t− r)1+µ

dr

)
, (2.2)

where we use the convention fr = 0 on [a, b]c. In the same way, for f ∈ Iµb−(Lp) and

almost all t ∈ [a, b], we set

Dµ
b−ft = Lp − lim

ε↓0

1

Γ(1− µ)

(
ft

(b− t)µ
+ µ

∫ b

t+ε

ft − fr
(r − t)1+µ

dr

)
. (2.3)

By [45] (Theorem 13.2), we have that, for p > 1, f ∈ Iµa+(Lp) (resp. f ∈ Iµb−(Lp)) if

and only if f ∈ Lp([a, b]) and the limit in the right-hand side of (2.2) (resp. (2.3))

exists. In this case f = Iµa+(Dµ
a+f) (resp. f = Iµb−(Dµ

b−f)). Note that if f belongs to

Cµ+ε([a, b]), with ε > 0, then Dµ
a+f and Dµ

b−f given by (2.2) and (2.3), respectively,

exist.

2.2. Young integral

In this section we introduce the extension of the Young integral defined by Zähle in

[51].

Let g, f be two functions on an interval [a, b] and gb−(r) = gb−r := gr − gb−.

We say that f is integrable with respect to g (the generalized fractional Lebesgue-

Stieltjes integral) if and only if Dµ
a+f and D1−µ

b− gb− exist, and (Dµ
a+f)D1−µ

b− gb− ∈
L1([a, b]). In this case we define the integral

∫ b
a
f dg in the following way∫ b

a

fr dgr :=

∫ b

a

(Dµ
a+f)(r)D1−µ

b− gb−(r) dr. (2.4)

It is proven in [51] that this definition is independent of µ. It means, if there is

γ ∈ (0, 1) such that Dγ
a+f and D1−γ

b− gb− exist, and (Dγ
a+f)D1−γ

b− gb− ∈ L1([a, b]),

then ∫ b

a

(Dµ
a+f)(r)D1−µ

b− gb−(r) dr =

∫ b

a

(Dγ
a+f)(r)D1−γ

b− gb−(r) dr.
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It is well-known that if f ∈ Cµ([a, b]) and g ∈ Cγ([a, b]), with µ + γ > 1, then it

can be checked that
∫ b
a
fr dgr is well-defined, and that it coincides with the Young’s

integral defined as a limit of Riemann sums (see [51]), which makes this integral a

main tool to interpret the meaning of solution to stochastic differential equations

driven by a fractional Brownian motion with Hurst parameter bigger than 1/2.

We will need the following auxiliary results later on.

Lemma 2.1. Let γ ∈ (0, 1), α ∈ (1−γ, 1), θ ∈ Cγ([0, T ]) and 0 ≤ a < t ≤ T . Then,

the integral
∫ t
a
(t− s)α−1dθs is well-defined and, for ε > 0 such that α+ γ − ε > 1,∣∣∣∣∫ t

a

(t− s)α−1dθs

∣∣∣∣ ≤ C‖θ‖γ,[a,t](t− a)γ+α−ε−1,

where C is a constant depending on α, γ, ε and T .

Proof. In order to see that the last constant C only depends on α, γ, ε and T , we

introduce the γ-Hölder continuous function

ηs(a, t) =


θa, s ∈ [0, a],

θs, s ∈ [a, t],

θt, s ∈ [t, T ].

Now let 0 < ε be such that α + γ − ε > 1, which implies that ε < α. Then, for

r ∈ (0, T ), we have

(t− r)α−11[0,t](r) =
Γ(α)

Γ(α− ε)Γ(ε)

∫ T

r

(t− s)ε−1(s− r)α−ε−11[0,t](s)ds

=
Γ(α)

Γ(ε)
Iα−εT−

(
(t− ·)ε−11[0,t](·)

)
(r) (2.5)

and

(t− r)α−1 =
Γ(α)

Γ(ε)
Iα−εt−

(
(t− ·)ε−1

)
(r), (2.6)

where (2.5) and (2.6) follow from Definition (2.1). So, Samko et al. [45] (Corollary 1

of Theorem 11.5) implies that (t−·)α−11[0,t](·) ∈ Iα−ε0+ (Lp([0, T ])), for 1 < p < 1
1−ε .

Hence, using the Definitions (2.3) and (2.4) (see, for instance, inequality (12) in León

et al. [31]), we can obtain, using straightforward calculations,∣∣D1−α+ε
T− ηT−s (a, t)

∣∣ ≤ Cα,γ,ε||θ||γ,[a,t](t− a)γ+α−ε−1, s ∈ [0, T ], (2.7)

and ∣∣∣∣∣
∫ T

0

(t− s)α−11[0,t](s)dηs(a, t)

∣∣∣∣∣
=

∣∣∣∣∣
∫ T

0

(
Dα−ε

0+ (t− ·)α−11[0,t](·)
)

(s)
(
D1−α+ε
T− ηT−(a, t)

)
(s)ds

∣∣∣∣∣
≤ Cα,γ,ε‖θ‖γ,[a,t](t− a)γ+α−ε−1

∫ T

0

∣∣(Dα−ε
0+ (t− ·)α−11[0,t](·)

)
(s)
∣∣ ds. (2.8)



December 3, 2019 12:47 WSPC/INSTRUCTION FILE SD-D-19-00092R1

Semilinear Fractional Stochastic Differential Equations 7

Applying Samko et al. [45] (Corollary 1 of Theorem 11.5) again, together with (2.5),

we are able to write, for 1 < p < 1
1−ε ,

∫ T

0

∣∣(Dα−ε
0+ (t− ·)α−11[0,t](·)

)
(s)
∣∣ ds

≤ T 1− 1
p

(∫ T

0

∣∣(Dα−ε
0+ (t− ·)α−11[0,t](·)

)
(s)
∣∣p ds) 1

p

≤ CT,α,εT
1− 1

p

(∫ t

0

(t− s)(ε−1)pds

) 1
p

≤ CT,α,εT
1− 1

p

(
t(ε−1)p+1

) 1
p

≤ CT,α,εT
ε.

Thus, from (2.8), we get∣∣∣∣∣
∫ T

0

(t− s)α−11[0,t](s)dηs(a, t)

∣∣∣∣∣ ≤ Cα,γ,T,ε‖θ‖γ,[a,t](t− a)γ+α−ε−1. (2.9)

Finally, by Zähle [51] (Theorem 2.5), (2.3) and (2.6), we have∫ T

0

(t− s)α−11[0,t](s)dηs(a, t)

=

∫ a

0

(t− s)α−11[0,t](s)dηs(a, t) +

∫ T

a

(t− s)α−11[0,t](s)dηs(a, t)

=

∫ T

a

(t− s)α−11[0,t](s)dηs(a, t)

=

∫ T

0

(t− s)α−11[0,t](s)1[a,T ](s)dηs(a, t) =

∫ t

a

(t− s)α−1dθs,

where we use that ηa−(a, t) ≡ 0 on [0, a]. We observe that we can see that
∫ t
a
(t −

s)α−1dθs is well-defined proceeding as in (2.8) and (2.9) via (2.6) (instead of (2.5)).

Consequently, the result follows from (2.9). �
Henceforth we utilize the notation α̃ = α+ β − 1.

Lemma 2.2. Assume that 1 < α+ β. Then, for x ∈ (a, b),

I α̃a+

(
(b− ·)−β(· − a)−α

)
(x) = (b− a)−α̃

Γ(1− α)

Γ(β)
(x− a)β−1(b− x)α−1.

Proof. The proof is an immediate consequence of Samko et al. [45] (equalities

(1.74), (1.75) and (2.46)). �
Now, we can state the following consequence.
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Corollary 2.1. Let γ ∈ (0, 1) be such that 2− γ < α+ β and θ ∈ Cγ([0, T ]). Then,

for 0 ≤ a < b ≤ T , we have

Ξ :=

∣∣∣∣∣
∫ b

a

(b− r)α−1(r − a)β−1dθr

∣∣∣∣∣ ≤ Cα̃,γ‖θ‖γ Γ(β)Γ(1− β)

Γ(2− α− β)
(b− a)α̃+γ−1.

Proof. First we observe that, taking into account (2.3) and 2− γ < α+ β, we can

use the fact that∣∣(D1−α̃
b− θb−

)
(s)
∣∣ ≤ Cα̃,γ‖θ‖γ(b− s)α̃+γ−1, s ∈ [a, b]. (2.10)

Hence, Lemma 2.2 and (2.4) yield

Ξ =

∣∣∣∣∣
∫ b

a

(
Dα̃
a+((b− ·)α−1(· − a)β−1)

)
(r)
(
D1−α̃
b− θb−

)
(r)dr

∣∣∣∣∣
≤ Cα̃,γ‖θ‖γ(b− a)α̃+γ−1(b− a)α̃

Γ(β)

Γ(1− α)

∫ b

a

(b− r)−β(r − a)−αdr

= Cα̃,γ‖θ‖γ(b− a)2α̃+γ−1 Γ(β)Γ(1− β)Γ(1− α)

Γ(1− α)Γ(2− α− β)
(b− a)−α̃

= Cα̃,γ‖θ‖γ
Γ(β)Γ(1− β)

Γ(2− α− β)
(b− a)α̃+γ−1,

which implies that Ξ is well-defined and that the result is true. �
We will also need the following two propositions in order to study the existence

of a unique solution to equation (1.2). The proofs of these results are given in Section

Appendix A because they are so long and tedious.

Proposition 2.1. Assume that γ ∈ (0, 1) is such that 2− γ < α+ β. Let 0 ≤ a <
t ≤ T , f ∈ Cα̃+η([a, t]), for some η > 0, and θ ∈ Cγ([a, t]). Then,∫ t

a

(t− r)α−1(r − a)β−1f(r)dθr =

∫ t

a

(t− r)α−1(r − a)β−1dθ̃r,

with θ̃ =
∫ ·
a
f(u)dθu.

Remark. Under these conditions we have 1 − γ < α̃. If β = α, then 1 − γ
2 < α.

Also note that θ̃ is well-defined because α̃+ γ > 1.

Proposition 2.2. Assume that γ ∈ (1/2, 1), α ∈ (1− γ, γ) and 0 ≤ a ≤ t ≤ T . Let

f be in Cη([a, t]), for any η < 1− α, and θ ∈ Cγ([a, t]). Then,∫ t

a

(t− r)α−1f(r)dθr =

∫ t

a

(t− r)α−1dθ̃r,

where θ̃ =
∫ ·
a
f(u)dθu.

Remark. Note that, by Propositions 2.1 and 2.2, we can reduce the stochastic

differential equation (1.2) to the case f ≡ 1. Indeed, by [32] (Theorem 2.5) and [51]

(Theorem 4.2.1), we have that θ̃ ∈ Cγ([a, t]).
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3. Auxiliary results

The aim of this section is to state the tools needed to study the existence of a

unique solution to equation (1.2) via the fix-point theorem. Namely, it consists in

analyzing Hölder continuous properties of some involved integrals. As in Section

2.2, the proofs of the following results are developed in Section Appendix A.

We recall you that we are using the convention α̃ = α+ β − 1.

Lemma 3.1. Let γ ∈ (0, 1), β < γ and α > 1 − γ
2 such that 2 − γ < α + β. Also

let η = (α̃+ ε)∨ (1−α), for ε > 0, a ∈ [0, T ) and θ ∈ Cγ([a, T ]). Then, there exists

ε small enough such that the function

Ja(t) = (t− a)α
∫ t

a

(t− r)−β(r − a)−α
(
D1−α̃
t− θt−

)
(r)dr, t ∈ [a, T ],

is η-Hölder continuous. Moreover, we have, for a ≤ t1 ≤ t2 ≤ T and λ small

enough,

|Ja(t2)− Ja(t1)| ≤ C‖θ‖γ,[0,T ](t2 − t1)η(t2 − a)λ,

where C only depends on T , α, β and γ. Furthermore, this constant is a non-

decreasing function on T .

Remark. If β = α, then 1− γ
2 < α if and only if 2− γ < α+ β.

Now we state two similar results to Lemma 3.1.

Lemma 3.2. Let α, β ∈ (1/2, 1) be such that β ≥ α. Also let t 7−→ t1−α%t be a

continuous function on [0, T ] and g a function with linear growth. Then,

Ξ(t) = t1−α
∫ t

0

(t− s)β−1g(s, %s)ds, t ∈ [0, T ],

belongs to Cη([0, T ]) with η = min{1−α, β, 2α− 1 + ε, α+ β− 1}, for some ε small

enough.

Lemma 3.3. Let γ > 1/2, α ∈ (1 − γ, γ), θ ∈ Cγ([0, T ]) and % ∈ Cη̃([a, T ]) for

some η̃ ≥ 1− α. Then, the function

Φ(t) =

∫ t

a

(t− s)α−1%sdθs, t ∈ [a, T ],

is η-Hölder continuous, for any η ∈ (0, α + γ − 1), with norm independent of a ∈
[0, T ). Namely, for a ≤ t1 < t2 ≤ T̃ ≤ T and ε < α+ γ − 1,

|Φ(t2)− Φ(t1)| ≤ Cα,γ,ε,T ‖θ̃‖γ,[a,T̃ ](t2 − t1)γ+α−ε−1,

where θ̃· =
∫ ·
a
%sdθs.
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4. Existence and uniqueness for the solution

In this section, we consider the existence of a unique solution to equation (1.3),

when the initial condition satisfies either assumption (H2), or assumption (H3)

below. In order to be able to apply Propositions 2.1 and 2.2, and Lemmas 3.1-3.3

in our analysis, we include the following hypotheses:

(H1) Let γ > 2/3.

(H2) Let ξ : [0, T ] → R be a measurable function such that t 7→ t1−αξt belongs

to C2α−1+ε([0, T ]), for some ε small enough .

(H3) The function ξ belongs to C1−α([0, T ]) .

Note that the function ξt = tα−1ξ̃t, t ∈ [0, T ], satisfies (H2) if ξ̃ ∈
C2α−1+ε([0, T ]), for some ε > 0. But, ξ is a discontinuous function at 0 if ξ̃0 6= 0.

Sometimes we write ‖ft‖η,[0,T ] instead of ‖f‖η,[0,T ]. We use this abuse of notation

because we believe that the reader can identify the involve function f more easily.

So, for instance, we change ‖ ·1−α ξ·‖η,[0,T ] by ‖t1−αξt‖η,[0,T ].

4.1. Equation with initial condition satisfying (H2)

Now we suppose that Hypotheses (H1) and (H2) are satisfied in this section. Under

these assumptions, we study the existence and uniqueness for the solution to the

equation

Xt = ξt +

∫ t

0

(t− s)β−1 g(s,Xs)ds+

∫ t

0

(t− s)α−1Xsf(s)dθs, t ∈ [0, T ]. (4.1)

Here, f ∈ C2α−1+ε([0, T ]). Under the conditions of Proposition 2.1, we only need to

study the equation

Xt = ξt +

∫ t

0

(t− s)β−1 g(s,Xs)ds+

∫ t

0

(t− s)α−1Xsdθs, t ∈ [0, T ]. (4.2)

In this subsection, we suppose that 1 > β > α and α ∈ (1 − γ
2 , 2/3). The function

g satisfies the following:

(H4) g : [0, T ] × R → R is a Lipschitz continuous function with linear growth,

uniformly in [0, T ].

Note that the conditions on α and β imply that η in Lemma 3.2 is equal to

2α− 1 + ε, for ε small enough. We will prove that (4.2) has a unique solution in the

space

LT =
{
ρ : [0, T ]→ R : (t 7→ t1−αρt) ∈ C2α−1+ε̃([0, T ]), for ε̃ < ε

}
.

We recall that we are using the convention

|‖ · ‖|η,[0,T ] = ‖ · ‖η,[0,T ] + ‖ · ‖∞,[0,T ].
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On LT , we define, for t ∈ [0, T ],

M(ρ)t = ξt +

∫ t

0

(t− s)β−1 g(s, ρs)ds+

∫ t

0

(t− s)α−1ρsdθs,

in order to apply the fixed-point theorem to equation (4.2).

Proposition 4.1. Assume that γ > β > α, α ∈ (1 − γ
2 , 2/3) and that Hypotheses

(H1), (H2) and (H4) hold. Let θ ∈ Cγ([0, T ]). Then, equation (4.2) has a unique

solution in the space LT .

Proof. First of all, we have thatM : LT → LT due to Proposition 2.1, Lemmas 2.2,

3.1 and 3.2, and straightforward calculations. In order to apply fixed-point theorem,

let ρ(1), ρ(2) ∈ LT . Then, for η = 2α− 1 + ε̃, we have∣∣∣∥∥∥t1−α (M(ρ(1))t −M(ρ(2))t

)∥∥∥∣∣∣
η,[0,T ]

≤ (1 + T η)
∥∥∥t1−α (M(ρ(1))t −M(ρ(2))t

)∥∥∥
η,[0,T ]

≤ (1 + T η)

[∥∥∥∥t1−α ∫ t

0

(t− s)β−1
(
g(s, ρ(1)

s )− g(s, ρ(2)
s )
)
ds

∥∥∥∥
η,[0,T ]

+

∥∥∥∥t1−α ∫ t

0

(t− s)α−1sα−1
(
s1−αρ(1)

s − s1−αρ(2)
s

)
dθs

∥∥∥∥
η,[0,T ]

]

= (1 + T η)

[∥∥∥∥t1−α ∫ t

0

(t− s)β−1
(
g(s, ρ(1)

s )− g(s, ρ(2)
s )
)
ds

∥∥∥∥
η,[0,T ]

+

∥∥∥∥t1−α ∫ t

0

(t− s)α−1sα−1dθ̃s

∥∥∥∥
η,[0,T ]

]
,

where θ̃· =
∫ ·

0

(
s1−αρ

(1)
s − s1−αρ

(2)
s

)
dθs and, consequently, the last equality follows

from Proposition 2.1. Thus, Lemmas 3.1 and 3.2, together with (A.39) below, and

León and Tindel [32] (Theorem 2.5) yield, for T1 < T ,∣∣∣∥∥∥t1−α (M(ρ(1))t −M(ρ(2))t

)∥∥∥∣∣∣
η,[0,T1]

≤ Cα,β,γ,T,gT ε̃1
[ ∥∥∥t1−α (ρ(1)

t − ρ
(2)
t

)∥∥∥
∞,[0,T1]

+ ‖θ‖γ,[0,T ]

∥∥∥t1−α (ρ(1)
t − ρ

(2)
t

)∥∥∥
∞,[0,T1]

+ ‖θ‖γ,[0,T ]

∥∥∥t1−α (ρ(1)
t − ρ

(2)
t

)∥∥∥
η,[0,T1]

]
≤ Cα,β,γ,T,gT ε̃1

[ ∣∣∣∥∥∥t1−α (ρ(1)
t − ρ

(2)
t

)∥∥∥∣∣∣
η,[0,T1]

+ ‖θ‖γ,[0,T ]

∣∣∣∥∥∥t1−α (ρ(1)
t − ρ

(2)
t

)∥∥∥∣∣∣
η,[0,T1]

]
.

We can choose T1 small enough such that M is a contraction. Hence, M has a fix

point X(1), which is the solution to (4.2) on [0, T1].
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On the other hand, we now introduce the space

L(1)
T =

{
ρ : [0, T ]→ R : (t 7→ t1−αρt) ∈ C2α−1+ε̃([0, T )])

for ε̃ < ε and X(1) = ρ on [0, T1]
}
.

Now choose T1 < T̃ and ρ(1), ρ(2) ∈ L(1)

T̃
. Proceeding as before, for η̃ small enough,

we get ∣∣∣∥∥∥t1−α (M(ρ(1))t −M(ρ(2))t

)∥∥∥∣∣∣
η,[0,T̃ ]

≤ Cα,β,γ,T,g(1 + ‖θ‖γ,[0,T ])
∣∣∣∥∥∥t1−α (ρ(1)

t − ρ
(2)
t

)∥∥∥∣∣∣
η−η̃,[0,T̃ ]

= Cα,β,γ,T,g(1 + ‖θ‖γ,[0,T ])
∣∣∣∥∥∥t1−α (ρ(1)

t − ρ
(2)
t

)∥∥∥∣∣∣
η−η̃,[T1,T̃ ]

≤ Cα,β,γ,T,g(T̃ − T1)η̃(1 + ‖θ‖γ,[0,T ])
∣∣∣∥∥∥t1−α (ρ(1)

t − ρ
(2)
t

)∥∥∥∣∣∣
η,[0,T̃ ]

.

Note that the proof of Lemma 3.2 and Lemma 3.1 give that Cα,β,γ,T,g is independent

of the points T̃ and T1. In this way, we have shown that if equation (4.2) has a unique

solution on the interval [0, T1], then it also has a unique solution on [0, T1 +h], with

h = [2Cα,β,γ,T,g(1 + ‖θ‖ν,[0,T ])]
− 1
η̃ . Therefore, we can use induction to see that

equation (4.2) has a unique solution on [0, T ]. �

4.2. Equation with initial condition satisfying (H3)

Here we deal with Assumptions (H1),(H3) and (H4). Now, 1 > β ≥ 1−α and α ∈(
1− γ

2 , γ
)
. Throughout this section, f in the equation (4.1) belongs to C1−α([0, T ]).

Consequently, by Proposition 2.2, equations (4.1) and (4.2) have the same solutions.

Proposition 4.2. Assume that 1 > β ≥ 1 − α, and α ∈
(
1− γ

2 , γ
)
, and that

Hypotheses (H1), (H3) and (H4) hold. Let θ ∈ Cγ([0, T ]). Then, equation (4.2)

has a unique solution in the space C1−α([0, T ]).

Proof. From Proposition 2.2, Lemma 3.3 and β ≥ 1− α, we have that

M : C1−α([0, T ])→ C1−α([0, T ]).

Now suppose that equation (4.2) has a unique solution Y on an interval [0, T1], for

some T1 < T , which allows us to define the set

JT1,T =
{
ρ : [0, T ] −→ R : ρ ∈ C1−α([0, T ]); ρ = Y on [0, T1]

}
.

Similarly to the proof of Proposition 4.1, choosing T1 < T̃ , we can prove

Θ(T̃ ) :=
∣∣∣∥∥∥(M(ρ(1))−M(ρ(2))

)∥∥∥∣∣∣
η,[0,T̃ ]

≤ Cα,β,γ,T,g

(
1 + ‖θ‖γ,[0,T ]

)(
T̃ − T1

)η̃ ∣∣∣∥∥∥ρ(1) − ρ(2)
∥∥∥∣∣∣
η,[T1,T̃ ]

.
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Indeed, by Lemma 3.3 and β ≥ 1 − α, M : JT1,T̃
→ JT1,T̃

and we can write, for

η = 1− α,

Θ(T̃ ) ≤ (1 + T η)
∥∥∥(M(ρ(1))−M(ρ(2))

)∥∥∥
η,[0,T̃ ]

≤ (1 + T η)

[∥∥∥∥∫ t

0

(t− s)β−1
(
g(s, ρ(1)

s )− g(s, ρ(2)
s )
)
ds

∥∥∥∥
η,[0,T̃ ]

+

∥∥∥∥∫ t

0

(t− s)α−1
(
ρ(1)
s − ρ(2)

s

)
dθs

∥∥∥∥
η,[0,T̃ ]

]
≤ Cα,β,γ,T,g

[ ∥∥∥ρ(1) − ρ(2)
∥∥∥
∞,[0,T̃ ]

+ ‖θ‖γ,[0,T ]

∥∥∥ρ(1) − ρ(2)
∥∥∥
∞,[0,T̃ ]

+ ‖θ‖γ,[0,T ]

∥∥∥ρ(1) − ρ(2)
∥∥∥
η−η̃,[0,T̃ ]

]
= Cα,β,γ,T,g

[ ∥∥∥ρ(1) − ρ(2)
∥∥∥
∞,[T1,T̃ ]

+ ‖θ‖γ,[0,T ]

∥∥∥ρ(1) − ρ(2)
∥∥∥
∞,[T1,T̃ ]

+ ‖θ‖γ,[0,T ]

∥∥∥ρ(1) − ρ(2)
∥∥∥
η−η̃,[T1,T̃ ]

]
≤ Cα,β,γ,T,g

(
1 + ‖θ‖γ,[0,T ]

)(
T̃ − T1

)η̃ ∣∣∣∥∥∥ρ(1) − ρ(2)
∥∥∥∣∣∣
η,[T1,T̃ ]

.

Thus, the proof is finished due to the fixed-point theorem. Indeed, for T1 = 0, we

define

JT =
{
ρ : [0, T ] −→ R : ρ ∈ C1−α([0, T ]); ρ0 = ξ0

}
.

�

Appendix A. Appendix

The purpose of this section is to give the missing proofs of this paper.

Proof of Proposition 2.1. Let ε > 0, then Samko et al. [45] (Theorem 3.6) yields(
r 7−→ I α̃a+

(
(t+ ε− ·)−β(· − (a− ε))−α

)
(r)
)
∈ Cα̃−

1
p ([a, t]), (A.1)

for any p > 1/α̃. We choose p > 1/α̃ such that γ + α̃ − 1
p > 1. In this way, Fiel et

al. [17] (Lemma 2.4) implies∫ t

a

(t− a)α̃I α̃a+

(
(t+ ε− ·)−β(· − (a− ε))−α

)
(r)f(r)dθr

=

∫ t

a

(t− a)α̃I α̃a+

(
(t+ ε− ·)−β(· − (a− ε))−α

)
(r)dθ̃r.

(A.2)

In order to show that the result holds, we will use Lemma 2.2 and let ε go to zero.
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For the right-hand side of (A.2), we have that, for µα,β = Γ(1−α)
Γ(β) ,∣∣∣∣∫ t

a

(t− a)α̃I α̃a+

(
(t+ ε− ·)−β(· − (a− ε))−α

)
(r)dθ̃r

−µα,β
∫ t

a

(t− r)α−1(r − a)β−1dθ̃r

∣∣∣∣
= (t− a)α̃

∣∣∣∣∣
∫ t

a

(t+ ε− r)−β(r − (a− ε))−α(D1−α̃
t− θ̃t−)(r)dr

−
∫ t

a

(t− r)−β(r − a)−α(D1−α̃
t− θ̃t−)(r)dr

∣∣∣∣∣
≤ Cα̃,γ(t− a)2α̃+γ−1‖θ̃‖γ,[0,T ]

×
∫ t

a

∣∣(t+ ε− r)−β(r − (a− ε))−α − (t− r)−β(r − a)−α
∣∣ dr, (A.3)

which goes to zero, as ε→ 0, because of the dominated convergence theorem.

Now we deal with the left-hand side of (A.2). Towards this end, we utilize the

conventions

Λε(r) = I α̃a+

(
(t+ ε− ·)−β(· − (a− ε))−α

)
(r)

and

Λ(r) = I α̃a+

(
(t− ·)−β(· − a)−α

)
(r).

Note that (A.1) and the fact that f ∈ Cα̃+η([a, t]) allow us to deduce, for p ∈
(1, 1

β ∧
1
α ),

Dα̃
a+ [Λε(r)f(r)]

= Lp − lim
η↓0

1

Γ(1− α̃)

[
Λε(r)f(r)

(r − a)α̃
+ α̃

∫ r−η

a

Λε(r)f(r)− Λε(u)f(u)

(r − u)1+α̃
du

]
= Lp − lim

η↓0

f(r)

Γ(1− α̃)

[
Λε(r)

(r − a)α̃
+ α̃

∫ r−η

a

Λε(r)− Λε(u)

(r − u)1+α̃
du

]
+Lp − lim

η↓0

α̃

Γ(1− α̃)

∫ r−η

a

f(r)− f(u)

(r − u)1+α̃
Λε(u)du

= (t+ ε− r)−β(r − (a− ε))−αf(r)

+
α̃

Γ(1− α̃)

∫ r

a

f(r)− f(u)

(r − u)1+α̃
Λε(u)du. (A.4)

Similarly, we have

Dα̃
a+ [Λ(r)f(r)] = (t− r)−β(r − a)−αf(r)

+
α̃

Γ(1− α̃)

∫ r

a

f(r)− f(u)

(r − u)1+α̃
Λ(u)du. (A.5)
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Indeed, we only need to proceed as in (A.4) throughout the inequality

(t− a)α̃
∣∣∣∣∫ r

a

f(r)− f(u)

(r − u)1+α̃
I α̃a+

(
(t− ·)−β(· − a)−α

)
(u)du

∣∣∣∣
≤ Γ(1− α)

Γ(β)

∫ r

a

∣∣∣∣f(r)− f(u)

(r − u)1+α̃

∣∣∣∣ (t− u)α−1(u− a)β−1du

≤ Cα,β‖f‖α̃+η

∫ r

a

(r − u)η−1(t− u)α−1(u− a)β−1du

≤ Cα,β‖f‖α̃+η(t− r)α−1

∫ r

a

(r − u)η−1(u− a)β−1du

= Cα,β‖f‖α̃+η(t− r)α−1 Γ(η)Γ(β)

Γ(η + β)
(r − a)η+β−1,

where the first inequality follows from Lemma 2.2 and the last term belongs to

Lp([a, t]), for p < 1
1−α ∧

1
1−β . Hence, Definition (2.4) implies∫ t

a

(t− a)α̃I α̃a+

(
(t+ ε− ·)−β(· − (a− ε))−α

)
(r)f(r)dθr

= (t− a)α̃
∫ t

a

(t+ ε− r)−β(r − (a− ε))−αf(r)(D1−α̃
t− θt−)(r)dr

+(t− a)α̃
α̃

Γ(1− α̃)

∫ t

a

∫ r

a

f(r)− f(u)

(r − u)1+α̃
Λε(u)du(D1−α̃

t− θt−)(r)dr.

(A.6)

We also have that∫ r

a

∣∣∣∣f(r)− f(u)

(r − u)1+α̃

[
Λε(u)− I α̃a+

(
(t− ·)−β(· − a)−α

)
(u)
]∣∣∣∣ du

≤ ‖f‖α̃+η

Γ(α̃)

∫ r

a

(r − u)η−1

×
∫ u

a

∣∣(t− w)−β(w − a)−α − (t+ ε− w)−β(w + ε− a)−α
∣∣

(u− w)1−α̃ dwdu.

Since
∣∣(t− w)−β(w − a)−α − (t+ ε− w)−β(w + ε− a)−α

∣∣ −→ 0 when ε→ 0 (a.s),

it is bounded by 2
∣∣(t− w)−β(w − a)−α

∣∣ and∫ u

a

(t− w)−β(w − a)−α(u− w)α̃−1dw ≤ (t− u)−β
∫ u

a

(w − a)−α(u− w)α̃−1dw

= (t− u)−β
Γ(α̃)Γ(1− α)

Γ(α̃+ 1− α)
(u− a)α̃−α.

Then ∫ u

a

∣∣(t− w)−β(w − a)−α − (t+ ε− w)−β(w + ε− a)−α
∣∣

(u− w)1−α̃ dw −→ 0,
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as ε→ 0, and it is bounded by Cα,β(t− u)−β(u− a)α̃−α. Thus,∫ r

a

(r − u)η−1(t− u)−β(u− a)α̃−αdu ≤ (t− r)−β
∫ r

a

(r − u)η−1(u− a)α̃−αdu

=
Γ(η)Γ(α̃− α+ 1)

Γ(η + 1 + α̃− α)
(t− r)−β(r − a)η+α̃−α ∈ L1.

All these last calculations applied to (A.6) lead us to write

lim
ε→0

∫ t

a

(t− a)α̃I α̃a+

(
(t+ ε− ·)−β(· − (a− ε))−α

)
(r)f(r)dθr

=
Γ(1− α)

Γ(β)

∫ t

a

(t− r)α−1(r − a)β−1f(r)dθr.

Finally, putting together this limit, (A.2) and (A.3) we obtain the result. �

Proof of Proposition 2.2. Let ε̃ > 0 be such that α + γ − ε̃ − 1 > 0 and

γ − α− ε̃ > 0. Also let η̃ > 0 be such that γ − α− ε̃− η̃ > 0. Note that η̃ < 1− α.

Set ε := α+ γ − ε̃− 1, which is less than α, and η = 1− α− η̃.

From (2.6) and [45] (Corollary 1 of Theorem 11.5), we know that

(t− r)α−1 = Iα−εa+ (h)(r), r ∈ [a, t],

where h ∈ Lp([a, t]) and 1 < p < 1
1−ε . Now choose a sequence {hn : n ∈ N} ⊂

Lp([a, t]) of bounded functions converging to h in Lp([a, t]). Therefore, as in (A.2),

we are able to establish∫ t

a

Iα−εa+ (hn)(r)f(r)dθr =

∫ t

a

Iα−εa+ (hn)(r)dθ̃r. (A.7)

Proceeding as in (A.3), we can see that the right-hand side of (A.7) goes to∫ t
a
Iα−εa+ (h)(r)dθ̃r, as n ↑ ∞.

Finally, we can study the convergence of the left-hand side of (A.7) as in (A.4)

by noting that the Fubini theorem and the fact that f ∈ Cη([a, t]) imply that, for

r ∈ [a, t], ∫ r

a

|f(r)− f(u)|
(r − u)1+α−ε

∣∣Iα−εa+ (hn − h)(u)
∣∣ du

≤ C

∫ r

a

(r − u)ε−2α−η̃ ∣∣Iα−εa+ (hn − h)(u)
∣∣ du

≤ C

∫ r

a

∫ u

a

(r − u)ε−2α−η̃(u− s)α−ε−1 |hn(s)− h(s)| dsdu

= C

∫ r

a

|hn(s)− h(s)|
∫ r

s

(r − u)ε−2α−η̃(u− s)α−ε−1duds

= C

∫ r

a

|hn(s)− h(s)| (r − s)−α−η̃ds = CI1−α−η̃
a+ (|hn − h|)(r),

which goes to zero in Lp([a, t]). Thus the proof is complete. �
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Proof of Lemma 3.1. We divide the proof into two steps.

Step 1 : Here we consider the case that η = α̃+ε. We have that, for a ≤ t1 < t2 ≤ T ,

|Ja(t2)− Ja(t1)| ≤ I1 + I2, (A.8)

with

I1 = |(t2 − a)α − (t1 − a)α|
∣∣∣∣∫ t2

a

(t2 − r)−β(r − a)−α
(
D1−α̃
t2− θt2−

)
(r)dr

∣∣∣∣ ,
I2 = (t1 − a)α

∣∣∣∣ ∫ t2

a

(t2 − r)−β(r − a)−α
(
D1−α̃
t2− θt2−

)
(r)dr

−
∫ t1

a

(t1 − r)−β(r − a)−α
(
D1−α̃
t1− θt1−

)
(r)dr

∣∣∣∣.
We first study I1. We can get, for ε > 0 such that α̃+ ε < α and β + ε < γ,

I1 ≤ |(t2 − a)α − (t1 − a)α|
α̃+ε
α |(t2 − a)α − (t1 − a)α|1−

α̃+ε
α

×
∣∣∣∣∫ t2

a

(t2 − r)−β(r − a)−α
(
D1−α̃
t2− θt2−

)
(r)dr

∣∣∣∣
≤ Cα,β,γ(t2 − t1)α̃+ε(t2 − a)α−α̃−ε‖θ‖γ,[0,T ]

∫ t2

a

(t2 − r)α̃+γ−1−β(r − a)−αdr

≤ Cα,β,γ(t2 − t1)α̃+ε(t2 − a)α−α̃−ε‖θ‖γ,[0,T ]

×Γ(α̃+ γ − β)Γ(1− α)

Γ(γ)
(t2 − a)α̃+γ−β−α

≤ Cα,β,γ(t2 − t1)α̃+ε(t2 − a)γ−β−ε‖θ‖γ,[0,T ]. (A.9)

The triangle inequality yields

I2 ≤ I2,1 + I2,2, (A.10)

where

I2,1 = (t1 − a)α
∣∣∣∣ ∫ t1

a

(t2 − r)−β(r − a)−α
(
D1−α̃
t2− θt2−

)
(r)dr

−
∫ t1

a

(t1 − r)−β(r − a)−α
(
D1−α̃
t1− θt1−

)
(r)dr

∣∣∣∣,
I2,2 = (t1 − a)α

∣∣∣∣∫ t2

t1

(t2 − r)−β(r − a)−α
(
D1−α̃
t2− θt2−

)
(r)dr

∣∣∣∣ .
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For I2,2 we choose λ > 0 such that λ < α and γ − β − λ > 0. Thus,

I2,2 = (t1 − a)α
∣∣∣∣∫ t2

t1

(t2 − r)−β(r − a)−λ(r − a)−α+λ
(
D1−α̃
t2− θt2−

)
(r)dr

∣∣∣∣
≤ (t1 − a)λ

∣∣∣∣∫ t2

t1

(t2 − r)−β(r − a)−λ
(
D1−α̃
t2− θt2−

)
(r)dr

∣∣∣∣
≤ Cα̃,γ‖θ‖γ,[0,T ](t1 − a)λ

∫ t2

t1

(t2 − r)α̃+γ−1−β(r − a)−λdr

≤ Cα̃,γ‖θ‖γ,[0,T ](t1 − a)λ
∫ t2

t1

(t2 − r)α̃+γ−1−β(r − t1)−λdr

≤ Cα̃,γ‖θ‖γ,[0,T ](t1 − a)λ
Γ(α̃+ γ − β)Γ(1− λ)

Γ(α̃+ γ − β + 1− λ)
(t2 − t1)α̃+γ−β−λ

≤ Cα,β,γ(t2 − t1)α̃+ε(t2 − a)λ‖θ‖γ,[0,T ]. (A.11)

We continue with the analysis of (A.10) by means of the next calculus:

I2,1 ≤ I2,1,1 + I2,1,2, (A.12)

with

I2,1,1 = (t1 − a)α
∫ t1

a

(t2 − r)−β(r − a)−α
∣∣(D1−α̃

t2− θt2−
)

(r)−
(
D1−α̃
t1− θt1−

)
(r)
∣∣ dr,

I2,1,2 = (t1 − a)α
∫ t1

a

(r − a)−α
∣∣(t2 − r)−β − (t1 − r)−β

∣∣ ∣∣(D1−α̃
t1− θt1−

)
(r)
∣∣ dr.

Using the mean value theorem, for ε > 0 such that γ−β− ε > 0 and 1− α̃− ε > 0,

we have

I2,1,2 ≤ (t1 − a)α
∫ t1

a

(r − a)−α
∣∣(t2 − r)−β − (t1 − r)−β

∣∣α̃+ε

×
∣∣(t2 − r)−β − (t1 − r)−β

∣∣1−α̃−ε ∣∣(D1−α̃
t1− θt1−

)
(r)
∣∣ dr

≤ βα̃+ε(t1 − a)α(t2 − t1)α̃+ε

∫ t1

a

(r − a)−α(t1 − r)−(β+1)(α̃+ε)

×(t1 − r)−β(1−α̃−ε) ∣∣(D1−α̃
t1− θt1−

)
(r)
∣∣ dr

≤ Cα,β,γ,ε(t1 − a)α(t2 − t1)α̃+ε‖θ‖γ,[0,T ]

×
∫ t1

a

(r − a)−α(t1 − r)(−β−1)(α̃+ε)−β(1−α̃−ε)+α̃+γ−1dr

≤ Cα,β,γ,ε(t1 − a)α(t2 − t1)α̃+ε‖θ‖γ,[0,T ]

∫ t1

a

(r − a)−α(t1 − r)γ−β−ε−1dr

≤ Cα,β,γ,ε(t1 − a)α(t2 − t1)α̃+ε‖θ‖γ,[0,T ](t1 − a)γ−β−α−ε

≤ Cα,β,γ,ε‖θ‖γ,[0,T ](t2 − t1)α̃+ε(t1 − a)γ−β−ε. (A.13)

In order to deal with I2,1,1, we need to analyze the following term∣∣(D1−α̃
t2− θt2−

)
(r)−

(
D1−α̃
t1− θt1−

)
(r)
∣∣ ≤ J1 + J2, (A.14)
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with

J1 =
1

Γ(α̃)

∣∣∣∣ θr − θt2
(t2 − r)1−α̃ −

θr − θt1
(t1 − r)1−α̃

∣∣∣∣ ,
J2 =

1− α̃
Γ(α̃)

∣∣∣∣∫ t2

r

θr − θs
(s− r)2−α̃ ds−

∫ t1

r

θr − θs
(s− r)2−α̃ ds

∣∣∣∣ .
The mean value theorem implies that

J2 =
1− α̃
Γ(α̃)

∣∣∣∣∫ t2

t1

θr − θs
(s− r)2−α̃ ds

∣∣∣∣
≤ Cα,β,γ‖θ‖γ,[0,T ]

∣∣∣∣∫ t2

t1

(s− r)α̃−2+γds

∣∣∣∣
≤ Cα,β,γ‖θ‖γ,[0,T ]

∣∣(t2 − r)α̃−1+γ − (t1 − r)α̃−1+γ
∣∣

≤ Cα,β,γ‖θ‖γ,[0,T ](t2 − t1)α̃+ε
∣∣(t1 − r)α̃−2+γ

∣∣α̃+ε ∣∣(t2 − r)α̃−1+γ
∣∣1−α̃−ε .(A.15)

Now we study J1. We can establish

J1 =
1

Γ(α̃)

∣∣∣∣ (t1 − r)1−α̃(θr − θt2)− (t2 − r)1−α̃(θr − θt1)

(t2 − r)1−α̃(t1 − r)1−α̃

∣∣∣∣
≤ J1,1 + J1,2. (A.16)

Here

J1,1 = Cα,β

∣∣∣∣ (t1 − r)1−α̃ − (t2 − r)1−α̃

(t2 − r)1−α̃(t1 − r)1−α̃

∣∣∣∣ |θr − θt2 | ,
J1,2 = Cα,β

1

(t1 − r)1−α̃ |(θr − θt2)− (θr − θt1)| .

Grouping correctly we have

J1,2 ≤ Cα,β(t1 − r)α̃−1 |(θr − θt2)− (θr − θt1)|
α̃+ε
γ |(θr − θt2)− (θr − θt1)|1−

α̃+ε
γ

≤ Cα,β,γ‖θ‖
1− α̃+ε

γ

γ,[0,T ] (t1 − r)α̃−1 |θt2 − θt1 |
α̃+ε
γ |(t2 − r)γ |1−

α̃+ε
γ

≤ Cα,β,γ‖θ‖γ,[0,T ](t1 − r)α̃−1(t2 − t1)α̃+ε(t2 − r)γ−α̃−ε. (A.17)

Using the mean value theorem again, we get

J1,1 ≤ Cα,β‖θ‖γ,[0,T ](t2 − r)α̃−1+γ(t1 − r)α̃−1
∣∣(t1 − r)1−α̃ − (t2 − r)1−α̃∣∣

= Cα,β‖θ‖γ,[0,T ](t2 − r)α̃−1+γ(t1 − r)α̃−1
∣∣(t1 − r)1−α̃ − (t2 − r)1−α̃∣∣α̃+ε

×
∣∣(t1 − r)1−α̃ − (t2 − r)1−α̃∣∣1−α̃−ε

≤ Cα,β‖θ‖γ,[0,T ](t2 − r)α̃−1+γ(t1 − r)α̃−1(t2 − t1)α̃+ε(t1 − r)−α̃(α̃+ε)

×(t2 − r)(1−α̃)(1−α̃−ε)

= Cα,β‖θ‖γ,[0,T ](t2 − t1)α̃+ε(t2 − r)γ−α̃+α̃2+ε(α̃−1)(t1 − r)α̃−α̃
2−εα̃−1.(A.18)

Then, putting (A.15), (A.16), (A.17) and (A.18) in I2,1,1, we obtain

I2,1,1 ≤ (t1 − a)α
∫ t1

a

(t2 − r)−β(r − a)−α [J1,1 + J1,2 + J2] dr = J̃1,1 + J̃1,2 + J̃2,

(A.19)
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with

J̃1,1 = Cα,β‖θ‖γ,[0,T ](t2 − t1)α̃+ε(t1 − a)α

×
∫ t1

a

(r − a)−α(t2 − r)γ−α̃+α̃2−β+ε(α̃−1)(t1 − r)α̃−α̃
2−εα̃−1dr,

J̃1,2 = Cα,β,γ‖θ‖γ,[0,T ](t2 − t1)α̃+ε(t1 − a)α

×
∫ t1

a

(r − a)−α(t1 − r)α̃−1(t2 − r)γ−α̃−β−εdr,

J̃2 = Cα,β,γ‖θ‖γ,[0,T ](t2 − t1)α̃+ε(t1 − a)α

×
∫ t1

a

(r − a)−α(t1 − r)(α̃−2+γ)(α̃+ε)(t2 − r)(α̃−1+γ)(1−α̃−ε)−βdr.

We now analyze these terms depending on the sign of the exponent of (t2 − r). We

first study J̃1,1. Then, if γ − α̃+ α̃2 − β ≥ 0, for ε > 0 small enough, we establish

J̃1,1 ≤ Cα,β‖θ‖γ,[0,T ](t2 − t1)α̃+ε(t1 − a)α

×T γ−α̃+α̃2−β+ε(α̃−1)

∫ t1

a

(r − a)−α(t1 − r)α̃−α̃
2−εα̃−1dr

≤ Cα,β‖θ‖γ,[0,T ](t2 − t1)α̃+ε(t1 − a)α̃−α̃
2−εα̃ T γ−α̃+α̃2−β+ε(α̃−1). (A.20)

If γ − α̃+ α̃2 − β < 0, then

J̃1,1 ≤ Cα,β‖θ‖γ,[0,T ](t2 − t1)α̃+ε(t1 − a)α

×
∫ t1

a

(r − a)−α(t1 − r)γ−β−1−εdr

≤ Cα,β‖θ‖γ,[0,T ](t2 − t1)α̃+ε(t1 − a)γ−β−ε. (A.21)

For J̃1,2, if γ − α̃− β ≤ 0, we then obtain

J̃1,2 ≤ Cα,β,γ‖θ‖γ,[0,T ](t2 − t1)α̃+ε(t1 − a)α
∫ t1

a

(r − a)−α(t1 − r)γ−β−ε−1dr

≤ Cα,β,γ‖θ‖γ,[0,T ](t2 − t1)α̃+ε(t1 − a)γ−β−ε. (A.22)

If γ − α̃− β > 0, then

J̃1,2 ≤ Cα,β,γ‖θ‖γ,[0,T ](t2 − t1)α̃+εT γ−α̃−β−ε(t1 − a)α
∫ t1

a

(r − a)−α(t1 − r)α̃−1dr

≤ Cα,β,γ‖θ‖γ,[0,T ](t2 − t1)α̃+ε(t1 − a)α̃T γ−α̃−β−ε. (A.23)

The last term J̃2, if (α̃− 1 + γ)(1− α̃)− β > 0, can be estimate by

J̃2 ≤ Cα,β,γ‖θ‖γ,[0,T ](t2 − t1)α̃+ε(t1 − a)αT (α̃−1+γ)(1−α̃−ε)−β (A.24)

×
∫ t1

a

(r − a)−α(t1 − r)(α̃−2+γ)(α̃+ε)dr

≤ Cα,β,γ‖θ‖γ,[0,T ](t2 − t1)α̃+ε(t1 − a)(α̃−2+γ)(α̃+ε)+1T (α̃−1+γ)(1−α̃−ε)−β .(A.25)
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Here (α̃ − 2 + γ)α̃ + 1 has to be positive and this is true because γ + α̃ − 2 > −1

and α̃ < 1.

If (α̃− 1 + γ)(1− α̃)− β ≤ 0, then

J̃2 ≤ Cα,β,γ‖θ‖γ,[0,T ](t2 − t1)α̃+ε(t1 − a)α

×
∫ t1

a

(r − a)−α(t1 − r)(α̃−2+γ)(α̃+ε)+(α̃−1+γ)(1−α̃−ε)−βdr

≤ Cα,β,γ‖θ‖γ,[0,T ](t2 − t1)α̃+ε(t1 − a)γ−β−ε. (A.26)

Finally, putting together (A.8)-(A.13) and (A.19)-(A.26) we obtain the desired re-

sult for η = α̃+ ε, for ε small enough.

Step 2 : Now we study the case η = 1− α. We first study I1 in (A.8) as follows

I1 ≤ |(t2 − a)α − (t1 − a)α|
1−α
α |(t2 − a)α − (t1 − a)α|1−

1−α
α

×
∣∣∣∣∫ t2

a

(t2 − r)−β(r − a)−α
(
D1−α̃
t2− θt2−

)
(r)dr

∣∣∣∣
≤ Cα,β,γ(t2 − t1)1−α(t2 − a)2α−1‖θ‖γ,[0,T ]

∫ t2

a

(t2 − r)α̃+γ−1−β(r − a)−αdr

≤ Cα,β,γ(t2 − t1)1−α(t2 − a)2α+γ−2‖θ‖γ,[0,T ]. (A.27)

In (A.10), we introduce I2,2. We can see that

I2,2 ≤ Cα,β,γ(t2 − t1)1−α(t2 − a)2α+γ−2‖θ‖γ,[0,T ]. (A.28)

That is, λ = 2α+ γ − 2 in the inequality before the last one in (A.11).

We now deal with I2,1,2 in (A.13)

I2,1,2 = (t1 − a)α
∫ t1

a

(r − a)−α
∣∣(t2 − r)−β − (t1 − r)−β

∣∣1−α
×
∣∣(t2 − r)−β − (t1 − r)−β

∣∣α ∣∣(D1−α̃
t1− θt1−

)
(r)
∣∣ dr

≤ Cα,β‖θ‖γ,[0,T ](t1 − a)α(t2 − t1)1−α
∫ t1

a

(r − a)−α(t1 − r)−(β+1)(1−α)

×(t1 − r)−βα(t1 − r)α̃+γ−1dr

≤ Cα,β,γ‖θ‖γ,[0,T ](t1 − a)α(t2 − t1)1−α
∫ t1

a

(r − a)−α(t1 − r)2α+γ−3dr

≤ Cα,β,γ‖θ‖γ,[0,T ](t2 − t1)1−α(t1 − a)2α+γ−2. (A.29)

Proceeding as in (A.15), we can obtain

J2 ≤ Cα,β,γ‖θ‖γ,[0,T ](t2 − t1)1−α(t1 − r)(1−α)(α̃+γ−2)(t2 − r)α(α̃−1+γ). (A.30)
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It can happen two things. The first one is that α(α̃− 1 + γ)− β ≥ 0. In this case,

J̃2 = (t1 − a)α
∫ t1

a

(r − a)−α(t2 − r)−βJ2 dr

≤ Cα,β,γ‖θ‖γ,[0,T ](t2 − t1)1−α(t1 − a)α Tα(α̃−1+γ)−β

×
∫ t1

a

(r − a)−α(t1 − r)(1−α)(α̃+γ−2)dr

≤ Cα,β,γ‖θ‖γ,[0,T ](t2 − t1)1−α Tα(α̃−1+γ)−β (t1 − a)(1−α)(α̃+γ−2)+1,(A.31)

and the exponent is positive because α + β + γ − 3 > −1 and 1 − α < 1. For the

other case, it means α(α̃− 1 + γ)− β < 0, we deduce

J̃2 ≤ Cα,β,γ‖θ‖γ,[0,T ](t2 − t1)1−α(t1 − a)α

×
∫ t1

a

(r − a)−α(t1 − r)(1−α)(α̃+γ−2)+α(α̃−1+γ)−βdr

≤ Cα,β,γ‖θ‖γ,[0,T ](t2 − t1)1−α (t1 − a)2α+γ−2. (A.32)

Concerning (A.17), we get

J1,2 ≤ Cα,β(t1 − r)α̃−1 |(θr − θt2)− (θr − θt1)|
1−α
γ |(θr − θt2)− (θr − θt1)|1−

1−α
γ

≤ Cα,β,γ‖θ‖γ,[0,T ](t1 − r)α̃−1(t2 − t1)1−α(t2 − r)γ+α−1. (A.33)

Here, first we can also suppose that γ + α− 1− β ≥ 0 to obtain

J̃1,2 = (t1 − a)α
∫ t1

a

(r − a)−α(t2 − r)−βJ1,2 dr

≤ Cα,β,γ‖θ‖γ,[0,T ](t2 − t1)1−α T γ+α−1−β (t1 − a)α
∫ t1

a

(r − a)−α(t1 − r)α̃−1dr

≤ Cα,β,γ‖θ‖γ,[0,T ](t2 − t1)1−α T γ+α−1−β (t1 − a)α̃. (A.34)

Now we assume that γ + α− 1− β < 0 to calculate

J̃1,2 ≤ Cα,β,γ‖θ‖γ,[0,T ](t2 − t1)1−α (t1 − a)α
∫ t1

a

(r − a)−α(t1 − r)α̃−1+γ+α−1−βdr

≤ Cα,β,γ‖θ‖γ,[0,T ](t2 − t1)1−α (t1 − a)2α+γ−2. (A.35)

For J1,1 we have

J̃1,1 ≤ Cα,β‖θ‖γ,[0,T ](t2 − r)α̃−1+γ(t1 − r)α̃−1
∣∣(t1 − r)1−α̃ − (t2 − r)1−α̃∣∣1−α

×
∣∣(t1 − r)1−α̃ − (t2 − r)1−α̃∣∣α

≤ Cα,β‖θ‖γ,[0,T ](t2 − r)α̃−1+γ(t1 − r)α̃−1(t2 − t1)1−α(t1 − r)−α̃(1−α)(t2 − r)α(1−α̃)

= Cα,β‖θ‖γ,[0,T ](t2 − t1)1−α(t2 − r)α̃−1+γ+α−αα̃(t1 − r)αα̃−1. (A.36)
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If 2α+ γ − αα̃− 2 < 0, then

J̃1,1 = (t1 − a)α
∫ t1

a

(r − a)−α(t2 − r)−βJ1,1 dr

≤ Cα,β‖θ‖γ,[0,T ](t2 − t1)1−α(t1 − a)α
∫ t1

a

(r − a)−α(t1 − r)α̃−2+γ+α−βdr

≤ Cα,β‖θ‖γ,[0,T ](t2 − t1)1−α(t1 − a)2α+γ−2. (A.37)

If 2α+ γ − αα̃− 2 ≥ 0, then we are able to write

J̃1,1 ≤ Cα,β‖θ‖γ,[0,T ](t2 − t1)1−α(t1 − a)α T 2α+γ−αα̃−2

∫ t1

a

(r − a)−α(t1 − r)αα̃−1dr

≤ Cα,β‖θ‖γ,[0,T ](t2 − t1)1−α T 2α+γ−αα̃−2 (t1 − a)αα̃. (A.38)

Finally, putting (A.27)-(A.38) in (A.8) we obtain the desired result for η = 1 − α,

which, together with Step 1, implies that the proof is complete. �

Proof of Lemma 3.2. In order to prove the result we will see that, for 0 ≤ t1 <

t2 ≤ T and ε > 0 small enough,

|Ξ(t2)− Ξ(t1)|
≤ Cα,β,g(t2 − t1)1−α [T β + Tα+β−1‖t1−α%t‖∞,[0,T ]

]
+ Cα,β,g(t2 − t1)β T 1−α

+ Cα,β,g(t2 − t1)2α−1+ε T 1+β−2α−ε‖t1−α%t‖∞,[0,T ]

+ Cα,β,g(t2 − t1)α+β−1 T 1−α‖t1−α%t‖∞,[0,T ], (A.39)

holds. To do so, we decompose the following difference into three parts:

|Ξ(t2)− Ξ(t1)| ≤ I1 + I2 + I3, (A.40)

where

I1 =
∣∣t1−α2 − t1−α1

∣∣ ∫ t2

0

(t2 − s)β−1 |g(s, %s)| ds,

I2 = t1−α1

∫ t1

0

∣∣(t2 − s)β−1 − (t1 − s)β−1
∣∣ |g(s, %s)| ds,

I3 = t1−α1

∫ t2

t1

(t2 − s)β−1 |g(s, %s)| ds.

The hypothesis on % and the fact that g has linear growth imply

I1 ≤ Cg(t2 − t1)1−α
∫ t2

0

(t2 − s)β−1(1 + |%s|)ds

= Cg(t2 − t1)1−α
[∫ t2

0

(t2 − s)β−1ds+

∫ t2

0

(t2 − s)β−1sα−1
∣∣s1−α%s

∣∣ ds]
≤ Cg(t2 − t1)1−α

[
1

β
tβ2 + ‖t1−α%t‖∞,[0,T ]

∫ t2

0

(t2 − s)β−1sα−1ds

]
≤ Cg(t2 − t1)1−α

[
1

β
T β +

Γ(α)Γ(β)

Γ(α+ β)
Tα+β−1‖t1−α%t‖∞,[0,T ]

]
. (A.41)
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Using that g has linear growth again, we get

I2 ≤ Cg(I2,1 + I2,2), (A.42)

with

I2,1 = t1−α1

∫ t1

0

∣∣(t2 − s)β−1 − (t1 − s)β−1
∣∣ ds,

I2,2 = t1−α1

∫ t1

0

∣∣(t2 − s)β−1 − (t1 − s)β−1
∣∣ |%s| ds.

The first term can be bounded by

I2,1 ≤ t1−α1

1

β

[
tβ2 − t

β
1 + (t2 − t1)β

]
≤ 2

1

β
T 1−α(t2 − t1)β . (A.43)

To deal with the other term, we apply the mean value theorem and the fact that

2α− β < 1 in order to see that there exists ε > 0 small enough such that

I2,2 ≤ t1−α1 ‖t1−α%t‖∞,[0,T ]

∫ t1

0

∣∣(t2 − s)β−1 − (t1 − s)β−1
∣∣ sα−1ds

= t1−α1 ‖t1−α%t‖∞,[0,T ]

∫ t1

0

∣∣(t2 − s)β−1 − (t1 − s)β−1
∣∣2α−1+ε

×
∣∣(t2 − s)β−1 − (t1 − s)β−1

∣∣2−2α−ε
sα−1 ds

≤ Cα,β t
1−α
1 ‖t1−α%t‖∞,[0,T ](t2 − t1)2α−1+ε

×
∫ t1

0

(t1 − s)(β−2)(2α−1+ε)+(β−1)(2−2α−ε)sα−1 ds

= Cα,β t
1−α
1 ‖t1−α%t‖∞,[0,T ](t2 − t1)2α−1+ε

∫ t1

0

(t1 − s)β−2α−εsα−1 ds

≤ Cα,β t
1−α
1 ‖t1−α%t‖∞,[0,T ](t2 − t1)2α−1+εΓ(β − 2α− ε+ 1)Γ(α)

Γ(β − α− ε+ 1)
tβ−α−ε1

≤ Cα,β‖t1−α%t‖∞,[0,T ](t2 − t1)2α−1+εT 1+β−2α−ε. (A.44)

For the last term, we have

I3 ≤ Cgt
1−α
1

∫ t2

t1

(t2 − s)β−1(1 + |%s|)ds

≤ Cgt
1−α
1

1

β
(t2 − t1)β + Cgt

1−α
1

∫ t2

t1

(t2 − s)β−1(s− t1)α−1‖s1−α%s‖∞,[0,T ]ds

≤ Cgt
1−α
1

1

β
(t2 − t1)β + Cgt

1−α
1 ‖t1−α%t‖∞,[0,T ]

Γ(α)Γ(β)

Γ(α+ β)
(t2 − t1)α+β−1

≤ Cg

[
T 1−α

1

1

β
(t2 − t1)β + T 1−α‖t1−α%t‖∞,[0,T ]

Γ(α)Γ(β)

Γ(α+ β)
(t2 − t1)α+β−1

]
.(A.45)

Consequently, (A.40)-(A.45) yield that (A.39) is true and therefore the proof is

complete. �
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Proof of Lemma 3.3. From Proposition 2.2, for 0 ≤ a < t ≤ T , we have∫ t

a

(t− s)α−1%sdθs =

∫ t

a

(t− s)α−1dθ̃s,

where θ̃t =
∫ t
a
%sdθs. In the remaining of this proof, we utilize the notation intro-

duced in the proof of Lemma 2.1.

Now we fix t1, t2 ∈ [a, T̃ ], t1 < t2 and T̃ ∈ [a, T ]. Therefore, Zähle (Theorem

2.5) and Lemma 2.1 imply

|Φ(t2)− Φ(t1)| =
∣∣∣∣∫ t2

a

(t2 − s)α−1dθ̃s −
∫ t2

a

(t1 − s)α−1dθ̃s

∣∣∣∣ ≤ H1 +H2, (A.46)

with

H1 =

∣∣∣∣∫ t2

t1

(t2 − s)α−1dθ̃s

∣∣∣∣ ,
H2 =

∣∣∣∣∫ t1

a

[
(t2 − s)α−1 − (t1 − s)α−1

]
dθ̃s

∣∣∣∣ .
We have already estimate H1 in Lemma 2.1. Thus, we can establish

H1 ≤ Cα,ε,T ‖θ̃‖γ,[a,T̃ ](t2 − t1)γ+α−ε−1, (A.47)

where ε < α+ γ − 1.

Changing θ by θ̃ in the definition of η(a, t1) (see proof of Lemma 2.1) and taking

ε̃ close to α + γ − 1 such that ε̃ < α + γ − 1, we have, by inequality (2.7) and [45]

(Corollary 1 of Theorem 11.5),

H2 =

∣∣∣∣∫ t1

a

[
(t2 − s)α−11[0,t2](s)− (t1 − s)α−11[0,t1](s)

]
dθ̃s

∣∣∣∣
=

∣∣∣∣∣
∫ T

0

[
(t2 − s)α−11[0,t2](s)− (t1 − s)α−11[0,t1](s)

]
dηs(a, t1)

∣∣∣∣∣
≤ Cα,γ,ε̃‖θ̃‖γ,[a,t1](t1 − a)γ+α−ε̃−1

×

[∫ T

0

∣∣Dα−ε̃
0+

(
(t2 − s)α−11[0,t2](s)− (t1 − s)α−11[0,t1](s)

)∣∣ ds]
≤ Cα,γ,ε̃,T ‖θ̃‖γ,[a,T̃ ](t1 − a)γ+α−ε̃−1T 1−1/p

×

[∫ T

0

∣∣(t2 − s)ε̃−11[0,t2](s)− (t1 − s)ε̃−11[0,t1](s)
∣∣p ds]1/p

≤ Cα,γ,ε̃,T ‖θ̃‖γ,[a,T̃ ](t1 − a)γ+α−ε̃−1T 1−1/p (H2,1 +H2,2) , (A.48)

with 1 < p < 1
1−ε̃ ,

H2,1 =

[∫ t2

t1

(t2 − s)(ε̃−1)pds

]1/p

,
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and

H2,2 =

[∫ t1

0

∣∣(t2 − s)ε̃−1 − (t1 − s)ε̃−1
∣∣p ds]1/p

.

It is not difficult to check that

H2,1 ≤ Cε̃ |t2 − t1|ε̃+
1
p−1

(A.49)

and the mean value theorem, for δ ∈ (0, ε̃) and p < (1 + δ − ε̃)−1, yields

H2,2 =

[∫ t1

0

∣∣(t2 − s)ε̃−1 − (t1 − s)ε̃−1
∣∣pδ ∣∣(t2 − s)ε̃−1 − (t1 − s)ε̃−1

∣∣p(1−δ) ds]1/p

≤ Cε̃(t2 − t1)δ
[∫ t1

0

(t1 − s)p(ε̃−δ−1)ds

]1/p

≤ Cε̃(t2 − t1)δt
ε̃−δ−1+ 1

p

1 .

We can choose p close enough to 1 such that ε̃− δ−1+ 1
p > 0. Thus, (A.46)-(A.49),

together with last inequality, allow us to finish the proof. �
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