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José Maŕıa Sarabia, Faustino Prieto and Vanesa Jordá
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Straightforward methods to evaluate risks arising from several sources are specially dif-

ficult when risk components are dependent and, even more if that dependence is strong
in the tails. We give an explicit analytical expression for the probability distribution of

the sum of non-negative losses that are tail-dependent. Our model allows dependence in

the extremes of the marginal beta distributions. The proposed model is flexible in the
choice of the parameters in the marginal distribution. The estimation using the method

of moments is possible and the calculation of risk measures is easily done with a Monte
Carlo approach. An illustration on data for insurance losses is presented.

Keywords: Risk analysis, extremes, beta distribution, sum of losses,

1. Introduction and Background

One of the most difficult problems of risk analysis is modelling dependence of ex-

treme cases. This is the evaluation of multivariate catastrophic scenarios “when

everything goes wrong”.

This question appears in all domains of risk management. For example, when

companies analyse their day-to-day losses, which can be interconnected, they en-

vision the possibility of a very large loss that would threaten the firm’s economic

viability. So, when deciding managerial strategies for risk mitigation and control,

methods to evaluate the aggregate risk, i.e. the sum of risk from several dimensions,

become an essential tool.

The assumption that losses are generated by a Gaussian statistical distribution

is too restrictive when analysing risks, because normality assumes that extreme ob-

servations have too a small probability of occurrence. Moreover, it is well-known
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that for a multivariate Gaussian distribution, and for elliptical statistical distribu-

tions in general, large losses in each dimension would tend to occur independently.

In practice, this may not be true and this phenomenon is known1,2 as “the devil is

in the tails”, referring to the fact that joint extremes mean that the distribution is

heavier in the joint tails.3

In this article, we propose a statistical multidimensional model that leads to

analytical expressions for the sum of non-negative risks. This model can handle

general tail-dependence between the marginal distributions that are heavy-tailed.

Moreover, our model has also an analytical expression for the multivariate prob-

ability distribution and we show that it can be fitted easily. As a consequence of

its simplicity, our results have many practical implications. For instance, in the

example mentioned above, when direct methods to address the evaluation of risks

arising from several sources with dependencies between the different dimensions are

needed. Our model allows evaluating worst-case scenarios of a “perfect storm” and

so, assessing the risk that several losses could occur simultaneously.

For decades, the difficulties of handling the analytical expressions of general

multivariate distributions and of the distribution of sums of dependent random

variables have challenged progress in the area of risk analysis and, as a consequence,

the assumption of independence and normality has prevailed. Moreover, since no

analytical expressions for risk measures such as the value-at-risk (VaR) and the

tail value-at-risk (TVaR) are available for most models, estimation for risk analysis

has remained difficult.4,5 As opposed to a modelling approach, empirical analysis

in this context refers to calculations based on sampling information, but this has

the major disadvantage that large samples are required, especially when addressing

confidence levels of 95% or beyond, which means analysing only 5% or even less

observations.

Dependence of losses can be introduced via copulas.6–10 Popular multivariate

distributions for losses are: the multivariate Pareto distribution,11 multivariate mix-

tures of exponential distributions12 and the multivariate second kind beta distri-

bution.13 The widespread use of copula functions can only be understood because

it is a simple way to overcome the connection between the marginal distributions

and the multivariate distribution, while keeping mathematical expressions tractable.

However, a suitable copula should be able to model dependence in the tails in a

flexible way. Most copula families either have a fixed structure or cover only a

small range of possibilities for the strength of dependence. Tail dependence has

been studied asymptotically.14 Elliptical distributions have been analysed,15 while

some authors16 concentrated on the tail pattern for multivariate Gaussian distribu-

tions. Many contributions have focussed on the tail behaviours of copulas,17,18 in

particular Archemedian copulas.19,20

Another concept that we address in this article is the sum of risks. The notion

of aggregation in probability theory refers to any function that combines a multi-

variate random vector into a single random variable. By far, the sum of the losses

is the most common type of aggregation, but unfortunately, analytical formulas for
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the sum of random variables are difficult, especially when non-elliptical distribu-

tions are considered.21,22 Although the aggregated risk could be easily obtained for

independent losses, this assumption is in most cases too restrictive.

In the context of a general multivariate model, if the sum of risks is fully char-

acterized, then it is easy to compute its expectation and additional risk measures.

This result, in practice, allows managers to decide whether to retain the risk or to

transfer all, or part of it, to an insurer. All over the world, this decision is the core of

what chief risk officers do. The practical interest of what we propose in this article

is that a simple new method is provided to approximate the aggregated risk.23

In the following sections, a general model for dependent risks is presented, where

the individual risks are modelled according to a second kind beta distribution.

The beta distribution has a wide variety of shapes and it is characterized by a

Pareto-like heavy-tail behaviour, which means that extremes are observed with a

higher probability than in other standard distributions. In our modelling approach,

dependence is introduced in the form of a common factor. We discuss the aggregated

random variable for which we obtain explicit analytical formulas for the probability

density function. An estimation procedure based on maximum likelihood with initial

estimates for the parameters based on the method of the moments is presented and,

finally, an illustration with real data is discussed.

2. Univariate Distributions and basic Risk Measures

We assume a heavy-tailed distribution for the univariate losses. Our choice for the

univariate model is a second kind beta distribution that is also known as the beta

prime or the inverted beta distribution. The choice is motivated by the fact that

this is a statistical distribution for positive values that has three parameters. It has

a flexible form with one single mode for small values and a long tail.

Definition 1. A random variable X is known as a second kind beta distribution

when its probability density function (pdf) is of the form,

f(x; p, q, λ) =
xp−1

λpB(p, q)(1 + x/λ)p+q
, x > 0, (1)

and f(x; p, q, λ) = 0 if x < 0, where p, q, λ > 0 and B(p, q) denotes the beta function.

We represent a second kind beta distribution as X ∼ B2(p, q, λ).

A second kind beta distribution random variable corresponds to the Pearson VI

distribution23,24 in the classical Pearson systems of distributions. If we set p = 1 in

(1), we obtain a Pareto II distribution Pa(q, λ) and in this case, many risk measures

can be obtained in a closed form.

The cumulative distribution function (cdf) of the second kind beta distribution

is given by,

F (x; p, q, λ) = IB

(
x

λ+ x
, p, q

)
,
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where IB(x; p, q) represents the incomplete beta function.

Our objective is to calculate basic risk measures in the univariate case. We first

define the basic measures and then we show their corresponding expression for a

random variable that follows a second kind beta distribution.

Definition 2. Let X be a random variable with cdf FX(x), the value at risk at the

α level is defined by,4,13,25

V aR[X;α] = inf{x ∈ R, FX(x) ≥ α}, 0 < α < 1.

For the second kind beta distribution the V aR can be computed using a simple

expression.22

Proposition 1. Let X ∼ B2(p, q, λ) be a second kind beta distribution, the value

at risk at the α level, denoted as V aR[X;α], is given by,

V aR[X;α, p, q, λ] = λ
IB−1(α; p, q)

1− IB−1(α; p, q)
,

where IB−1(α; p, q) is the inverse of the incomplete beta function and we also in-

clude a reference to the parameters of the second kind beta distribution.

The V aR and the TV aR are two of the most popular risk measures.

Definition 3. Let X be a random variable with cdf FX(x), the tail value at risk

at the α level is defined by,13

TV aR[X;α] = E[X|X > V aR[X;α]]

Proposition 2. If X is distributed according to a second kind beta distribution,

X ∼ B2(p, q, λ), the TV aR can be computed as follows,

TV aR[X;α; p, q, λ] = E[X]
IB−1( α/λ

1+α/λ ; p+ 1, q − 1)

1− IB−1( α/λ
1+α/λ ; p, q)

,

where E[X] = λp
q−1 and q > 1 and we also include a reference to the parameters of

the second kind beta distribution.

Proofs follow immediately from the definitions given above.

3. Multivariate extension

In this section, we consider a vector of dependent risks, for which observations in a

fixed period of time are available. The corresponding random variables are denoted

by {Xi, i ∈ N}, where Xi is a positive amount. We usually say in insurance that Xi

refers to the loss corresponding to the ith claim or to the ith risk.

We assume that {Xi} is a sequence of dependent random variables with second

kind beta distributions.
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Usually, the assumption of the independence in the classical risk models leads to

simpler formulas than the dependence assumption. However, the formulas for the

aggregated risks obtained in the case of dependence between risks are not simple

in general.

A stochastic multivariate representation in terms of ratios of independent gamma

random variables is our starting point.

Lemma 1. Suppose that Gp and Gq denote independent Gamma random variables,

then, by definition, the new random variable resulting from the ratio between the

previous two random variables follows a second kind beta distribution:

X = λ
Gp
Gq
∼ B2(p, q, λ). (7)

Based on the previous result, the multivariate extension is obtained in the fol-

lowing lemma.

Lemma 2. Let G0, G1, . . . , Gd be mutually independent gamma random variables

with distributions, such that G0 ∼ Ga(q0) and Gi ∼ Ga(pi), i = 1, 2, . . . , d. The

multivariate second kind beta distribution based on a common factor is defined as,

(X1, X2, . . . , Xd)
> =

(
λ1
G1

G0
+ τ1, λ2

G2

G0
+ τ2, . . . , λd

Gd
G0

+ τd

)>
(8)

with q0, pi, λi > 0 and τi ≥ 0, i = 1, 2, . . . , d.

In model (8), each marginal component is distributed according to a second

kind beta distribution. Indeed, Xi is a second kind beta distribution with shape

parameters pi and q0, scale parameter λi and location parameter τi, i = 1, 2, . . . , d.

In the rest of the paper we assume τi = 0, i = 1, 2, . . . , d. Moreover, it should be

noted that the random variable G0 is present in all components, and so marginal

distributions are dependent.

Theorem 1. The pdf of the multivariate variable X = (X1, . . . , Xd)
> where the

components are defined in (8), is given by

f(x;p, q0,λ) = K

∏d
i=1 x

pi−1
i /λpii(

1 +
∑d
i=1 xi/λi

)q0+
∑d

i=1 pi
, x1, . . . , xd > 0 (9)

and f(x;p, q0,λ) = 0 otherwise, where K =
Γ

(
q0+

d∑
i=1

pi

)

Γ[q0]
d∑

i=1
Γ[pi]

.

Proof. The proof is direct taking into account that the joint probability density

function can be written as

f(x;p, q0,λ) =

∫ ∞
0

gd0

d∏
i=1

λ−1
i fGi

(g0xi/λi)fG0
(g0)dg0,

where fGi
(z) represents the pdf of a gamma random variable Gi, i = 0, 1, . . . , d.
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4. Parameter Estimation

Let X1, X2, . . . , Xn be a random sample of d−dimensional vectors from (8). The

maximum likelihood estimators of the parameters are given by,

(q̂0, p̂, λ̂)> = arg max

n∑
j=1

log f(x1j , x2j , . . . , xdj , q0,p,λ), (10)

where the likelihood function is regular. In order to find the maximum likelihood

parameter estimates in (10), a numerical optimization requires initial values.

Using the mean, the mode and the variance, the following expressions can be

obtained

λi =
µ2
i (µi −mi)− (3mi − µi)σ2

i

σ2
i − µ2

i + µimi
, i = 1, 2, . . . , d, (11)

q0 =
1

d

d∑
i=1

µi +mi + λi
µi −mi

, (12)

pi =
µi
λi

(
2mi + λi
µi −mi

)
, i = 1, 2, . . . , d, (13)

where µi, σ
2
i , mi, are, respectively, the mean, the variance and the mode of the i-th

random variable. Obtaining parameter estimates with these expression is generally

known as the method of moments procedure.

With the previous starting values that result from the method of moments,

loglikelihood maximization in (10) is done via a standard optimization routine,

which is implemented by the authors in R.

5. Distribution of the Aggregated Risks

Our main result is that, for the particular case where λi = λj , i 6= j, the distribution

of the aggregated risks in (8), its VaR and its TVaR can be obtained in a closed

form. So, risk analysis calculations become straightforward.

Theorem 2. The pdf of the Sn =
∑n
i=1Xi, where the components are defined in

(8) and λ1 = . . . = λn = λ is given by

fSn
(x;p, q0, λ) =

xp̃−1

λp̃B(p̃, q0)(1 + x/λ)p̃+q0
, x > 0, (14)

and fSn(x;p, q0, λ) = 0 if x < 0, where p̃ =
∑n
i=1 pi; that is Sn ∼ B2(p̃, q0, λ).

The proof of this result can be found in Sarabia et al.12

Lemma 3. If λ1 = λ2 = . . . = λd = λ the distribution of the convolution Sd =

X1 + . . . + Xd is a second kind beta distribution Sd ∼ B2(p1 + p2 + . . . + pd, q, λ).

Then, the V aR and the TV aR are available in a simple closed form:

V aR[SX ;α,p, q0, λ] = λ
IB−1(α; p1 + p2 + . . .+ pd, q0)

1− IB−1(α; p1 + p2 + . . .+ pd, q0)
,
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and

TV aR[X;α; p, q0, λ] = E[X]
IB−1( α/λ

1+α/λ ; p1 + p2 + . . .+ pd + 1, q0 − 1)

1− IB−1( α/λ
1+α/λ ; p1 + p2 + . . .+ pd, q0)

,

Theorem 3. Let X be a random vector defined by the stochastic representation

(8), and consider the distribution of the aggregated risks Sd = X1 + . . .+Xd. Then,

the probability density function of Sd is given by,

fSd
(x;p, q0,λ) = C

∞∑
k=0

δk
xp+k−1/λp+k(1)

B(ρ+ k, q0)(1 + x/λ(1))p+k+q0
, x > 0

and 0 elsewhere, where ρ =
d∑
i=1

pi, λ(1) = min{λi},

δk =
1

k + 1

k+1∑
i=1

iγiδk+i−1, k = 0, 1, 2, . . . ,

γk =

k∑
i=1

pi

(
1−

λ(1)

λi

)
1

k
, k = 0, 1, 2, . . .

and

C =

d∏
i=1

(
λ(1)/λi

)pi
. (20)

Proof. The distribution of the sum can be written as Sd = U/V , where U =

λ1G1+. . .+λdGg and V = G0. Then, U is the distribution of the sum of independent

gamma random variables and its probability density function is,26

g(u) = C

∞∑
k=0

δku
ρ+k−1e−u/λ(1)/[Γ(ρ+ k)λρ+k(1) ], u > 0,

and 0 elsewhere, where C is given in (20) and ρ and δk were defined previously.

Finally, making the change of variable Sd = U/V , we obtain the expression for

fSd
(x;p, q0,λ).

6. Case study

Let us consider losses Xi from three sources, i = 1, 2, 3. Without loss of generality,

we assume they are all greater than zero. Note that losses can be defined as excesses

above a certain threshold level that is pre-specified. Here all losses are above zero.

We are interested in the stochastic behaviour of the random vector (X1, X2, X3)

and the distribution of the sum X1 +X2 +X3.

Our data set was obtained from 482 individual customers of an insurance com-

pany, that have been insured for a maximum of 10 years. All customers have two

types of policies: a motor insurance coverage and a homeowners coverage. In this
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sample, all customers had had losses in the two insurance policies during the last

decade. Losses were classified in three major sources: bodily injuries (BI), property

damage (PD), and some home insurance (HO) losses, corresponding to X1, X2 and

X3, respectively.

We summarize the aggregated overall loss, but we do not take into account that

exposure to risk may have been lower than ten years. Moreover, we do not correct

for inflation, hence these losses are expressed in current monetary units (thousand

Euros). Descriptive statistical measures are presented in Table 1 and histograms

are presented in Figures 1 and 2 .

Table 1. Losses on motor insurance (property damage -PD- and bodily injury-BI-) and on home-

owners insurance -HO- for a sample of insureds (2007-2016) in thousand Euros.

Min. Mean Median Max. Std.dev. Skewness Kurtosis

Motor Insurance
PD 0.033 2.518 1.764 36.511 2.849 5.320 50.856

BI 0.001 7.137 3.531 316.318 22.286 11.429 145.250

Home Insurance

HO 0.006 0.525 0.209 9.579 1.036 5.051 33.290

Total losses (sum) 0.954 10.179 6.378 319.974 22.634 10.908 136.264

Note that the minimum of the sum is not necessarily the sum of the minima because those

customers having a minimum loss in one type of loss do not need to have a minimum loss in

another type of loss. The same comment applies to the maximum.

A multivariate second kind beta distribution is fitted and maximum likelihood

parameter estimates are obtained with the proposed set of initial estimates. There

was no single mode because no exact values were repeated in the sample. So to

compute the mode for each random variable, samples had to be grouped in inter-

vals and the middle point of the most frequent interval was selected. A sensitivity

analysis was carried out and no substantial change was obtained when increasing

the number of intervals defined. a

To evaluate the risk of the sum of the three types of losses via the V aR and the

TV aR, two possible methods are possible. First, empirical analysis of the sample

and second, fitting a multivariate model and finding the risk measures of the sum

with expressions given in Section 5.

We start by calculating the empirical sample distribution and we obtained an

empirical V aR equal to 24.239, 47.769 and 306.126 thousand Euros for confidence

levels equal to 95%, 99% and 99.9%, respectively. These empirical results can be

interpreted as a rough measure. For instance in the case of a 99.9% confidence,

we estimate that one in every thousand clients will have accumulated losses above

306 thousand Euros over a decade. Conversely, the figure corresponding to the 95%

aThe set of alternative estimates obtained using different initial values are available upon request.
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Fig. 1. Histograms of property damage and bodily injury losses in motor insurance (upper and
middle, respectively) and homeowners insurance (lower).

confidence means that one customer in every twenty customers has an accumulated
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Fig. 2. Histograms the total sum of losses.

loss in the three coverages of motor and home insurance above 24 thousand Euros.

The corresponding TV aR estimates are equal to 63.736, 187.657 and 319.974

thousand Euros for tolerances equal to 95%, 99% and 99.9%, respectively. Our

criticism about the empirical risk measures is that they may not be correctly ex-

trapolating the large values due to the lack of data. Given that we only have 482

observations, it is difficult to find risk measures with confidence levels beyond 95%,

as they would be based on less than twenty data. In this case, there are plenty of

available softwares that extrapolate and interpolate values.

As an alternative, the fitted multivariate beta of the second kind distribution

was used to determine the corresponding risk measures. So 10, 000 risk estimates

from Monte Carlo simulations with repeated independent samples of size equal

to one million observations were generated assuming that losses were represented

according to the multivariate pdf. For each simulated sample, risk measures at the

95%, 99% and 99.9% confidence level were obtained. The average and the standard

deviation of the 10, 000 risk estimates and the 95% confidence level to evaluate the

estimation errors of the risk measures. The fitted risk measures are shown in Table

2

Table 2. Estimates of the VaR and the TVaR (S.D. Standard deviations and C.I. 95% Confidence
intervals) under the multivariate second kind beta distribution.

V aR S.D. 95%CI TV aR S.D. 95%CI

95% 27.307 0.5216 [26.3132, 28.3317] 43.4238 0.3973 [41.0936, 46.0052]

99% 51.123 1.7968 [47.7911, 54.8405] 75.5307 1.3525 [68.0113, 84.4022]

99.9% 106.9051 10.1499 [89.7991, 129.1216] 151.784 7.7371 [114.8756, 205.8284]

This analysis shows that the empirical TV aR in general overestimates the fit-
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ted TV aR, which means that the empirical procedure may be producing distorted

results due to the extrapolation in the classical empirical analysis when the sample

is not too large. The empirical V aR only underestimates the fitted V aR for con-

fidence levels under 95% when the extrapolation of the empirical procedure is not

necessary because there are still 25 observations in the tail.

7. Conclusions and further work

We have studied some classes of multivariate dependent second kind beta distri-

butions with applications in risk aggregation. Individual risks are represented ac-

cording to second kind beta distribution, which is able to accommodate a variety

of shapes and is characterized by a Pareto tail behavior. The second kind beta dis-

tribution is considered a suitable model in risk management because it has heavy

tails and many of the risk measures are available in a closed form. The dependence

arises in the model in the form of a common factor.

Our case study indicates that when sample size is moderate, or confidence levels

are high, this aggregation model can be useful to estimate risk measures of depen-

dent heavy-tailed risks, because the empirical classical measures may underestimate

or overestimate the tail associations between components of the multivariate ran-

dom vector.
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variate dependent Pareto distributions”, Insurance: Mathematics and Economics 71
(2016) 154–163.
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